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Extremely primitive groups

Avinoam Mann, Cheryl E. Praeger and Ákos Seress

Abstract. A primitive permutation group is called extremely primitive if a point stabilizer acts
primitively on each of its orbits. We prove that finite extremely primitive groups are of affine
type or almost simple. Moreover, we determine the affine type examples up to finitely many
exceptions.
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1. Introduction

A primitive permutation group is called extremely primitive if a point stabilizer is
primitive on each of its orbits (where we regard the trivial group acting on a set of
size 1 as primitive). Extremely primitive groups were the subject of a 1927 paper of
W.A. Manning [22], and interest again focused on them following efforts to extend the
Bounded Subdegrees Theorem proved by G. Schlichting [26] in 1980 (and reproved
by V. Trofimov in 1985, and G. M. Bergman and H. W. Lenstra in 1989, see [23])
concerning the structure of a transitive permutation group given a finite upper bound
on its subdegrees. Extremely primitive groups are among the most natural primitive
groups to be studied further, and examples of these include

(a) G Š Zp acting regularly on � D G by right multiplication, where p is a prime,
and

(b) each 2-primitive permutation group G on �; a classification of all such groups
is available and depends on the finite simple group classification.

If a finite group G is extremely primitive and is not one of these examples, then G

is not regular on �, since the only primitive regular permutation groups are cyclic of
prime order. Also G is simply primitive, that is, G is not 2-transitive, since the only
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2-transitive examples are 2-primitive. Thus if we exclude these examples, then all
finite extremely primitive groups G satisfy the following conditions.

(A) G is a simply primitive permutation group on a finite set � such that, for ˛ 2 �,
the stabilizer G˛ ¤ 1, and G˛ acts primitively on each of its orbits in �.

These conditions may be stated in an equivalent form as follows (setting H WD G˛).

(A0) G is a finite group with a maximal non-trivial core-free subgroup H , such that
H \ H x is maximal in H , for each x 2 G n H , and there are at least three
H -double-cosets.

It follows from an old result of Manning [22] (or see [30, 17.6]) that G˛ is faithful on
each of its orbits in � n f˛g. In the setting of (A0), Manning’s result is that H \ H x

is core-free in H for each x 2 G n H . We study groups satisfying these conditions
in an attempt to classify them, a problem that was mentioned in [23]. In that paper
the authors considered transitive groups, not necessarily finite, with a point stabilizer
acting primitively on each suborbit. As was explained there, the problem does not
reduce to the case of primitive groups discussed here, but still that case seems a natural
first step. We also confine ourselves to finite groups.

Our main results are as follows.

Theorem 1.1. If G � Sym.�/ is extremely primitive then G is of affine type or almost
simple.

The bulk of this paper is the further analysis of the affine case. We shall return
to the classification of extremely primitive groups of almost simple type in a sequel.
The proof of Theorem 1.1 is independent of the finite simple group classification,
but further results rely on this classification: namely Theorem 1.2 through its use of
the classification of finite 2-transitive groups, and Theorem 1.3 where more detailed
information about simple groups and their representations is needed.

Theorem 1.2. Let G � Sym.�/ be extremely primitive of affine type, so that j�j D
pd for some prime p, G D NH � AGL.d; p/ with N D Zd

p and H an irreducible
subgroup of GL.d; p/. Then one of the following holds.

(a) .Soluble examples/

(i) d D 1 and H D 1; or

(ii) H D Zq , where q is a prime, and o.p mod q/ D d ; or

(iii) H D Zq:Ze , with q as in (ii), and e divides d .

(b) .2-transitive, insoluble examples/ p D 2 and one of the following holds.

(i) H D SL.d; 2/ for d � 3, or H D Sp.d; 2/ for d � 4 even;

(ii) .d; H/ D .4; A6/, .4; A7/, .6; PSU.3; 3//, .6; PSU.3; 3/:2/.
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(c) .Insoluble, simply primitive examples/ p D 2 and H is almost simple.

Moreover each of the groups in parts (a) and (b) is extremely primitive.

To classify the finite affine extremely primitive groups it remains to find all the
examples in part (c) of Theorem 1.2. This we do up to a finite number of possibilities.

Theorem 1.3. For the pairs .d; H/ in (a)–(c) below, the group Zd
2 :H is simply

primitive and extremely primitive.

(a) Soc.H/ sporadic:
.10; M12/, .10; M22/, .10; M22:2/, .11; M23/ .two groups/, .11; M24/ .two
groups/, .22; Co3/, .24; Co1/;

(b) Soc.H/ alternating:
.2k; A2kC1/, .2k; S2kC1/ for k � 2, .2k; A2kC2/, .2k; S2kC2/ for k � 3;

(c) Soc.H/ of Lie type:
.2k; �˙.2k; 2//, .2k; �˙.2k; 2/:2/ for k � 3, .8; PSL.2; 17//, .8; Sp.6; 2//.

Moreover, there are only finitely many insoluble, simply primitive, extremely primitive
groups of affine type not occurring on this list.

Note that up to permutational isomorphism there are two extremely primitive
groups with structure Z11

2 :M23 and also there are two such groups with structure
Z11

2 :M24. We conjecture that the list in Theorem 1.3 is complete. We say more about
this conjecture in Subsection 4.1. In particular, modulo a proof of a conjecture of
G. E. Wall, the only possible additional examples are for the pairs .d; Soc.H// listed
in Table 2 (see Theorem 4.8).

We prove Theorem 1.1 in Section 2, Theorem 1.2 in Section 3, and Theorem 1.3
in Section 4.

2. Reduction to the affine and almost simple cases

In this section we prove Theorem 1.1. If G � Sym.�/ is either cyclic of prime order
or 2-transitive, then it is primitive of affine or almost simple type and there is nothing
to prove. Hence it is enough to consider the case when G, �, and H WD G˛ satisfy
condition (A), or equivalently, condition (A0).

Let N be a minimal normal subgroup of G. Then N is transitive on � and hence
G D NH . The various possibilities for the structure of N and H are described by
the O’Nan–Scott Theorem [4, 4.1A]. First we treat the case where N is regular on �.

Lemma 2.1. If N is regular on �, that is, if N \ H D 1, then N is elementary
abelian, and hence Theorem 1.1 holds.
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Proof. We may identify N with �, so that N acts on itself by right multiplication,
and H acts on N by conjugation. Thus if 1 ¤ x 2 N and h 2 H \ H x , then h D hx

1

for some h1 2 H , so Œh1; x� D h�1
1 h 2 H \ N D 1. Hence h1 2 CH .x/, implying

that h D h1, and that CH .x/ D H \ H x . Therefore, CH .x/ is maximal in H . Note
that CH .x/ ¤ H , because H fixes only one point of �.

Suppose that N is not elementary abelian. Then N is not nilpotent, G is not a
Frobenius group (see [30, Theorem 5.10]), and therefore some non-identity element
u 2 � D N is fixed by some non-identity element of H . Thus CH .u/ ¤ 1, and it
follows that H is not of prime order. Then, for any x 2 N #, the stabilizer CH .x/ of x

in H is maximal in H , and hence CH .x/ ¤ 1.
Let K1; : : : ; Kr be the distinct subgroups of H occurring as centralizers of non-

identity elements of N , with Ki D CH .xi /, say, and let Ci D CN .Ki /. Now each
element of N lies in at least one of the subgroups Ci . If i ¤ j , then hKi ; Kj i D H

since Ki ; Kj are maximal in H and so Ci \ Cj centralizes hKi ; Kj i D H . Hence
Ci \ Cj D 1. Thus the Ci

# D C1 n f1g form a partition of N #. The insoluble groups
with a partition were determined by M.Suzuki [28], and are the groups PSL.2; q/,
Sz.q/, and PGL.2; q/. Here N must be one of the first two as it is minimal normal
in G. If N is the unique minimal normal subgroup of G, then G is almost simple.
Otherwise G has exactly two minimal normal subgroups, which are isomorphic simple
groups, say N1 and N2, two copies of the simple group N . Let S D N1 � N2, the
socle of G. Then we may assume that H \ S is the diagonal subgroup D D f.x; x/ j
x 2 N g. Since H is primitive on the G-conjugacy classes contained in N1, and
D G H , D is transitive on the same classes, which means that the G-classes are N1-
classes. However, an outer automorphism of a non-abelian simple group moves some
conjugacy class [5, Theorem C], and therefore G induces only inner automorphisms
on N1, which in turn means that G D N1CG.N1/ D S and H D D. However
if x 2 N1 is a non-identity element of prime order p, where p divides q, then
CH .x/ D f.y; y/ j y 2 CN .x/g is not maximal in H , which is a contradiction.

Thus we may assume that G has no regular minimal normal subgroups. By
Theorem [4, 4.1A], G has a unique minimal normal subgroup N D T1 � � � � � Tk ,
where the Ti are all isomorphic to a non-abelian simple group T , and k � 1. We
show next that G does not preserve a non-trivial Cartesian decomposition of the point
set �.

Lemma 2.2. There is no non-trivial decomposition � D †l .l � 2/ such that
G � Sym.†/ o Sl in product action.

Proof. Suppose that � D †l (l � 2) and G � Sym.†/ o Sl in product action.
Since N is non-abelian and non-regular, it follows from [14, 2.4] that, replacing G

by a conjugate in Sym.†/ o Sl if necessary, we may assume that G � L o Sl where L

is a primitive subgroup of Sym.†/ and N D Soc.L/l . Thus Soc.L/ Š T m where
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k D lm. Since G D NH , the subgroup H is transitive on both the k simple direct
factors of N , and the l entries of points of †l .

We may take the point ˛ 2 � to be ˛ D .�; : : : ; �/ for some � 2 †. Then
H D G˛ � .L o Sl/˛ D L� o Sl . In particular, N˛ D .Soc.L� //l , and since N is
not regular, N˛ ¤ 1. Let � be an orbit for H in � n f˛g. Then N˛ D N \ H is a
nontrivial normal subgroup of H , and as H acts faithfully and primitively on �, it
follows that N \ H is transitive on �. Hence H and N \ H have the same orbits
in �. Now the set f.�; �; �; : : : ; �/ j � 2 †g D † � f�gl�1 is clearly invariant under
the action of N \ H , and hence is a union of orbits of N \ H . However as H acts
transitively on the entries of points of †l , and H � L� oSl , this subset is not invariant
under the action of H , and hence is not a union of H -orbits.

It follows from Lemma 2.2 and the O’Nan–Scott Theorem (see [19]) that, if G

has no regular normal subgroup, and G does not preserve a non-trivial Cartesian
decomposition of �, then either G is almost simple, or G has simple diagonal type.
Thus in order to complete the proof of Theorem 1.1, it is sufficient to show that G

does not have simple diagonal type. Suppose to the contrary that it does. Then,
replacing G by a conjugate if necessary, we may assume that G is a subgroup of the
group W defined by

W D
n
.a1; : : : ; ak/ � �

ˇ̌̌
ai 2 Aut.T /; � 2 Sk;

ai � aj .mod Inn.T //
for all i; j

o
where ��1.a1; : : : ; ak/� D .a1��1 ; : : : ; ak��1/. The socle of W is the group
Soc.W / D f.t1; : : : ; tk/ j ti 2 Inn.T /g, the set � D T k�1, and W acts on � as
follows:

.a1; : : : ; ak/ W .t1; : : : ; tk�1/ 7! .a�1
k

t1a1; : : : ; a�1
k

tk�1ak�1/ and
� W .t1; : : : ; tk�1/ 7! .t�1

k��1 t1��1 ; : : : ; t�1
k��1 t.k�1/��1/

for .a1; : : : ; ak/� 2 W and .t1; : : : ; tk�1/ 2 T k�1, where tk D 1T . Thus for
˛ D .1T ; : : : ; 1T / 2 T k�1, W˛ D A � Sk where A D f.a; : : : ; a/ j a 2 Aut.T /g.
A subgroup G of W containing N is primitive on � provided that G acts primitively
on the simple direct factors of N . Since G D NH we have that H acts primitively
on these simple direct factors.

Lemma 2.3. If G is of simple diagonal type, then k D 2 and, for each t 2 T ,
t ¤ 1, there is an automorphism a.t/ 2 Aut.T / which inverts t such that a.t/2 2
Inn.T /, and hCInn.T /.t/; a.t/i is a maximal subgroup of hInn.T /; a.t/i. Moreover,
hInn.T /; a.t/i is independent of t 2 T n f1g.

Proof. Suppose that G is a subgroup of the group W defined above. Consider the
point ı D .t; 1; : : : ; 1/ 2 � D T k�1, where t 2 T; t ¤ 1. The N˛-orbit containing ı
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is the set f.tx; 1; : : : ; 1/ j x 2 T g, which in particular has size greater than 1. Let �

denote the H -orbit containing ı. Since the normal subgroup N˛ of H acts nontrivially
on �, and since H is primitive on � it follows that � D f.tx; 1; : : : ; 1/ j x 2 T g.
However, since H is transitive on the simple direct factors of N , it follows from
the definition of the action that, when k � 3, the H -orbit containing ı contains a
.k � 1/-tuple with non-trivial second entry.

Therefore k D 2, so � D T and � is the conjugacy class containing t . We have
N˛ � H � Aut.T / � h�i where h�i D S2 and � W x 7! x�1 for all x 2 T . Now
H \ Aut.T / must leave the H -orbit � invariant, and it follows that H \ Aut.T /

leaves all conjugacy classes of T invariant. Since for each outer automorphism of
a non-abelian simple group T there is a conjugacy class of T which it moves [5,
Theorem C], it follows that H \ Aut.T / D Inn.T / D N˛ , and jH W N˛j � 2.

Now H contains an element which interchanges the two simple factors of N ,
so jH W N˛j D 2. Such an element is of the form a� for some a 2 Aut.T /, and
a� W t 7! .ta/�1. Since N˛ is transitive on � we have H D N˛Hı , so we may
assume in addition that a� 2 Hı . Therefore ta D t�1, and hence every element t

of T is mapped to its inverse by some automorphism a D a.t/. Also .a�/2 D a2 2
H \ Aut.T / D Inn.T /. Now H D hInn.T /; a�i, and Hı D hCInn.T /.t/; a�i is a
maximal subgroup of H . Moreover H � W˛ D A � Sk , and H projects faithfully
onto A with image hInn.T /; ai. It follows that hCInn.T /.t/; ai, the image of Hı

under this projection, is a maximal subgroup of hInn.T /; ai, and that hInn.T /; ai is
independent of the choice of t in T n f1g.

We now prove that there are no simple groups satisfying the conditions of
Lemma 2.3, thereby completing the proof of Theorem 1.1.

Lemma 2.4. There is no simple group satisfying the conditions on the group T given
in Lemma 2.3.

Proof. Let T be a finite non-abelian simple group, and identify T with the subgroup
Inn.T / of its automorphism group Aut.T /. Suppose that T satisfies the conditions
of Lemma 2.3, that is, there is a subgroup A of Aut.T /, containing T as a subgroup
of index at most 2, such that, for each t 2 T; t ¤ 1, there exists a.t/ 2 A with
ta.t/ D t�1; a.t/2 2 T , and hCT .t/; a.t/i maximal in A. Note that a.t/ normalizes
CT .t/, and that jCT .t/ha.t/i W CT .t/j � 2. Index 1 occurs if and only if t is an
involution and a.t/ 2 T , that is, A D T . In any case, CT .t/ is normal in CT .t/ha.t/i.

Let t be an involution, and assume that some non-identity element x 2 CT .t/

has odd order. Then both t and x are powers of tx. Also a.tx/ inverts x and
fixes t , and CT .tx/ fixes both x and t . Hence hCT .xt/; a.xt/i � hCT .t/; a.t/i D
CA.t/ and CT .tx/ � CT .x/. The maximality condition of Lemma 2.3 implies that
hCT .tx/; a.tx/i D CA.t/. It follows that x centralizes a subgroup of CT .t/ of index
at most 2, and therefore all elements of odd order in CT .t/ lie in Z.O2.CT .t/// (where
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O2.CT .t// is the smallest normal subgroup of CT .t/ with quotient a 2-group). Thus
the set consisting of all these elements forms a normal 2-complement in CT .t/. By
D. Gorenstein’s characterization [7] of groups of this type, T is one of the simple
groups PSL.2; q/; Sz.q/; PSL.3; 4/, or A7.

If T is one of PSL.n; q/ or Sz.q/, let t be an element of order p, where p is
the defining characteristic. In A7, let t D .123/.456/. Write C D CT .t/. Since
hC; a.t/i � NA.C /, the maximality implies equality, and jNA.C / W C j � 2. For
these groups, this is only possible if A D T D PSL.2; 5/, but for this group the
condition fails on taking t to be an involution.

3. Affine groups

In this section we prove Theorem 1.2. Throughout this section we shall assume that G

is extremely primitive of affine type, and is not regular of prime order. Thus we have
G D NH , where N D Zd

p and H is a non-trivial irreducible subgroup of GL.d; p/,
for some prime p and positive integer d . The centralizer of H in GL.d; p/ is therefore
isomorphic to GF.pa/#, for some integer a dividing d (possibly a D 1). We may,
and shall, assume that H � GL.d=a; pa/ � a, and identify N with the additive group
of a .d=a/-dimensional vector space V over the field F D GF.pa/. The integer a

is the largest for which such an embedding is possible. Further we identify � D V ,
with N and H acting naturally. First we examine elements of H which fix some
1-dimensional subspace of �.

Lemma 3.1. If h 2 H and v 2 � are such that vh D �v for some � 2 F , then
� D 1 .that is, 1 is the only possible eigen-value for an element of H/. In particular,
H contains no non-identity element of order dividing pa � 1.

Proof. Suppose that 0 ¤ v 2 � and h 2 H are such that vh lies in the F -space hviF

spanned by v. Then hvhiF D hviF . Moreover, identifying v with the corresponding
element of N , we have that CH .v/h D CH .vh/ fixes each element of hvhiF D hviF ,
and it follows that CH .v/h D CH .v/ D H \ H v . By condition (A), H \ H v is
maximal in H , and since h normalizes CH .v/ D H \H v , it follows that h 2 CH .v/,
and therefore vh D v. Thus 1 is the only possible F -eigen-value for any element
of H . However, if the order of h divides pa � 1, then all the eigen-values of h (in its
splitting field) lie in F , and it follows that the only such element is h D 1.

We now consider the actions of normal subgroups of H , and then we deal with
soluble extremely primitive groups.

Lemma 3.2. If M is a non-trivial normal subgroup of H , then M and H have the
same orbits in �, and M leaves invariant no proper non-trivial subgroup of N .
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Proof. As in the proof of Lemma 2.1, we denote by K1; : : : ; Ks the distinct intersec-
tions H \ H x D CH .x/, for x 2 N #. Then by Condition (A), each Ki is a maximal
subgroup of H . The fact that H is faithful on each of its orbits implies that M is not
contained in any Ki , so H D MKi for each i . This is equivalent to the assertion
that M is transitive on each H -orbit in � n f0g. Suppose that L is a non-identity
M -invariant subgroup of N , and let 1 ¤ x 2 L. Because H is primitive on the
H -orbit xH containing x, M is transitive on xH , and hence this orbit is contained
in L. Thus L is H -invariant, so L D N .

Lemma 3.3. If G is soluble and extremely primitive, then part (a) of Theorem 1.2
holds.

Proof. If H D 1 then case (a) (ii) of Theorem 1.2 holds, so we may take H ¤ 1 (as
assumed for this section). Let M be a minimal normal subgroup of H . By Lemma 3.2,
M is transitive on each H -orbit. Since H is soluble, M is elementary abelian, and
since a transitive abelian permutation group is regular, it follows that M induces a
regular permutation group on each H -orbit in � n f0g. Then since H , and hence also
M , acts faithfully on each such H -orbit, it follows that each of these H -orbits has
length jM j. Hence G is a soluble 3/2-transitive group. These groups were determined
by Passman [24, 25]. The examples are divided into four categories, and we consider
each category in turn, to determine which of the soluble 3/2-transitive groups satisfy
Condition (A).

1. G is a Frobenius group. In this case N is the Frobenius kernel and H is a
Frobenius complement. The intersections H \ H x (x 2 N #) are trivial, so H is
primitive and regular on each of its orbits in � n f0g. Thus H has prime order, say q.
The maximality of H in G is equivalent to N being a minimal normal subgroup, so G

is as in case (a) (ii) of Theorem 1.2.
2. G � A	L.1; pd /. Here H � 	L.1; pd /, so H is metacyclic, and if the cyclic

normal subgroup T D H \ GL.1; pd / is trivial, then H is cyclic. Choosing M , in
the argument above, to be a subgroup of T if T ¤ 1, then M has prime order, q say,
and we see that each H -orbit in � n f0g has length q, and that M is transitive on it.
If T D 1, then H D M , and case (a) (ii) of Theorem 1.2 holds. If T ¤ 1, then T is
faithful and transitive on each of the H -orbits and hence jT j D q. If T is contained
in GL.1; pb/, for some proper subfield GF.pb/ of F , then this subfield constitutes a
proper H -invariant subgroup of N , contradicting the maximality of H in G. Thus
T is contained in no such subgroup, which means that NT is as in case (a) (ii) of
Theorem 1.2. In this case, we may identify � with the additive group of the field F .
Let K D K1 be the stabilizer in H of the multiplicative identity 1 of F D �. Then
we have K \ T D 1, and K is a subgroup of the Galois group of F . If K D 1 then
G D NT is as in case (a) (ii) of Theorem 1.2, while if K ¤ 1, then K is cyclic of
order e, where e divides d , and G is as in case (a) (iii) of Theorem 1.2.
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3. G � A	L.2; q/, where q D pd=2 with d even, H � 	L.2; q/, and H \
GL.2; q/ consists of diagonal or anti-diagonal matrices of determinant 1 or �1.
(By an anti-diagonal matrix we mean one whose nonzero entries are all on the northeast
to southwest diagonal.) In this case H is the union of diagonal and anti-diagonal
matrices, and so it is a dihedral group of order 2q, say. Its cyclic subgroup T of
index 2 acts faithfully and transitively on each of the H -orbits in � n f0g. Therefore,
for each x 2 N #, H \ H x has order 2, and since H \ H x is maximal in H it follows
that q is prime. Again G is as in case (a) (iii) of Theorem 1.2, with e D 2.

4. G is one of several exceptional groups, of degrees 32, 52, 72, 112, 172, or
34: We will show that this case does not lead to new examples. First, Lemma 3.1
shows that jH j is odd. Since all H -orbits in � n f0g have equal size, the indices
jH W H \ H xj (x 2 N #) divide pd � 1. The only possible odd divisors are 3, 5,
15, and 9. Here 15 is impossible, because the index of a maximal subgroup in a
soluble group is a prime-power. If the index is 3 or 5, then H is isomorphic to a
subgroup of odd order of either S3 or S5, and it follows that H itself has order 3 or 5
respectively. Then considering a minimal normal subgroup of G the maximality of
H implies that G is as in case (a) (ii) of Theorem 1.2. Finally let the index be 9. Then
jN j D 172, and since H acts faithfully as a soluble and primitive permutation group
of degree 9, H contains a normal elementary abelian subgroup of order 9. However,
H � 	L.2; 17/, which has no elementary abelian subgroup of order 9.

For the rest of this section we therefore assume that H is insoluble. First, we verify
that the list of 2-transitive extremely primitive groups in Theorem 1.2 is correct.

Lemma 3.4. If G D Zd
p :H is insoluble and 2-transitive, then part (b) of Theorem 1.2

holds.

Proof. The 2-transitive affine permutation groups G are known (see e.g. [2, Table 7.3])
and more details on the structure of H can be found in [17, Appendix]. There are
three infinite families, with H containing a normal subgroup isomorphic to one of
the following three types: SL.d=a; pa/ for some a � d=2, Sp.d=a; pa/ for some
a � d=4, or G2.pa/0 for p D 2 and a D d=6. There are also eleven sporadic
examples with 24 � pd � 592. If H belongs to one of the three infinite families
then H contains elements of order pa � 1 and so, by Lemma 3.1, we have pa D 2.
This leads to the examples H D SL.d; 2/, Sp.d; 2/, Sp.4; 2/0 Š A6, G2.2/0 Š
PSU.3; 3/, and G2.2/ Š PSU.3; 3/:2 listed in Theorem 1.2 (b) (in the last two cases,
we constructed H in GAP [6] to verify that H acts primitively on � n f˛g). Out
of the eleven sporadic examples, in eight cases H does not have a faithful primitive
representation (either Soc.H/ is not the product of isomorphic simple groups, or
jSoc.H/j D 2). The remaining three cases are G D Z6

3 : SL.2; 13/; Z2
11: SL.2; 5/,

and Z4
2 :A7. Lemma 3.1 eliminates the first two of these and the third one leads to an

example listed in Theorem 1.2 (b).
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Finally, suppose that G is uniprimitive and H is insoluble. There are two types
of information affecting the structure of H . On the one hand, H is an absolutely
irreducible subgroup of GL.d=a; pa/:a, and we have available the Aschbacher clas-
sification [1] of such subgroups to provide a framework for our investigation. On the
other hand, H acts faithfully as a primitive permutation group on each of its orbits
in � n f0g, and the O’Nan–Scott Theorem (see [19]) therefore provides information
about the possible structure of H . We use a combination of these methods to complete
the proof of Theorem 1.2. First we exploit the fact that H is primitive on each of its
orbits in � n f0g to prove that H has a unique minimal normal subgroup which is
non-abelian.

Lemma 3.5. If G is insoluble, then p D 2, and H has a unique minimal normal
subgroup M , and M is nonabelian.

Proof. If p were odd, then by Lemma 3.1, jH j would be odd also, and hence G

would be soluble, which is not the case. Hence p D 2. Let M be a minimal normal
subgroup of H . By Lemma 3.2, each H -orbit is also an M -orbit. Suppose that M

is regular on each non-trivial orbit of H . Then all these orbits have length jM j, and
hence jM j divides j�j � 1 D 2d � 1. Thus jM j is odd, and so M is soluble, and
hence is elementary abelian. Also, since H is faithful of each non-trivial orbit, M

is self-centralizing in H . By Lemma 3.2, M leaves invariant no non-trivial proper
subgroup of N . Hence M is an abelian irreducible group on N , and therefore M

is cyclic. Then H=M , which is isomorphic to a group of automorphisms of M , is
abelian and H is soluble, which is a contradiction. Thus M is not regular on some
H -orbit, and because H is faithful and primitive on that orbit, it follows (see [19])
that M is not abelian and is the unique minimal normal subgroup of H .

We now apply the Aschbacher classification [1] of subgroups of GL.d; p/ to
complete the proof of Theorem 1.2. We use the notation C1–C8, S of [13] to denote
the categories of this classification. Recall that H � GL.d=a; pa/:a and a is maximal
with respect to this property. We view H as acting semi-linearly on V D GF.pa/d=a.
By Lemma 3.5, p D 2 and H has a unique minimal normal subgroup M that is
non-abelian.

Let H0 WD H \ GL.d=a; 2a/. If H0 � SL.d=a; 2a/, or H0 contains a classical
group of dimension d=a over GF.2a/, then Lemma 3.5 implies that H0 is almost
simple, satisfying the conclusion of Theorem 1.2 (c), and moreover in this case M D
Soc.H/ is absolutely irreducible on V . Thus we may assume that H0 is contained in
GL.d=a; 2a/:a, or a general symplectic, general unitary or general orthogonal group
of dimension d=a over GF.2a/, but neither contains the socle mod scalars of this
group, nor leaves invariant any additional nondegenerate form. Then [1] implies that
H0 is in category Ci for some i � 7, or in category S , for this group. If H0 is in S ,
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then by Lemma 3.5, H0 is almost simple, satisfying the conclusion of Theorem 1.2 (c),
and by [1], Soc.H/ is absolutely irreducible on V . Thus we have the following.

Lemma 3.6. If H is insoluble and simply primitive, then either

(a) H is almost simple satisfying Theorem 1.2 (c), not realisable over a proper
subfield, and Soc.H/ is absolutely irreducible on V D GF.2a/d=a, or

(b) H0 is in category Ci for some i 2 f1; 2; : : : ; 7g.

We may therefore assume that H0 is in category Ci where 1 � i � 7. By
Lemma 3.2, H0 leaves invariant no proper GF.2/-subspace of V . Hence H0 is not a
C1-subgroup. Moreover, since H0 is irreducible on V , the maximality of a implies
that H0 is not a C3-subgroup of GL.d=a; 2a/ and in particular H0 is absolutely
irreducible on V , considered as a GF.2a/-vector space. Suppose that there is a proper
subfield GF.q/ of GF.2a/ such that H0 is conjugate in GL.d=a; 2a/ to a subgroup
of Z B GL.d=a; q/, where Z is the subgroup of scalar matrices in GL.d=a; 2a/.
Then H0 leaves invariant a GF.2/-subspace of V of order at most .2a=q/qd=a < 2d ,
contradicting Lemma 3.2. Thus the representation of H0 is realizable over no proper
subfield of GF.2a/ (that is, H0 is not in category C5). Also, by Lemma 3.5, it follows
that H0 is not contained in the normalizer of a symplectic type r-group, where d=a

is a power of the prime r (category C6). It therefore follows from [1] that either
Theorem 1.2 (c) holds, or we have one of the following.

(i) H0 leaves invariant a direct sum decomposition � D U1 ˚ � � � ˚ Ut where each
Ui is a GF.2a/-subspace of dimension d=at , t > 1, and H0 acts transitively on
fU1: : : : ; Utg (category C2).

(ii) H0 leaves invariant a tensor product decomposition � D U ˝ W where U; W

are GF.2a/-subspaces with dim U D m > 1, dim W D n > 1, and d=a D nm

(category C4).

(iii) H0 leaves invariant a tensor imprimitivity system � D U1 ˝ � � � ˝ Ut , such that
each Ui is a GF.2a/-subspace of dimension m > 1, d=a D mt > m, and H0

acts transitively on fU1: : : : ; Utg (category C7).

In the next lemmas we prove that none of the cases (i)–(iii) holds, thereby com-
pleting the proof of Theorem 1.2.

Lemma 3.7. Case .i/ above does not hold.

Proof. Suppose that (i) holds and let u be a non-zero vector in U1. By Lemma 3.2,
M; H0; H have the same orbits in �. Let � denote the H -orbit containing u. Then
U1 \� is a block of imprimitivity for the action of H on �. Since H0 permutes the Ui

transitively, U1 \ � is a proper subset of �, and since H is primitive on � it follows
that U1 \� D fug. This means that the sum v of the vectors in � is a non-zero vector
which is left invariant by H , contradicting the fact that H is irreducible on �.
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Lemma 3.8. Case (ii) above does not hold.

Proof. Suppose that (ii) holds, and let u; w be non-zero vectors in U; W respectively.
Let � denote the H -orbit containing u ˝ w. Then H acts primitively on �. Set
U ˝ w WD fz ˝ w j z 2 U #g. Then � \ .U ˝ w/ contains u ˝ w and is a block of
imprimitivity for H in �. Moreover, � \ .U ˝ w/ is not equal to �, for if it were
then H , in its induced action on W , would fix hwiF , whereas H is irreducible on W

and dim W > 1. It follows that � \ .U ˝ w/ D fu ˝ wg. Now the stabilizer K in
H of the 1-space hwiF is equal to the setwise stabilizer in H of U ˝ w. From what
we have just shown, K fixes � \ .U ˝ w/ D fu ˝ wg. Thus K D HhuiF

. Since u

was any non-zero vector in U , it follows that K fixes each 1-space hu0iF , u0 2 U #.
Thus K acts on U as a subgroup of scalar matrices, and similarly K D HhuiF

acts
on W as a subgroup of scalar matrices. Since, by Lemma 3.1, the only eigen-value
for elements of H is 1, it follows that K D 1. Thus H acts faithfully, regularly and
primitively on �, whence H is cyclic. This contradicts the assumption that H is
insoluble.

The proof that case (iii) does not hold is rather more delicate. We first standardise
the representation of such groups.

Lemma 3.9. Suppose that case (iii) above holds. We may identify each of the Ui

with an m-dimensional GF.2a/-vectorspace U in such a way that H � .GL.U / B
� � � B GL.U //:St , where B denotes the central product. Let K denote the subgroup of
GL.U / induced on U D U1 by the stabilizer H1 in H of the first tensor factor U1.
Then, replacing H by a conjugate under GL.U / B � � � B GL.U / if necessary, we may
assume that H � .NGL.U /.K/B� � �BNGL.U /.K//:St and H \.GL.U /B� � �BGL.U // �
K B � � � B K.

Proof. We work with the preimage of H in GL.U / o St . By definition, K D K1 is
the set of all h1 2 GL.U / such that there exists .h1; h2; : : : ; ht /� 2 H with 1� D 1.
The subgroups Kj (j � t ) of GL.U / induced on Uj D U by the stabilizer Hj in H

of the j th tensor factor Uj are defined similarly.
Let x
 2 H , where x D .x1; : : : ; xt / 2 GL.U /t and 
 2 St , and suppose that

i
 D j . We claim that K
xi

i D Kj . Let k 2 Ki . There exists h� 2 H such that
hi D k and i� D i . Then .h�/x� 2 H , and

.h�/x� D hx� � .x�1/� � .x/��1� � �� D x0��:

Now .j /�� D j , and the j th entry of x0 is equal to the i th entry of hx � x�1 � x��1
,

and this is h
xi

i x�1
i xi D h

xi

i D kxi . Hence kxi 2 Kj , and so K
xi

i � Kj . Similarly,

since .x
/�1 D .x�1/�
�1 2 H and j
�1 D i , we have that K
x�1

i

j � Ki . Hence
K

xi

i D Kj , as claimed.
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Since H is transitive on fU1; : : : ; Utg, for each i D 1; : : : ; t , there exists x.i/
.i/ in

H such that 1
.i/ D i , and consequently K
x

.i/
1

1 D Ki . Set x WD .x
.1/
1 ; x

.2/
1 : : : ; x

.t/
1 / 2

GL.U /t . Then H x�1
induces the same transitive subgroup of St on the Uj , and, for

i D 1; : : : ; t , the subgroup of GL.U / induced by .H x�1
/i on the i th tensor factor

Ui is x
.i/
1 Ki .x

.i/
1 /�1 D K1 D K. Thus, replacing H by H x�1

, we may assume
that K1 D � � � D Kt D K. This means that H \ GL.U /t � Kt . Finally consider
a typical element x
 in the replaced subgroup H . For each i , we have shown that
K

xi

i D Ki�, that is, xi 2 NGL.U /.K/.

Lemma 3.10. Case (iii) above, with t � 3, does not hold.

Proof. Suppose that (iii) holds, with t � 3. By Lemma 3.9, we may assume that
H � .NGL.U /.K/B� � �BNGL.U /.K//:St and H \.GL.U /B� � �BGL.U // � KB� � �BK,
where NGL.U /.K/ is an irreducible subgroup of GL.U /. Let fe1; : : : ; emg be a basis
for U . Then the set B of mt vectors ei1 ˝ � � � ˝ eit

(where each ij � m) forms a
basis for �. (Since we have identified each of the Ui with U , the order in these tensor
expressions matters.)

Consider the vector v D e1 ˝ e1 ˝ � � � ˝ e1 C e1 ˝ e2 ˝ � � � ˝ e2. In this
representation for v as a sum of two basic tensors, the two summands have equal
first tensor entries, and all the other pairs of tensor entries are linearly independent.
Suppose that there is another representation of v as

v D u1 ˝ � � � ˝ ut C w1 ˝ � � � ˝ wt

where the uj ; wj 2 Uj , and there exists an i such that fui ; wig is linearly dependent,
but for each j ¤ i , fuj ; wj g is linearly independent. We claim that i D 1. Suppose,
for a contradiction, that this is not the case. Recall that t � 3. Without loss of
generality, we may assume that i D 2, and that u2 D w2. For each j , let uj DP

l cjlel and wj D P
l djlel (so c2l D d2l for all l). Then

v D
X

.j1;:::;jt /

� tY
lD1

cl jl
C

tY
lD1

dl jl

��
ej1

˝ � � � ˝ ejt

�
:

Equating the coefficients of e1 ˝ e1 ˝ � � � ˝ e1 in the two expressions for v as linear
combinations in the basis B gives

1 D
Y

cl1 C
Y

dl1 D c21

� Y
l¤2

cl1 C
Y
l¤2

dl1

�
D c21˛;

say. Therefore both c21 and ˛ are non-zero. Next, equating the coefficients of
e1 ˝ e2 ˝ e1 ˝ � � � ˝ e1 gives 0 D c22˛, whence c22 D 0. Then, equating the
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coefficients of e1 ˝ e2 ˝ � � � ˝ e2 gives

1 D c22

�
c11

Y
l�3

cl2 C d11

Y
l�3

dl2

�
;

which contradicts the fact that c22 D 0. Thus in any such expression for v, the value
of i is 1.

Let � denote the H -orbit containing v, and note that by assumption H is primitive
on �. Each vector z in � can be expressed as z D u1˝� � �˝ut Cw1˝� � �˝wt , where
the uj ; wj 2 Uj , and there exists an i such that ui and wi are linearly dependent, but
for each j ¤ i , uj and wj are linearly independent. It follows from our computation
above that the value of i is uniquely determined by z; and we write i D i.z/. For
i D 1; : : : ; t , let �.i/ D fz 2 � j i.z/ D ig. Then the subsets �.i/ (1 � i � t )
form a system of imprimitivity for H in �, and since H is primitive on �, it follows
that they have size 1. Thus �.1/ D fvg, and it follows that Hv D H1. This means
that j�j D t . However, since H induces an irreducible linear group on �, � must
contain a basis of � whence j�j � mt > t , which is a contradiction.

Lemma 3.11. Case (iii) above, with t D 2, does not hold.

Proof. Suppose that (iii) holds, with t D 2, so by Lemma 3.9, we may assume that
H � .NGL.U /.K/ B NGL.U /.K//:S2 and H \ .GL.U / B GL.U // � K B K, where
NGL.U /.K/ is an irreducible subgroup of GL.U /. Moreover, L WD H \ .K B K/

has index 2 in H . As in Lemma 3.9 we will work in the group NGL.U /.K/ o S2,
acting unfaithfully on �. Let �.x; x0/ and �.y; y0/ be elements of H n L, where
x; x0; y; y0 2 NGL.U /.K/ and � D .12/ 2 S2. Then L contains the elements

�.x; x0/�.y; y0/ D .x0y; xy0/ and �.x; x0/.y�1; y0�1
/� D .x0y0�1

; xy�1/:

Hence x � y � x0�1 � y0�1
.mod K/. Thus H � N o S2, where N D hK; xi,

and H contains �.x; x�1k/ for some k 2 K.
Let fe1; : : : ; emg be a basis for U , so that the set B of m2 vectors ei ˝ ej (for

i; j � m) forms a basis for �. Suppose first that m D 2, so n D 4, and since H

is insoluble, 2a � 4. Since H is not realizable over a proper subfield, and H is
insoluble, it follows (see [3, Section 260]) that H involves SL.2; 2a/. This implies
that H has an element of order 2a � 1, contradicting Lemma 3.1.

Hence m � 3. Let v D e1 ˝ e1 C e2 ˝ e2, and let stab.W / denote the subgroup
of GL.U / which leaves the subspace W WD he1; e2i invariant (setwise). We claim
that Hv � stab.W / o S2. Let �.h; h0/ 2 Hv . Then v D v.h; h0/ D .e1h/ ˝
.e1h0/ C .e2h/ ˝ .e2h0/. Set eih D P

l cilel and eih
0 D P

l c0
il

el . Then v D
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i;j .c1ic

0
1j C c2ic

0
2j /.ei ˝ ej /, so

c11c0
11 C c21c0

21 D 1

c12c0
12 C c22c0

22 D 1; and

c1ic
0
1j C c2ic

0
2j D 0; if .i; j / ¤ .1; 1/ or .2; 2/.

Define

Aij D
�

c1i c2i

c1j c2j

�
and A0

ij D
�

c0
1i c0

2i

c0
1j c0

2j

�
:

The equations above imply that A12.A0
12/tr D I , and for j � 3,

A12.A0
1j /tr D

�
1 0

0 0

�
and hence

.A0
1j /tr D A�1

12

�
1 0

0 0

�
D

�
b 0

c 0

�
for some b; c. It follows that c0

1j D c0
2j D 0 for all j � 3. Similarly, for j � 3,

A0
12Atr

1j D
�

1 0

0 0

�
and hence

Atr
1j D .A0

12/�1

�
1 0

0 0

�
D

�
b0 0

c0 0

�
for some b0; c0, so c1j D c2j D 0 for all j � 3. Thus h; h0 both leave W D he1; e2i
invariant, and so Hv � stab.W / o S2, proving our claim.

Since m � 3, H \ .stab.W / o S2/ is a proper subgroup of H containing Hv ,
and since Hv is maximal in H it follows that Hv D H \ .stab.W / o S2/. The same
argument shows that Hv.u;u0/ D H \.stab.W /oS2/, where v.u; u0/ D u˝uCu0˝u0,
for any basis u; u0 of W . Suppose that Hv stabilises he1 ˝ e1i. By maximality, Hv

is equal to the stabilizer of he1 ˝ e1i, and by Lemma 3.1, we have that Hv stabilises
e1 ˝ e1. The same argument proves that Hv stabilises u ˝ u for each u 2 W , and
applying it again to any 2-dimensional subspace of U containing e1 we have that
Hv stabilises u ˝ u for each u 2 U . It follows that Hv \ .GL.U / B GL.U // is a
subgroup of scalar matrices, and by Lemma 3.1 is trivial. Hence jHvj � 2. Since H

is primitive on the orbit vH , it follows (see [30, 18.7]) that H is soluble, which is a
contradiction. Thus Hv does not stabilise he1 ˝ e1i.

If a > 1 then, taking b 2 GF.2a/ n f0; 1g and u D e1; u0 D be2, we see that Hv

stabilises v0 D e1 ˝ e1 C b2 e2 ˝ e2, and hence also stabilises he1 ˝ e1i, which is a
contradiction. Hence GF.2a/ D GF.2/. In this case the condition that Hv stabilise
v.u; u0/, for all bases u; u0 for W , implies that the subgroup of GL.W / o S2 induced
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by Hv is contained in h.h; h�1/i � h�i Š S3, where � W u ˝ v 7! v ˝ u for all u; v,
and where

h D
�

0 1

1 1

�
with respect to the basis e1; e2 of W . This means also that the subgroup of GL.W /oS2

induced by L\Hv is contained in h.h; h�1/i Š Z3. Note that h W e1 ! e2 ! e1Ce2.
Recall that H � N o S2, where N D hK; xi � N.K/, and K is the subgroup

of GL.U / induced by H \ .GL.U / � GL.U //. Also, H contains �.x; x�1k/ for
some k 2 K. Suppose that the group N is intransitive on the nonzero vectors of U .
Then we may assume that e1; e2 lie in different N -orbits. In this case the subgroup
of GL.W / o S2 induced by Hv is contained in h�i. In particular Hv stabilises e1 ˝ e1

which is not the case. Hence N is transitive on U #. By the definition of a, and since
a D 1, we know that N is not contained in GL.m=a0; 2a0

/:a0 for any divisor a0 > 1

of m. Hence, by [17, Appendix], N is either GL.m; 2/, or Sp.m; 2/ (m even), or
N D G2.2/0 or G2.2/ (with m D 6), or N D A7 (with m D 4). We obtain a final
contradiction by showing that in all cases there is a 2-dimensional subspace W of U

for which the stabilizer of W ˝W in L induces at least an S3 on W ˝W , contradicting
the fact that this stabilizer was shown to induce at most Z3. This holds for any 2-
subspace W if N D GL.m; 2/, A7, or G2.2/, for any non-singular 2-subspace if
N D Sp.m; 2/, and for 315 of the 651 2-subspaces if N D G2.2/0 (the information
about G2.2/ and G2.2/0 was checked using GAP).

4. Simply primitive affine groups

In this section we prove Theorem 1.3 and give further information (see Theorem 4.8)
about the potential simply primitive, extremely primitive groups that may not have
been listed in the statement of Theorem 1.3. For the entire section, let G � S2d be
a simply primitive permutation group of affine type, of structure G D Zd

2 :H with
H almost simple. Let M denote the set of maximal subgroups of H , considered as
matrix groups acting on V D GF.2/d . For M 2 M, let fix.M/ denote the set of fixed
vectors of M .

One of our major tools is the following simple observation.

Lemma 4.1. X
M2M

.jfix.M/j � 1/ � 2d � 1;

with equality if and only if G is extremely primitive. In particular, if jMj < 2d=2,
then G is not extremely primitive.

Proof. For distinct M1; M2 2 M, we have fix.M1/ \ fix.M2/ D f0g because there
is no nontrivial fixed vector of hM1; M2i D H . Hence each nonzero v 2 V occurs
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in at most one set fix.M/ and
P

M2M.jfix.M/j � 1/ � 2d � 1. Now G is extremely
primitive if and only if each nonzero v 2 V indeed occurs in fix.M/ for some M 2 M,
that is, equality holds.

Now, for each M 2 M, dim.fix.M// � d=2, since otherwise fix.M/ and fix.M g/

would have nontrivial intersection for g 2 H n M . Thus if jMj < 2d=2, thenP
M 2M.jfix.M/j � 1/ < 2d � 1 and hence G is not extremely primitive by the

previous paragraph.

Lemma 4.2. The groups Zd
2 :H listed in the statement of Theorem 1.3 are extremely

primitive.

Proof. For the groups G in Theorem 1.3 (a) with d � 22, and those in parts (b) and (c)
with d � 12, either we constructed G using the primitive group library of GAP, or
we constructed H as a matrix group using the atlasrep package of GAP [31], and
then computed the H -orbits in V D GF.2/d and the permutation actions of H on
these orbits. We verified that each of these groups is extremely primitive. For the
group G D Z24

2 : Co1, generators of maximal subgroups M of type Co2, Z11
2 :M24,

and Co3 were constructed using atlasrep, enabling us to compute the dimensions
of their fixed point spaces. Then we checked that the sum of jfix.M/j � 1 over the
maximal subgroups M of H isomorphic to any of these three subgroups adds up to
224 � 1. Hence, by Lemma 4.1, this group G is also extremely primitive.

It is well known that the groups H D �˙.2k; 2/ and �˙.2k; 2/:2, where k � 7,
have two orbits on GF.2/2k nf0g (the sets of singular and nonsingular vectors) and H

acts primitively on each of these orbits.
What remains to prove is that the groups in Theorem 1.3 (b) with d � 14 are

extremely primitive. In these cases H D An or Sn with n 2 f2k C 1; 2k C 2g, and H

acts on V D GF.2/2k as on the deleted permutation module for its natural action of
degree n. Let U D GF.2/n be the n-dimensional permutation module for the natural
action of H , and let W D f.u1; : : : ; un/ 2 U j Pn

iD1 ui D 0g. The stabilizer in H of
a vector in U with ` nonzero coordinates is H \.S` �Sn�`/, and two vectors of U are
in the same H -orbit if and only if they have the same number of nonzero coordinates.
Thus, H acts primitively on each of its orbits in U , apart from the orbit of vectors
with k C 1 nonzero entries when n D 2k C 2. The subspace W is the union of those
H -orbits that contain vectors with an even number of nonzero coordinates, so H acts
primitively on each of its orbits in W except the orbit of vectors with k C 1 nonzero
entries in the case n D 2kC2, k odd. If n D 2kC1 then V D W and so G is extremely
primitive. If n D 2k C 2 then V is the factor space of W , obtained by identifying
the pairs of vectors v1 D .u1; : : : ; un/ and v2 D .1; 1; : : : ; 1/ � .u1; : : : ; un/, for
all v1 2 W . Suppose without loss of generality that v1 has ` nonzero entries and
` � n=2. Note that ` is even since v1 2 W . If ` < n=2 then the action of H on the
orbit � of the pair fv1; v2g 2 V is permutationally isomorphic to the primitive action
of H on the orbit of v1 2 W , while if ` D n=2 then v1, v2 correspond to disjoint
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`-sets, and so the H -action on � is permutationally isomorphic to its primitive action
on partitions with two parts of size n=2. Hence in all cases H acts primitively on all
of its orbits and G is extremely primitive.

Now we start investigating the Lie-type simple groups of characteristic 2 that may
occur as Soc.H/ for an extremely primitive group G.

For a field F of characteristic 2 and an F -vectorspace V0, the Frobenius automor-
phism � W x 7! x2 of F induces a semilinear map � W P

i ˇibi 7! P
i ˇ2

i bi of V0 with
respect to a given F -basis B D fb1; : : : ; bmg of V0. If V0 is an FH -module and k is
a positive integer, then by V

.k/
0 we mean the ‘twisted’ FH -module with underlying

vector space V0 such that for h 2 H , h W v 7! v��kh�k . For h D .hij / 2 GL.m; F /,
where the matrix is relative to the basis B , the Frobenius automorphism � satisfies
��1h� D .h�

ij / in 	L.m; F /, and we write h� D .h�
ij /. Thus if h 2 H acts on V0 with

matrix .hij / 2 GL.m; F / relative to the basis B , then h acts on V
.k/

0 by h W v 7! vh�k
.

Moreover, the tensor product W D V0 ˝V
.1/

0 ˝� � �˝V
.e�1/

0 becomes an FH -module

with action defined by h W v1 ˝ v2 ˝ � � � ˝ ve 7! v1h ˝ v2h� ˝ � � � ˝ veh�e�1
. For

each e-tuple i D .i1; : : : ; ie/, with 1 � ij � m for each j , let

Qbi D bi1 ˝ bi2 ˝ � � � ˝ bie

so that the set B of all such Qbi is an F -basis for W . If � denotes the element of GL.W /

defined by Qbi � D Qbi � , where i � D .ie; i1; : : : ; ie�1/, then Qbi h� D Qbi �h��1, for
each Qbi 2 B. Thus the element � of 	L.m; F / acts on W as ��1, and we shall denote
it still as � .

Lemma 4.3. Suppose that G D Zd
2 :H is extremely primitive and simply primitive,

that H is of Lie type defined over the field GF.2e/ with socle H0, and let a be the
largest integer such that H � GL.d=a; 2a/:a. Then the following hold.

(i) a D 1 and d D me for some integer m;
(ii) there is an absolutely irreducible m-dimensional GF.2e/H0-module V0 with

basis B such that V ˝ GF.2e/ D V0 ˝ V
.1/

0 ˝ � � � ˝ V
.e�1/

0 with basis B defined as
above. Moreover, V can be identified with the GF.2/-subspace zV consisting of all
vectors

P
i �i

Qbi such that �i � D �2
i

for all Qbi 2 B.

Proof. First note that 2e � 1 divides jH j. Hence, if gcd.2e � 1; 2a � 1/ > 1 or,
equivalently, gcd.e; a/ > 1 then H has an element of prime order r jj 2a � 1. This
contradicts Lemma 3.1, and hence gcd.e; a/ D 1.

Let H0 WD Soc.H/. By Lemma 3.6, H0 is absolutely irreducible on V regarded
as a GF.2a/-module GF.2a/d=a and H is not realisable over a proper subfield. Hence
we are in the situation considered in [13, 5.4.6, 5.4.7]. If H0 is untwisted or of type
2B2;2 G2; or 2F4 then [13, 5.4.6(i), 5.4.7(b)] imply that ajje. Using gcd.a; e/ D 1, we
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obtain a D 1. If H0 is of type 2An, 2Dn, or 2E6 then [13, 5.4.6(ii)] implies that either
a jj e whence a D 1, or a jj 2e but a does not divide e. In the latter case, gcd.a; e/ D 1

gives that a D 2. However, H0 has elements of order 3, contradicting Lemma 3.1 so
in this case also a D 1. Finally, if H0 is of type 3D4 then [13, 5.4.7(a)] implies that
either a jj e whence a D 1, or a jj 3e but a does not divide e. In the latter case a D 3

and, since H0 contains elements of order 7, Lemma 3.1 gives a contradiction. Hence
in all cases a D 1.

Appealing again to [13, 5.4.6, 5.4.7], and to the proof of [16, Theorem 2.3]
(referred to in [13, 5.4.7(b)]), we obtain that there is an absolutely irreducible FH0-
module M of dimension m over the algebraic closure F of GF.2e/, with basis B D
fb1; : : : ; bmg, such that V ˝F is isomorphic to the FH0-module W WD M ˝M .1/ ˝
� � � ˝ M .e�1/ with basis B, defined as above. In particular d D me , completing the
proof of part (i). Moreover, H � 	L.W / D 	L.d; F /.

Since a D 1, the GF.2/H -module V can be identified with a d -dimensional, H -
invariant, GF.2/-subspace of W . Such a subspace must be fixed elementwise by �

(under the action described above), and hence must be contained in the subset zV of all
vectors of W fixed by � . It is straightforward to compute that zV consists of all

P
i �i

Qbi

such that �i � D �2
i

for all i . Clearly zV is a GF.2/-subspace. Let
P

i �i
Qbi 2 zV . For

any i , there is a smallest positive integer e.i / such that ij D ij Ce.i / for all j (reading

subscripts modulo e), and since �i � D �2
i

for all i , it follows that �2e.i /

i
D �i so

that �i 2 GF.2e.i //. Also, clearly e.i / divides e, and hence �i 2 GF.2e/. Further,
cyclically shifting the subscripts i defines an equivalence on the set of basis vectors
B, where Qbi and Qbi 0 are equivalent if i 0 can be obtained from i by repeated cyclic
shifts, and there are e.i / basis vectors in the equivalence class of Qbi . Moreover, since
�i � D �2

i
, the coefficient �i (which can be chosen arbitrarily in GF.2e.i /)) uniquely

determines the coefficients �i 0 for all other Qbi 0 equivalent to Qbi . It follows that j zV j is
equal to the product of 2e.i / over all equivalence classes, that is, j zV j D 2me D 2d so
zV has GF.2/-dimension d . Since also V has GF.2/-dimension d , it follows that V

can be identified with zV , and in particular that zV is H -invariant.
Recall that � acts trivially on zV . We now examine the action on zV of an arbitrary

h 2 H \ GL.m; F / with matrix .hij / relative to B . For each i D .i1; : : : ; ie/,

Qbi h D bi1h ˝ bi2h� ˝ � � � ˝ bie h�e�1

D ˝e
kD1

� X
jk

.hikjk
bjk

/�k�1
�

D ˝e
kD1

� X
jk

.h2k�1

ikjk
bjk

/
�
:

Consider the tuples i D .i; i : : : ; i / and i 0 D .j; j : : : ; j /, and note that e.i / D
e.i 0/ D 1. Then Qbi 2 zV and hence Qbi h 2 zV . Thus the coefficient of Qbi 0 in Qbi h, which
by the above calculation is

Qe
kD1 h2k�1

ij D h2e�1
ij , should lie in GF.2e.i 0// D GF.2/.

Hence h2e�1
ij D 0 or 1, or equivalently, hij 2 GF.2e/. Since this holds for all

i; j , it follows that the matrix .hij / 2 GL.m; 2e/. Thus GF.2e/ is a splitting field
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for this representation of H and hence zV lies in the GF.2e/H -invariant subspace
V0 ˝V

.1/
0 ˝� � �˝V

.e�1/
0 , where V0 is the restriction of M to GF.2e/. This completes

the proof.

Lemma 4.4. Let G; H; e; V0; B; zV be as in Lemma 4.3 with G extremely primitive.
Then either e D m D 2 and Soc.H/ D SL.2; 4/ as in Theorem 1.3 (b), or e D 1.

Proof. Suppose that e � 2. For v 2 zV and Qb 2 B, let cv. Qb/ denote the coefficient
of Qb in the expression for v as a linear combination of the basis B, that is, v DP

Qb2B cv. Qb/ Qb.

For 1 � j � m, let Mj denote the stabilizer in H of the vector vj WD Qb.j;:::;j / D
bj ˝� � �˝bj 2 B. Since G is extremely primitive, Mj is maximal in H , so Mj D Hhbj i
in the H -action on V0. In particular the Mj are non-trivial, and hence are not all equal.
Thus there are indices j1; j2 such that Mj1

¤ Mj2
. Without loss of generality, we

may assume that j1 D 1 and j2 D 2.
Next, consider the stabilizer M1;2 of v WD v1 C v2 2 zV . Since H is extremely

primitive, M1;2 is maximal in H , and therefore contains M1 \ M2 as a proper sub-
group. Suppose that h 2 GL.m; 2e/ fixes v, and in the action of h on V0 let

b1h D
mX

j D1

˛1j bj ; b2h D
mX

j D1

˛2j bj (1)

with ˛i;j 2 GF.2e/. Since vh D v 2 zV , we have cvh. Qbi 	/ D cvh. Qbi /2, for all i , by
Lemma 4.3. For each j ,

cvh.vj / D
e�1Y
iD0

˛2i

1j C
e�1Y
iD0

˛2i

2j D ˛2e�1
1j C ˛2e�1

2j

and each summand lies in GF.2/ D f0; 1g, so cvh.vj / D 1 if and only if exactly one
of ˛1j ; ˛2;j is nonzero. In particular, exactly one of ˛11 and ˛21 is nonzero. If, for
some j � 3, both ˛1j ; ˛2;j are nonzero, then

cvh. Qb.1;j;:::;j // D ˛11˛2C4C���C2e�1

1j C ˛21˛2C4C���C2e�1

2j

is nonzero because exactly one of the summands is nonzero. This contradicts the
fact that vh D v. Thus, for each j � 3, ˛1j D ˛2j D 0, and so either b1h D
˛11b1; b2h D ˛22b2, or b1h D ˛12b2; b2h D ˛21b1. Moreover each such element h

fixes v. Elements h in H of the first type lie in the proper subgroup M1 \M2 of M1;2,
and hence, in its action on V0, M1;2 fixes hb1; b2i and interchanges the 1-spaces hb1i
and hb2i. Since Mj D Hhbj i for each j , it follows that jM1;2 W M1 \ M2j D 2. If
m � 3 then M1;2 lies in the proper subgroup Hhb1;b2i, and the maximality of M1;2
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implies that M1;2 D Hhb1;b2i. On the other hand, if m D 2, we only know that M1;2

is the setwise stabilizer of fhb1i; hb2ig and maximal in H .
Next suppose that e � 3 and consider the stabilizers M D M.�/ in H of the

vectors of the form

u D u.�/ WD � Qb.1;2;:::;2/ C �2 Qb.2;1;2;:::;2/ C � � � C �2e�1 Qb.2;:::;2;1/ 2 zV
where � 2 GF.2e/#. Suppose that h 2 GL.m; 2e/ such that h fixes u, and suppose
that (1) holds. Since uh D u, for each j ,

cuh.vj / D
e�1X
iD0

�2i

˛2i

1j ˛2e�1�2i

2j D 0;

so if ˛2j ¤ 0 then
e�1X
iD0

.�˛1j ˛�1
2j /2i D 0: (2)

Now

cuh. Qb.1;2;:::;2// D �˛11˛2e�2
22 C ˛21

e�1X
iD1

�2i

˛2i

12˛2e�2�2i

22 D �

and since each summand is a multiple of ˛22, it follows that ˛22 ¤ 0. (This deduction
requires e � 3.) Thus ˛2e�1

22 D 1, and using (2) we obtain

˛11˛�1
22 C ˛21˛�1

22 .˛12˛�1
22 / D 1; so ˛2

22 D ˛11˛22 C ˛21˛12: (3)

Next,

cuh. Qb.2;1;:::;1// D �˛12˛2e�2
21 C ˛22

e�1X
iD1

�2i

˛2i

11˛2e�2�2i

21 D 0:

Suppose that ˛21 ¤ 0. Then this equation becomes, using (2), ˛12 D ˛22˛11˛�1
21 .

Substituting in (3) yields ˛22 D 0, which is a contradiction. Thus ˛21 D 0, and (3)
implies ˛11 D ˛22. Using these values we find, for j � 3,

cuh. Qb.1;j;2;:::;2// D �˛11˛2
2j ˛2e�4

22 D 0

which implies ˛2j D 0 for all j � 3. Then we have also

cuh. Qb.j;2;:::;2// D �˛1j ˛2e�2
22 D 0

which implies that ˛1j D 0 for all j � 3. Thus h fixes hb1; b2i setwise. If m � 3,
then this implies that M � M1;2 D Hhb1;b2i, and by the maximality of M , equality
holds. This in turn implies that some element of M interchanges hb1i and hb2i, but



644 A. Mann, C. E. Praeger and Á. Seress

we have just proved that this is not the case. Thus m D 2. Now the fact that ˛21 D 0

implies that h fixes hb2i. Hence M � M2 D Hhb2i and maximality implies that
M D M2. In fact M2 D M.�/ for each � 2 GF.2e/#. Since M2 ¤ M1, some
element of M2 moves hb1i, and we may assume that h is such an element. Thus
˛12 ¤ 0, and (2) with j D 2 implies that

e�1X
iD0

.�˛/2i D 0 where ˛ D ˛21˛�1
22

that is to say, �˛ has trace 0 in GF.2e/ (over GF.2/). Since ˛ ¤ 0, and this holds for
all � ¤ 0, it follows that all nonzero elements of GF.2e/ have trace zero, which is a
contradiction. Thus we have proved that e D 2.

If e D m D 2, then Soc.H/ D SL.2; 4/ < GL.4; 2/ and we have the unique
degree 4 absolutely irreducible representation of this group, that is, Theorem 1.3 (b)
holds. Assume then that m � 3, so M1;2 D Hhb1;b2i and elements of this subgroup
fix or interchange hb1i and hb2i. To complete the proof we consider the vectors
w D w.�/ WD � Qb.1;2/ C �2 Qb.2;1/, where � 2 GF.4/#. Note that �3 D 1. It follows
from Lemma 4.3 that w 2 zV . Suppose that h 2 GL.V0/ D GL.m; 4/ such that h

fixes w and suppose that (1) holds. Then, for each j ,

cwh.vj / D �˛1j ˛2
2j C �2˛2j ˛2

1j D 0; so ˛1j ˛2
2j D �˛2j ˛2

1j : (4)

Next we compute, where j � 3,

cwh. Qb.1;2// D � H) �˛11˛2
22 C �2˛21˛2

12 D �;

cwh. Qb.2;1// D �2 H) �˛12˛2
21 C �2˛22˛2

11 D �2;

cwh. Qb.j;1// D 0 H) ˛1j ˛2
21 D �˛2j ˛2

11;

cwh. Qb.j;2// D 0 H) ˛1j ˛2
22 D �˛2j ˛2

12:

Suppose first that ˛22 D 0. Then the second equation above implies that ˛12˛2
21 D

� ¤ 0. The fourth equation gives ˛2j D 0, and then the third gives ˛1j D 0, for all
j � 3. Thus h 2 M1;2 and h does not fix hb2i. It follows that h interchanges hb1i
and hb2i, and hence ˛11 D 0, and the matrix h induces on hb1; b2i (relative to the
basis fb1; b2g) is �

0 �˛21

˛21 0

�
:

Similarly if ˛11 D 0 then h fixes hb1; b2i setwise and induces this matrix on it.
Suppose then that both ˛11 and ˛22 are non-zero. If both of ˛12; ˛21 are non-zero,
then (4) implies that ˛22 D �˛12 and ˛21 D �˛11, and substituting in the first
equation yields � D 0, a contradiction. Thus one of ˛12; ˛21 is zero. Without loss
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of generality suppose that ˛12 D 0. Evaluating the fourth, and then the third of the
equations above we find that ˛1j D ˛2j D 0 for all j � 3. Thus again h 2 M1;2. It
follows that M � M1;2, and maximality of M implies that M D M.�/ D M1;2 for
all �. Let h 2 M1;2 n .M1 \ M2/ so that h interchanges hb1i and hb2i. Then we have
that ˛12 D �˛21 ¤ 0, and this must hold for all � 2 GF.4/#. This is impossible, and
thus the proof is complete.

Thus to complete the analysis of the case where H0 D Soc.H/ is of Lie type in
characteristic 2, we must deal with such groups H defined over GF.2/ and acting
absolutely irreducibly on a GF.2/H -module V D V0 , with V0 as in Lemma 4.3. It
follows from the proof of [13, Proposition 5.4.6] and [13, Remark 5.4.7 (a)], that for
every case apart from H0 D 2F4.2/0, the module V0 is one of the so-called 2-restricted
highest weight modules – the ‘basic building blocks’ for absolutely irreducible mod-
ules for these groups, see [9]. In the exceptional case where H0 D 2F4.2/0, there are
exactly two non-trivial absolutely irreducible representations of H that are realisable
over GF.2/, and these have degrees 26 and 246, see [12, p.188]. We do not need
any details of the theory of even characteristic representations; we only use the list of
small-dimensional representations and their weights given in [21].

Next we examine, for classical groups, some small-dimensional modules defined
over GF.2/: the alternating square (in Lemma 4.5) and the adjoint (in Lemma 4.6) of
the natural module. The H -actions on these modules are explained carefully in the
proofs.

Lemma 4.5. If H is a classical group defined over GF.2/ and V is the alternating
square module for H , then G is extremely primitive if and only if d; Soc.H/ occur in
one of the columns of Table 1. These examples occur in Theorems 1.2 (b) or 1.3 (b) ,(c).

Table 1. Table for Lemma 4.5.

d 6 4 4 6

Soc.H/ SL.4; 2/ Sp.4; 2/0 ��.4; 2/ PSU.4; 2/

Š A8 A6 A5 ��.6; 2/

Proof. Case 1: Soc.H/ D SL.n; 2/ for some n � 4. Let B D fb1; : : : ; bng be a
basis for the natural module W of Soc.H/. A basis of the alternating square module
W ^2 is the set B^2 WD fbi ^ bj j 1 � i < j � ng. If some h 2 Soc.H/ has matrix
h D .˛ij / relative to B then the action of h on B^2 is defined by

bi ^ bj 7!
X
k<l

.˛i;k j̨;l C ˛i;l j̨;k/ bk ^ bl : (5)

If n D 4 then the actions of SL.4; 2/ Š A8 and SL.4; 2/:2 Š S8 on the alternating
square module are isomorphic to their actions on the deleted permutation module and
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we get extremely primitive examples (see Lemma 4.2). Suppose now that n > 4. In
this case SL.n; 2/:2 does not act on W ^2 and so H D Soc.H/. We prove that the
stabilizer M14;23 of b1 ^ b4 C b2 ^ b3 is not maximal in H , and hence that G is not
extremely primitive.

Let h 2 M14;23 with h D .˛ij / relative to B . We examine the entries ˛ik for
5 � k � n and 1 � i � 4. For some fixed k � 5, let Xk WD fi � 4 j ˛ik ¤ 0g and
xXk WD f5�i j i 2 Xkg. For any ` ¤ k, the coefficient of bk^b` in .b1^b4Cb2^b3/h

is 0; hence, by (5),

0 D
4X

j D1

˛5�j;k j̨` D
X

j 2 xXk

˛5�j;k j̨` D
X

j 2 xXk

j̨ `: (6)

Note that, if j 2 xXk , then either (i) j 62 Xk so that j̨k D 0, or (ii) j 2 Xk so
that both j; 5 � j 2 xXk and j̨k C ˛5�j;k D 1 C 1 D 0. Hence

P
j 2 xXk

j̨k D 0

as well. Thus, the rows of h with indices in xXk sum to the zero vector. If xXk ¤ ;
this gives a contradiction, so xXk D ; and hence Xk D ; also. Thus ˛ik D 0 for
all i � 4 and k � 5, and hence M14;23 fixes the subspace U WD hb1; b2; b3; b4i
in its action on W . The subgroup of GL.U / induced by M14;23 is isomorphic to
Sp.4; 2/ because stabilising b1 ^ b4 C b2 ^ b3 in the alternating square of SL.4; 2/

is equivalent to stabilising a nondegenerate alternating form on U . Hence M14;23 is
a proper subgroup of the stabilizer of U and so is not maximal in H .

Case 2: Soc.H/ D Sp.n; 2/0 with n � 4, n even. If n D 4 then the actions of
Sp.4; 2/0 Š A6 and Sp.4; 2/ Š S6 on the alternating square are isomorphic to their
actions on the deleted permutation module and we get extremely primitive examples.
Suppose that n > 4. In this case H D Sp.n; 2/. We consider H as a subgroup of
SL.n; 2/ acting on W and W ^2 as defined in Case 1. We choose the basis B so that
fb2i�1; b2ig is a hyperbolic pair for 1 � i � n=2. This means that H consists of
those elements h D .˛ij / 2 SL.n; 2/ that for 1 � i < j � n satisfy

n=2X
kD1

˛i;2k�1 j̨;2k C ˛i;2k j̨;2k�1 D
(

1 if fbi ; bj g is a hyperbolic pair

0 otherwise
(7)

and, since the invariant bilinear form J of Sp.n; 2/ satisfies J D .J �1/tr D J �1, we
also have .˛ij /tr 2 Sp.n; 2/ and so

n=2X
kD1

˛2k�1;i˛2k;j C ˛2k;i˛2k�1;j D
(

1 if f bi ; bj g is a hyperbolic pair

0 otherwise.
(8)

However, H D Sp.n; 2/ does not act on W ^2 irreducibly. For w D P
k;` �k`bk ^

b` 2 W ^2, let ƒ.w/ WD Pn=2

kD1
�2k�1;2k . Then �W WD fw 2 W ^2 j ƒ.w/ D 0g is a
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codimension 1 subspace. (Note that �W consists of all
P

k;` �k`bk ^ b` such that an
even number of the coefficients �2i�1;2i is non-zero.) This subspace is H -invariant,
because for any h D .˛ij / 2 H and bi ^ bj 2 B^2, using (5) and (7), we see that
ƒ..bi ^ bj /h/ is equal to

n=2X
kD1

˛i;2k�1 j̨;2k C ˛i;2k j̨;2k�1 D
(

1 if fbi ; bj g is a hyperbolic pair

0 otherwise.

Also the subspace hui, where u WD Pn=2

kD1
b2k�1 ^ b2k , is H -invariant because for

any h D .˛ij / 2 H and bi ^ bj 2 B^2, the coefficient of bi ^ bj in uh is

n=2X
kD1

˛2k�1;i˛2k;j C ˛2k;i˛2k�1;j D
(

1 if fbi ; bj g is a hyperbolic pair

0 otherwise

by (8). If n=2 is odd then �W is irreducible, W ^2 D �W ˚hui, and �W is the alternating
square module V . If n=2 is even, then u 2 �W , the factor module �W =hui is irreducible,
and it is the alternating square module V . Let w WD b1 ^ b4 C b2 ^ b3 2 �W , and let
v D w if n=2 is odd and v D w C hui if n=2 is even. So v 2 V . We shall prove that
the stabilizer M14;23 of v is not maximal in H and so G is not extremely primitive.

If n=2 is odd then M14;23 consists of those h 2 H that stabilise w. If n=2 is even
then M14;23 is the union of those h 2 H that stabilise w and those h 2 H that map
w to w C u. In either case those h 2 H that stabilise w were shown in Case 1 to
stabilise U D hb1; b2; b3; b4i � W .

We claim that, if n=2 is even, then there is no h 2 H which maps w to w C u.
Suppose, on the contrary, that there is an h D .˛ij / 2 H such that wh D w C u. Let
k � 5 be fixed and let k0 2 fk � 1; k C 1g be such that fbk; bk0g is a hyperbolic pair.
We define Xk and xXk as Case 1. Now Xk ¤ ; as otherwise the coefficient of bk ^bk0

would be 0 in wh by (5). Also,(6) holds for all ` 62 fk; k0g because the coefficient of
bk ^ bl is 0 in w C u.

We consider the possibilities for Xk . If jXkj D 1, by symmetry say Xk D f1g,
then by the definition of Xk , ˛3k D ˛4k D 0 and, by (6), ˛4;` D 0 for all ` ¤ k0.
This gives a contradiction to (7) applied with i D 3 and j D 4. Hence jXkj � 2

for all k � 5. Suppose next that jXkj D 4. Then since the coefficient of bk ^ bk0 in
w Cu is 1 and in wh is

P4
iD1 ˛ik0 , jXk0 j must be odd. Since jXk0 j � 2, we must have

jXk0 j D 3 and by symmetry we may assume Xk0 D f1; 2; 3g. Applying (6) with k

and k0, we obtain that for all ` 62 fk; k0g the sums
P4

j D1 j̨` D 0 and
P4

j D2 j̨` D 0.
Hence ˛1;` D 0. This, combined with the fact ˛1;k D ˛2;k D ˛1;k0 D ˛2;k0 D 1,
yields a contradiction by (7) applied with i D 1 and j D 2. Hence 2 � jXkj � 3 for
all k � 5.

Suppose next that jXkj D 3. By symmetry we may assume Xk D f1; 2; 3g. Then
the coefficient of bk ^ bk0 in w C u is 1 and in wh is ˛2k0 C ˛3k0 C ˛4k0 , and hence
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jXk0 \ f2; 3; 4gj is odd. Suppose first that jXk0 j D 3. Then jXk0 \ f2; 3; 4gj � 2

and so Xk0 D f2; 3; 4g. Applying (6) with k and k0, we obtain that for all ` 62 fk; k0g
the sums

P4
j D2 j̨` D 0 and

P3
j D1 j̨` D 0. Adding these two equations, we obtain

˛1` C ˛4` D 0, that is, ˛1` D ˛4`. Now (7) yields a contradiction for i D 1

and j D 4. Thus, by the previous paragraph, we must have jXk0 j D 2, and hence
jXk0 \ f2; 3; 4gj D 1 (as it is odd). If Xk0 D f1; 4g then applying (6) with k0, we
obtain ˛1` D ˛4` for all ` 62 fk; k0g and then (7) yields a contradiction for i D 1

and j D 4. If Xk0 D f1; 2g then applying (6) with k0 we obtain ˛3` D ˛4` for
all ` 62 fk; k0g and then (7) yields a contradiction for i D 3 and j D 4. Finally if
Xk0 D f1; 3g then applying (6) with k and k0 we obtain that, for all ` 62 fk; k0g, the
sum

P4
j D2 j̨` D 0 and ˛2` D ˛4`. Hence ˛3` D 0 and (7) yields a contradiction

for i D 3 and j D 4.
Thus the only possibility remaining is that jXkj D 2 for all k � 5. Let xXk D fi; j g

and set fs; tg WD f1; 2; 3; 4g n xXk . In this case we also fix an m � 5, with m 62 fk; k0g
(since n=2 > 2 and n=2 is even, such an m exists). Applying (6) with k, we obtain
that ˛im D j̨m, and then also ˛sm D ˛tm because jXmj D 2. Applying (6) with k0,
we obtain that p̨m D ˛rm for p; r 2 xXk0 . This pair fp; rg is different from fi; j g
and fs; tg because otherwise the coefficient of bk ^ bk0 would be 0 in v. Hence all
of the first four entries in column m of H are equal, contradicting jXmj D 2. Thus
there are no possibilities for Xk .

Summarizing, we have shown that the stabilizer M14;23 of v fixes the subspace
U D hb1; b2; b3; b4i � W . The group induced by M14;23 on U is the intersection
of two symplectic groups Sp.4; 2/ (one is the stabilizer of U in H , the other one is
the stabilizer of w 2 W ^2 in SL.n; 2/ acting on W ). Computation in GAP shows
that the group induced by M14;23 on U is isomorphic to S4 � Z2. Hence M14;23 is a
proper subgroup of the stabilizer of U in H and so is not maximal in H .

Case 3: Soc.H/ D �˙.n; 2/ with n even, n � 4. For n D 4, since H is almost
simple, Soc.H/ D ��.4; 2/ Š SL.2; 4/ Š A5. The action of H on the alternating
square module is isomorphic to the deleted permutation module action of A5 or S5,
and hence G is extremely primitive. Suppose now that n � 6. In this case, H is a
subgroup of Sp.n; 2/, and in its action on W we can choose the basis B such that the
group induced by H on the subspace U above is SOC.4; 2/. The alternating square
module V for H is �W if n=2 is odd and �W =hui if n=2 is even. Again, we consider
the stabilizer M14;23 of v. Since H � Sp.n; 2/, we know that M14;23 D Hw and
fixes U � W . The group induced by M14;23 on U is the intersection of an orthogonal
group of plus type and a symplectic group; computation in GAP shows that it is
isomorphic to SL.2; 2/. Hence M14;23 is a proper subgroup of the stabilizer of U in
H and so is not maximal in H .

Case 4: Soc.H/ D PSU.n; 2/ with n � 4. If n D 4 then the alternating square
module of PSU.4; 2/ Š ��.6; 2/ is isomorphic to the natural module of ��.6; 2/,
yielding two extremely primitive examples. For n > 4, the alternating square module
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of PSU.n; 2/ is not defined over GF.2/. (It is defined over GF.4/ and not GF.2/

because its 2-restricted highest weight is !2 which is not invariant under the graph
automorphism of the Dynkin diagram.) Thus by Lemma 4.4, and the discussion
following it, G is not extremely primitive.

Lemma 4.6. Let Soc.H/ D SL.n; 2/ or PSU.n; 2/ and let V be the adjoint module
of H . Then G is not extremely primitive.

Proof. Case 1: Soc.H/ D SL.n; 2/ with n � 3. Suppose that B D fb1; : : : ; bng is
a basis for the natural module W of SL.n; 2/ and let W � be the dual of W with basis
B� D fb�

1 ; : : : ; b�
ng. For h 2 Soc.H/, if the matrix for h on W , written relative to

the basis B , is h D .˛ij / then the matrix of h on W �, written relative to B�, is .˛�
ij /,

where .˛�
ij / is the inverse transpose of .˛ij /. The connection between .˛ij / and .˛�

ij /

is given by
nX

kD1

˛i;k˛�
j;k D

(
1 if i D j

0 if i ¤ j
(9)

and
nX

kD1

˛k;i˛
�
k;j D

(
1 if i D j

0 if i ¤ j .
(10)

We consider the n2-dimensional vector space W ˝ W �, with basis B ˝ B� WD
fbi ˝ b�

j j 1 � i; j � ng. For h 2 H with matrix .˛ij / relative to B , the action of h

on W ˝ W � is defined by

bi ˝ b�
j 7!

X
k;`

˛i;k˛�
j;` bk ˝ b�

` : (11)

If H D SL.n; 2/:2 and � 2 H conjugates all h D .˛ij / 2 Soc.H/ to h� D .˛�
ij /

then � acts on B ˝ B�, and hence on W ˝ W � by

bi ˝ b�
j 7! bj ˝ b�

i : (12)

The group H does not act on W ˝ W � irreducibly. For w D P
k;` �k`bk ˝ b�

`
2

W ˝ W �, let ƒ.w/ WD Pn
kD1 �k;k . Then �W WD fw 2 W ˝ W � j ƒ.w/ D 0g is a

codimension 1 subspace. This subspace is H -invariant, because ƒ.w�/ D ƒ.w/ for
any w, and for any h D .˛ij / 2 Soc.H/, ƒ.wh/ D P

i;j �ij ƒ..bi ˝ bj /h/, and by
(11) and (9),

ƒ..bi ˝ b�
j /h/ D

nX
kD1

˛i;k˛�
j;k D

(
1 if i D j

0 if i ¤ j .
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Let u WD Pn
kD1 bk ˝ b�

k
. Then hui is H -invariant because u� D u and, for any

h D .˛ij / 2 Soc.H/ and bi ˝ b�
j 2 B ˝ B�, the coefficient of bi ˝ b�

j in uh is

nX
kD1

˛k;i˛
�
k;j D

(
1 if i D j

0 if i ¤ j

by (10). If n is odd then �W is irreducible, W ˝ W � D �W ˚ hui, and �W is the adjoint
module V . If n is even then u 2 �W and the factor module �W =hui is irreducible,
called the adjoint module V . Let w WD b1 ˝ b�

2 C b2 ˝ b�
1 2 �W and let v D w if n

is odd, and v D w C hui if n is even, so in both cases v 2 V . We shall prove that in
either case the stabilizer M12;21 of v is not maximal in H and so G is not extremely
primitive.

If n is odd then M12;21 consists of those h 2 H that stabilise w. If n is even then
M12;21 is the union of those h 2 H that stabilise w and those that map w to w C u.
Since by (12), w� D w, we only need to consider elements of Soc.H/v . Suppose
first that h D .˛ij / 2 Soc.H/ stabilises w. For k � 3, let Xk WD fi � 2 j ˛ik ¤ 0g
and xXk WD f3 � i j i 2 Xkg. Similarly, let X�

k
WD fi � 2 j ˛�

ik
¤ 0g and

xX�
k

WD f3� i j i 2 X�
k

g. For any ` � n, the coefficient of bk ˝b�
`

in wh is 0. Hence,
by (11),

P
j 2 xXk

˛3�j;k˛�
j`

D 0: Thus if Xk ¤ ; then a nontrivial linear combination
of the rows of .˛�

ij / is the zero vector, which is a contradiction. Similarly, for any
` � n the coefficient of b` ˝ b�

k
in wh is 0. Hence

P
j 2 xX�

k
˛3�j;`˛�

jk
D 0, and

if X�
k

¤ ; then a nontrivial linear combination of the rows of h is the zero vector,
which is a contradiction. Hence ˛ik D ˛�

ik
D 0, for 1 � i � 2, 3 � k � m. Since

.˛�
ij / D .h�1/tr, this implies that also ˛ki D 0, for 1 � i � 2, 3 � k � m. Thus h

fixes the subspaces U WD hb1; b2i and U 0 WD hb3; : : : ; bni in its action on W , and
hence Soc.H/w � Soc.H/U;U 0 .

We claim that, when n is even, no h 2 Soc.H/ maps w to w C u. Suppose on
the contrary that h D .˛ij / is such an element. For k � 3, we define Xk and X�

k
as

above. Now Xk ¤ ; and X�
k

¤ ; because otherwise the coefficient of bk ˝ b�
k

in
wh would be 0. Suppose that jXkj D 1, say Xk D fag. Then by (11), for any ` ¤ k,
the coefficient of bk ˝ b�

`
in wh is ˛3�a;` and this must be 0. Choose an m � 3,

m ¤ k (such an m exists because n > 2 and n is even). We have ˛�
3�a;m D 0 and

X�
m ¤ ;, so ˛�

a;m ¤ 0. Then (11) implies that ˛3�a;` D 0 for all ` ¤ m. However,
this contradicts (9) for i D j D 3 � a. Thus Xk D f1; 2g for all k � 3. Reversing
the role of .˛ij / and .˛�

ij /, the same argument proves that X�
k

D f1; 2g for all k � 3.
Hence the coefficient of bk ˝ b�

k
in wh is ˛1k˛�

2k
C ˛2k˛�

1k
D 1 C 1 D 0, which is

a contradiction. This proves the claim.
For later use, we emphasize that the argument in the previous two paragraphs did

not use the fact that the ˛ij are elements of GF.2/ until the very last step (to reach a
contradiction in the case jXkj D jX�

k
j D 2 for all k � 3). Instead, it utilized only the

fact that the ˛ij satisfy (9)–(11). So far we have proved that M12;21 \ Soc.H/ fixes
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U � W and U 0 � W . As noted above w� D w. Moreover, since h� D .h�1/tr for
h 2 Soc.H/, � normalizes Soc.H/U;U 0 . An easy computation in SL.2; 2/ shows that
the group induced by M12;21 \ Soc.H/ on U is isomorphic to Z2. Hence M12;21 \
Soc.H/ is a proper subgroup of Soc.H/U;U 0 . If H D Soc.H/ then M12;21 <

HU;U 0 < H , while if H D Soc.H/:h�i then M12;21 < Soc.H/U;U 0 :h�i < H , and
so in either case M12;21 is not maximal in H .

Case 2: Soc.H/ D PSU.n; 2/ with n � 4. Generators for the adjoint module of
PSU.4; 2/:2 are available in atlasrep and from these we also constructed genera-
tors for PSU.4; 2/. We computed the orbits of these groups and checked that they do
not act primitively on all orbits.

Suppose that n � 5 and let W be the natural module of SL.n; 4/ with basis
B D fb1; : : : ; bng. For h D .˛ij / 2 SL.n; 4/, we define xh WD .˛2

ij /. The group
SU.n; 2/ in its action on W is defined as the subgroup of all matrices h 2 SL.n; 4/

satisfying
h�1 D xhtr: (13)

We define W �; B�; W ˝W �; B ˝B�, and .˛�
ij / as in Case 1. The elements ˛ij ; ˛�

ij 2
GF.4/ satisfy (9) and (10). In addition, because of (13), if h D .˛ij / 2 SU.n; 2/ then
for all i; j

˛�
ij D ˛2

ij : (14)

The action of Soc.H/ on W ˝ W � is defined by (11). If the group H D PSU.n; 2/:2

and � 2 H conjugates all h 2 Soc.H/ to h� D xh then by (14), h� is the inverse
transpose of h. Hence the action of � on W ˝W � is defined, see (12), by

P
i;j �ij bi ˝

b�
j 7! P

i;j �2
ij bj ˝ b�

i . We define �W and u as above and the same argument as in

Case 1 yields that �W and hui are H -invariant. Moreover, we define a GF.2/-subspace�W0 by �W0 WD ˚
w D P

i;j �ij bi ˝ b�
j 2 �W j �j i D �2

ij for all i; j
	
:

Let ! be a generator of GF.4/�. Then �W0 has a GF.2/-basis B of size n2�1 consisting
of the

�
n
2

�
vectors bi ˝b�

j Cbj ˝b�
i for i < j , the

�
n
2

�
vectors !bi ˝b�

j C!2bj ˝b�
i

for i < j , and the n � 1 vectors b1 ˝ b�
1 C bi ˝ b�

i for i � 2. We claim that �W0 is
H -invariant. If h D .˛ij / 2 Soc.H/ then by (11) for any i; j; k; ` the coefficients of
bk ˝ b�

`
and b` ˝ b�

k
in .bi ˝ b�

j C bj ˝ b�
i /h are ˛ik˛�

j`
C j̨k˛�

i`
and ˛i`˛�

jk
C

j̨ `˛�
ik

, respectively and by (14) these coefficients are the squares of each other. Thus

.bi ˝ b�
j C bj ˝ b�

i /h 2 �W0. Similarly, the coefficients of bk ˝ b�
`

and b` ˝ b�
k

in .!bi ˝ b�
j C !2bj ˝ b�

i /h are !˛ik˛�
j`

C !2
j̨k˛�

i`
and !˛i`˛�

jk
C !2

j̨`˛�
ik

,
respectively and by (14) these coefficients are the squares of each other. Finally, the
coefficients of bk ˝ b�

`
and b` ˝ b�

k
in .b1 ˝ b�

1 C bi ˝ b�
i /h are ˛1k˛�

1`
C ˛ik˛�

i`

and ˛1`˛�
1k

C ˛i`˛�
ik

, respectively and by (14) these coefficients are the squares

of each other. Thus h leaves �W0 invariant. Moreover, � fixes the basis vectors



652 A. Mann, C. E. Praeger and Á. Seress

bi ˝ b�
j C bj ˝ b�

i and b1 ˝ b�
1 C bi ˝ b�

i , and maps !bi ˝ b�
j C !2bj ˝ b�

i to

!2bi ˝ b�
j C !bj ˝ b�

i D .bi ˝ b�
j C bj ˝ b�

i / C .!bi ˝ b�
j C !2bj ˝ b�

i / 2 �W0.

Thus � fixes �W0, and hence �W0 is H -invariant, as claimed.
The adjoint module V of H is defined as the GF.2/-module �W0 if n is odd, and

as �W0=huiGF.2/ if n is even. Define w; u; and v 2 V as in Case 1. We claim that the
stabilizer M12;21 of v is not maximal in H and so G is not extremely primitive. Now
w� D w (by the � -action described above), and hence � 2 Hv , so we need only
consider elements of Soc.H/v .

If h 2 M12;21\Soc.H/ then repeating verbatim the argument in Case 1, we obtain
that h fixes U D hb1; b2i � W and U 0 D hb3; : : : ; bni � W , provided we have a
contradiction in the last line of proof (the case wh D w C u and jXkj D jX�

k
j D 2

for all k � 3). In this case, fix three different indices k; `; m � 3 (such indices exist
because n � 5). Note that, by the assumptions in this last case, ˛ij ¤ 0 for any i � 2

and j 2 fk; `; mg, and hence (using (14)), ˛�1
ij D ˛2

ij D ˛�
ij . The coefficients of

bk ˝ b�
`

, bk ˝ b�
m, b` ˝ b�

m in wh are ˛1k˛�
2`

C ˛2k˛�
1`

D 0, ˛1k˛�
2m C ˛2k˛�

1m D 0,
and ˛1`˛�

2m C ˛2`˛�
1m D 0, respectively. From the first two equations we obtain

˛2
1`

˛2` D ˛1k˛2
2k

D ˛2
1m˛2m ¤ 0, and from the third, ˛1`˛2

2`
D ˛2

1m˛2m ¤ 0.
These imply that ˛1j D ˛2j for each j 2 fk; `; mg. Hence the coefficient of b` ˝ b�

`

in wh is ˛1`˛�
2`

C ˛2`˛�
1`

D 0, which is a contradiction. Thus M12;21 \ Soc.H/ �
Soc.H/U;U 0 .

The stabilizer of U and U 0 in Soc.H/ acts as SL.2; 2/ on U , with generators�
! 0

0 !2

�
;

�
0 1

1 0

�
:

An easy calculation shows that M12;21 \ Soc.H/ acts as Z2 on U (generated by the
second matrix above). Hence M12;21 \ Soc.H/ is a proper subgroup of Soc.H/U;U 0 .
As noted above, w� D w. Also, since h� D xh D .h�1/tr (by (13)) for all h 2 Soc.H/,
� normalizes Soc.H/U;U 0 . If H D Soc.H/ then M12;21 < HU;U 0 < H , while if
H D Soc.H/:h�i then M12;21 < Soc.H/U;U 0 :h�i < H , and so in either case M12;21

is not maximal in H .

We are now ready to prove the last assertion of Theorem 1.3

Theorem 4.7. There are only finitely many finite extremely primitive groups of affine
type that are not listed in Theorems 1.2 or 1.3.

Proof. It is clear that for a fixed almost simple group H there are only finitely many d

such that G D Zd
2 :H is primitive, and that for a fixed d there are only finitely many

almost simple groups H such that G D Zd
2 :H is primitive. As a first consequence

of this observation, we obtain that there are only finitely many extremely primitive
groups G D Zd

2 :H with Soc.H/ sporadic.
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Next, for Soc.H/ D An, the groups Zd
2 :H with H acting on the deleted permuta-

tion module for the natural representation are listed in Theorems 1.2 or 1.3. By [10],
if n � 15 then each faithful irreducible representation of H , apart from this deleted
permutation module, has dimension at least n.n � 5/=2. Now for n large enough,
nŠ < 2n.n�5/=4. Also, by [20], for n large enough An and Sn have less than nŠ

maximal subgroups. Hence, for large enough n, a primitive group G D Zd
2 :H with

Soc.H/ D An and d > n cannot be extremely primitive by Lemma 4.1.
Suppose next that H is of Lie type and the characteristic of H is odd. Examining

the list of bounds for the minimal dimensions of cross-characteristic representations
of Lie-type groups (originally in [15] and [27], with subsequent improvements listed
in [29]), we see that if H acts irreducibly on V D GF.2/d then jH j < .2d/2.2Clog d/.
Hence, for jH j large enough, for any primitive G D Zd

2 :H we have jH j8=5 < 2d=2.
Also, by [20], for jH j large enough, H has less than jH j8=5 maximal subgroups.
Hence G D Zd

2 :H cannot be extremely primitive by Lemma 4.1.
Suppose that H is of Lie type of even characteristic, and also (using [20]) suppose

that jH j is large enough such that the number of maximal subgroups of H is less than
jH j8=5. By Lemma 4.4 and the discussion following, if G is extremely primitive
then H is defined over GF.2/ and, apart from one group, V is a 2-restricted highest
weight module for Soc.H/. Classical groups H with rank at most 55 and exceptional
groups give finitely many examples. If H is classical of rank ` � 55 and d � l3=8

then 2d=2 > jH j8=5 and G is not extremely primitive by Lemma 4.1. If ` � 55

and d < `3=8 then by [21, Theorem 5.1] the only possibilities for V are the natural,
alternating square, and adjoint modules. The natural representation of H leads to the
examples in Theorem 1.2 (b) (i) and Theorem 1.3 (c). Moreover, Lemmas 4.5 and 4.6
imply that there are only finitely many extremely primitive groups obtained from the
alternating square and adjoint representations.

This completes the proof of Theorem 1.3.

4.1. Commentary on completing the classification of affine extremely primitive
groups. The unknown exceptions in Theorem 4.7 are due to the fact that we do not
have a good bound on the number of maximal subgroups that is valid in all almost
simple groups. A famous conjecture of G. E. Wall states that the number of maximal
subgroups is at most jH j in all groups H . The result of [20] quoted in the proof
of Theorem 4.7 says that Wall’s conjecture holds for An and Sn for large enough n.
We also know that if Soc.H/ is sporadic then H satisfies Wall’s conjecture. Now
consider the remaining case where Soc.H/ is a Lie type simple group of rank r over
a field of order q. It was proved recently by M. W. Liebeck, B. M. S. Martin and
A. Shalev (see Theorem 1.3 of [18], together with the discussion following it) that the
number of conjugacy classes of maximal subgroups of H is at most crr log log q for
some constant c. This number is at most jH jo.1/, and each conjugacy class has size
less than jH j. Hence the number of maximal subgroups of H is at most jH j1Co.1/.
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In anticipation of a full proof of Wall’s conjecture for almost simple groups, we prove
a stronger version of Theorem 4.7. Let S be the family of almost simple groups
satisfying Wall’s conjecture.

Theorem 4.8. If H 2 S and G D Zd
2 :H is extremely primitive then either G is

listed in Theorems 1.2 or 1.3 , or .d; Soc.H// is as in one of the lines of Table 2.

Proof. We do a refined version of the proof of Theorem 4.7.

Table 2. Table for Theorem 4.8.

d Soc.H/ Conditions

40 PSp.4; 9/; SL.5; 2/ two non-permutationally
isomorphic groups for SL.5; 2/

48 Sp.8; 2/; �˙.8; 2/

70 SL.8; 2/; PSU.8; 2/

100 Sp.10; 2/

126 SL.9; 2/�
k
3

�
SL.k; 2/ 7 � k � 14

2k Sp.2k; 2/; �C.2k C 2; 2/ 5 � k � 8

27, 78 E6.2/

78 2E6.2/

56, 132 E7.2/

248 E8.2/

Case 1: Soc.H/ is sporadic. In this case, the maximal subgroups of H are known [32],
and we can use the exact number of maximal subgroups in the estimate of Lemma 4.1 to
get an upper bound d1.H/ on the dimension of the representations we have to consider.
Also, the minimal dimension d2.H/ of characteristic 2 representations is known [11].
In the twelve cases Soc.H/ D Suz; Fi22; Fi23; Fi024; He; HN; Th; O0N; Ly; J3; B; M

we have d1.H/ < d2.H/ so there are no extremely primitive examples. In the remain-
ing cases, matrices for all representations of dimension at most d1.H/ are available
in [32] and atlasrep [31]. By Lemma 3.1, d -dimensional representations of the
form H � GL.d=2; 4/:2 give no extremely primitive examples. In representations
of dimension d � 22, we simply computed all orbits of H on V D GF.2/d and the
permutation action of H on these orbits. We already described the handling of Co1

in 24 dimensions in the proof of Lemma 4.2. These computations led to the examples
in Lemma 4.2. The remaining cases are .d; H/ D .112; J4/ and .28; Ru/. In these
two groups, generators for representatives of all conjugacy classes of maximal sub-
groups are available in [32] and atlasrep, so we could compute the exact value of
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jfix.M/j for all maximal subgroups. This count, with an application of Lemma 4.1,
proved that these remaining groups are not extremely primitive.

Case 2: Soc.H/ is alternating. Suppose that Soc.H/ D An and let d1.H/ WD
2dlog nŠe. Lemma 4.1 and our assumption H 2 S implies that if d > d1.H/ then
G D Zd

2 :H is not extremely primitive. The smallest nontrivial GF.2/-representation
of H is the deleted permutation module, leading to extremely primitive groups in The-
orems 1.2 (b) and 1.3 (b). By [10], if n � 15 then the second smallest representation
has dimension at least n.n � 5/=2. If n � 17 then n.n � 5/=2 > d1.H/ and so there
are no further extremely primitive examples. For n � 16 the exact number of maxi-
mal subgroups is available, and Lemma 4.1 gives an upper bound on the dimension of
representations we have to consider. We constructed the representations of dimension
at most 20 and checked the orbit lengths of H on V D GF.2/d , leading (only) to
the examples listed in Theorem 1.3. The only cases left were .d; H/ D .32; S11/

and .32; S12/. In these cases, H � GL.16; 4/:2 and so Lemma 3.1 implies that
G D Zd

2 :H is not extremely primitive.

Case 3: Soc.H/ is Lie type of odd characteristic. We proceed as in the proof of The-
orem 4.7, just doing the estimates more precisely. In cross-characteristic representa-
tions jH j < .2d/2.2Clog d/ so for d > 210 we have jH j < 2d=2 and, by Lemma 4.1 and
the assumption H 2 S , G is not extremely primitive. There are only finitely many H

that have cross-characteristic representations of dimension at most 210. Most of these
groups are eliminated by computing the exact value of jH j and comparing it with 2d=2

for the minimal dimension d of a cross-characteristic representation. The remain-
ing possibilities for Soc.H/ are PSL.2; q/ for 11 � q � 73, PSL.3; 3/, PSL.3; 5/,
PSL.4; 3/, PSp.4; q/ for 5 � q � 11, PSp.6; 3/, PSp.6; 5/, PSp.8; 3/, PSp.10; 3/,
PSU.3; 5/, PSU.3; 7/, PSU.4; 3/, PSU.5; 3/, and G2.3/ (because of the isomor-
phisms PSL.2; 5/ Š PSL.2; 4/, PSL.2; 7/ Š PSL.3; 2/, PSp.4; 3/ Š PSU.4; 2/,
and PSU.3; 3/ Š G2.2/0, we consider these groups to be defined in even characteris-
tic and we consider PSL.2; 9/ Š A6 as an alternating group).

Suppose first that Soc.H/ D PSL.2; q/, for some q with 11 � q � 73. The exact
number of maximal subgroups of H is known, and using this number in the estimate
of Lemma 4.1 we get an upper bound d1.H/ for the dimension of representations we
have to consider. In all cases, d1.H/ < 2.q � 1/; if q � 23 then d1.H/ < q � 1;
and if q � 61 then d1.H/ < .q � 1/=2. If 11 � q � 19 then all representations of
dimension less than 2.q�1/ actually have dimension at most 20. We have constructed
all such representations (as factors of the tensor square of the permutation module of
dimension qC1), computed all orbit lengths of H and verified that H acts primitively
on each of its orbits only in the case d D 8, H D PSL.2; 17/. This appears in
Theorem 1.3 (c). For q � 23, the only even characteristic representation of H of
dimension less than q � 1 is of dimension .q � 1/=2, and hence d D .q � 1/=2 and
q � 59. If q � 3; 5 mod 8 then the .q � 1/=2-dimensional representation is over
GF.4/ which is not extremely primitive by Lemma 3.1. For q � 1; 7 mod 8 and
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23 � q � 41, we constructed the .q � 1/=2-dimensional representation of Soc.H/,
and computed the orbit lengths. In each case there are vectors v 2 V whose stabilizer
is not maximal in Soc.H/. This implies that the stabilizer of v is not maximal in H

because for any maximal M < H we have M \ Soc.H/ maximal in H . Finally, in
the cases q D 47; 49, in the .q�1/=2-dimensional representations we found vectors v

whose stabilizer is trivial in Soc.H/ by a random search.
In the remaining cases, if Soc.H/ is special linear, unitary, or G2.3/ then we use

the exact number of maximal subgroups of H in Lemma 4.1 to get an upper bound
d1.H/ for the dimension of representations we have to consider. In the cases where
Soc.H/ D PSL.3; 5/; PSU.3; 7/, and PSU.5; 3/, d1.H/ is less than the minimal
dimension of a characteristic two representation and so no extremely primitive ex-
amples arise. If Soc.H/ D PSL.3; 3/ or G2.3/, the only representations to consider
have dimensions 12 and 14, respectively. Generators for all possible H are available
in atlasrep and we computed all orbits of H and found ones on which H does not
act primitively. If Soc.H/ D PSL.4; 3/ then only d D 26 is possible. We constructed
the representation of Soc.H/ by restricting the integer representation in atlasrep
to GF.2/ and by random search found v 2 V whose stabilizer has order 16. Since
jOut.PSL.4; 3//j D 4, this means that the stabilizer Hv of v is a proper subgroup of a
Sylow 2-subgroup of H and so it is not maximal. If Soc.H/ D PSU.3; 5/; PSU.4; 3/

then only d D 20 is possible. We constructed the representation of Soc.H/ (from
the GF.2/-representation of PSU.3; 5/:2 and as a composition factor of the restric-
tion of the 21-dimensional integer representation of PSU.4; 3/, respectively, both of
these available in atlasrep). In the case Soc.H/ D PSL.3; 5/, there are vec-
tors with stabilizers of order 2 and so their stabilizers are not maximal in H . In
the case Soc.H/ D PSU.4; 3/, there are vectors with stabilizer of size 16. Since
jOut.PSU.4; 3//j D 8, again Hv is a proper subgroup of a Sylow 2-subgroup of H

and so is not maximal.
Finally, in the cases where Soc.H/ D PSp.2n; q/, [8] (see also [29, Section 4.3])

implies that the only irreducible GF.2/-representations satisfying jH j < 2d=2 are of
dimension .qn �1/=2 or qn �1, the latter occurring when the .qn �1/=2-dimensional
representations (the so-called Weyl modules) are over GF.4/. However, it follows
from Lemma 3.1 that the .qn � 1/-dimensional representations do not lead to ex-
tremely primitive examples. Out of the eight cases for Soc.H/ D PSp.2n; q/ under
consideration, the only two where the Weyl modules are defined over GF.2/ are
.d; Soc.H// D .24; PSp.4; 7// and .40; PSp.4; 9//. We constructed the 24-dimen-
sional modules for PSp.4; 7/ and in the fixed point space of an element of order 5
found a vector whose stabilizer has order 60, which cannot be maximal. The last
case .d; Soc.H// D .40; PSp.4; 9// is listed in the statement of Theorem 4.8 as a
candidate leading to an extremely primitive permutation group.

Case 4: Soc.H/ is Lie type of even characteristic. As discussed after Lemma 4.4,
it is enough to consider the case that H is defined over GF.2/, and either V is a
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2-restricted highest weight module of Soc.H/, or Soc.H/ D 2F4.2/0 and dim V

is 26 or 246. As in the previous cases, we use Lemma 4.1 and our assumption that
H 2 S to obtain the upper bound d1.H/ WD 2dlog jH je for the dimension of repre-
sentations that may lead to extremely primitive examples. If H is classical of rank n

then d1.H/ is a quadratic function of n. In particular, if n > 16 then d1.H/ < n3=8

and if n > 11 then d1.H/ < n3. However, [21, Theorem 5.1] states that if n > 11

then the only absolutely irreducible representations of dimension less than n3=8 in the
special linear and unitary cases are the trivial, natural, alternating square, and adjoint
representations and the only absolutely irreducible representations of dimension less
than n3 in the symplectic and orthogonal cases are the trivial, natural, and alternating
square representations. The extremely primitive groups obtained from the natural
representations are listed in Theorems 1.2 (b) and 1.3 (c), and by Lemmas 4.5 and 4.6,
the alternating square and adjoint representations also lead only to extremely primitive
permutation groups listed in these theorems. If n � 16 in the special linear and unitary
cases, or n � 11 in the symplectic and orthogonal cases, then the representations of
Soc.H/ of dimension less than d1.H/ are listed in [21]. We listed the representations
of dimension d with 20 < d < d1.H/ in the statement of Theorem 4.8 as candidates
leading to extremely primitive examples. The remaining small-dimensional cases
(excluding the natural, alternating square and adjoint representations, and their duals)
are .d; Soc.H// D .20; SL.4; 2//; .20; SL.6; 2//; .20; PSU.6; 2//, .16; �C.10; 2//,
and the symplectic cases .8; Sp.6; 2// and .16; Sp.8; 2//. In these cases, we con-
structed the H -module using atlasrep and computed all orbit lengths of H . The
only case when H acts primitively on all of its orbits is .d; H/ D .8; Sp.6; 2// (listed
in Theorem 1.3 (c)).

Similarly, if H is exceptional then all representations of dimension less than
d1.H/ WD 2dlog jH je are listed in [21]. The representations of dimension d with
26 < d < d1.H/ are listed in the statement of Theorem 4.8. The remaining cases
are .d; Soc.H// D .14; G2.2/0/; .26; 3D4.2//; .26; F4.2//, and .26; 2F4.2/0/. In
all of these cases, the H -modules are available in atlasrep. In the case where
.d; Soc.H// D .14; G2.2/0/, we computed the lengths of all H -orbits and verified
that H does not act primitively on all of them. The 26-dimensional modules are too
big for the computation of all H -orbits. In the cases H D 3D4.2/ and 3D4.2/:3,
elements of order 28 have two-dimensional fixed point spaces. Two of the fixed
vectors are in H -orbits of length 72 � 819 so their stabilizer is not maximal in H . In
the case H D F4.2/, elements of order 30 have two-dimensional fixed point spaces.
One of the fixed vectors is in an H -orbit of length 256 � 69615 so its stabilizer is not
maximal in H . In the cases H D 2F4.2/0 and 2F4.2/, elements of order 16 have
two-dimensional fixed point spaces and at least two fixed vectors are in H -orbits of
length 80 � 1755 so their stabilizers are not maximal in H .
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