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Abstract. A universal coefficient theorem is proved for C�-algebras over an arbitrary finite
T0-space X which have vanishing boundary maps. Under bootstrap assumptions, this leads to a
complete classification of unital/stable real-rank-zero Kirchberg X-algebras with intermediate
cancellation. Range results are obtained for (unital) purely infinite graph C�-algebras
with intermediate cancellation and Cuntz–Krieger algebras with intermediate cancellation.
Permanence results for extensions of these classes follow.
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1. Introduction

Since Eberhard Kirchberg’s groundbreaking classification theorem for non-simple
O1-absorbing nuclear C �-algebras [17], much effort has gone into the task
of deciding when two separable C �-algebras over a topological space X are
KK.X/-equivalent. This is a hard task even when X is a finite space. The usual
way to go is to prove equivariant versions of the universal coefficient theorem of
Rosenberg and Schochet [28]. For some spaces, such have been established in
[8, 25, 22, 4, 5]. In [6], a complete classification in purely algebraic terms of objects
in the equivariant bootstrap class B.X/ � KK.X/ up to KK.X/-equivalence is given
under the assumption that X is a so-called unique path space. Nevertheless, it seems
fair to state that, for most finite spaces, no classification is available at the present
time.

In this note we establish a universal coefficient theorem computing the groups
KK�.X IA;B/ which holds for all finite T0-spacesX—but only under certain K-theo-
retical assumptions onA. More precisely, we have to ask that the boundary maps in all
six-term exact sequences arising from inclusions of distinguished ideals vanish. If A
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is separable, purely infinite and tight over X , this condition is equivalent to A having
real rank zero and the following non-stable K-theory property suggested to us by
Mikael Rørdam: if p and q are projections in A which generate the same ideal and
which give rise to the same element in K0.A/, then p and q are Murray–von Neumann
equivalent. This property has been considered earlier by Lawrence G. Brown [10].
Since the property is stronger than Brown–Pedersen’s weak cancellation property and
weaker than Rieffel’s strong cancellation property (compare [12]), it is referred to as
intermediate cancellation.

The invariant appearing in our universal coefficient theorem, denoted by XK, is
relatively simple: for a point x 2 X , let Ux denote its minimal open neighbourhood.
Then XK.A/ consists of the collection fK�

�
A.Ux/

�
j x 2 Xg together with the

natural maps induced by the ideal inclusions A.Ux/ ,! A.Uy/ for Ux � Uy .
Hence XK.A/ can be regarded as a representation of the partially ordered set X with
values in countable Z=2-graded Abelian groups. Equivalently, we may view XK.A/
as a countable Z=2-graded module over the integral incidence algebra ZX of X . The
fact that the ring ZX itself is ungraded allows us to show that the universal coefficient
sequence for KK�.X IA;B/ splits if both A and B have vanishing boundary maps
and that an object in the equivariant bootstrap class B.X/ with vanishing boundary
maps is KK.X/-equivalent to a commutative C �-algebra over X .

A Kirchberg X-algebra is a nuclear purely infinite separable tight C �-algebra
over X . Combining our universal coefficient theorem with Kirchberg’s theorem,
we find that the invariant XK strongly classifies stable real-rank-zero Kirchberg
X-algebras with intermediate cancellation and simple subquotients in the bootstrap
class up to �-isomorphism over X .

We also describe the range of the invariant XK on this class ofC �-algebras overX ,
but only in the case that X is a unique path space. To this aim, we use a second
invariant denoted by OK. It is defined similarly to XK but it contains the K-groups of
all distinguished ideals. The target category of OK is the category of precosheaves
on the topology of X with values in countable Z=2-graded Abelian groups. It turns
out that the range of OK on the class of stable real-rank-zero Kirchberg X-algebras
with intermediate cancellation and simple subquotients in the bootstrap class consists
precisely of those precosheaves which satisfy a certain cosheaf condition and have
injective structure maps; following Bredon [9], we call these flabby cosheaves.

Appealing to the so-called meta theorem [15, Theorem 3.3], we can achieve strong
classification also in the unital case. The invariant in this case, denoted by OKC,
consists of the functor OK together with the unit class in the K0-group of the whole
C �-algebra.

We apply our results to the classification programme of (purely infinite) graph
C �-algebras. Here real rank zero comes for free, as do separability, nuclearity and
bootstrap assumptions. We determine the range of the invariant OK on the class of
purely infinite tight graph C �-algebras over X with intermediate cancellation. We
also determine the range of the invariant OKC on the class of unital purely infinite
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tight graph C �-algebras over X with intermediate cancellation and on the class of
tight Cuntz–Krieger algebras over X with intermediate cancellation. Here we use a
result from [2] that allows to construct graph C �-algebras with prescribed K-theory
data.

As an application, we show that the class of Cuntz–Krieger algebras with
intermediate cancellation is, in a suitable sense, stable under extensions (see
Theorem 8.4 for the precise statement). A similar result is obtained in [3,
Corollary 8.12], but under different assumptions: in [3] we make assumptions on the
primitive ideal space to make the classification machinery work; in this article we use
intermediate cancellation to achieve that. Similar permanence results hold for (unital)
purely infinite graph C �-algebras with intermediate cancellation.

Acknowledgements. I would like to thank Lawrence G. Brown and Mikael Rørdam
for helpful correspondence, James Gabe and Kristian Moi for useful discussions, and
Søren Eilers for suggesting the investigation of C �-algebras with vanishing boundary
maps.

2. Preliminaries

Throughout, let X be an arbitrary finite T0-space. A subset of X is locally closed if it
is the difference of two open subsets of X . Every point x 2 X possesses a smallest
open neighbourhood denoted by Ux . The specialization preorder on X is the partial
order defined such that x � y if and only if Uy � Ux . For two points x; y 2 X , there
is an arrow from y to x in the Hasse diagram associated to the specialization preorder
on X if and only if y is a closed point in Ux n fxg; in this case we write y ! x. We
say that X is a unique path space if every pair of points in X is connected by at most
one directed path in the Hasse diagram associated to the specialization preorder on X .

A C �-algebra over X is a pair .A; / consisting of a C �-algebra A and a
continuous map  WPrim.A/ ! X . The pair .A; / is called tight if the map  
is a homeomorphism. We usually omit the map  in order to simplify notation.
There is a lattice isomorphism between the open subsets in Prim.A/ and the ideals
in A. Hence every open subset U of X gives rise to a distinguished ideal A.U /
in A. A �-homomorphism over X is a �-homomorphism mapping distinguished
ideals into corresponding distinguished ideals. We obtain the category C�alg.X/ of
C �-algebras over X and �-homomorphisms over X . Any locally closed subset Y
of X determines a distinguished subquotient A.Y / of A. There is a natural way to
regard the subquotient A.Y / as a C �-algebra over Y . For a point x 2 X , we let ixC
denote the C �-algebra over X given by the C �-algebra of complex numbers C with
the map Prim.C/! X taking the unique primitive ideal in C to x. For more details
on C �-algebras over topological spaces, see [23].

Eberhard Kirchberg developed a version of Kasparov’s KK-theory for separable
C �-algebras over X in [17] denoted by KK.X/. In [23], Ralf Meyer and Ryszard
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Nest establish basic properties of the resulting category KK.X/, describe a natural
triangulated category structure on it, and give an appropriate definition of the
equivariant bootstrap classB.X/ � KK.X/: it is the smallest triangulated subcategory
of KK.X/ that contains the object set fixC j x 2 Xg and is closed under countable
direct sums. The usual bootstrap class in KK of Rosenberg and Schochet is denoted
by B. The translation functor on KK.X/ is given by suspension and denoted by†. The
category KK.X/ is tensored over KK; in particular, we can talk about the stabilization
A˝K of an objectA in KK.X/. Here K denotes the C �-algebra of compact operators
on some countably infinite-dimensional Hilbert space.

For an object M in a Z=2-graded category, we write M0 for the even part, M1 for
the odd part and MŒ1� for the shifted object. If N is an object in the ungraded
category, we letNŒi� denote the corresponding graded object concentrated in degree i .
We write C 22 C to denote that C is an object in a category C.

3. Vanishing boundary maps

In this section, we introduce two K-theoretical conditions for C �-algebras over X
that are sufficient, as we shall see later, to obtain a universal coefficient theorem. We
provide alternative formulations of these conditions for separable purely infinite tight
C �-algebras over X .

Given a C �-algebra A over X and open subsets U � V � X , we have a six-term
exact sequence

K1

�
A.U /

�
K1

�
A.V /

�
K1

�
A.V /=A.U /

�
K0

�
A.V /=A.U /

�
K0

�
A.V /

�
K0

�
A.U /

�
:

@1@0 (3.1)

Definition 3.1. Let A be a C �-algebra over X . We say that A has vanishing index
maps if the map @1WK1

�
A.V /=A.U /

�
! K0

�
A.U /

�
vanishes for all open subsets

U � V � X . Similarly, we say that A has vanishing exponential maps if the map
@0WK0

�
A.V /=A.U /

�
! K1

�
A.U /

�
vanishes for all open subsets U � V � X . We

say that A has vanishing boundary maps if it has vanishing index maps and vanishing
exponential maps.

Remarks 3.2. If A is a tight C �-algebra over X then A has vanishing exponential
maps if and only if the underlying C �-algebra of A is K0-liftable in the sense of
[27, Definition 3.1].

In the definition above, we could replace the subset V � X with X , but to us the
definition seems more natural as it stands.
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Another, a priori stronger condition consists in the vanishing of all boundary maps
arising from inclusions of distinguished subquotients. The following lemma shows
that this assumption is in fact equivalent to the one in our definition.
Lemma 3.2. Let Y � X be locally closed. Let U � Y be relatively
open. Write C D Y n U . Let A be a C �-algebra over X with vanishing
index/exponential maps. Then the index/exponential map corresponding to the
extension A.U /� A.Y /� A.C/ vanishes, too.

Proof. Write Y D V n W as the difference of two open subsets W � V � X .
Consider the morphism of extensions of distinguished subquotients

A.V n C/ A.V / A.C /

A.U / A.Y / A.C /:

The first extension has vanishing index/exponential map by assumption. By naturality,
the same follows for the second extension.

Proposition 3.3. Let U � X be an open subset and write C D X n U . Let A be a
C �-algebra over X . Then A has vanishing index maps if and only if the following
hold:

� A.U / 22 C�alg.U / has vanishing index maps,
� A.C/ 22 C�alg.C / has vanishing index maps,
� the index map K1

�
A.C/

�
! K0

�
A.U /

�
vanishes.

An analogous statement holds for vanishing exponential maps.

Proof. We will only prove the statement for index maps, the case of exponential maps
being entirely analogous. By the previous lemma, the three conditions are necessary.
To show that they are also sufficient, we consider an open subset V � X . It suffices to
check that the map K0

�
A.V /

�
! K0

�
A.X/

�
is injective. We consider the morphism

of extensions of distinguished subquotients

A.U \ V / A.U / A
�
U n .U \ V /

�
A.V / A.U [ V / A

�
.U n .U \ V /

�
:

By the first condition, the upper extension has vanishing index map. By naturality,
so has the second. Hence the map K0

�
A.V /

�
! K0

�
A.U [ V /

�
is injective. By the

second and third condition, the composition

K1

�
A.X/

�
! K1

�
A.C/

�
! K1

�
A.X n .U [ V //

�
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is surjective. By the six-term exact sequence, the map K0

�
A.U [ V /

�
! K0

�
A.X/

�
is thus injective. The result follows.

Corollary 3.4. Let A be a C �-algebra over X . Then A has vanishing index/expo-
nential maps if and only if the index/exponential map of the extension

A.Ux n fxg/� A.Ux/� A.fxg/

vanishes for every point x 2 X .

Proof. Again, we will only prove the statement for index maps. The condition is
clearly necessary. In order to prove sufficiency, we choose a filtration

; D V0 ( V1 ( � � � ( V` D X;

ofX by open subsets Vj such that Vj nVj�1 D fxj g is a singleton for all j D 1; : : : ; `.
By naturality of the index map, the condition implies that the index map of the
extension

A.Vj�1/� A.Vj /� A.fxj g/

vanishes for all j D 1; : : : ; `. A repeated application of Proposition 3.3 gives the
desired result, because a C �-algebra over the one-point space automatically has
vanishing index maps.

Now we turn to the description of separable purely infinite tight C �-algebras
over X with vanishing boundary maps.

Proposition 3.5. A separable purely infinite tight C �-algebra over X has vanishing
exponential maps if and only if its underlying C �-algebra has real rank zero.

Proof. This is a special case of [27, Theorem 4.2] because X is a quasi-compact
space; see also [27, Example 4.8].

The following definition has been suggested to us by Mikael Rørdam; it has been
considered earlier by Lawrence G. Brown [10].

Definition 3.6. A C �-algebra A has intermediate cancellation if the following holds:
if p and q are projections in A which generate the same ideal and which give rise
to the same element in K0.A/, then p � q (that is, the projections p and q are
Murray–von Neumann equivalent).

Lemma 3.7. Let A be a separable purely infinite C �-algebra with finite ideal lattice.
Then

K0.A/ D fŒp� j p is a full projection in Ag:

Moreover, if p and q are full projections in A with Œp� D Œq� in K0.A/, then p � q.
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Proof. It follows from [18, Theorem 4.16], that every non-zero projection in A is
properly infinite. The lemma thus follows from [26, Proposition 4.1.4] because A
contains a full projection by [27, Proposition 2.7].

Proposition 3.8. A separable purely infinite tight C �-algebra over X has vanishing
index maps if and only if its underlying C �-algebra has intermediate cancellation.

Proof. By [18, Proposition 4.3], every ideal in A is purely infinite. The proposition
follows from applying Lemma 3.7 to every ideal of A.

Corollary 3.9. Let I � A � B be an extension of C �-algebras. Assume that A
is separable, purely infinite and has finite ideal lattice. Then A has intermediate
cancellation if and only if the following hold:

� I has intermediate cancellation,

� B has intermediate cancellation,

� the index map K1.B/! K0.I / vanishes.

Proof. Combine Propositions 3.3 and 3.8.

Remark 3.10. The analogue of Corollary 3.9 with real rank zero replacing
intermediate cancellation and the exponential map K0.B/ ! K1.I / replacing the
index map K1.B/ ! K0.I / is well-known and holds in much greater generality;
see [11, 20].

4. Representations and cosheaves

In this section, we introduce two K-theoretical invariants for C �-algebras over X that
are well-adapted to algebras with vanishing boundary maps. First we define their
target categories.

We associate the following two partially ordered sets to X :

� the set X itself, equipped with the specialization preorder;

� the collection O.X/ of open subsets of X , partially ordered by inclusion.

The mapXop ! O.X/; x 7! Ux is an embedding of partially ordered sets. HereXop

denotes the set X with reversed partial ordering. For the following definition, recall
that every partially ordered set can be viewed as a category such that Hom.x; y/ has
one element, denoted by iyx , if x � y and zero elements otherwise.

Definition 4.1. Let AbZ=2
c be the category of countable Z=2-graded Abelian groups.

A representation ofX is a covariant functorXop ! AbZ=2
c . A precosheaf on O.X/ is
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a covariant functor O.X/! AbZ=2
c . A precosheaf M WO.X/! AbZ=2

c is a cosheaf
if, for every U 2 O.X/ and every open covering fUj gj2J of U , the sequence

M
j;k2J

M.Uj \ Uk/

�
M.i

Uj
Uj\Uk

/�M.i
Uk
Uj\Uk

/

�
�������������������!

M
j2J

M.Uj /

�
M.iU

Uj
/

�
�������!M.U / �! 0

is exact. Letting morphisms be natural transformations of functors, we define
the category Rep.X/ of representations of X , the category PreCoSh

�
O.X/

�
of

precosheaves over O.X/ and the category CoSh
�
O.X/

�
of cosheaves over O.X/.

The notion of cosheaf was introduced by Bredon [9]. Just like sheaves, cosheaves
are determined by their behaviour on a basis. This is made precise in the following
definition and lemma.

Definition 4.2. Let ResWCoSh
�
O.X/

�
! Rep.X/ be the restriction functor given

by
Res.M/.x/ DM.Ux/; Res.M/.iyx / DM

�
i

Uy

Ux

�
:

Let ColimWRep.X/! CoSh
�
O.X/

�
be the functor that extends a representation M

of X to a cosheaf on O.X/ in a way such that
�
Colim.M/

�
.U / is given by the

cokernel of the map

M
x;y2U

M
z2Ux\Uy

M.z/

�
M.ix

z /�M.i
y
z /
�

�����������!

M
x2U

M.x/

and Colim.M/.iVU / is induced by the obvious inclusions
L

x2U M.x/ �
L

x2V M.x/

and
L

x;y2U

L
z2Ux\Uy

M.z/ �
L

x;y2V

L
z2Ux\Uy

M.z/. We call Colim.M/

the associated cosheaf of the representation M .

Lemma 4.3. The functor Colim indeed takes values in cosheaves on O.X/. The
functors Res and Colim are mutually inverse equivalences of categories.

Proof. The corresponding statements for sheaves are well-known: see, for instance,
[30, Lemmas 009N and 009O]. Our dual version for cosheaves is a straight-forward
analogue. Notice that fUx j x 2 Xg is a basis for the topology on X with the special
property that every covering of an open set in it must contain this open set. Hence
every precosheaf on this basis is already a cosheaf.

Definition 4.4. The integral incidence algebra ZX of X is the free Abelian group
generated by elements iyx for all pairs .x; y/ with y � x equipped with the unique
bilinear multiplication such that iwz i

y
x equals iwx if y D z and otherwise is zero. By

Mod.ZX/, we denote the category of countable Z=2-graded left-modules over ZX .
The categories Rep.X/ and Mod.ZX/ are canonically equivalent; we will

identify them tacitly. For every point x 2 X , we have a projective module

http://stacks.math.columbia.edu/tag/009N
http://stacks.math.columbia.edu/tag/009O
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P x WD ZX � ixx in Mod.ZX/ associated to the idempotent element ixx . Its entries are
given by

.P x/.y/ D

(
ZŒ0� � iyx if y � x
0 otherwise

and the map .P x/.izy / for y � z is an isomorphism if x � y and zero otherwise.

Definition 4.5 ([9], §1). A cosheaf on O.X/ is called flabby if all its structure maps
are injective.

The following is our key-lemma towards the universal coefficient theorem.

Lemma 4.6. Let M be a representation of X such that the associated cosheaf
Colim.M/ on O.X/ is flabby. Then M has a projective resolution of length 1.

Proof. As before, we may choose a filtration

; D V0 ( V1 ( � � � ( V` D X;

ofX by open subsets Vj such that Vj nVj�1 D fxj g is a singleton for all j D 1; : : : ; `.
For V 2 O.X/ we define a representation PVM of X by

.PVM/.x/ D Colim.M/.V \ Ux/:

Since Colim.M/ is flabby, we obtain a filtration

0 D PV0
M � PV1

M � � � � � PV`
M DM:

It follows from the so-called Horseshoe Lemma that an extension of modules with
projective resolutions of length 1 also has a projective resolution of length 1. Hence it
remains to show that the subquotients Qj WD PVj

M=PVj�1
M in our filtration have

resolutions of length 1.
Let us describe the modules Qj explicitly. If xj 62 Ux , then we have

.PVj
M/.x/ D Colim.M/.Vj \ Ux/ D Colim.M/.Vj�1 \ Ux/ D .PVj�1

M/.x/;

so that Qj .x/ D 0. Now we assume xj 2 Ux . We fix y 2 X with x 2 Uy and
abbreviate C WD Colim.M/. Since C is a cosheaf, we have a pushout diagram

C.Vj�1 \ Ux/ //

��

C.Vj \ Ux/

��
C.Vj�1 \ Uy/ // C.Vj \ Uy/:

Since pushouts preserve cokernels, we obtain that the map Qj .x/ ! Qj .y/ is an
isomorphism. In conclusion, we may identify Qj Š P xj ˝Gj , where Gj is some
countable Z=2-graded Abelian group. A projective resolution of length 1 for Qj can
thus be obtained by tensoring the projective module P xj with a resolution ofGj .
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Now we turn to the definition of our K-theoretical invariants.

Definition 4.7. We define a functor XKWKK.X/ ! Rep.X/ Š Mod.ZX/ as
follows: set

XK.A/.x/ D K�
�
A.Ux/

�
and let XK.A/.iyx / be the map induced by the ideal inclusion A.Ux/ ,! A.Uy/.

Similarly, we define OKWKK.X/ ! PreCoSh
�
O.X/

�
by OK.A/.U / D

K�
�
A.U /

�
and let the structure maps be the homomorphisms induced by the ideal

inclusions.

We have an identity of functors Res ıOK D XK.

Lemma 4.8. A C �-algebra A over X has vanishing boundary maps if and only if
OK.A/ is a flabby cosheaf.

Proof. Suppose that A has vanishing boundary maps. By an inductive argument as
in [9, Proposition 1.3], it suffices to verify the cosheaf condition for all coverings
consisting of two open sets. This case reduces to the Mayer–Vietoris sequence. The
six-term exact sequence (3.1) shows that OK.A/ is flabby.

Conversely, if OK.A/ is a flabby cosheaf, the six-term exact sequence (3.1) shows
that A has vanishing boundary maps.

It follows from Lemma 4.3 that, on the full subcategory of C �-algebras over X
with vanishing boundary maps, we have a natural isomorphism Colim ı XK Š OK.

Remark 4.9. Instead of working with K-theory groups of distinguished ideals,
we could define similar invariants in terms of K-theory groups of distinguished
quotients. This would not make a difference for the universal coefficient theorem in
the next section. However, our choice of definition interacts more nicely with the
invariant FKR that we will use in section 7.

For reference in future work, we record the following lemma.

Lemma 4.10. Let A be a C �-algebra over X with vanishing boundary maps such
that the Abelian group K�

�
A.Y /

�
is free for every locally closed subset Y � X . Then

XK.A/ is projective.

Proof. By Lemma 4.8, the cosheaf OK.A/ is flabby. We follow the proof of Lemma
4.6. Our freeness assumption implies that the Abelian groups Gj coming up in the
proof are free: the six-term exact sequence shows that

Gj
D K�

�
A.Ux/

�
=K�

�
A.Ux n fxg/

�
Š K�

�
A.fxg/

�
:

Hence XK.A/ is an iterated extension of projective modules and thus itself projective.
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5. A universal coefficient theorem

In this section, we establish a universal coefficient theorem for C �-algebras over X
with vanishing boundary maps. We discuss the splitting of the resulting short exact
sequence and the realization of objects in the bootstrap class as commutative algebras.

We describe how the invariant XK fits into the framework for homological algebra
in triangulated categories developed by Meyer and Nest in [21]. The set-up is given
by the triangulated category KK.X/ and the stable homological ideal I WD ker.XK/,
the kernel of XK on morphisms. Using the adjointness relation

KK�.X I ixC; A/ Š KK�
�
C; A.Ux/

�
Š K�

�
A.Ux/

�
(5.1)

from [23, Proposition 3.13] and machinery from [21], one can easily show the
following (a slightly more detailed account for the particular example at hand is given
in [6, §4]):

� the ideal I has enough projective objects,

� the functor XK is the universal I-exact stable homological functor,

� A belongs to B.X/ if and only if KK�.X IA;B/ D 0 for all I-contractible B .

These facts allow us to apply the abstract universal coefficient theorem
[21, Theorem 66] to our concrete setting. We abbreviate A WDMod.ZX/.

Theorem 5.1. Let A and B be separable C �-algebras over X . Assume that A
belongs to B.X/ and has vanishing boundary maps. Then there is a natural short
exact sequence of Z=2-graded Abelian groups

Ext1A
�
XK.A/Œ1�;XK.B/

�
� KK�.X IA;B/� HomA

�
XK.A/;XK.B/

�
: (5.2)

Proof. By [21, Theorem 66], we only have to check that XK.A/ has a projective
resolution of length 1. This follows from Lemmas 4.8 and 4.6.

Corollary 5.2. LetA and B be separable C �-algebras overX . Assume thatA and B
belong to B.X/ and that A has vanishing boundary maps. Then every isomorphism
XK.A/ Š XK.B/ in A can be lifted to a KK.X/-equivalence.

Proof. Since A has vanishing boundary maps, the module XK.A/ Š XK.B/ has a
projective resolution of length 1 by Lemmas 4.8 and 4.6. Hence the result follows
from the universal coefficient theorem [21, Theorem 66] by a standard argument; see,
for instance, [7, Proposition 23.10.1] or [22, Corollary 4.6].

Proposition 5.3. Let A and B be separable C �-algebras over X . Assume that A
belongs to B.X/ and that A and B have vanishing boundary maps. Then the short
exact sequence (5.2) splits (unnaturally).
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Proof. For this result, it is crucial that the ring ZX itself is ungraded. We can
thus imitate the proof from [7, §23.11]: we have direct sum decompositions
XK.A/ ŠM0 ˚M1Œ1� and XK.B/ Š N0 ˚N1Œ1� where Mi and Ni are ungraded
ZX-modules of projective dimension at most 1. By a simple argument based on the
universality of the functor XK (compare [22, Theorem 4.8]), we can find objects Ai

and Bi in B.X/ such that XK.Ai / ŠMi Œ0� and XK.Bi / Š Ni Œ0� for i 2 f0; 1g. By
Corollary 5.2, there is a (non-canonical) KK.X/-equivalence A Š A1˚†A2. Using
the universal coefficient theorem, we can find an element f 2 KK0.X IB;B1˚†B2/

inducing an isomorphism XK.B/ Š XK.B1 ˚†B2/. By the definition of XK, the
element f induces isomorphisms KK.X I ixC; B/ Š KK.X I ixC; B1 ˚ †B2/ for
all x 2 X . The usual bootstrap argument shows that f induces isomorphisms
KK.X ID;B/ Š KK.X ID;B1 ˚†B2/ for every object D in B.X/. We may thus
replace A by A1˚†A2 and B by B1˚†B2. Hence the sequence (5.2) decomposes
as a direct sum of four sequences in which, for degree reasons, either the left-hand or
the right-hand term vanishes, making the construction of a splitting trivial.

Proposition 5.4. Let A be a separable C �-algebra over X with vanishing bound-
ary maps. Then there is a commutative C �-algebra C over X such that
XK.A/ Š XK.C /. The spectrum of C may be chosen to be at most three-dimensional.
If XK.A/ is finitely generated, the spectrum of C may be chosen to be a finite complex
of dimension at most three.

Proof. It is straight-forward to generalize the argument from [7, Corollary 23.10.3].
Using that modules split into even and odd part, a suspension argument reduces to the
case that XK.A/ vanishes in degree zero. Choose a projective resolution

0! P1

f
�! P0 ! XK.A/! 0

such that Pi D
L

x2X

L
N.P

x ˚P xŒ1�/. Setting Di D
L

x2X

L
N
�
ixC˝C.S1/

�
,

we have Pi Š XK.Di /. Then there is a �-homomorphism 'WD1 ! D0 over X
inducing the map f . The mapping cone of ' has the desired properties. In the
finitely generated case, it clearly suffices to use finite direct sums instead of countable
ones.

Corollary 5.5. Let A be a separable C �-algebra over X with vanishing boundary
maps. Then A belongs to the bootstrap class B.X/ if and only if A is KK.X/-equiva-
lent to a commutative C �-algebra over X .

Proof. IfA is a commutative C �-algebra overX then it is nuclear and the subquotient
A.fxg/ belongs to the bootstrap class B for every x 2 X . Hence A belongs to
B.X/ by [23, Corollary 4.13]. Since B.X/ is closed under KK.X/-equivalence, one
implication follows. The converse implication follows from Proposition 5.4 and
Corollary 5.2.
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Remark 5.6. The stable homological functor OK does not fit into this framework as
nicely: if the spaceX is sufficiently complicated then OK is not universal for its kernel
on morphisms because it has “hidden symmetries.” More precisely, there are natural
transformations among the K-theoretical functors comprised by the invariant OK, the
action of which is not part of the definition of OK (compare [22, §2.1]).

6. Classification of certain Kirchberg X -algebras

In this section, we use our universal coefficient theorem to obtain classification results
for Kirchberg X -algebras with vanishing boundary maps.

Definition 6.1. A C �-algebra over X is a Kirchberg X -algebra if it is tight, nuclear,
purely infinite and separable.

Theorem 6.2. Let A and B be stable real-rank-zero Kirchberg X-algebras with
intermediate cancellation and simple subquotients in the bootstrap class B. Then
every isomorphism XK.A/ Š XK.B/ can be lifted to a �-isomorphism over X .
Consequently, every isomorphism OK.A/ Š OK.B/ can be lifted to a �-isomorphism
over X .

Proof. By Propositions 3.5 and 3.8, the algebras A and B have vanishing boundary
maps. Hence the first claim follows from Corollary 5.2 together with Kirchberg’s
classification theorem [17]. Recall that a nuclear C �-algebra belongs to B.X/ if
and only if the fibre A.fxg/ belongs to B for every x 2 X by [23, Corollary 4.13].
Notice also that stable nuclear purely infinite C �-algebras with real rank zero are
O1-absorbing by [19, Corollary 9.4]. The second claim follows from the equivalence
in Lemma 4.3.

Next, we establish a range result for the invariant OK on stable real-rank-zero
Kirchberg X-algebra with intermediate cancellation. For this, we need to assume
that X is a unique path space.

Theorem 6.3. Assume that X is a unique path space. Let M be a flabby
cosheaf on O.X/. Then there is a stable real-rank-zero Kirchberg X-algebra with
intermediate cancellation and simple subquotients in the bootstrap class B such that
OK.A/ ŠM .

Proof. Since M is a flabby cosheaf, its restriction Res.M/ 22 Rep.X/ has a projec-
tive resolution of length 1 by Lemma 4.6. A simple argument as in [22, Theorem 4.8]
shows that there is a separable C �-algebra A over X in the bootstrap class B.X/
with XK.A/ Š Res.M/. By [23, Corollary 5.5], we may assume that A is a stable
Kirchberg X -algebra with simple subquotients in B.

SinceX is a unique path space, the set Ux nfxg is the disjoint union of the sets Uy ,
where y is a closed point inUxnfxg. Hence the map K�

�
A.Uxnfxg/

�
! K�

�
A.Ux/

�
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identifies with the map M.Ux n fxg/! M.Ux/ because K-theory preserves direct
sums and cosheaves take disjoint unions to direct sums. Since M is flabby by
assumption, Corollary 3.4 therefore shows that A has vanishing boundary maps.
Thus A has real rank zero and intermediate cancellation by Propositions 3.5 and 3.8
and we have OK.A/ Š Colim

�
XK.A/

�
Š Colim

�
Res.M/

�
ŠM .

Corollary 6.4. Assume that X is a unique path space. The functors OK and XK
implement bijections of isomorphism classes of

� stable real-rank-zero Kirchberg X-algebras with intermediate cancellation
and simple subquotients in the bootstrap class B,

� flabby cosheaves on O.X/,
� representations of X whose associated cosheaf is flabby.

Proof. Denote the three sets above by (Kirchberg), (Cosheaves) and (Representa-
tions), respectively. We have maps induced by functors as indicated in the following
commutative diagram.

(Kirchberg)OK

��

XK

��
(Cosheaves)

Res 22(Representations)
Colimrr

We observed in Section 4 that the functors Res and Colim induce mutually inverse
bijections. By Theorem 6.2, the functor XK induces an injective map. By
Theorem 6.3, the functor OK induces a surjective map. Hence all four maps are
bijective.

Now we enhance our invariant in order to obtain a classification result in the unital
case.
Definition 6.5. A pointed cosheaf on O.X/ is a cosheafM on O.X/ together with a
distinguished element m 2M.X/0. A morphism of pointed cosheaves is a morphism
of cosheaves preserving the distinguished element. The category of pointed cosheaves
on O.X/ is denoted by CoSh

�
O.X/

�C.
Definition 6.6. Let KK.X/C denote the full subcategory of KK.X/ consisting of
all unital separable C �-algebras over X . We define a functor OKCWKK.X/C !
CoSh

�
O.X/

�C by
OKC.A/ D

�
OK.A/; Œ1A�

�
:

Corollary 6.7. Let A and B be unital real-rank-zero Kirchberg X-algebras with
intermediate cancellation and simple subquotients in the bootstrap class B. Then
every isomorphism OKC.A/ Š OKC.B/ can be lifted to a �-isomorphism over X .

Proof. This is a consequence of the strong stable classification result in Theorem 6.2
using the so-called meta theorem [15, Theorem 3.3].
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7. Cosheaves arising as invariants of graph C �-algebras

In this section, we provide range results for the invariants OK and OKC on purely
infinite tight graph C �-algebras overX with intermediate cancellation. For definitions
and general facts concerning graph C �-algebras we refer to [24]. The Cuntz–Krieger
algebras introduced in [13, 14] are in particular unital graph C �-algebras; when using
the word Cuntz–Krieger algebra we implicitly assume that the underlying square
matrix satisfies Cuntz’s condition (II), which ensures that the algebra is purely infinite.
Definition 7.1. A tight graph C �-algebra over X is a graph C �-algebra C �.E/
equipped with a homeomorphism Prim

�
C �.E/

�
! X . A tight Cuntz–Krieger

algebra over X is defined analogously.
We point out that a purely infinite tight graph C �-algebra over X is in particular a

real-rank-zero KirchbergX -algebras with simple subquotients in the bootstrap class B
(see [24, Remark 4.3] and [16, §2]). Hence the classification results in the previous
section apply to purely infinite tight graph C �-algebras over X with intermediate
cancellation. We obtain the following corollary.
Corollary 7.2. Let A and B be purely infinite tight graph C �-algebras over X with
intermediate cancellation. If OK.A/ Š OK.B/, then A is stably isomorphic to B .
If A and B are unital and OKC.A/ Š OKC.B/, then A is isomorphic to B .

It is now natural to ask which (pointed) cosheaves arise as the invariant of a (unital)
purely infinite tight graph C �-algebra over X with intermediate cancellation.
Definition 7.3. A flabby cosheaf M on O.X/ is said to have free quotients in odd
degree if the quotient M.V /1=M.U /1 is free for all open subsets U � V � X . We
say that M has finite ordered ranks if, for all U 2 O.X/,

rankM.U /1 � rankM.U /0 <1:

Similarly, we say that M has finite equal ranks if rankM.U /1 D rankM.U /0 <1
for all U 2 O.X/. A pointed cosheaf is called flabby if the underlying cosheaf is
flabby. A flabby pointed cosheaf has one of the three properties above if this is the
case for the underlying cosheaf.

We will use the invariant FKR for C �-algebras over X from [2].
Definition 7.4 ([2], Definition 3.1). An R-moduleN is a collection of Abelian groups
N.fxg/1, N.Ux/0 and N.Ux n fxg/0 for x 2 X together with group homomorphisms
ı

Uxnfxg

fxg
WN.fxg/1 ! N.Ux nfxg/0 and iUx

Uxnfxg
WN.Ux nfxg/0 ! N.Ux/0 for x 2 X

and iUxnfxg
Uy

WN.Uy/0 ! N.Ux n fxg/0 for all pairs .x; y/ with y ! x such that
certain relations are fulfilled. A homomorphism of R-modules is a collection of
group homomorphisms making all squares commute.

There is a notion of exactness for R-modules (see [2, Definition 3.6]) and our
notation suggests an obvious K-theoretical functor FKR from KK.X/ to exact R-
modules (see [2, Definition 3.4 and Corollary 3.10]). Notice that, for Ux � Uy , we



1076 R. Bentmann

can obtain the map K0

�
A.Ux/

�
! K0

�
A.Uy/

�
by composing maps that are part of

the invariant FKR.A/.

Theorem 7.5. A flabby cosheaf on O.X/ is isomorphic to OK
�
C �.E/

�
for some

purely infinite tight graph C �-algebra C �.E/ over X with intermediate cancellation
if and only if it has free quotients in odd degree.

Proof. It is well-known that graph C �-algebras have free K1-groups. Since (gauge-
invariant) ideals in graph C �-algebras are themselves graph C �-algebras by [29],
it follows that OK

�
C �.E/

�
has free quotients in odd degree if C �.E/ is a purely

infinite tight graph C �-algebra over X .
Conversely, let M be a flabby cosheaf on O.X/ that has free quotients in odd

degree. We associate to M an R-module N in the following way: for x 2 X , set
N.Ux/0 DM.Ux/0, N.Ux n fxg/0 DM.Ux n fxg/0 and letN.fxg/1 be the quotient
of M.Ux/1 by M.Ux n fxg/1. The maps iUx

Uxnfxg
and iUxnfxg

Uy
for N are defined to be

the even parts of the identically denoted maps for M . The homomorphisms ıUxnfxg

fxg

are defined to be the zero homomorphisms.
To check that this really defines an R-module, one has to verify the relations (3.2)

and (3.3) in [2]. This is straight-forward: the relation (3.2) is fulfilled because we
have defined the maps ıUxnfxg

fxg
as zero maps; the relation (3.3) follows from the fact

that the composition

M.U /
iV
U
��!M.V /

iW
V
��!M.W /

is equal to

M.U /
iW
U
��!M.W /

for all open subsets U � V � W � X . We observe that the R-module N is exact:
the exactness of the sequence (3.8) in [2] follows from the fact that M is a cosheaf;
the sequence (3.7) in [2] is exact because M is flabby.

Since M has free quotients in odd degree, [2, Theorem 4.4] implies that there is a
purely infinite tight graph C �-algebra C �.E/ over X such that FKR

�
C �.E/

�
Š N .

Since C �.E/ has real rank zero, it has vanishing exponential maps, so that the
K0-groups of its ideals form an (ungraded) cosheaf on O.X/. This cosheaf coincides
with the even part ofM on the basis of minimal open neighbourhoods of points. Since
cosheaves are determined by their restriction to a basis, the (ungraded) cosheaves M0

and OK
�
C �.E/

�
0

are isomorphic. Since M is flabby this shows that C �.E/ has
vanishing index maps and therefore intermediate cancellation.

Exploiting freeness of the K1-groups and vanishing of boundary maps, we obtain
isomorphisms

K1

�
C �.E/.U /

�
Š

M
x2U

K1

�
C �.E/.fxg/

�
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for all open subsets U � X such that, under this identification, the homomorphisms
induced by the ideal inclusions correspond to the obvious subgroup inclusions.
Analogously, we have isomorphisms M.U /1 Š

L
x2U N.fxg/1 for all open subsets

U � X because M is flabby and has free quotients in odd degree. Hence
OK

�
C �.E/

�
1
ŠM1. It follows that OK

�
C �.E/

�
ŠM as desired.

For the proof of the next result, we need to recall that there is a notion of pointed
R-module (see [2, Definition 5.1]) and a functor FKCR from KK.X/C to pointed
R-modules.

Theorem 7.6. A flabby pointed cosheaf on O.X/ is isomorphic to OKC
�
C �.E/

�
for

some unital purely infinite tight graph C �-algebra C �.E/ over X with intermediate
cancellation if and only if it has free quotients in odd degree and finite ordered ranks.

Proof. Again, the well-known formulas for the K-theory of graph C �-algebras show
that OK

�
C �.E/

�
has free quotients in odd degree and finite ordered ranks if C �.E/

is a unital purely infinite tight graph C �-algebra over X . Conversely, to a given
flabby pointed cosheaf .M;m/ we associate an exact pointed R-module .N; n/ as
in the previous proof. Our assumptions on M then guarantee that we can apply [2,
Theorem 5.5] to obtain a unital purely infinite tight graph C �-algebra C �.E/ over X
such that there is an isomorphism of pointed R-modules FKCR

�
C �.E/

�
Š .N; n/.

An argument as in the previous proof shows that OKC
�
C �.E/

�
Š .M;m/ and that

C �.E/ has intermediate cancellation.

Theorem 7.7. A flabby pointed cosheaf on O.X/ is isomorphic to OKC.OA/ for
some tight Cuntz–Krieger algebra OA over X with intermediate cancellation if and
only if it has free quotients in odd degree and finite equal ranks.

Proof. The K-theory formulas for graph C �-algebras imply that the cosheaf OK.OA/

has finite equal degrees if OA is a tight Cuntz–Krieger algebra over X . Conversely,
OK.OA/ having finite equal ranks implies that FKR.A/ meets the additional
conditions in [2, Theorem 4.4] that guarantee that the graph E in the previous proof
can be chosen finite (it has no sinks or sources by construction).

8. Extensions of Cuntz–Krieger algebras

In this section, we establish a permanence property of Cuntz–Krieger algebras with
intermediate cancellation with respect to extensions.

Definition 8.1 ([1], Definition 1.1). A C �-algebra A over X looks like a Cuntz–
Krieger algebra if A is a unital real-rank-zero Kirchberg X-algebra with simple
subquotients in the bootstrap class B such that, for all x 2 X , the group K1

�
A.fxg/

�
is free and rank K0

�
A.fxg/

�
D rank K1

�
A.fxg/

�
<1.
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A C �-algebra A over X that satisfies these conditions but is stable rather than
unital is said to look like a stabilized Cuntz–Krieger algebra.

The following result generalizes the observation in [1, Corollary 2.4], which is
concerned with Cuntz–Krieger algebras with trivial K-theory.

Corollary 8.2. Let A be a C �-algebra over X that looks like a Cuntz–Krieger
algebra and has intermediate cancellation. Then A is �-isomorphic over X to a tight
Cuntz–Krieger algebra over X with intermediate cancellation.

Proof. Let B be a C �-algebra over X with intermediate cancellation that looks like
a Cuntz–Krieger algebra. Repeated use of the six-term exact sequence shows that
OK.B/ has free quotients in odd degree and finite equal ranks. By Theorem 7.7, there
is a tight Cuntz–Krieger algebra OA over X with intermediate cancellation such that
OKC.B/ Š OKC.OA/. By Corollary 6.7, we have B Š OA.

Corollary 8.3. Let A be a C �-algebra over X that looks like a stabilized Cuntz–
Krieger algebra and has intermediate cancellation. Then A is stably isomorphic
over X to a tight Cuntz–Krieger algebra over X with intermediate cancellation.

Proof. Let B be a C �-algebra over X with intermediate cancellation that looks like a
stabilized Cuntz–Krieger algebra. As in the previous proof, we see that OK.B/ has
free quotients in odd degree and finite equal ranks. We turn the cosheaf OK.B/ into
a pointed cosheaf by choosing an arbitrary element in K0.B/. By Theorem 7.7, there
is a tight Cuntz–Krieger algebra OA over X with intermediate cancellation such that
OK.B/ Š OK.OA/. By Theorem 6.2, the algebras B and OA are stably isomorphic
over X .

Theorem 8.4. Let I � A� B be an extension of C �-algebras. Assume that A is
unital. Then A is a Cuntz–Krieger algebra with intermediate cancellation if and only
if

� the ideal I is stably isomorphic to a Cuntz–Krieger algebra with intermediate
cancellation,

� the quotient B is a Cuntz–Krieger algebra with intermediate cancellation,

� the boundary map K�.B/! K�C1.I / vanishes.

A similar assertion holds for extensions of unital purely infinite graph C �-algebras
with intermediate cancellation.

Proof. The crucial point is that the property of looking like a Cuntz–Krieger algebra
behaves well with extensions (see Remark 3.10). So does intermediate cancellation
when considered for separable purely infinite C �-algebras by Corollary 3.9. We have
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that A 22 KK
�
Prim.A/

�
looks like a Cuntz–Krieger algebra and has intermediate

cancellation if and only if
� the stabilization I˝K 22 C�alg

�
Prim.I /

�
of the ideal I looks like a stabilized

Cuntz–Krieger algebra and has intermediate cancellation,
� the quotient B 22 C�alg

�
Prim.B/

�
looks like a Cuntz–Krieger algebra and

has intermediate cancellation,
� the boundary map K�.B/! K�C1.I / vanishes.

Hence the result follows from Corollary 8.2 applied toA andB and from Corollary 8.3
applied to I . The assertion for unital graph C �-algebras follows similarly from
Theorem 7.6 and Corollary 6.7.

As similar argument based on Theorems 7.5 and 6.2 leads to the following
permanence result for stabilized purely infinite graph C �-algebras.

Theorem 8.5. Let I � A� B be an extension of C �-algebras. Assume that A has
finite ideal lattice. Then A is stably isomorphic to a purely infinite graph C �-algebra
with intermediate cancellation if and only if

� the ideal I is stably isomorphic to a purely infinite graph C �-algebra with
intermediate cancellation,

� the quotient B is stably isomorphic to a purely infinite graph C �-algebra with
intermediate cancellation,

� the boundary map K�.B/! K�C1.I / vanishes.
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