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Isomorphism invariants for multivariable C�-dynamics

Evgenios T.A. Kakariadis and Elias G. Katsoulis�

Abstract. To a given multivariable C�-dynamical system .A; ˛/ consisting of �-automor-
phisms, we associate a family of operator algebras alg.A; ˛/, which includes as specific ex-
amples the tensor algebra and the semicrossed product. It is shown that if two such operator
algebras alg.A; ˛/ and alg.B; ˇ/ are isometrically isomorphic, then the induced dynamical
systems . yA; Ǫ / and . yB; Ǒ/ on the Fell spectra are piecewise conjugate in the sense of Davidson
and Katsoulis.

In the course of proving the above theorem we obtain several results of independent interest.
If alg.A; ˛/ and alg.B; ˇ/ are isometrically isomorphic, then the associated correspondences
X.A;˛/ andX.B;ˇ/ are unitarily equivalent. In particular, the tensor algebras are isometrically
isomorphic if and only if the associated correspondences are unitarily equivalent. Furthermore,
isomorphism of semicrossed products implies isomorphism of the associated tensor algebras.

In the case of multivariable systems acting on C�-algebras with trivial center, unitary
equivalence of the associated correspondences reduces to outer conjugacy of the systems. This
provides a complete invariant for isometric isomorphisms between semicrossed products as
well.
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1. Introduction

Given a multivariable C�-dynamical system .A; ˛/, consisting of n˛ �-endomor-
phisms ˛ � .˛1; ˛2; : : : ; ˛n˛

/ of a C�-algebra A, one can associate various non-
selfadjoint operator algebras alg.A; ˛/ that share certain common properties. Notable
examples are the semicrossed product A �˛ F C

n and the tensor algebra T C
.A;˛/

of the
associated C�-correspondence X.A;˛/. In one form or another, algebras of this type
have been investigated by various authors over the last forty years [2], [3], [4], [9],
[10], [11], [12], [14], [15], [19], [24], [26], [27], [28], beginning with the seminal
work of Arveson [2]. The central theme in these investigations has been to identify
to what extend the dynamics of the system affect the classification of the associated
operator algebras. This is also the main theme of the present paper.

�First author partially supported by the Fields Institute for Research in the Mathematical Sciences.
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For a single variable system .A; ˛/ (when n˛ D 1), the tensor algebra T C
.A;˛/

co-

incides with the semicrossed product A�˛ ZC, better known as Peters’ semicrossed
product. In a series of papers, Arveson [3], Arveson and Josephson [4], Peters [27],
Hadwin and Hoover [19] and Power [28] proved that topological conjugacy is a
complete invariant for algebraic isomorphism between Peters’ semicrossed products,
provided that the ambient C�-algebra is commutative and the action satisfies various
extra conditions. These extra conditions were removed by Davidson and Katsoulis
[10] thus proving that topological conjugacy is a complete invariant for algebraic
isomorphism between Petrer’s semicrossed products over commutative C�-algebras.
For more general C�-algebras Muhly and Solel [22] proposed the study of isomet-
ric isomorphisms between Peters’ semicrossed products (actually between arbitrary
tensor algebras) as a more manageable problem. In [22], they established that outer
conjugacy is a complete invariant for isometric isomorphisms when the actions are
automorphic and their Connes’ spectrum is full. In [11] Davidson and Katsoulis
disposed the condition on the spectrum, provided that the ambient C�-algebras are
simple. Recently, Davidson and Kakariadis [9] established outer conjugacy as a
complete invariant for isometric isomorphisms of semicrossed products over arbi-
trary C�-algebras, provided that the actions are injective and/or onto and in several
other cases. The techniques from [9] will be of importance to us.

The study of isomorphisms between operator algebras associated with multi-
variable systems is much more recent. Davidson and Katsoulis have shown ([12],
Theorem 3.22) that piecewise conjugacy is an invariant for algebraic isomorphisms
between tensor algebras or semicrossed products associated with multivariable sys-
tems over commutative C�-algebras. Piecewise conjugacy turns out to be a complete
invariant for algebraic isomorphisms between various classes of tensor algebras, see
[12], Theorem 3.25. The general case however remains an important open prob-
lem. In general, the following two problems are open for arbitrary multivariable
C�-dynamical systems and are studied here:

(i) Identify a complete invariant for isomorphisms between operator algebras asso-
ciated with multivariable systems.

(ii) Develop a notion of piecewise conjugacy for multivariable systems that is an
isomorphism invariant between the associated operator algebras.

Both problems are addressed here exclusively for isometric isomorphisms and (mostly
for) automorphic systems. Theorem 4.5 shows that the unitary equivalence of the
correspondences X.A;˛/ and X.B;ˇ/ is an invariant for isomorphisms between any
algebras of the form alg.A; ˛/ and alg.B; ˇ/ considered here. In particular, the
tensor algebras of automorphic systems are isometrically isomorphic if and only if
the associated correspondences are unitarily equivalent, thus giving an answer to
problem (i) in that case. The same answer is also obtained for non-automorphic
systems, provided that the ambient C�-algebras are stably finite (Theorem 5.2). The
situation is much clearer for automorphic multivariable systems over C�-algebras
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with trivial center. In that case, Theorem 4.7 shows that two semicrossed products
(or tensor algebras) are isometrically isomorphic if and only if the corresponding
multivariable systems are outer conjugate.

Any automorphic multivariable system .A; ˛/ induces a homeomorphic multi-
variable dynamical system . yA; Ǫ / on the Fell spectrum. The latter is a multivariable
system of maps acting on a locally compact space and so the concept of piecewise
conjugacy from [12] is meaningful here. In Theorem 4.9 we show that the existence of
an isometric isomorphism between alg.A; ˛/ and alg.B; ˇ/ implies that the induced
dynamical systems . yA; Ǫ / and . yB; Ǒ/ on the Fell spectra are piecewise conjugate.
This gives an answer to problem (ii).

In the final section of the paper, we present two multivariable systems .A; ˛/
and .B; ˇ/, consisting of a different number �-monomorphisms that have isomorphic
tensor algebras. Since bothA andB equal the Cuntz algebra [8] with two generators,
this example shows that many of our results (in particular the ones implying n˛ D nˇ )
do not extend beyond automorphic (actually �-epimorphic) systems without making
any further assumptions.

In conclusion, we mention the recent number theoretic papers of Cornelissen and
Marcolli [5], [6] and their work in graph theory [7]. In these papers Cornelissen and
Marcolli make essential use of the result of Davidson and Katsoulis [12] that piecewise
conjugacy is an invariant for isomorphisms between non-selfadjoint operator algebras
of classical systems (cf. [5], Theorem 2, [6], Section 6, and [7], Theorem 1.5, the
proof of [7], Theorem 1.6). We hope that the results of this paper will pave the way
for further interactions between these important areas of current research.

2. Preliminaries

A C�-dynamical system .A; ˛/ consists of a C�-algebra A and a �- endomorphism
˛. (In the sequel all C�-algebras and their �-homomorphisms are assumed to be
unital.) A multivariable C�-dynamical system .A; ˛/ (or simply, a multivariable
system) consists of a C�-algebra A and �-endomorphisms ˛ D .˛1; ˛2; : : : ; ˛n˛

/ of
A. If the ˛1; ˛2; : : : ; ˛n˛

happen to be automorphisms, then .A; ˛/ is said to be an
automorphic multivariable system.

We denote by T C.A; ˛/ the tensor algebra of the C�-correspondence
Ln˛

iD1A˛i
.

(The tensor algebras for C�-correspondences were introduced in [22], [23]. The
correspondence

Ln˛

iD1A˛i
has been studied in [12], [21].) There is also a related

operator algebra, the semicrossed productA�˛ F C
n˛

associated with .A; ˛/, where F C
n˛

denotes the free semigroup with n˛ generators. This is the universal operator algebra
generated by a copy of A and contractions s1; s2; : : : sn˛

satisfying asi D si˛i .a/,
a 2 A, i D 1; 2; : : : ; n˛ .

The algebras T C.A; ˛/ and A �˛ F C
n˛

are not isomorphic in general [12], Corol-
lary 3.11, but they do share some common properties which are listed below. As it
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turns out, there are other operator algebras satisfying these properties and so we take
an axiomatic approach in describing them.

Definition 2.1. Let .A; ˛/ be a multivariable C�-dynamical system. An operator
algebra alg.A; ˛/ is said to be associated with the multivariable system .A; ˛/ if it
satisfies the following conditions:

(i) There exists an idempotent mapping E0 W alg.A; ˛/ ! alg.A; ˛/ such that
E0.alg.A; ˛// D alg.A; ˛/ \ alg.A; ˛/� ' A.

(ii) There exist elements s1; s2; : : : ; sn˛
2 alg.A; ˛/ which are not right divisors

of 0 and satisfy the covariance relations asi D si˛i .a/ for all a 2 A, i D
1; 2; : : : ; n˛ .

(iii) alg.A; ˛/ is generated as a Banach space by monomials of the form si1si2 : : : sika,
where a 2 A, k 2 N and 1 � il � n˛ for all l D 1; 2; : : : ; ik .

(iv) For each 1 � i � n˛ there is a bounded idempotent mapping Fi W alg.A; ˛/ !
alg.A; ˛/, 1 � i � n˛ , which annihilates all monomials except from the ones
of the form sia, a 2 A, which are left invariant.

Conditions (ii) and (iii) are immediate for both T C.A; ˛/ and A �˛ F C
n . The

verification of conditions (i) and (iv) depends on an argument involving expectations
and the Fejer kernel. This argument is by now routine in the non-selfadjoint literature
and we omit it (see for example [12], Section 3.1).

We have not opted for maximum generality in the above definition. (That perhaps
should be investigated elsewhere.) Instead, we list the minimum requirement so
that our theory reaches beyond the tensor algebras or the semicrossed products and
includes certain examples that have already appeared in the literature.

Examples. Let .A; ˛/ be a multivariable system consisting of mutually commuting
�-endomorphisms ˛1; ˛2; : : : ; ˛n. LetA�˛ ZC

n denote the universal operator algebra
generated by a copy of A and commuting contractions s1; s2; : : : ; sn satisfying the
covariance relations in Definition 2.1 (ii). It is routine to verify thatA�˛ ZC

n satisfies
the requirements of Definition 2.1 and thereforeA�˛ ZC

n is an example of an operator
algebra associated with .A; ˛/. Algebras of this type were studied in [15], [16], [28].
If one further asks that the generators s1; s2; : : : ; sn are doubly commuting, then we
obtain the Nica-covariant semicrossed product studied in [18].

Alternatively, one may ask for the universal operator algebra generated by a copy
of A and a row contraction .s1; s2; : : : ; sn/ consisting of commuting operators and
satisfying the covariance relations in Definition 2.1 (ii). Note that in that case, the
generators s1; s2; : : : ; sn are not partial isometries but just contractions. In the case
where A D C, this is the classical Drury–Arveson space studied in [1], [3], [13] and
elsewhere. Additional examples can be formed by using as a prototype the operator
algebras of [14] related to analytic varieties.



Isomorphism invariants for multivariable C�-dynamics 775

3. Invertibility of matrices over C�-algebras

This section contains a technical result (Theorem 3.4), which may be of independent
interest. It shows that if a right-invertible rectangular matrix Œbij � over a C�-algebra
B satisfies a natural intertwining condition, then Œbij � is actually square and invert-
ible. Just the fact that the matrix has to be square, will allow us to conclude that
multivariable dynamical systems with isomorphic operator algebras have necessarily
the same dimension. The proof of Theorem 3.4 is algorithmic in nature and this is
used in the proof of Theorem 4.9.

Lemma 3.1. Let B , C be C�-algebras and ',  be representations of B onto C .
Assume that C has trivial center. If c 2 C satisfies

'.b/c D c .b/ for all b 2 B; (1)

then either c is invertible or c D 0.

Proof. By taking adjoints in (1), we have c�'.b/ D  .b/c�, for allb 2 B . Therefore,
cc� 2 '.B/0 D C 0. By a similar argument c�c 2  .B/0 D C 0. If c ¤ 0, then
both cc� and c�c are non-zero scalars. This implies that c is a non-zero multiple of
a unitary, hence invertible.

Lemma 3.2. LetB , C be C�-algebras and f'igm
iD1, f j gn

j D1 be families of represen-
tations of B onto C and let Œcij � 2 Mm;n.C / which intertwines the representations
f'igm

iD1 and f j gn
j D1, i.e.,

'i .b/cij D cij j .b/

for all i D 1; 2; : : : m, j D 1; 2; : : : ; n and b 2 B .

(i) If F� is the unitary matrix corresponding to a permutation � 2 Sn, then Œcij �F�

intertwines the representations f'igm
iD1 and f �.j /gn

j D1.

(ii) If ckk is invertible and Ehk is the matrix corresponding to the elementary row
operation that adds the k-th row multiplied by �chkc

�1
kk

to the h-th row, then
EhkŒcij � intertwines the representations f'igm

iD1 and f j gn
j D1.

Proof. The proof of (i) is straightforward. For proving (ii), we only need to examine
elements on the h-th row of EhkŒcij �. Since Œcij � intertwines the representations
f'igm

iD1 and f j gn
j D1, we have

.chj � chkc
�1
kk ckj / j .b/ D 'h.b/chj � chkc

�1
kk 'k.b/ckj

D 'h.b/chj � chk k.b/c
�1
kk ckj

D 'h.b/chj � 'h.b/chkc
�1
kk ckj

D 'h.b/.chj � chkc
�1
kk ckj /;

for all b 2 B and i D 1; 2; : : : ; m, as desired.
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Lemma 3.3 (Gaussian elimination). LetB , C be C�-algebras and f'igm
iD1, f j gn

j D1

be families of representations of B onto C , with m � n. Let Œcij � 2 Mm;n.C / which
intertwines the representations f'igm

iD1 and f j gn
j D1. If Œcij � is right-invertible and

C has trivial center, then m D n and Œcij � is quasisimilar1 in Mn.C / to a diagonal
invertible matrix.

Proof. We will first produce invertible matrices E 0 2 Mm.C / and F 0 2 Mn.C /

so that the matrix E 0Œcij �F
0 has invertible diagonal entries and all entries below the

diagonal equal to 0. Once this is done, m D n, or otherwise E 0Œcij �F
0 would have

a zero row, a contradiction to the right invertibility of Œcij �. We do this by using a
variant of the Gaussian elimination on Œcij �.

Start with the first column. Since Œcij � is right-invertible, there exists at least one
entry on the first row, say c1j1

, which is non-zero. By Lemma 3.1, c1j1
is invertible.

Let F.1 j1/ be as in Lemma 3.2, where .1 j1/ is the transposition between 1 and j1.
If the .i; 1/-entry of Œcij �F.1 j1/ is not zero, then let Ei1 be as in Lemma 3.1 (ii), but
for the matrix Œcij �F.1 j1/. Otherwise, set Ei1 D I . Then the matrix

� mQ

iD1

Ei1

�
Œcij �F.1 j1/ (2)

has its .1; 1/-entry invertible and all entries below the .1; 1/-entry equal to 0. Fur-
thermore (2) is right-invertible and by Lemma 3.2, it intertwines the representations
f'igm

iD1 and f �.j /gn
j D1, where � D .1 j1/. Hence we can continue the Gaussian

elimination with the second column of (2) this time. One of the entries on the sec-
ond row, say the .2; j2/-entry will be non-zero, and hence by Lemma 3.1 invertible.
Multiply (2) from the right by F.2 j2/ and from the left by invertible matrices Ei2,
coming from Lemma 3.2, in order to zero all entries on the second column which are
below the diagonal. Continuing in this fashion, we eventually produce the desired
upper triangular matrix E 0Œcij �F

0.
Since the diagonal entries of E 0Œcij �F

0 are invertible, an elementary application
of the Gaussian elimination produces an invertible matrix E 00 so that E 00E 0Œcij �F

0 is
diagonal and the conclusion follows.

Theorem 3.4. Let B be a C�-algebra and fˇigm
iD1, fˇ0

j gn
j D1 be families of �-epi-

morphisms of B , with m � n. Let Œbij � 2 Mm;n.B/ which intertwines fˇigm
iD1 and

fˇ0
j gn

j D1.

(i) If Œbij � is right-invertible, then m D n and Œbij � is invertible inMn.B/.

(ii) If Œbij � is right-invertible and B has trivial center, then Œbij � is quasisimilar to
a diagonal matrix which intertwines fˇign

iD1 and fˇ0
�.j /

gn
j D1, for some permu-

tation � 2 Sn.

1Note that in our context, a quasi similarity is implemented by invertible operators.
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Proof. We have already proved (ii). For (i), let Œdij � 2 Mm;n.B/ be the right inverse
of Œbij �. If � is any irreducible representation of B , then Œ�.bij /� intertwines the
representations f�ˇigm

iD1 and f�ˇ0
j gn

j D1. Hence Lemma 3.3 implies that m D n and

also that �.n/.Œdij �/ � Œ�.dij /� is the inverse for Œ�.bij /�.
Let .�s/s be a family of irreducible representations of B that separates the points.

By Theorem 6.5.1 of [25], idn ˝ .
L

s �s/ is a faithful representation ofMn.C/˝B

and so L

s

�
.n/
s ' L

s

.idn ˝ �s/

is a faithful representation forMn.B/. In that representation, the previous paragraph
shows that Œdij � is the inverse of Œbij �.

4. The main results

Let alg.A; ˛/ and alg.B; ˇ/ be operator algebras associated with the multivariable
systems .A; ˛/ and .B; ˇ/ respectively, and let � W alg.A; ˛/ ! alg.B; ˇ/ be an
isometric isomorphism. Since � is isometric, a similar argument as in [11], Propo-
sition 2, implies that � jA is a �-monomorphism that maps A onto B . We will be
denoting � jA by � as well.

Let s1; s2; : : : ; sn˛
and t1; t2; : : : ; tnˇ

be the generators in alg.A; ˛/ and alg.B; ˇ/
respectively, and let bij � Fi .sj / so that

�.sj / D b0j C t1b1j C t2b2j C � � � C tnˇ
bnˇj C Y

with E0.Y / D F1.Y / D � � � D Fnˇ
.Y / D 0. Since � is a homomorphism,

�.a/�.sj / D �.asj / D �.sj j̨ .a// D �.sj /�˛.a/

for all a 2 A. Hence, ˇi�.a/bij D bij � j̨ .a/, a 2 A, and so

ˇi .b/bij D bij � j̨ �
�1.b/ (3)

for all b 2 B . Therefore, the matrix Œbij � associated with the isomorphism � inter-
twines fˇignˇ

iD1 and f� j̨ �
�1gn˛

j D1.

Lemma 4.1. Let alg.A; ˛/ be an operator algebra associated with the multivariable
system .A; ˛/. If a sequence .ak/k inA satisfies limk siak D 0 for some 1 � i � n˛ ,
then limk ak D 0.

Proof. Since si is not a right divisor of zero, the C�-algebra A equipped with the
seminorm kaki � ksiak, a 2 A, becomes a Banach space. The identity map
id W .A; k � k/ ! .A; k � ki / is continuous, hence by the open mapping theorem
bicontinuous, and the conclusion follows.
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Lemma 4.2. Let alg.A; ˛/ and alg.B; ˇ/ be operator algebras associated with the
multivariable systems .A; ˛/ and .B; ˇ/ respectively, and � W alg.A; ˛/ ! alg.B; ˇ/
be an isometric isomorphism. Then, for a given tuple .y1; y2; : : : ; ynˇ

/ 2 Lnˇ

1 B

there exist a sequence ..xk
1 ; x

k
2 ; : : : ; x

k
n˛
//k in

Ln˛

1 B such that

yi D lim
k
bi1x

k
1 C bi2x

k
2 C � � � C bin˛

xk
n˛
; i D 1; 2; : : : ; nˇ ;

where Œbij � is the matrix associated with � .

Proof. Let � D �1 : : : �q be a word on ;; 1; : : : ; n˛ and let s� D s�1
s�2
: : : s�q

, with
the understanding that s; denotes an element in A. Then

Fi .�.s�// D Fi .�.s�1
//E0.�.s�2

// : : : E0.�.s�q
//C � � �

� � � CE0.�.s�1
// : : : E0.�.s�q�1

//Fi .�.s�q
//

D Fi .�.s�1
//E0.�.s�2

// : : : E0.�.s�q
//C � � �

� � � CE0.�.s�1
// : : : E0.�.s�q�1

//Fi .�.s�q
//

DP

r

E0.�.s�1
// : : : E0.�.s�r�1

//Fi .�.s�r
//E0.�.s�rC1

// : : : E0.�.s�q
//:

By equation (3) and for suitable yr ; y
0
r 2 B we obtain,

Fi .�.s�// D P

r

yr tibi�r
y0

r

D P

r

tiˇi .yr/bi�r
y0

r

D P

r

tibi�r
�˛�r

��1.yr/y
0
r

D
nP̨

rD1

tibirxr :

Therefore,
Fi .�.s�// D ti .bi1x1 C bi2x2 C � � � C bin˛

xn˛
/:

The same follows for linear combinations of the monomials �.s�/. For example, for
two words � D �1 : : : �w and � D �1 : : : �q we obtain

Fi�.s� C s�/ D Fi�.s�/C Fi�.s�/

D ti .bi�1
x�1

C bi�2
x�2

C � � � C bi�q
x�q

/

C ti .bi�1
x�1

C bi�2
x�2

C � � � C bi�q
x�q

/

D ti .bi1x1 C bi2x2 C � � � C bin˛
xn˛

/

C ti .bi1x
0
1 C bi2x

0
2 C � � � C bin˛

x0
n˛
/

D ti .bi1x
00
1 C bi2x

00
2 C � � � C bin˛

x00
n˛
/;
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by introducing the appropriate zeros. Since t1y1 C t2y2 C � � � C tnˇ
ynˇ

is a limit of
such linear combinations, we obtain sequences ..xk

1 ; x
k
2 ; : : : ; x

k
n˛
//k such that

tiyi D lim
k
ti .bi1x

k
1 C bi2x

k
2 C � � � C bin˛

xk
n˛
/

for all 1 � i � nˇ , and Lemma 4.1 finishes the proof.

Proposition 4.3. Let alg.A; ˛/ and alg.B; ˇ/ be operator algebras associated with
the multivariable systems .A; ˛/ and .B; ˇ/ respectively, and let � W alg.A; ˛/ !
alg.B; ˇ/ be an isometric isomorphism. Then the matrix Œbij � associated with � is
right-invertible.

Proof. It follows from Lemma 4.2 that for any tuple .y1; : : : ; ynˇ
/ there exists a

sequence ..xk
1 ; x

k
2 ; : : : ; x

k
n˛
//k such that

yi D lim
k
bi1x

k
1 C bi2x

k
2 C � � � C bin˛

xk
n˛

for all 1 � i � nˇ . Hence for the tuple .1; 0; : : : ; 0/ and for " < 1
n˛nˇ

there are xj1,
for 1 � j � n˛ , such that

kıi1 � bi1x11 C bi2x21 C � � � C bin˛
xn˛1k < ";

for all i D 1; : : : ; nˇ . Repeating for .0; 1; : : : ; 0/; : : : ; .0; 0 : : : ; 1/, we obtain ele-
ments xij , for 1 � i � n˛ and 1 � j � nˇ , such that

��ıij �
nP̨

kD1

bikxkj

�� < " < 1
n˛nˇ

:

Hence,

kIn � Œbij �Œxij �k D ��Œıij �
nP̨

kD1

bikxkj �
��

� P

i;j

��ıij �
nP̨

kD1

bikxkj

��

<
P

i;j

1
n˛nˇ

D 1:

Therefore Œbij �Œxij � is invertible, hence Œbij � is right-invertible.

From Proposition 4.3 and Theorem 3.4, we obtain the following key result.

Theorem4.4. Let alg.A; ˛/ and alg.B; ˇ/ be operator algebras associatedwith auto-
morphicmultivariable systems .A; ˛/and .B; ˇ/ respectively, and let� W alg.A; ˛/ !
alg.B; ˇ/ be an isometric isomorphism. Then n˛ D nˇ and the matrix Œbij � associ-
ated with � is invertible inMn.B/.
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As a first application of Theorem 4.4, we obtain that the unitary equivalence
class of X.A;˛/ is an isomorphism invariant for alg.A; ˛/, which is complete in the
case of tensor algebras. Note that the unitary equivalence class of X.A;˛/ is easy to
describe here: X.A;˛/ and X.B;ˇ/ are unitarily equivalent if and only if there is a
�-isomorphism � W A ! B and a unitary matrix Œuij � 2 Mnˇ ;n˛

.B/ that intertwines

fˇignˇ

iD1 and f� j̨ �
�1gn˛

j D1. (When n˛ D nˇ and Œuij � happens to be diagonal up to
a permutation, then the multivariable systems .A; ˛/ and .B; ˇ/ are said to be outer
conjugate.)

Theorem4.5. Let .A; ˛/ and .B; ˇ/ be two automorphicmultivariable C�-dynamical
systems.

(1) If alg.A; ˛/ and alg.B; ˇ/ are isometrically isomorphic then n˛ D nˇ and the
correspondences X.A;˛/ and X.B;ˇ/ are unitarily equivalent.

(2) T C.A; ˛/ and T C.B; ˇ/ are isometrically isomorphic if and only if the corre-
spondences X.A;˛/ and X.B;ˇ/ are unitarily equivalent.

Proof. Suppose that Œbij � is the matrix associated with an isometric isomorphism
� W alg.A; ˛/ ! alg.B; ˇ/. By Theorem 4.4, Œbij � is invertible. If Œbij � D wjŒbij �j
is the polar decomposition of Œbij �, then the unitary w intertwines fˇignˇ

iD1 and
f� j̨ �

�1gn˛

j D1. Thus the pair .�; w/ induces the desired unitary equivalence.
To end the proof, recall that when X.A;˛/ and X.B;ˇ/ (resp. .A; ˛/ and .B; ˇ/)

are unitarily equivalent (resp. outer conjugate) then the tensor algebras (resp. the
semicrossed products) are completely isometrically isomorphic.

Corollary4.6. Let .A; ˛/and .B; ˇ/be twoautomorphicmultivariableC�-dynamical
systems. If the semicrossed products A �˛ F C

n˛
and B �ˇ F C

nˇ
(or some alg.A; ˛/

and alg.B; ˇ/) are isometrically isomorphic, then the tensor algebras T C.A; ˛/ and
T C.B; ˇ/ are also isometrically isomorphic.

The converse of Corollary 4.6 does not hold. This follows from Example 3.24 of
[12].

In the case where the multivariable system acts on a C�-algebra with a trivial
center, we obtain that outer conjugacy is a complete invariant for isomorphisms
between semicrossed products, by combining Theorem 4.5 with Lemma 3.3.

Theorem4.7. Let .A; ˛/ and .B; ˇ/ be twoautomorphicmultivariable C�-dynamical
systems and assume that A has trivial center. Then the following are equivalent:

(1) A �˛ F C
n˛

and B �ˇ F C
nˇ

are isometrically isomorphic.

(2) T C.A; ˛/ and T C.B; ˇ/ are isometrically isomorphic.

(3) X.A;˛/ and X.B;ˇ/ are unitarily equivalent.

(4) .A; ˛/ and .B; ˇ/ are outer conjugate.
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Furthermore, if there exist alg.A; ˛/ and alg.B; ˇ/ which are isometrically isomor-
phic, then any of the above conditions holds, and n˛ D nˇ .

Let A be a unital C�-algebra and let P.A/ be its pure state space equipped with
thew�-topology. The Fell spectrum yA ofA is the space of unitary equivalence classes
of non-zero irreducible representations of A. (The usual unitary equivalence of rep-
resentations will be denoted by 	.) The GNS construction provides a surjection
P.A/ ! yA and yA is given the quotient topology. There is another more convenient
description of the (Fell) spectrum of A due to Ernest [17]. Let HA be a fixed Hilbert
space of dimension equal the cardinal � of a dense subset of A. A railway represen-
tation � of A is a representation which is unitarily equivalent to the �-ampliation of
some irreducible representation �0 ofA. In particular, if � is a railway representation,
then �.A/ has trivial center. Let R.A/ denote the space of all railway representations
of A acting on HA, equipped with the topology of pointwise convergence relative
to the strong operator topology. Ernest shows in [17] that the canonical surjection
R.A/ ! yA, which associates with each railway representation � 2 R.A/ the unitary
equivalence class of the irreducible representation �0 associated with �, is both open
and continuous. Hence, the space R.A/=	 equipped with the quotient topology
is homeomorphic in a canonical way with the spectrum of A. (Indeed two railway
representations are unitarily equivalent if and only if their associated irreducible rep-
resentations are unitarily equivalent.) For the sequel, we adopt Ernest’s picture for
the spectrum, i.e., yA D R.A/=	. We require the following elementary fact regarding
the open sets in yA.

Proposition 4.8. Let A be a C�-algebra, � 2 R.A/, a 2 A and 	 2 HA. Then the
set

U.� j a; 	; "/ � fŒ�0� j �0 2 R.A/; k.� � �0/.a/	k < "g
is open in yA.

Proof. It is enough to show that the set

U 0 D fadw �
0 j w 2 B.HA/ unitary, k.� � �0/.a/	k < "g

is open with respect to the topology of pointwise convergence in R.A/.
Let adw �

0 2 U 0 arbitrary and let ı > 0 so that

k.adw �
0 � adw �/.a/w	k D k.� � �0/.a/	k D " � ı (4)

Consider now the open set

O�0;w D f�00 2 R.A/ j k.adw �
0 � �00/.a/w	k < ıg:

If we show thatO�0;w 
 U 0, thenU 0 will be the union of open sets, and the conclusion
will follow. Towards this end, let �00 2 O�0;w . By (4), k.adw ���00/.a/w	k < " and
thus

k.adw� �00 � �/.a/	k D kw.adw� �00 � �/	k D k.�00 � adw �/.a/w	k < ":
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Hence adw� �00 2 U 0 and so �00 2 U 0, as desired.

Let X and Y be topological spaces and let 
 D .
1; 
2; : : : ; 
n/ and � D
.�1; �2; : : : ; �n/ be multivariable dynamical systems consisting of selfmaps of X and
Y respectively. Davidson and Katsoulis [12], Definition 3.16, define .X; 
/ and .Y; �/
to be piecewise conjugate if there exists a homeomorphism ' W X ! Y and an open
cover fUg j g 2 Sng of Y so that

�i D ' 
g.i/ '
�1 for each g 2 Sn and 1 � i � n:

If A is a C�-algebra, then any automorphism (resp. multivariable system) ˛ of
A induces a homeomorphism (resp. multivariable dynamical system) Ǫ on its Fell
spectrum yA, that maps the equivalence class Œ�� of a railway representation to Œ�˛�.

Theorem 4.9. Let .A; ˛/ and .B; ˇ/ be automorphic multivariable C�-dynamical
systems and assume that there exist associated operator algebras alg.A; ˛/ and
alg.B; ˇ/which are isometrically isomorphic. Then the multivariable systems . yA; Ǫ /
and . yB; Ǒ/ are piecewise conjugate.

Proof. Let � W alg.A; ˛/ ! alg.B; ˇ/ be an isometric isomorphism. We will show
that the mapping O��1 W yA ! yB is the homeomorphism implementing the desired
piecewise conjugacy between . yA; Ǫ / and . yB; Ǒ/. In order to prove that we will verify
that around every point in yB , there is an open set so that the maps Ǒ

i , i D 1; 2; : : : ; n˛ ,

and O��1 Ǫj O� D 2� j̨ �
�1, j D 1; 2; : : : ; nˇ , when restricted there, they are conjugate.

Let � 2 R.B/ and pick one of the Ǒ
1; Ǒ

2; : : : ; Ǒ
nˇ

, say Ǒ
1. Let

f Ǒ
1; Ǒ

2; : : : ; Ǒ
r ;

2�˛1�
�1; 2�˛2�

�1; : : : ; 2�˛d�
�1g

be the mappings from the collection

f Ǒ
1; Ǒ

2; : : : ; Ǒ
n˛
; 2�˛1�

�1; 2�˛2�
�1; : : : ; 3�˛nˇ

��1g (5)

that “eventually” agree with Ǒ
1 around Œ�� (the germ of Ǒ

1). By that we mean that
there is an open set U 
 yB containing Œ�� so that

2� j̨ �
�1jU D Ǒ

i jU ;
for all i D 1; 2; : : : ; r and j D 1; 2; : : : ; d . Furthermore, given any open set U 0 

U 
 yB containing Œ�� and any i � r , j > d , we have

4� j̨ �
�1jU 0 ¤ Ǒ

1jU 0 D Ǒ
i jU 0 : (6)

We are to show that r D d . Once this has been established, an easy partitioning
argument for the collection (5) into germs finishes the proof of the theorem.
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By way of contradiction we assume that r > d , or otherwise we exchange the
roles of A and B and their corresponding automorphisms. (We do not exclude the
possibility that d D 0.)

Claim. If Œbij � is the matrix associated with � , then �.bij / D 0 for all i D
1; 2; : : : ; r and j > d .

Proof of the Claim. Indeed, let " > 0 and 	 2 HA and let

U.� j bij ; 	; "/ D fŒ�0� 2 yB j k.� � �0/.bij /	k < "g:
which is open by Proposition 4.8. Hence U.� j bij ; 	; "/

T
U is also open and so by

(6) implies the existence of Œ�0� 2 U.� j bij ; 	; "/
T
U so that

2� j̨ �
�1.�0/ ¤ Ǒ

1.�
0/ D Ǒ

i .�
0/:

Hence �0� j̨ �
�1 œ �ˇi and so Lemma 3.1 implies that �0.bij / D 0. Therefore,

k�.bij /	k D k.� � �0/.bij /	k < "
for all 	 2 HA and " > 0, which proves the claim.

By Theorem 4.4 the matrix Œ�.bij /� is invertible. It also intertwines the represen-
tations f�ˇign

iD1 and f�� j̨ �
�1gn

j D1 and so we can perform Gaussian elimination as
in Lemma 3.3. However, the claim above implies that when we reach at the d C 1

row, there will be no non-zero element on that particular row. This contradicts the
invertibility of Œ�.bij /�.

The Fell topology on the spectrum of a simple C�-algebra is the discrete topology.
Therefore for such C�-algebras Theorem 4.9 says nothing more than the invariance
of dimension, i.e., n˛ D nˇ . It turns out that an appropriate modification of the Fell
spectrum, combined with the techniques of Theorem 4.9 yields a finer invariant that
can handle simple C�-algebras and actually a bit more.

Definition 4.10. Let A be a C�-algebra and �, �0 be representations of A. We say
that � and �0 are strongly equivalent (denoted by �

s	 �0) if �.A/ D �0.A/ and there
exists a unitary operator w 2 �.A/ so that �0 D adw �.

Let �.A/ be the space of all non-degenerate representations of A on HA with
trivial center. The equivalence

s	 partitions �.A/ into equivalence classes and the
collection of all these classes will be denoted as QA. We equip QA with the smallest
topology so that sets of the form

fŒ�0� j �0 2 �.A/; k.� � �0/.a/	k < "g;
where � 2 �.A/, a 2 A, 	 2 HA, " > 0, are open. The topologized space QA gives
a finer notion of spectrum than that of the Fell spectrum and it coincides with the
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Gelfand spectrum in the commutative case. It is easy to see that any automorphism
(resp. multivariable system) ˛ of A induces a homeomorphism (resp. multivariable
dynamical system) Q̨ on QA, that maps the equivalence class Œ��, � 2 �.A/ onto Œ�˛�.
A verbatim repetition of the proof of Theorem 4.9 (with hats replaced by tildes) yields
the following.

Theorem 4.11. Let .A; ˛/ and .B; ˇ/ be automorphic multivariable C�-dynamical
systems and assume that there exist associated operator algebras alg.A; ˛/ and
alg.B; ˇ/which are isometrically isomorphic. Then the multivariable systems . QA; Q̨ /
and . QB; Q̌/ are piecewise conjugate.

In certain cases Theorems 4.9 and 4.11 provide a complete invariant for iso-
metric isomorphism between tensor algebras, e.g., multivariable dynamics with two
generators over commutative C�-algebras [12]. Nevertheless, none of these results
provides a complete invariant in general. This follows from the work of Davidson
and Kakariadis [9] and an example of Kadison and Ringrose [20].

Example 4.12. In [20] Kadison and Ringrose show that there exists a (homogeneous)
C�-algebra A and an automorphism ˛ of A which is universally weakly inner but not
inner. If the converse of Theorem 4.9 were valid for tensor algebras, then A �˛ ZC
andA�id ZC would be isomorphic and hence outer conjugate by [9]. But this would
imply that ˛ is inner, a contradiction.

5. Concluding remarks and open problems

One of the consequences of our theory is the invariance of dimension: if .A; ˛/
and .B; ˇ/ are multivariable systems consisting of �-automorphisms and alg.A; ˛/
and alg.B; ˇ/ are isometrically isomorphic as operator algebras, then n˛ D nˇ .
Furthermore the invariance of dimension is implicit in both the statements of piecewise
conjugacy and outer conjugacy and therefore it is a corollary of both Theorem 4.9
and Theorem 4.7. The following example shows that the invariance of dimension
does not hold for arbitrary multivariable systems.

Example 5.1. Let A D B D O2, ˛ D .˛1; ˛2/, with ˛1 D ˛2 D id, and let

ˇ.x/ D S1xS
�
1 C S2xS

�
2 ; x 2 O2;

where S1, S2 are the canonical generators of O2. Then the tensor algebras T C.A; ˛/
and T C.B; ˇ/ are (completely) isometrically isomorphic.

Indeed, ˇ.x/S1 D S1x and ˇ.x/S2 D S2x, for all x 2 O2. Hence, the unitary
matrix U D �

S1 S2

�
intertwines fˇg and f˛1; ˛2g and so X.A;˛/ and X.B;ˇ/ are

unitarily equivalent.
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The above example does not exclude the possibility that the C�- correspondence
is an isomorphism invariant for arbitrary multivariable systems.

Question 1. Let .A; ˛/ and .B; ˇ/ be multivariable dynamical systems consisting of
arbitrary �-endomorphisms. Assume that there exist associated operator algebras
alg.A; ˛/ and alg.B; ˇ/ which are isometrically isomorphic. Does it follow that the
C�-correspondences X.A;˛/ and X.B;ˇ/ are unitarily equivalent?

Question 1 has a positive answer when both multivariable systems consists of
�-epimorphisms. Indeed, Theorem 4.4 and its consequences are valid also in this
case, with the same proofs. Because of Example 5.1, we emphasize the assumption
that both families consist of �-epimorphisms. Question 1 also has a positive answer
in the following case.

Theorem 5.2. Items (1) and (2) of Theorem 4.5 hold for arbitrary classical systems.
The same holds for multivariable systems of stably finite C�-algebras with arbi-

trary �-endomorphisms, provided that n˛ D nˇ .

Proof. Let Œbij � be the matrix associated with the isomorphism � W alg.A; ˛/ !
alg.B; ˇ/. By Proposition 4.3, Œbij � is a right-invertible rectangular matrix. If B is
commutative then nˇ � n˛ and by symmetry on ��1 we obtain that nˇ D n˛ . The
finiteness condition for B implies that Œbij � is invertible.

When the C�-algebras are commutative we obtain that unitary equivalence implies
piecewise conjugacy of the systems, by passing though the isomorphism of the tensor
algebras [12], Theorem 3.22. In certain cases, piecewise conjugacy implies also
isometric isomorphism of the tensor algebras [12], Theorem 3.25, thus in these cases
piecewise conjugacy and unitary equivalence of the C�-correspondences coincide.

Question 2. Does piecewise conjugacy imply unitary equivalence of the C�-corres-
pondences for classical dynamical systems in general?

We are also interested in piecewise conjugacy over the Jacobson spectra.

Question 3. Let .A; ˛/ and .B; ˇ/ be multivariable dynamical systems and assume
that there exist associated operator algebras alg.A; ˛/ and alg.B; ˇ/ which are iso-
metrically isomorphic. Does it follow that the multivariable systems .A; ˛/ and
.B; ˇ/ are piecewise conjugate over their Jacobson spectra?
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