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Abstract. We construct differential K-theory of representable smooth orbifolds as a ring valued
functor with the usual properties of a differential extension of a cohomology theory. For proper
submersions (with smooth fibres) we construct a push-forward map in differential orbifold K-
theory. Finally, we construct a non-degenerate intersection pairing with values in C=Z for the
subclass of smooth orbifolds which can be written as global quotients by a finite group action.
We construct a real subfunctor of our theory, where the pairing restricts to a non-degenerate
R=Z-valued pairing.
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1. Introduction

In this paper we give the construction of a model of differential K-theory for orb-
ifolds. It generalizes the model for smooth manifolds [BS09]. Major features are the
constructions of the cup-product and the push-forward with all desired properties,
and the localization isomorphism.

Our construction includes a model of equivariant differential K-theory for Lie
group actions with finite stabilizers. However, a construction in the realm of orb-
ifolds not only covers more general objects, but is stronger also for group actions.
The additional information is the independence of the choice of presentations. In
equivariant terms, this means that differential K-theory has induction and descend
isomorphisms.

One of the motivations for the consideration of differential K-theory came from
mathematical physics, in particular from type-II superstring theory. Here it was used
as a host of certain fields with differential form field strength, see e.g. [FMS07],
[Wit98], [MM97]. For the theory on orbifolds one needs the corresponding general-
ization of differential K-theory [SV10]. To serve this goal is one of the motivations of
this paper. As explained in [SV10], the intersection pairing in differential K-theory
on compact K-oriented orbifolds is an important aspect of the theory. In the present
paper we construct a non-degenerated C=Z-valued paring. Note that because of
the nature of the equivariant Chern character orbifold differential K-theory naturally
works with complex valued forms. We will show that it admits a real subfunctor, and
the pairing restricts to a non-degenerated R=Z-valued pairing on this subfunctors.

In this paper, we use the terminology “differential K-theory” throughout. In
previous publications like [BS09], we used the synonym “smooth K-theory”. Dan
Freed convinced us that the analogy with differential forms implies that the first
expression is more appropriate. [BS11] is a nice survey on the general theory of
differential K-theory; we try to cover as much of its aspects in the equivariant or
orbifold situation as possible.

We now describe the contents of the paper. In Section 2 we construct the model
of differential K-theory and verify its basic properties. We first review the relevant
orbifold and stack notation. Then we define differential K-theory for orbifolds by cy-
cles and relations as a direct generalization of the construction for manifolds [BS09],
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with some extra care in the local analysis. In the sequel, we will refer to the case of
smooth manifolds as the “non-singular case” or the “smooth case”.

Section 3 is devoted to the cup-product and the push-forward. These are again
direct generalizations of the corresponding constructions in [BS09]. In Section 3.5
we prove the localization theorem in differential K-theory for global quotients by
finite group actions.

In Section 4 we prove two results. The first is Theorem 4.9 which identifies
the flat part of differential K-theory as K-theory with coefficients in C=Z. The
result is a generalization of [BS09], Proposition 2.25, though the proof requires new
fundamental ideas. Finally we show in Theorem 4.15 that the intersection pairing is
non-degenerate.

The final Section 5 contains some interesting explicit calculations and important
bordism formulas which are crucial for any calculations.

In 2009, the preprint [Ort] appeared. It gives another construction of differential
equivariant K-theory for finite group actions along the lines of [HS05]1. It defines a
push-forward to a point. The main difference between the two approaches is that our
constructions are mainly analytical, whereas his are mainly homotopy theoretic.

Ortiz there raises the interesting question [Ort], Conjecture 6.1, of identifying this
push-forward in analytic terms. Note that in our model, in view of the geometric
construction of the push-forward and the analytic nature of the relations, the con-
jectured relation is essentially a tautology. See [BS09], Corollary 5.5, for a more
general statement in the non-equivariant case. [Ort], Conjecture 6.1, would be an
immediate consequence of a theorem stating that any two models of equivariant dif-
ferential K-theory for finite group actions are canonically isomorphic (see [BS10]
for the non-equivariant version) in a way compatible with integration. It seems to be
plausible that the method of [BS10] extends to the equivariant case though we have
not checked the details.

Acknowledgement. A great part of the material of the present paper has been worked
out around 2003. Motivated by [SV10] and fruitful personal discussions with Richard
Szabo and Alessandro Valentino we transferred the theory to the case of orbifolds and
worked out the details of the intersection pairing.

2. Definition of differential K-theory via cycles and relations

2.1. Equivariant forms and orbifold K-theory

2.1.1. In the present paper we use the language of stacks in order to talk about
orbifolds and maps between them. This language is by now well developed and we
refer to [BSS07], [MET03], [VIS05] or [Hei05] for details. For the sake of readers
with less experience with stacks we will recall some basic notions and constructions.

1At the time of writing the paper [Ort] is pending for revisions.
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We consider the category Mf of smooth manifolds. By the Yoneda embedding
Mf ,! Sh.Mf/ manifolds can be considered as sheafs of sets on Mf equipped with
the usual Grothendieck topology given by open coverings. Because sets are special
kinds of groupoids, namely those which have only identity morphisms, the category
of sheaves of sets embeds in the two-category of sheaves of groupoids on Mf denoted
Stack.Mf/whose objects are called stacks. By this embedding Sh.Mf/ ,! Stack.Mf/,
a manifold M can be considered as a stack which associates to each test manifold
T 2 Mf the set (considered as a groupoid) of smooth maps from T to M , i.e., we
have M.T / D C1.T;M/. More generally, if G is a Lie group acting on M , then
we can consider the quotient stack ŒM=G� which associates to each test manifold
T the groupoid ŒM=G�.T / of pairs .P ! T; �/ of G-principal bundles P ! T

and G-equivariant maps � W P ! M . If G acts freely and properly with quotient
manifold M=G, then we have a natural isomorphism of stacks ŒM=G� Š M=G. If
G � H is an inclusion of Lie groups, then we have a natural isomorphisms of stacks
ŒM=G� Š ŒM �G H=H�. By functoriality, a definition of differential K-theory
for stacks takes these isomorphisms into account automatically. This is one of our
motivations to prefer the stack language.

2.1.2. The groupoid of maps HomStack.Mf/.X; Y / between two stacks X and Y in
Stack.Mf/ is by definition just the groupoid of maps between sheaves of groupoids
on Mf. Its objects are called morphisms or maps of stacks, and its morphisms are
called two-morphisms between morphisms. It is important to understand that the
Yoneda embedding gives the equivalence of groupoids X.T / Š HomStack.Mf/.T;X/.

In stacks we can form arbitrary two-categorial fibre products. A map between
stacks f W X ! Y is called representable if the stack T �Y X is isomorphic to a
manifold for every manifold T and map T ! Y . Many properties of maps between
smooth manifolds are preserved by pull-backs. This includes the conditions of being
a locally trivial fibre bundle, open, closed, proper, submersion, or surjective. These
properties can be defined for representable maps by requiring them for all the induced
maps of manifolds T �Y X ! T . For example, a locally trivial fibre bundle is
a representable map f W X ! Y such that the induced maps between manifolds
T �Y X ! T are locally trivial fibre bundles in the ordinary sense. In this case the
fibres of f are smooth manifolds, and all stackyness of X comes from the base Y .

For a map f , being a vector bundle is an additional structure. A vector bundle
structure on a map between stacks can be given in two equivalent ways. One way
is to use classifying stacks. There exists a stack Vect.n;R/ 2 Stack.Mf/ whose
evaluation on the test manifold T 2 Mf is the groupoid of n-dimensional real vector
bundles V ! T and isomorphisms. Then an n-dimensional real vector bundle on a
stack Y is, by definition, a map of stacks Y ! Vect.n;R/. In order to describe the
underlying bundle we consider the universal vector bundle E.n;R/ ! Vect.n;R/.
The evaluation E.n;R/.T / is the groupoid of pairs .V ! T; v/ of an n-dimensional
vector bundle on T and a section v 2 C1.T; V /. The map E.n;R/ ! Vect.n;R/
forgets the section. It is representable and a locally trivial fibre bundle since for every
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map .g W T ! Vect.n;R// 2 Vect.n;R/.T / the pull-back T �Vect.n;R/ E.n;R/ is
equivalent to the manifold given by the total space of the vector bundle classified by
g. We can now say that a map f W X ! Y between stacks is an n-dimensional real
vector bundle if it comes with a (class of) morphisms and two-morphisms making
the right square of diagram (1) two-cartesian:

T �Y X ��

��

X ��

f

��

E.n;R/

��
T

��

�� Y ��

��

Vect.n;R/.

(1)

Note that f is necessarily representable and a locally trivial fibre bundle.
The other, equivalent, way to define the structure of an n-dimensional real vector

bundle on the map f W X ! Y is as a family of n-dimensional real vector bundle
structures on the family of maps .T �Y X ! T /T!Y which is compatible with
pull-backs along morphisms of manifolds over Y , i.e., for pairs .f; �/ of a smooth
map f and a two-morphism �:

T
f ��

���
��

��
��

�

��

T 0

����
��

��
�

Y .

Indeed, the datum of such a family is the same as a map of stacks Y ! Vect.n;R/.
On the other hand, given this map, we get the compatible family of vector bundles
by forming the left cartesian squares in the diagram (1).

The same philosophy allows to define additional differential-geometric structures
like fibrewise metrics or connections. Let us explain this in detail for vertical Rie-
mannian metrics.

We consider the stack BDiff of locally trivial fibre bundles whose evaluation on a
test manifold T is the groupoid of locally trivial smooth fibre bundles F ! T and
bundle isomorphisms. As in the case of vector bundles it carries a universal bundle
E! BDiff such that E.T / is the groupoid of pairs .F ! T; s/ of a fibre bundle and
a section s 2 C1.T; F /, and the bundle projection forgets the section. We can now
form the stack BDiff.gT

v
/ whose evaluation on T is the groupoid of pairs .� W F !

T; gT
v�/ consisting of a locally trivial fibre bundle and a vertical Riemannian metric,

and whose morphisms are isometric bundle isomorphisms. We again have a forgetful
map BDiff.gT

v
/! BDiff and define E.gT

v
/´ BDiff.gT

v
/ �BDiff E.

A map f W X ! Y is a locally trivial fibre bundle if it fits into a two-cartesian
diagram:

X

f

��

�� E

��
Y

		

�� BDiff.
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A vertical Riemannian metric on f is then a refinement to

X ��

f

��




E.gT

v
/

��

��

��

E

��
Y ��

��

��BDiff.gT
v
/



�� BDiff.
��

Equivalently, a vertical Riemannian metric on f W X ! Y can be understood as a
collection of vertical Riemannian metrics on the bundles T �Y X ! T for all maps
T ! Y from smooth manifolds T which is compatible for pull-backs along maps of
test manifolds .f; �/ W T 0 ! T over Y .

A similar idea works for horizontal distributions using the stack BDiff.T h/ which
classifies bundles with horizontal distributions. For connections and metrics on a
vector bundle we work with the corresponding stacks of vector bundles with connec-
tions, metrics or both. See also 3.1.1 where we apply these ideas to principal bundles
and connections.

2.1.3. A map A ! X from a manifold A to a stack X is called an atlas if it is
representable, surjective and a submersion. A stack is called smooth if it admits
an atlas. For example, the quotient stack ŒM=G� defined in 2.1.1 is smooth since
the map M ! ŒM=G� is an atlas. As a counter example, the stack BDiff is not
smooth. In general, every smooth stack X is isomorphic to the quotient stack of the
action of a groupoid. Indeed, given an atlas A ! X , we can form the groupoid
A´ .A �X A � A/. This groupoid acts on A, and there is a natural isomorphism
X Š ŒA=A�, where ŒA=A� denotes the quotient stack of the action of A onA defined
by an extension of the notion of a quotient stack for a group action explained in 2.1.1,
see [Hei05] for details. In the example above we get the action groupoidM�G � M .
The subcategory of smooth stacks can be obtained as a localization of the category of
groupoids in manifolds by formally inverting a certain class of morphisms. There is
the option to define differential K-theory on the level of groupoids in manifolds and
to show that it descends to smooth stacks by verifying that the inverted morphisms
between groupoids induce isomorphisms in differential K-theory. In the present paper
we prefer to work with the stacks directly.2 This choice of language has the advantage
that for many definitions (e.g. of a vector bundle or geometric family) and for many

2The difference between these two options resembles the situation in differential geometry, where
objects can be defined in charts or globally. The first choice requires frequent verifications that constructions
are independent of the choice of coordinates.
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arguments we can just use the same words and symbols as in the non-singular case
since their meaning and properties naturally extend to the case of stacks.

2.1.4. In the present paper we consider differential K-theory for orbifolds. By def-
inition an orbifold is a stack X in smooth manifolds which admits an orbifold atlas
A! X . An orbifold atlas is an atlas A! X such that the groupoid A �X A � A

is proper and étale. Recall that a groupoid A1 � A0 is called proper if the map
.s; t/ W A1 ! A0�A0 is proper (preimages of compacts are compact), and it is called
étale if the range and target maps s; t W A1 ! A0 are local diffeomorphisms. In
other words, orbifolds are stacks which are equivalent to quotient stacks of actions
of smooth proper étale groupoids on a smooth manifolds. A description of orbifolds
in terms of groupoids has been given in [PS10] or [Moe02].

In the older literature an orbifold is often defined as a topological space together
with a compatible collection of orbifold charts. In the language of stacks this space
would be referred to as the coarse moduli space. In this picture the obvious notion
of a map between orbifolds would be a map of the coarse moduli spaces which has
smooth representatives in the charts. In general this notion is strictly larger than the
notion of a morphism of orbifolds defined here as a map of stacks. Our morphisms
of orbifolds are called strong or good maps in [AR03].

2.1.5. A major source of orbifolds are actions of discrete groups on smooth manifolds.
Let G be a discrete group which acts on a smooth manifold M . The action � W M �
G ! M is called proper if the map .idM ; u/ W M � G ! M �M is proper. If the
action is proper, then the quotient stack ŒM=G� is an orbifold. The mapM ! ŒM=G�

is an orbifold atlas. The associated groupoid is the action groupoid M �G � M .

Definition 2.1. An orbifold of the form ŒM=G� for a proper action of a discrete group
on a smooth manifold is called good.

Another source of examples arises from actions of compact Lie groups G on
smooth manifolds M with finite stabilizers. In this case the quotient stack ŒM=G� is
a smooth stack with an atlasM ! ŒM=G�, but this atlas is not an orbifold atlas since
the groupoid M �G � M is not étale. In order to find an orbifold atlas we choose
for every point m 2 M a transversal slice Tm � M such that Tm �Gm

G ! M is a
tubular neighbourhood of the orbit ofm, where Gm � G is the finite stabilizer ofm.
Then the composition

F
m2M Tm !M ! ŒM=G� is an orbifold atlas.

Definition 2.2. An orbifold of the form ŒM=G� for an action of a compact Lie group
G with finite stabilizers on a smooth manifoldM is called presentable. A presentable
orbifold is called compact if the manifoldM in its presentation can be chosen compact.

Note that, by definition, a presentation ŒM=G� of an orbifold involves a compact
group G.
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LetX be an orbifold with orbifold atlasA! X . It gives rise to the étale groupoid
A W A �X A � A. The frame bundle of a manifold can be defined by a construction
which is functorial under local diffeomorphisms. Since the groupoid A is étale the
frame bundle Fr.A/! A is A-equivariant. We can now define the frame bundle of
the orbifold X as the quotient stack Fr.X/´ ŒFr.A/=A�. It does not depend on the
choice of the atlas up to natural equivalence.

Definition 2.3. An orbifoldM is called effective if the total space of its frame bundle
Fr.X/! X is equivalent to a smooth manifold.

It is known that an effective orbifold is presentable. On the other hand it is an
open problem whether all orbifolds are presentable, see [HM04].

2.1.6. For a stack X we define the inertia stack

LX ´ X �X�X X

by forming the two-categorial fibre product of two copies of the diagonal diag W X !
X � X . If X is an orbifold, then the inertia stack LX is again an orbifold (compare
[BSS08], Lemma 2.33, for an argument). In the case of a good orbifold of the
form ŒM=G� with a discrete group G, the inertia orbifold LŒM=G� is equivalent
to the quotient stack Œ yM=G�, where yM ´ F

g2GM g , M g � M , is the smooth
submanifold of fixed points of g, and the element h 2 G defines a map M g !
M h�1gh in the natural way. TheG-space yM is sometimes called the Brylinski space.

2.1.7. For a stackX we consider the site Site.X/ of manifolds overX (see [BSS07],
Section 2.1). Its objects are representable submersions T ! X from smooth mani-
folds, and its morphisms are pairs .f; �/ of a smooth map and a two-morphism:

T
f ��

���
��

��
��

�

��

T 0

����
��

��
�

X .

The topology is given by open coverings of the manifolds T . We thus have a category
Sh.X/ of sheaves on X (see [BSS07], Section 2.1, for details). A natural example
of a sheaf on X is the de Rham complex of complex-valued forms �X 2 Sh.X/,
which is a sheaf of differential graded commutative algebras over C and given by
�X .T ! X/´ �.T / (the de Rham complex of complex-valued forms of T ). Its
structure maps are given by .f; �/� D f � W �.T 0/! �.T /. For a sheafF 2 Sh.X/
we define the set (or group, ring, or differential graded algebra depending on the
target category of F ) of global sections by

F.X/´ lim.T!X/2Site.X/ F.T ! X/:
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In the case of the de Rham complex we write�.X/´ �X .X/.3 In particular we
can consider the global sections of the de Rham complex�.LX/ of the inertia stack.
By definition, its cohomology is the delocalized orbifold de Rham cohomology

HdR;deloc.X/´ H.LX/´ H�.�.LX//;

see [BSS08], Section 3.2. In the case of a good orbifold X D ŒM=G� the forms on
the inertia orbifold coincide with the G-invariant forms on the smooth manifold yM :

�.LX/ Š �. yM/G : (2)

Note that the left-hand side of this equality has a definition which is manifestly
independent of the presentation of X as a quotient X D ŒM=G�.

2.1.8. LetE ! X be a complex vector bundle over an orbifoldX . Recall from 2.1.2
that this means that E is a stack and the projection E ! X is a representable map
such that T �X E ! T is a complex vector bundle for all maps T ! X compatibly
with pull-backs along maps T 0 ! T over X . One can check that E is an orbifold,
too.

Further recall that a connection rE on E can be understood as a compatible
collection of connections on the vector bundles T �X E ! T . In order to construct
connections on E we choose an orbifold atlas A ! X . We consider the associated
proper and étale groupoid A W A �X A � A. The vector bundle gives rise to an
A-equivariant vector bundle EA ´ E �X A ! A, where the action is a fibrewise
linear map:

.A �X A/ �pr2;A EA
��

pr1

���������������
EA

����
��

��
��

A.

A connection on E induces, by definition, an A-invariant connection on EA. On the
other hand, one can check that an A-invariant connection onEA uniquely determines
a connection onE. Thus to construct a connection onE ! X first choose an arbitrary
connection on EA, and then average over A in order to make it invariant.

We choose a connection rE .

2.1.9. Consider a two-categorial pull-back

A ��

��

B

��
C

��

f �� D

3Observe that this does not introduce any notational conflict ifX is a manifold itself.
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in a two-category like Stack.Mf/. Then we have a natural action of the group of two-
automorphisms Aut.f / onA. Furthermore, given a morphismg W X ! Y , the natural
map g W X �Y X ! Y comes with a canonical two-automorphism �g 2 Aut.g/. If
we apply this to the inertia object (g D diag)

LX

i

��

��

�� X

diag

��
X

��

diag
�� X �X

pr1

���
��

��
��

��

X ,

then we get a natural automorphism

� ´ pr1��diag 2 Aut.i/: (3)

Let EL ! LX be the vector bundle defined by the pull-back

EL

��

�� E

��
LX

��

i �� X .

The two-automorphism � 2 Aut.i/ induces an automorphism of vector bundles of
EL

EL

���
��

��
��

�
� ��

��

EL

����
��

��
��

LX .

The connection rE induces by pull-back a connection rEL . Using the curvature
RrEL 2 �.LX;End.EL// of the connection rEL we define the Chern form

ch.rE /´ Tr �e� 1
2�i

RrEL 2 �.LX/: (4)

This form is closed and represents the Chern character of E in delocalized coho-
mology HdR;deloc.X/.

2.1.10. In order to motivate this definition of the Chern form we consider the example
of quotient stacks. IfX D ŒM=G� for a discrete groupG then we haveLX Š Œ yM=G�

as above (see 2.1.6) with yM D F
g2GM g . The map i W LX ! X is represented

by the map of groupoids . yM � G � yM/! .M � G � M/ which on morphisms
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is given by .x 2 M g ; h/ 7! .x; h/. In this picture the automorphism � 2 Aut.i/ is
given by yM !M �G, .x 2M g/ 7! .x; g/.

We consider a G-equivariant vector bundle zE !M . Then

E ´ Œ zE=G�! X D ŒM=G�
is a vector bundle in stacks. The bundle EL ! LX is represented by the maps of
groupoids . yE � G � yE/! . yM � G � yM/, where yE ! yM is the G-equivariant
vector bundle defined as the pull-back of zE along the map yM !M , .x 2M g/ 7! x.
The automorphism � of EL is represented by the bundle automorphism O� W yE ! yE
which reduces to the action of g on each fibre yE.x2Mg/ Š zEx .

We choose aG-invariant connection r zE . It induces connections rE and r yE . In
this case the Chern form ch.rE / defined in (4) is given by the invariant form

Tr O�e� 2
2�i

Rr
yE 2 �. yM/G

(2)Š �.LX/:
This is exactly the definition of the Chern form given by Baum and Connes in [BC].

2.1.11. The inertia orbifold i W LX ! X has the structure of a group-object in the
two-category of stacks over X , see [BSS08], Lemma 2.23. The group structure is
easy to describe in the case of a quotient stack X D ŒM=G� for a discrete group G.
In this case LX Š ��F

g2GM g
�
=G

�
, and the multiplication and inversion I are

given by .x; g/.x; h/´ .x; gh/ for x 2M g \M h, and I.x; g/´ .x; g�1/.
In general, there is a canonical isomorphism can W i B I ) i . If � W i ) i is the

natural two-automorphism of i as in (3), then

��1 D can B � B I B can�1 (5)

in Aut.i/.
We use the inversion I in order to define a real structureQ on�.LX/ byQ.!/´

I � x!. We define the subcomplex of real forms�R.LX/ � �.LX/ as the subspace of
Q-invariants. The isomorphism can W i B I ) i induces an isomorphism of bundles
EL Š i�E ��!� I �i�E Š I �EL. It follows from (5) that

EL
� ��

canŠ
��

EL

canŠ
��

I �EL
I���1

�� I �EL

commutes.
This is easy to check directly in the caseX D ŒM=G�withG finite. In this case �

is given by the induced action of g on .EL/x Š Ex for x 2M g , but I.x/ 2M g�1
,

and thus I �� is given by the induced action of g�1 on .EL/I.x/ Š Ex .
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We can choose an hermitian metric on E and a connection compatible with this
metric. In fact, one can choose an orbifold atlas f W A! X and a metric and metric
connection on f �E ! A. By averaging one can make these invariant under the
groupoid A �X A � A. The invariant metric and connection give a metric and a
metric connection on X , see 2.1.8.

The metric on E induces a metric on EL, and the morphism � is unitary. Fur-
thermore, the curvature of a metric connection takes values in the antihermitian en-
domorphisms. Because the connection pulls back from X we have I �rEL D rEL

under the canonical isomorphism I �EL Š EL. A similar equality holds true for
the curvature. Combining all these facts we see that the Chern form for a metric
connection is real, i.e., we that

ch.rE / 2 �R.LX/:

2.1.12. Using the methods of [TXLG04] or [FHT07] one can define complex K-
theory for local quotient stacks. Here we consider stacks on the site of topological
spaces Top with the open covering topology, see [BSS11], Chapter 6, and the cor-
responding notions of representability of maps and locally trivial bundles. A local
quotient stack is a stack which admits a covering by open substacks of the form ŒU=G�

where U is a locally compact space and the topological group G is compact.
Let us explain, for example, the definition of K-theory according to [FHT07],

Section 3.4. It is based on the notion of a universal bundle of separable Hilbert spaces
H ! X . Here universality is the property that for every other bundle of separable
Hilbert spacesH1 ! X we have an isomorphismH˚H1 Š H . Let Fred.H/! X

be the associated bundle of Fredholm operators. It gives rise to a sheaf of sections
which can naturally be enhanced to a sheaf of spaces, e.g. using simplicial methods.
By �.X;Fred.H// we denote the space of global sections of Fred.H/! X . Then
one defines K��.X/ as the homotopy group ��.�.X;Fred.H///. One can also
directly define the group K�1.X/ as the group �0.Fred�.H// of homotopy classes
of sections of selfadjoint Fredholm operators with infinite dimensional positive and
negative spectral subspace.

A stack in manifolds X 2 Stack.Mf/ in general can not be considered as a topo-
logical stack since it is not clear how to evaluate X on test spaces T which are not
manifolds. However, the inclusion Mf ,! Top, M 7! MTop, of the category of
manifolds in the category of topological spaces extends to smooth stacks as follows.
If X is a smooth stack, then we can choose an atlas A ! X and obtain a natural
isomorphism X Š ŒA=A�, where A D .A �X A � A/. The smooth groupoid A

has an underlying topological groupoid ATop, and we obtain the topological stack
XTop ´ ŒATop=ATop�. The stack XTop does not depend on the choice of the atlas up
to natural isomorphisms.

Hence we can apply this construction to orbifolds. If X is an orbifold, then XTop

is a local quotient stack, and we can define its K-theory by

K�.X/´ K�.XTop/: (6)
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2.1.13. For the present paper this set-up is too general since we want to do local
index theory. In our case we want to represent K-theory classes by indices of fam-
ilies of Dirac operators, or in the optimal case, by vector bundles. For compact
presentable orbifolds a construction of K-theory in terms of vector bundles has been
given in [AR03], Definition 4.1. Note that a vector bundle on an orbifold as defined
in Section 2.1.2 is an orbifold vector bundle in the terminology of [AR03].4 At the
moment, for general (not presentable) orbifolds, it is not clear that the definition (6)
is equivalent to a definition based on vector bundles.

For presentable orbifolds we can also use equivariant K-theory. Let X be an
orbifold and consider a presentation ŒM=G� Š X . Then the category of vector
bundles overX is equivalent to the category ofG-equivariant vector bundles overM .
The Grothendieck group of the latter is K0G.M/, and we have K0.X/ Š K0G.M/,
see [AR03], Proposition 4.3. The isomorphism K.X/ Š KG.M/ can be taken as
an alternative definition since independence of the presentation follows e.g. from
[PS10], Proposition 4.1.

For a compact presentable orbifoldB the description ofK0.B/ in terms of vector
bundles over B shows that the construction of Chern forms (4) induces a natural
transformation

chdR W K0.B/! H ev
dR;deloc.B/

in the usual manner. The odd case

chdR W K1.B/! H odd
dR;deloc.B/

is obtained from the even case using suspension by S1.

2.2. Cycles

2.2.1. In this paper we construct the differential K-theory of compact presentable
orbifolds.

The restriction to compact orbifolds is due to the fact that we work with absolute
K-groups. One could in fact modify the constructions in order to produce compactly
supported differential K-theory or relative differential K-theory. But in the present
paper, for simplicity, we will not discuss relative differential cohomology theories.

We restrict our attention to presentable orbifolds since we want to use equivariant
techniques. We do not know if our approach extends to general compact orbifolds,
see 2.3.2.

2.2.2. We define the differential K-theory yK.B/ as the group completion of a quotient
of a semigroup of isomorphism classes of cycles by an equivalence relation. We start
with the description of cycles.

4As an illustration, let Z=2Z act on R by reflection at0. Then the map of orbifolds ŒR=.Z=2Z/� ! �
is not a vector bundle.
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Definition 2.4. Let B be a compact presentable orbifold, possibly with boundary. A
cycle for a differential K-theory class over B is a pair .E; �/, where E is a geometric
family and � 2 �.LB/=im.d/ is a class of differential forms.

2.2.3. In the smooth case the notion of a geometric family has been introduced in
[Bun], Definition 2.2.2, in order to have a short name for the data needed to define a
Bismut superconnection [BGV04], Proposition 10.15. In the present paper we need
the straightforward generalization of this notion to orbifolds. In fact, one can consider
the stack GeomFam which associates to a test manifold T the groupoid of geometric
families and isomorphisms over T . Then a geometric family over a stack X is just
a map X ! GeomFam. Let us spell out this in greater detail. Let B be an orbifold
(or more general, an arbitrary stack on Mf).

Definition 2.5. A geometric family over B consists of the following data:

(1) a proper representable submersion with closed fibres � W E ! B ,

(2) a vertical Riemannian metric gT
v� as in 2.1.2,

(3) a horizontal distribution T h� (see 2.1.2),

(4) a family of Dirac bundles V ! E,

(5) an orientation of T v� .

Here a family of Dirac bundles consists of

(1) an hermitian vector bundle with connection .V;rV ; hV / on E,

(2) a Clifford multiplication c W T v� ˝ V ! V ,

(3) on the components where dim.T v�/ has even dimension a Z=2Z-grading z.

We require that the restrictions of the family of Dirac bundles to the fibres Eb ´
��1.b/, b 2 B , give Dirac bundles in the usual sense as in [Bun], Definition 3.1,
namely:

(1) The vertical metric induces the Riemannian structure on Eb .

(2) The Clifford multiplication turns V jEb
into a Clifford module ( see [BGV04],

Definition 3.32) which is graded if dim.Eb/ is even.

(3) The restriction of the connectionrV toEb is a Clifford connection (see [BGV04],
Definition 3.39).

Since � is representable and a locally trivial fibre bundle its fibres are smooth
manifolds. All stackyness of E is “induced” from B . In particular all fibrewise
structures, but also the notions of a connection rV and a horizontal distribution
T h� , are well defined as explained in Section 2.1.2.

It is also useful to understand a geometric family onB , i.e., a mapB ! GeomFam,
as a collection of geometric families (ET!B/T!B defined for all maps T ! B from
smooth manifolds T together with isomorphisms .f; �/� W ET!B ��!� f �ET 0!B for
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all pairs of a smooth map and a two-morphism

T
f ��

���
��

��
��

�

��

T 0

����
��

��
�

B

which are compatible with compositions.
IfB is a smooth stack, then using an atlasf W A! B we can give a third equivalent

definition of a geometric family. We can form the groupoid A ´ .A �B A � A/

which represents the stack B . The pull-back of the geometric family along f is the
geometric family EA!B in the non-singular setting which in addition carries an action
of the groupoid A. We can define a geometric family over B as an A-equivariant
geometric family over A.

Let ŒM=G� Š B be a presentation and E be a geometric family over B . Then
M �BE !M is the underlying bundle of aG-equivariant geometric familyM �B E

overM . Vice versa, aG-equivariant geometric family F overM induces a geometric
family E ´ ŒF =G� overB . IfF !M is the underlyingG-equivariant bundle, then
the underlying bundle of E is the map of quotient stacks ŒF=G�! ŒM=G� Š B .

A geometric family is called even or odd if T v� is even-dimensional or odd-
dimensional, respectively.

2.2.4. Let E be an even geometric family over a presentable compact orbifold B . It
gives rise to a bundle of graded separable Hilbert spacesH1 ! B with fibreH1;b Š
L2.Eb; V jEb

/. We furthermore have an associated family of Dirac operators which

gives rise to a section F1´ DC.D2C 1/� 1
2 2 Fred.HC

1 ;H
�
1 /. LetH ! B be the

universal Hilbert space bundle as in 2.1.12. We choose isomorphismsH1̇ ˚H Š H .
Extending F by the identity we get a section F 2 �.B;Fred.H//. By definition, its
homotopy class represents the index

index.E/ 2 K0.B/

of the geometric family.
Alternatively we can use a presentation ŒM=G� Š B . Then M �B E is a G-

equivariant geometric family overM . The index of the associated equivariant family
of Dirac operators index.M �N E/ 2 K0G.M/ represents index.E/ 2 K0.B/ under
the isomorphism K0.B/ Š K0G.M/.

The index of an odd geometric family can be understood in a similar manner.
As an illustration let us consider the case where B D BG D Œ�=G� for a finite

group G. In this case a geometric family E over B is the same as a G-equivariant
geometric family E�!B over �. The universal Hilbert bundle is given by a universal
separable Hilbert representation Huniv of G which contains each representation with
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infinite multiplicity. We write

Huniv Š L
�2 yG

H.�/˝ V�;

where H.�/ is the space of multiplicities of the irreducible unitary representation
� 2 yG on V�. The space �.B;Fred.H// then is identified with the space of G-
invariant Fredholm operators on Huniv which decomposes into a product

�.B;Fred.H// Š Q
�2 yG

Fred.H.�//; F D Q
�2 yG

F�:

It follows that
K0.B/ Š Q

�2 yG
Z Š R.G/;

and the index of F is given by
Q
�2 yG index.F�/. Hence, the index of the geometric

family E is exactly theG-equivariant index of the Dirac operator associated to E�!B

which takes values in the representation ring R.G/ of G.

2.2.5. Here is a simple example of a geometric family V with zero-dimensional fibres.
Let � W V ! B be a complex Z=2Z-graded vector bundle. Note that the projection
of a vector bundle � is by definition representable so that the fibres Vb for b 2 B are
complex vector spaces.

Assume that V comes with an hermitian metric hV and an hermitian connection
rV which are compatible with the Z=2Z-grading. The geometric bundle .V; hV ;rV /
will usually be denoted by V .

Using a presentation of B it is easy to construct a metric and a connection on
a given vector bundle V ! B . Indeed, let ŒM=G� Š B be a presentation. Then
M �B V ! V is a G-equivariant vector bundle over M . We now can choose some
metric or connection (by glueing local choices using a partition of unity). Then we
can average these choices in order to get G-equivariant structures. These induce
corresponding structures on the quotient V Š ŒM �B V=G�.

Alternatively one could use an orbifold atlas A ! B and choose a metric or
connection on the bundle A �B V ! V . Again we can average these objects with
respect to the action of the groupoidA�BA � A in order to get equivariant geometric
structures. These induce corresponding structures on V ! B .

The underlying bundle of V is the submersion � ´ idB W B ! B . In this case
the vertical bundle is the zero-dimensional bundle which has a canonical vertical
Riemannian metric gT

v� ´ 0. Let us describe the horizontal distribution of V . For
every map A! B from a manifold A the underlying bundle of VA!B is the bundle
idA W A! A. The horizontal distribution T v� specializes to TA! A.

Furthermore, there is a canonical orientation of � . The geometric bundle V can
naturally be interpreted as a family of Dirac bundles on B ! B . In this way V gives
rise to a geometric family V over B .
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This construction shows that we can realize every class inK0.B/ for a presentable
orbifoldB as the index of a geometric family. We choose a presentationB Š ŒM=G�
so that K0.B/ Š K0G.M/. If x 2 K0.B/, then there exists a G-equivariant Z=2Z-
graded vector bundle W ! M which represents the image of x in K0G.M/. Let
V ´ ŒW=G� ! B be the induced vector bundle over B and V be the associated
geometric family. Then we have index.V/ D x.

2.2.6. In order to define a representative of the negative of the differential K-theory
class represented by a cycle .E; �/ we introduce the notion of the opposite geometric
family.

Definition 2.6. The opposite Eop of a geometric family E is obtained by reversing the
signs of the Clifford multiplication and the grading (in the even case) of the underlying
family of Clifford bundles, and of the orientation of the vertical bundle.

2.2.7. Our differential K-theory groups will be Z=2Z-graded. On the level of cycles
the grading is reflected by the notions of even and odd cycles.

Definition 2.7. A cycle .E; �/ is called even (or odd, resp.) if E is even (or odd,
resp.) and � 2 �odd.LB/=im.d/ (or � 2 �ev.LB/=im.d/, resp.).

2.2.8. Let E and E 0 be two geometric families over B . An isomorphism E ��!� E 0
is a two-isomorphism E ) E 0 between maps of stacks B ! GeomFam. In explicit
terms such a two-isomorphism consists of the data

V

��

F ��

 

��

V 0

��
E

�
���

��
��

��
f ��

�

��

E 0

� 0
����

��
��

�

B

where

(1) .f; �/ is an isomorphism over B ,

(2) .F;  / is a bundle isomorphism over f ,

(3) f preserves the horizontal distribution, the vertical metric, and the orientation.

(4) F preserves the connection, Clifford multiplication, and the grading.

Compared with the non-singular case the new ingredients are the two-isomorphisms
� and  which are parts of the data. Alternatively one could define the notion of an
isomorphism between E and E 0 as a collection of isomorphisms of geometric families
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.ET!B Š E 0
T!B/T!B , which is compatible with pull-backs along maps

T ��

���
��

��
��

��

T 0

����
��

��
�

B

of manifolds over B .

Definition 2.8. Two cycles .E; �/ and .E 0; �0/ are called isomorphic if E and E 0 are
isomorphic and � D �0. We let G�.B/ denote the set of isomorphism classes of
cycles over B of parity � 2 fev; oddg.

2.2.9. Given two geometric families E and E 0 we can form their sum EtB E 0 overB .
The underlying proper submersion with closed fibres of the sum is �t� 0 W EtE 0 !
B . The remaining structures of E tB E 0 are induced in the obvious way.

Definition 2.9. The sum of two cycles .E; �/ and .E 0; �0/ is defined by

.E; �/C .E 0; �0/´ .E tB E 0; �C �0/:

The sum of cycles induces onG�.B/ the structure of a graded abelian semigroup.
The identity element ofG�.B/ is the cycle0´ .;; 0/, where; is the empty geometric
family.

2.3. Relations

2.3.1. In this section we introduce an equivalence relation� onG�.B/. We show that
it is compatible with the semigroup structure so that we get a semigroup G�.B/=�.
We then define the differential K-theory yK�.B/ as the group completion of this
quotient.

In order to define � we first introduce a simpler relation “paired”, which has a
nice local index-theoretic meaning. The relation � will be the equivalence relation
generated by “paired”.

2.3.2. The main ingredients of our definition of “paired” are the notions of a taming
of a geometric family E introduced in [Bun], Definition 4.4, and the 	-form of a
tamed family [Bun], Definition 4.16.

In this paragraph we shortly review the notion of a taming and the construction
of the eta forms. In the present paper we will use 	-forms as a black box with a few
important properties which we explicitly state at the appropriate places below.

If E is a geometric family over B , then we can form a family of Hilbert spaces
H.E/ ! B with fibre Hb ´ L2.Eb; V jEb

/. If E is even, then this family is in
addition Z=2Z-graded.
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A pretaming of E is a smooth sectionQ 2 �.B;B.H.E/// such thatQb 2 B.Hb/
is selfadjoint given by a smooth integral kernel Q 2 C1.E �B E; V � V �/. In the
even case we assume in addition that Qb is odd, i.e., that it anticommutes with the
grading z. The geometric family E gives rise to a family of Dirac operators D.E/,
where D.Eb/ is an unbounded selfadjoint operator on Hb , which is odd in the even
case.

The pretaming is called a taming if D.Eb/CQb is invertible for all b 2 B .
In the above description we followed the philosophy that all notions involved have

a natural meaning ifB is an orbifold. For example, the datum of a (pre)taming of E is
equivalent to a collection of (pre)tamings of the geometric families ET!B (the non-
singular case) for all maps T ! B from smooth manifolds T which is compatible
with pull-backs.

The family of Dirac operators D.E/ has a K-theoretic index which we denoted
in 2.2.4 by

index.E/ 2 K.B/:
If the geometric family E admits a taming, then the associated family of Dirac

operators admits an invertible compact perturbation, and hence index.E/ D 0. In the
non-singular case the converse is also true. Assume that B is a smooth manifold. If
index.E/ D 0 and E is not purely zero-dimensional then E admits a taming. The
argument is as follows. The bundle of Hilbert spaces H.E/ ! B is universal. If
index.E/ D 0 then the section of unbounded Fredholm operators D.E/ admits an
invertible compact perturbation D.E/ C zQ. We can approximate zQ in norm by
pretamings. A sufficiently good approximation of zQ by a pretaming is a taming.

In the orbifold case the situation is more complicated. In general, the bundle
H.E/ ! B is not universal. Therefore we may have to stabilize. It is at this point
that we use the assumption that the orbifold is presentable.

Lemma 2.10. If index.E/ D 0, then there exists a geometric family G (of the same
parity of E) such that E tB G tB G op has a taming.

Proof. We first consider the even case. Let ŒM=G� Š B be a presentation and
F ´ M �B E be the corresponding equivariant geometric family. Let HC be a
universal G-Hilbert space, i.e., a G-Hilbert space isomorphic to l2 ˝ L2.G/. We
consider the Z=2Z-graded space H ´ HC ˚ …HC, where for a Z=2Z-graded
vector space U the symbol …U denotes the same underlying vector space equipped
with the opposite grading. The sum H.F /˚H �M is now a universal equivariant
Hilbert space bundle. Since index.E/ D 0, the extension D.F / ˚ 1 of D.F / to
H.F /˚H �M has an equivariant compact selfadjoint odd invertible perturbation
D.F /˚ 1C zQ.

In the next step we cut down H to a finite-dimensional subspace. Let .PC
n / be a

sequence of invariant projections on HC such that PC
n

n!1����! idHC strongly. These
exist because G is compact and so L2.G/ is a sum of finite dimensional irreducible
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representations. We setPn´ PC
n ˚PC

n onH D HC˚…HC. Using compactness
of M , for sufficiently large n the operator .1˚ Pn/..D.F /˚ 1/C zQ/.1˚ Pn/ is
invertible on im.1˚Pn/. Hence we have found a finite-dimensionalG-representation
V ´ PnH of the form V D V C˚…V C such that the perturbationD.F /˚ 1C yQ
of D.F / ˚ 0 by the equivariant compact odd selfadjoint yQ ´ 1 ˚ Pn C .1 ˚
Pn/ zQ.1 ˚ Pn/ is invertible on H.F / ˚ V �M . Finally we approximate yQ by a
family Q represented by a smooth integral kernel, where we think of V �M as a
bundle over an additional one-point component of the fibers of the new family, see
below.

Denote by VC the equivariant zero-dimensional geometric family based on the
trivial bundleM �V !M . Then we set G ´ ŒVC=G�. The operatorQ constructed
above provides the taming of E tB G tB G op.

In the odd-dimensional case we argue as follows. We again choose a presentation
ŒM=G� Š B and form F ´M �B E as above. In this case we letH ´ HC be an
ungraded universal G-Hilbert space.

Since index.E/ D 0 it follows that the extensionD.F /˚ 1 ofD.F / toH.F /˚
H � M admits an equivariant compact selfadjoint invertible perturbation
D.F /˚1C zQ. We can again find a finite-dimensional projectionPn onH such that
.1 ˚ Pn/.D.F / ˚ 1 C zQ/.1 ˚ Pn/ is still invertible. We get the
invertible operator D.F / ˚ 1 C yQ on H.E/ ˚ V with V ´ PnH � M and
yQ ´ 1 ˚ Pn C .1 ˚ Pn/ zQ.1 ˚ Pn/. We again approximate yQ by an operator
Q with smooth kernel.

We choose an odd geometric family X over a point such that dim ker.D.X// D 1
and form the G-equivariant family Y ´ p�X ˝ V , where p W M ! �. The kernel
of D.Y/ is isomorphic to M � V . Using this identification we can define Q on
H.F /˚ ker.D.Y//. Its extension by zero on H.F /˚H.Y/ D H.F tM Y/ is a
taming of F tM Y.

Let R be the projection onto ker.D.Y//. The operator D.Y/ C R is invertible
so that we can consider R as a taming of Yop. All together, Q ˚ R defines a G-
equivariant taming of F tM Y tM Yop. We now let G ´ ŒY=G� and get a taming
of E tB G tB G op.

Definition 2.11. A geometric family E together with a taming will be denoted by Et
and called a tamed geometric family.

Let Et be a taming of the geometric family E by the family .Qb/b2B .

Definition 2.12. The opposite tamed family E
op
t is given by the taming �Q 2

�.B;B.H.E/// of Eop.

Note that the bundles of Hilbert spacesH.E/! B andH.Eop/! B associated
to E and Eop are canonically isomorphic (up to reversing the grading in the even case)
so that this formula makes sense.
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2.3.3. The local index form�.E/ 2 �.LB/ is a closed differential form canonically
associated to a geometric family. It represents the Chern character of the index of
E . To define and to analyze it, we use superconnections and the other tools of local
index theory. Let At .E/ denote the family of rescaled Bismut superconnections on
H.E/! B . We define H.E/L ! LB as the pull-back

H.E/L ��

��

H.E/

��
LB �� B .

Let At .E/L denote the pull-back of the superconnection. As explained in 2.1.8 the
bundle H.E/L comes with a canonical automorphism �H.E/L . For t > 0 the form

�.E/t ´ ' Trs �H.E/Le�A2
t .E/L 2 �R.LB/

is closed and real by the argument given in 2.1.11. Here ' is a normalization operator.
It acts on �.LB/ and is defined by

' ´
´
. 1
2�i
/deg=2; even case;

�1p
�
. 1
2�i
/

deg �1
2 ; odd case:

All the analysis here is fibrewise and the fibres are smooth. The theory developed
e.g. in the book [BGV04] applies without changes. The stackyness ofB orLB is only
reflected by additional invariance properties. The technical way to translate to the
classical situation is again to work with the compatible collection of superconnections
.At .ET!LB/L/T!LB for all maps T ! LB from smooth manifolds. The theory
of [BGV04] applies to the specializations At .ET!B/L immediately. For example,
the collection of forms .�.ET!LB/t /T!LB is compatible and therefore defines an
element �.E/t of �.LE/ D lim.T!LB/�.T /. A similar reasoning is applied in
order to interpret the arguments below.

The methods of local index theory show that �.E/t has a limit as t !1.

Definition 2.13. We define the local index form �.E/ 2 �R.LB/ of the geometric
family E over B as the limit

�.E/´ lim
t!0

�.E/t :

We have the following special case of Theorem 2.25, which also covers families
of manifolds with boundary.

Theorem 2.14. chdR.index.E// D Œ�.E/� 2 HdR;deloc.B/.
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In the following we give a differential geometric description of �.E/. The au-
tomorphism �H.E/L comes from the canonical automorphism �E of the pull-back
EL ´ LB �B E . The usual finite propagation speed estimates show that as t tends
to zero the supertrace Trs �H.E/Le�A2

t .E/L localizes at the fixed points of �E .
Let � W E ! B be the underlying fibre bundle of E , and let V ! E be the Dirac

bundle. If we apply the loops functor to the projection � we get a diagram

LE

L�

��

�� E

�

��
LB

��

�� B .

The fibre bundle LE ! LB is exactly the bundle of fixed points of �E . Therefore
the local index form is given as an integral

�.E/ D
Z
LE=LB

I.E/

for some I.E/ 2 �R.LE/. Let U ! LE be a tubular neighbourhood of the local
embedding i W LE ! E.

We let VL ´ LE �E V ! LE be the pull-back of V ! E. Similarly, we let
T v�L ! LE be the pull-back of the vertical bundle T v� ! E. Both bundles come
with canonical automorphisms (see 2.1.8)

�T v�L
W T v�L ! T v�L ; �VL

W VL ! VL:

The automorphism �T v�L
preserves the orthogonal decomposition

T v�L Š T vL� ˚N;
where T vL� D ker.dL�/ D ker.1 � �T v�L

/. We let �N denote the restriction of
�T v�L

to the normal bundle.
Then we have (see [BGV04], Section 6.4, for similar arguments)

lim
t!0

Trs �H.E/Le�A2
t .E/L D lim

t!0

Z
LE=LB

Z
U=LE

trs �VL
K

e�A2
t .E/

..x; �Nn/; .x; n//;

where trs the local supertrace of the integral kernel K
e�A2

t .E/
..x; n/; .x0; n0// of

e�A2
t .E/L , x 2 LE, and n 2 Ux . The form I.E/ is thus given by

I.E/.x/ D lim
t!0

Z
U=LE

trs �VL
K

e�A2
t .E/

..x; �Nn/; .x; n//:

The explicit form of the local index density will not be needed in rest of the present
paper. If necessary, it can be derived from the local index formulas forG-equivariant
families [LM00], Definition 1.3 and Theorem 1.1.
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2.3.4. Let Et be a tamed geometric family (see Definition 2.11) overB . The taming is
used to modify the Bismut superconnectionA� .E/ for 
 > 1 in order to make the zero
form degree part invertible. For 
 � 2 we set A� .Et / D A� .E/C 
Q, for 
 2 .0; 1/
we set A� .Et / D A� .E/, and on the interval 
 2 .1; 2/ we interpolate smoothly
between these two. The taming has the effect that the integral kernel of e�A� .Et /

2

vanishes exponentially for 
 !1 in the C1-sense. The 	-form 	.Et / 2 �R.LB/

is defined by

	.Et /´ Q'
Z 1

0

Trs �E@�A� .Et /Le�A� .Et /
2
L d
; (7)

where Q' again acts on �.LB/ and is defined by

Q' D
´
.2�i/�

deg C1
2 ; even case;

�1p
�
.2�i/�deg=2; odd case:

Note that even and odd refer to the dimension of the fibre. The corresponding 	-form
has the opposite parity.

Convergence at 
 !1 is due to the taming. The convergence at 
 ! 0 follows
from the standard equivariant local index theory for the Bismut superconnection. The
same methods imply

d	.Et / D �.E/: (8)

2.3.5. Now we can introduce the relations “paired” and �.

Definition 2.15. We call two cycles .E; �/ and .E 0; �0/ paired if there exists a taming
.E tB E 0op/t such that

� � �0 D 	..E tB E 0op/t /:

We let � denote the equivalence relation generated by the relation “paired”.

Lemma 2.16. The relation “paired” is symmetric and reflexive.

Proof. We can copy the argument of the proof of Lemma 2.11 in [BS09] literally.

Lemma 2.17. The relations “paired” and � are compatible with the semigroup
structure on G�.B/.

Proof. We can copy the argument of the proof of Lemma 2.12 in [BS09] literally.

Lemma 2.18. If .E0; �0/ � .E1; �1/, then there exists a cycle .E 0; �0/ such that
.E0; �0/C .E 0; �0/ is paired with .E1; �1/C .E 0; �0/.
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Proof. We can copy the argument of the proof of Lemma 2.13 in [BS09] literally.

The three proofs above only depend on formal properties of geometric families,
tamings and the associated local index- and 	-forms, which also hold true in the
present case. The same remark applies to the proofs of the first three lemmas in the
next section.

2.4. Differential orbifold K-theory

2.4.1. In this section we define the assignmentB ! yK.B/ from compact presentable
orbifolds to Z=2Z-graded abelian groups. Recall Definition 2.9 of the semigroup
of isomorphism classes of cycles. By Lemma 2.17 we can form the semigroup
G�.B/=�.

Definition 2.19. We define the differential K-theory yK�.B/ of B to be the group
completion of the abelian semigroup G�.B/=�.

If .E; �/ is a cycle, then we let ŒE; �� 2 yK�.B/ denote the corresponding class in
differential K-theory.

We now collect some simple facts which are helpful for computations in yK.B/
on the level of cycles.

Lemma 2.20. We have ŒE; ��C ŒEop;��� D 0.

Proof. We can copy the argument of the proof of Lemma 2.15 in [BS09] literally.

Lemma 2.21. Every element of yK�.B/ can be represented in the form ŒE; ��.

Proof. We can copy the argument of the proof of Lemma 2.16 in [BS09] literally.

Lemma 2.22. If ŒE0; �0� D ŒE1; �1�, then there exists a cycle .E 0; �0/ such that
.E0; �0/C .E 0; �0/ is paired with .E1; �1/C .E 0; �0/.

Proof. We can copy the argument of the proof of Lemma 2.17 in [BS09] literally.

2.4.2. In this paragraph we extend B 7! yK�.B/ to a contravariant functor from
compact orbifolds to Z=2Z-graded groups. Let f W B1 ! B2 be a morphisms of
orbifolds. Then we define

f � W yK�.B2/! yK�.B1/
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by
f �ŒE; ��´ Œf �E; Lf ���;

where f �E D B1�B2
E andLf W LB1 ! LB2 is obtained from f by an application

of the loops functor. For the details of the construction of the pull-back of geometric
families we refer to [BS09], 2.3.2. It is easy to check that the construction is well
defined and additive. At this point we use in particular the relation

	.f �Et / D f �	.Et /:

If g W B0 ! B1 is a second morphisms of compact presentable orbifolds, then we
have the relation

f � B g� D .f B g/� W yK.B2/! yK.B0/:
Note that the morphisms between the orbifolds B1 and B2 form a groupoid. If

two morphisms f; f 0 W B1 ! B2 are two-isomorphic, then we have the equality

f � D f 0� W yK�.B2/! yK�.B1/:

Indeed, a two-isomorphism � W f ) f 0 induces an isomorphism f �E ��!� f 0�E ,
and we have Lf �� D Lf 0��.

2.5. Natural transformations and exact sequences

2.5.1. In this section we introduce the transformationsR; I; a, and we show that they
turn the functor yK into a differential extension of .K; chC/ in the sense of the obvious
generalization of the definition [BS09], Definition 1.1, to the orbifold case.

2.5.2. We first define the natural transformation

I W yK.B/! K.B/

by

I ŒE; ��´ index.E/:

The proof that this is well defined can be copied literally from [BS09], 2.4.2. The
relation index.f �E/ D f � index.E/ shows that I is a natural transformation of
functors from presentable compact orbifolds to Z=2Z-graded abelian groups.

We consider the functor B 7! ��.LB/=im.d/, � 2 fev; oddg as a functor from
orbifolds to Z=2Z-graded abelian groups. We construct a parity-reversing natural
transformation

a W ��.LB/=im.d/! yK�.B/
by

a.�/´ Œ;;���:
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Let��
dD0.LB/ be the group of closed forms of parity � onB . Again we consider

B 7! ��
dD0.LB/ as a functor from orbifolds to Z=2Z-graded abelian groups. We

define a natural transformation

R W yK.B/! �dD0.LB/
by

R.ŒE; ��/ D �.E/ � d�:
The mapR is well defined by the same argument as in [BS09], 2.4.5. It follows from
�.f �E/ D f ��.E/ that R is a natural transformation.

2.5.3. The natural transformations satisfy the following relations:

Lemma 2.23. (1) R B a D d .
(2) chdR BI D Œ : : : � BR.

Proof. The first relation is an immediate consequence of the definition of R and a.
The second relation is the local index Theorem 2.14.

2.5.4. Via the embedding HdR;deloc.B/ D HdR.LB/ � �.LB/=im.d/, the Chern
character chdR W K.B/! HdR;deloc.B/ can be considered as a natural transformation

chdR W K.B/! �.LB/=im.d/:

Proposition 2.24. The following sequence is exact:

K.B/
chdR��! �.LB/=im.d/

a�! yK.B/ I�! K.B/! 0:

Proof. The proof is carried out in the paragraphs 2.5.5 to 2.5.8.

2.5.5. We start with the surjectivity of I W yK.B/ ! K.B/. The main point is the
fact that every element x 2 K.B/ can be realized as the index of a geometric family
over B . Here we use again that the orbifold is presentable. Let ŒM=G� Š B be
a presentation. Given a class in K.B/ let x 2 KG.M/ be the corresponding class
under the isomorphismK.B/ Š KG.M/. It suffices to show that x can be realized as
the index of a G-equivariant geometric family E over M . We first consider the even
case. Then x can be represented by a Z=2Z-graded G-vector bundle V ! M . As
in 2.2.5 we construct a G-equivariant geometric family with zero-dimensional fibre
V !M such that index.V/ D x.

In the odd case we let y 2 K0G.S1 �M; f1g �M/ be the class corresponding to
x under the suspension isomorphism K0G.S

1 �M; f1g �M/ Š K1G.M/. As above
we can find an equivariant geometric family V over S1 �M such that index.V/ 2
K0G.S

1�M/ is the image of y underK0G.S
1�M; f1g�M/! K0G.S

1�M/. Using
the standard metric on S1 and the canonical horizontal bundle TM � T .S1 �M/

for p W S1 �M ! M we can define a G-equivariant geometric family pŠ.V/ over
M such that index.pŠV/ D x.
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2.5.6. Next we show exactness at yK.B/. For � 2 �.LB/=im.d/we have I Ba.�/ D
I.Œ;;���/ D index.;/ D 0, hence OI B a D 0. Consider a class ŒE; �� 2 yK.B/ which
satisfies I.ŒE; ��/ D 0. Using Lemma 2.10 and Lemma 2.20 we can replace E by
E tB . zE tB zEop/ for some geometric family zE without changing the differential
K-theory class such that E admits a taming Et . Therefore, .E; �/ is paired with
.;; � � 	.Et //. It follows that ŒE; �� D a.	.Et / � �/.

2.5.7. In order to prepare the proof of exactness at �.LB/=im.d/ we need some
facts about the classification of tamings of a geometric family E . As in [BS09],
2.4.10, we introduce the notion of boundary taming and will use an index theorem for
boundary tamed families in order to compare tamings. Let F be a geometric family
with boundary E over B and Et be a taming. Then we have a boundary tamed family
Fbt and can consider index.Fbt / 2 K.B/.

Theorem 2.25. InHdR;deloc.B/ we have the following equality:

chdR.index.Fbt // D Œ�.F /C 	.Et /�:

Proof. We first consider the even case. We use that B is presentable so that we have
index.Fbt / D index.V/ for some vector bundle V ! B , where V is the geometric
family associated to V as in 2.2.5. By definition of the Chern character in 2.1.13 we
have chdR.index.Fbt // D chdR.index.V// D Œ�.V/�. The main part of the proof is
to show that Œ�.V/� D Œ�.F /C 	.Et /�. Here we can repeat the argument given in
[Bun], Theorem 4.13. The only modifications are

(1) We consider the pull-backs of F , V , and Et to LB which come with canonical
automorphisms .�F ; �Et

/.

(2) We replace Trs : : : by Trs �F , Trs �V , or Trs �Et
, respectively.

(3) The small time analysis of this trace takes the localization of the heat kernel
at the fibrewise fixed points of the canonical automorphisms into account. To
write out all the details here is of course a lengthy and tedious matter, but all
necessary technical details of the local heat kernel analysis are well documented
in [BGV04]. See also [LM00] for the equivariant situation without boundary.

The odd case is reduced to the even case by suspension as in [Bun], Theorem 4.13.

In view of this theorem we can argue as in [BS09], 2.4.10, that if Et and E 0
t are

two tamings of a geometric family, then the difference of the associated 	-forms is
closed and we have

Œ	.Et / � 	.E 0
t /� 2 chdR.K.B// � HdR;deloc.B/:

We now show exactness at �.LB/=im.d/. Let � 2 �.LB/=im.d/ be such that
a.�/ D Œ;;��� D 0. Then by Lemma 2.22 there exists a cycle . yE; O�/ such that
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. yE; O� � �/ pairs with . yE; O�/. Using Lemma 2.17 we can add a copy yEop and see
that .E; O� � �/ is paired with .;; O�/, where E D yE tB yEop. The taming which
induces this relation will be denoted by E 0

t . We have 	.E 0
t / D ��. Because of the

odd Z=2Z-symmetry the family E admits another taming Et with vanishing 	-form.
Therefore

� D �Œ	.Et /� 2 chdR.K.B//:

2.5.8. It remains to show that for x 2 K.B/ we have a B chdR.x/ D 0. Note that
a B chdR.x/ D Œ;;� chdR.x/�. The proof is accomplished by showing that there
exists a geometric family E D yE tB yEop which admits tamings Et and E 0

t such that
	.E 0

t /� 	.Et / D chdR.x/. More precisely, we will get index..E � I /bt / D x, where
the boundary taming .E � I /bt is induced by Et and E 0

t and then use Theorem 2.25.
To this end we modify the corresponding argument given in [BS09], 2.4.10. To be

specific, let us consider the even case. First of all, using a presentation B Š ŒM=G�,
we will actually consider the equivariant problem. Let H be a universal G-Hilbert
space. Then the G-space GL1.H/ � GL.H/ of invertible operators of the form
1CK with compact K has the homotopy type of the classifying space of K1G . Let
x 2 K1G.M/ be represented by an equivariant map x W M ! GL1.H/. If .Pn/ is an
equivariant strong approximation of the identity of H then, for sufficiently large n,
by compactness of M , the G-map

.1 � Pn/C PnxPn W M ! GL1.H/

is G-homotopic to x. Let V be the equivariant geometric family on M constructed
from the Z=2Z-graded G-vector bundle V ´ im.Pn/ �M . The matrices

Q´
�

0 Pnx
�Pn

PnxPn 0

�
; Q0 ´

�
0 idV

idV 0

�

represent tamings of E ´ VtMVop. We useQ andQ0 at E�f0g and E�f1g in order
to define .E�I /bt . As in [BS09], 2.4.10, we can now show that index..E�I /bt / D x.
Because of the product structure we have �.E � I / D 0, so that by Theorem 2.25
chdR.x/ D 	.E 0

t / � 	.Et /.
The odd case is similar.

2.5.9. We define a real structure yQ on yK.B/ by yQ.ŒE; ��/ ´ ŒE;Q.�/�, where
Q.�/ D I �. N�/ is as in 2.1.11. Since the local index forms and eta forms are real, yQ
is well defined. We define the real subfunctor

yKR.B/´ fx 2 yK.B/ j yQ.x/ D xg:
By restriction we get natural transformations

R W yKR.B/! �R.LB/; a W ��
R.LB/=im.d/! yKR.B/
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such that

K.B/
chdR��! �R.LB/=im.d/

a�! yKR.B/
I�! K.B/! 0 (9)

is exact.

2.6. Calculations for Œ�=G�

2.6.1. Let G be a finite group. We consider the orbifold Œ�=G�. Observe that
K0G.Œ�=G�/ Š K0G.�/ Š R.G/ as rings, where R.G/ denotes the representation
ring of G. Moreover, K1G.Œ�=G�/ Š 0. We have LŒ�=G� D ŒG=G�, where G acts
on itself by conjugation. Therefore

�.LŒ�=G�/ Š CŒG�G Š HdR;deloc.Œ�=G�/

is the ring of conjugation invariant complex valued functions on G. The Chern
character fits into the diagram

K0.Œ�=G�/
Š

��

ch �� H�
dR;deloc.Œ�=G�/

Š
��

R.G/
Tr �� CŒG�G .

Lemma 2.26. We have

yK�.Œ�=G�/ Š
´
R.G/; � D 0;
CŒG�G=R.G/; � D 1:

Proof. We use the exact sequence given by Proposition 2.24.

Note that Tr W R.G/˝Z C! CŒG�G is an isomorphism so that, with T D C=Z,

CŒG�G=R.G/ Š R.G/˝Z T :

It restricts to an isomorphism R.G/R ´ R.G/˝Z R ��!� �R.LŒ�=G�/ � CŒG�G .

Corollary 2.27. We have

yK�
R.Œ�=G�/ Š

´
R.G/; � D 0;
R.G/R=R.G/ Š R.G/˝Z R=Z; � D 1:
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2.7. Calculation for ŒM=G� if G acts trivially

2.7.1. Let G be a finite group and M a compact manifold. We consider the orbifold
ŒM=G� where G acts trivially on M . Then LŒM=G� D ŒM � G=G� where G acts
by conjugation on itself (and trivially on M ). Therefore

�.LŒM=G�/ D �.M �G/G D �.M/˝CŒG�G ;

HdR;deloc.LŒM=G�/ Š HdR.M/˝CŒG�G :

Observe that ŒM=G� D M � Œ�=G�. From the cup product of Section 3.4 we
therefore get a product

R.G/˝ yK.M/ D yK0.Œ�=G�/˝ yK.M/! yK.ŒM=G�/;
compatible along R, I , and chdR with the corresponding maps on forms and on
ordinary K-theory

R.G/˝K.M/! K.ŒM=G�/;

CŒG�G ˝�.M/Š�.Œ�=G�/˝�.M/! �.ŒM=G�/:
(10)

Because the maps in (10) are isomorphisms and R.G/ is a free Z-module the ex-
act sequence (9) shows by the 5-lemma that R.G/ ˝ yK.M/ ! yK.ŒM=G�/ is an
isomorphism as well.

3. Push-forward and [-product

3.1. Equivariant K -orientation

3.1.1. The notion of a Spinc.n/-reduction of an SO.n/-principal bundle extends di-
rectly from the smooth case to the orbifold case using the appropriate notions of
principal bundles in the realm of stacks which we explain in the following. Let G be
a Lie group. Then we can form the quotient stack BG ´ Œ�=G�. By definition (see
2.1.1), the evaluation BG.T / on a test manifold T is the groupoid of G-principal
bundles on T . A G-principal bundle on a stack X is then, by definition, a morphism
p W X ! BG. Its underlying fibre bundle is determined by the right pull-back square
of

T �X P ��

��

P

��

�� �

��
T ��

��

X
p ��

��

BG.

There is an equivalent definition of a G-principal bundle on X as a collection of
G-principal bundles .T �X P ! T /g W T!X for all maps g W T ! X from smooth
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manifolds which is compatible with further pull-backs along maps of manifolds over
X . These bundles are obtained by further pull-backs as indicated by the left square
of the diagram above.

IfH ! G is a homomorphism of Lie groups, then we get a map of quotient stacks
BH ! BG. For a test manifold T 2 Mf it is the functor BH.T /! BG.T / which
maps theH -bundle .P ! T / 2 BH.T / to theG-bundle .P �HG ! T / 2 BG.T /.
By definition, anH -reduction of theG-principal bundlep W X ! BG is a pair .q;  /

X
q �� BH

��
X

 
��

p �� BG

of a morphism of stacks q and a two-morphism filling the above square. Let us spell
out this definition in terms of compatible collections of principal bundles for maps
T ! X from smooth manifolds. TheH -reduction of p is then given by a compatible
collection ofH -principal bundles .Q! T /T!X (this is the datum ofq) together with
a collection of isomorphisms ofG-principal bundles .Q�H G ! T / ��!� .P ! T /

compatible with pull-backs (this is the datum of  ).
For later use let us discuss connections at this point. We can form the stack BGr

of G-principal bundles with connections whose evaluation BGr.T / is the groupoid
of pairs .P ! T;rP / of G-principal bundles P ! T with a connection rP ,
and whose morphisms are connection-preserving isomorphisms of principal bundles.
There is a natural morphism of stacks BGr ! BG which forgets the connection.
For a homomorphism of Lie groups � W H ! G we get a commutative diagram

BHr
Br� ��

��

BGr

��
BH

id
��

B� �� BG,

whereBr� W BrH.T /! BrG.T / is the functor which maps the pair .Q! T;rQ/
to the pair .Q �H G;rQ�HG/, with rQ�HG the connection induced from rQ.

IfX is a stack, then by definition a connection on theG-principal bundlep W X !
BG is a lift

X
pr �� BrG

��
X

		

p �� BG

of p. We will often use the notation r ��� for a connection where the decoration 	 	 	
should indicate its origin.
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Given a diagram

X

pr



qr �� BHr

��

Br� ��

��

BGr

��
X

		

q �� BH
B� ��

��

BG

we say that theH -connection qr reduces to theG-connection pr , or that qr extends
pr .

3.1.2. Let p W W ! B be representable morphism of stacks which is a locally trivial
fibre bundle with n-dimensional fibres. Its vertical bundle T vp is an n-dimensional
real vector bundle. Its frame bundle Fr.T v�/ is a GL.n;R/-principal bundle. Let
GL.n;R/1 � GL.n;R/ be the connected component of the identity. An orientation
of T v� is, by definition, a GL.n;R/1-reduction of Fr.T v�/. A choice of a vertical
metric gT

vp is equivalent to a further SO.n/-reduction of the frame bundle which we
denote by SO.T v�/! W .

A map between smooth manifolds is calledK-oriented if its stable normal bundle
is equipped with a K-theory Thom class. It is a well-known fact [ABS64] that the
choice of a Spinc-structure on the stable normal bundle determines a K-orientation,
and the K-orientability is equivalent to the existence of a Spinc-structure. Note that
isomorphism classes of choices of Spinc-structures on T vp and the stable normal
bundle of p are in bijective correspondence.

In the equivariant or orbifold situation this is more complicated. For the purpose
of the present paper we will work with vertical structures along the morphisms
p W W ! B .

Let p W W ! B be a representable morphism of stacks which is a locally trivial
fibre bundle with n-dimensional fibres.

Definition 3.1. A topological K-orientation of p is a Spinc.n/-reduction of the
SO.n/-principal bundle SO.T vp/! W .

In general, the stack W may decompose as a sum of substacks W D F
˛W˛

such that the restriction p˛ W W˛ ! B of p is a bundle with fibre dimension n˛ . A
topologicalK-orientation ofp in this case is a collection of topologicalK-orientations
for the componentsp˛ W W˛ ! B . The same idea will be applied without mentioning
for other constructions below.

3.1.3. If f W E ! A is a locally trivial fibre bundle in manifolds, then the choice of a
vertical metric gT

vf and a horizontal distribution T hf naturally induce a connection
rT vf on the vertical bundle which restricts to the Levi-Civita connection on the fibres,
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see [BGV04], Chapter 9. The construction of rT vf is compatible with pull-back
along maps A0 ! A. Hence it extends to the case of locally trivial fibre bundles in
stacks. The natural construction of the connection on T vf can be formulated as a
construction of the upper two squares of the diagram

BrO.n;R/ �� BO.n;R/ �� BGL.n;R/

W

rT vp

��

��

p

��

E.n; gT
v
; T h/ ��

��

�� ��

E.n; gT
v
/ ��

��

����

E.n/

��

��

B
gT vp ;T hp ��

��

p

��BDiff.n; gT
v
; T h/

��

�� BDiff.n; gT
v
/

��

�� BDiff.n/,
��

where BDiff.n/ denotes the stack of locally trivial fibre bundles with n-dimensional
fibres, and the remaining notation is self-explaining.

Let p W W ! B be a representable morphism of stacks which is a locally trivial
fibre bundle with n-dimensional fibres. If we choose a vertical metric gT

vp and
a horizontal distribution T hp, then by the above construction we get a connection
rT vp which restricts to the Levi-Civita connection along the fibres. This is indicated
in the left part of the diagram above.

If p is oriented, then by restriction the connection rT vp can be considered as an
SO.n/-principal bundle connection on the frame bundle SO.T vp/. Given a topo-
logical K-orientation of p, i.e., a Spinc.n/-reduction of SO.T vp/, we can choose a
Spinc-reduction zr of rT vp (see 3.1.1). Observe that, in contrast to the Spin-case, zr
is not unique.

3.1.4. The Spinc-reduction of Fr.T vp/ determines a spinor bundle S c.T vp/, and the
choice of zr turns S c.T vp/ into a family of Dirac bundles. In this way the choices
of the Spinc-structure and the geometric structures .gT

vp; T hp; zr/ turn p W W ! B

into a geometric family W .
We define the closed form

yAc
�.
zr/´ I.W/ 2 �R.LW /I

see Section 2.3.3 for a description of the form I.W/. Its cohomology class will be
denoted by yAc

�.LW / 2 HdR.LW /.

3.1.5. The dependence of the form yAc
�.
zr/on the data is described in terms of the trans-

gression form. Let .gT
vp

i ; T hi p;
zri /, i D 0, 1, be two choices of geometric data. We

can choose geometric data . OgT vp; yT hp; yzr/on Op D idŒ0;1��p W Œ0; 1��W ! Œ0; 1��B
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(with the induced Spinc-structure on T v Op), which restricts to .gT
vp

i ; T hi p;
zri / on

fig � B for i D 0, 1. The class

zyAc
�.
zr1; zr0/´

Z
Œ0;1��LW=LW

yAc
�.
yzr/ 2 �R.LW /=im.d/

is independent of the extension and satisfies

d
zyAc
�.
zr1; Qr0/ D yAc

�.
zr1/ � yAc

�.
zr0/:

Definition 3.2. The form zyAc
�.
zr1; zr0/ is called the transgression form.

Note that we have the identity

zyAc
�.
zr2; zr1/C zyAc

�.
zr1; Qr0/ D zyAc

�.
zr2; Qr0/: (11)

As a consequence we get

zyAc
�.
zr; zr/ D 0 ; zyAc

�.
zr1; zr0/ D � yAc

�.
zr0; zr1/: (12)

3.1.6. We can now introduce the notion of a differential K-orientation of a repre-
sentable map p W W ! B between orbifolds which is a locally trivial fibre bundle.
We fix an underlying topological K-orientation of p (see Definition 3.1) which is
given by a Spinc-reduction of SO.T vp/ after choosing an orientation and a metric
on T vp.

We consider the set O of tuples .gT
vp; T hp; zr; �/ where the first three entries

have the same meaning as above (see 3.1.3), and � 2 �odd.LW /=im.d/. We intro-
duce a relation o0 � o1 on O: Two tuples .gT

vp
i ; T hi p;

zri ; �i /, i D 0, 1, are related

if and only if �1 � �0 D zyAc
�.
zr1; zr0/. We claim that � is an equivalence relation. In

fact, symmetry and reflexivity follow from (12), while transitivity is a consequence
of (11).

Definition 3.3. The set of differentialK-orientations which refines a fixed underlying
topological K-orientation of p W W ! B is the set of equivalence classes O=�.

Now �odd.LW /=im.d/ acts on the set of differential K-orientations. If ˛ 2
�odd.LW /=im.d/ and .gT

vp; T hp; zr; �/ represents a differential K-orientation,
then the translate of this orientation by ˛ is represented by .gT

vp; T hp; zr; � C ˛/.
As a consequence of (11) we get:

Corollary 3.4. The set of differentialK-orientations refining a fixed underlying topo-
logical K-orientation is a torsor over �odd.LW /=im.d/, i.e., the action is free and
transitive.
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If o D .gT
vp; T hp; zr; �/ 2 O represents a differential K-orientation, then we

will write
yAc.o/´ yAc

�.
zr/; �.o/´ �: (13)

3.2. Definition of the push-forward

3.2.1. We consider a representable morphism p W W ! B of orbifolds which is
a proper submersion, or equivalently, a locally trivial fibre bundle with compact
smooth fibres. We fix a topologicalK-orientation for p. Let o D .gT vp; T hp; zr; �/
represent a differential K-orientation which refines the given topological one. To
every geometric family E over W we now associate a geometric family pŠE over B
as follows.

Let � W E ! W denote the underlying fibre bundle of E which comes with the
geometric data gT

v� , T h� and the family of Dirac bundles .V; hV ;rV /. Then the
underlying fibre bundle of pŠE is given by the composition

q´ p B � W E ! B:

In the following, when we talk about horizontal bundles or connections we think
of compatible collections of horizontal bundles or connections for all pull-backs along
maps from smooth manifolds to the respective base as explained in 2.1.2. So in the
technical sense the following natural constructions are applied to all these pull-backs
simultaneously.

The horizontal bundle of � admits a decomposition T h� Š ��T vp ˚ ��T hp,
where the isomorphism is induced by d� . We define T hq � T h� such that
d� W T hq Š ��T hp. Furthermore we have an identification T vq D T v�˚��T vp.
Using this decomposition we define the vertical metric gT

vq ´ gT
v� ˚ ��gT vp .

These structures give a metric connection rT vq which in general differs from the
sum rT v� ˚ ��rT vp μ r˚.

The orientations of T v� and T vp induce an orientation of T vq.
Finally we must construct the Dirac bundle pŠV ! E. Locally on E we can

choose a Spinc-structure on T v� with spinor bundle S c.T v�/ and with a Spinc-
connection zr� which refines the connection rT v� . We define the twisting bundle

Z´ HomCliff.T v�/.S
c.T v�/; V /:

The connections zr� and rV induce a connection rZ .
The local Spinc-structure of T v� together with the Spinc-structure of T vp induce

a Spinc-structure on T vq Š T v�˚��T vp. We get an induced connection zr˚ from
Qr� and QrT vp which refines the direct sum connection r˚. Let

! ´ rT vq � r˚ 2 �.E;ƒ1.T vq/� ˝ End.T vq/a/
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be the difference of the two metric connections, a one form with coefficients in
antisymmetric endomorphisms. We define

zrq ´ zr˚ C 1

2
c.!/:

This is a Spinc-connection onT vqwhich refinesrT vq and has the same central curva-
ture as zr˚. Locally we can define the family of Dirac bundles pŠV ´ S.T vq/˝Z.
One can show that this bundle is well defined independent of the choices of local
Spinc-structure and therefore a globally defined family of Dirac bundles.

Remark 3.5. Note that the notion of locality in the realm of orbifolds is more compli-
cated than it might appear at first glace. To say that we choose a local Spinc-structure
means that we use an orbifold atlasA! B and choose a Spinc-structure after pulling
the family back to A. Thus in particular we do not (and can not) require that it is
equivariant with respect to the local automorphism groupoidA�BA) A. Therefore
our twisting bundle Z is not equivariant, too. On the other hand, the tensor product
S c.T vq/˝Z is completely canonical and thus is equivariant.

Definition 3.6. LetpŠE denote the geometric family given by q W E ! B andpŠV !
E with the geometric structures defined above.

3.2.2. Let p W W ! B be a representable morphism between orbifolds which is a
locally trivial fibre bundle with compact fibres and equipped with a differential K-
orientation represented by o. In 3.2.1 we have constructed for each geometric family
E over W a push-forward pŠE . Now we introduce a parameter a 2 .0;1/ into this
construction.

Definition 3.7. For a 2 .0;1/ we define the geometric family pa
Š
E as in 3.2.1

with the only difference that the metric on T vq D T v� ˚ ��T vp is given by
g
T vq
a D a2gT v� ˚ ��gT vp .

The family of geometric families pa
Š
E is called the adiabatic deformation of pŠE .

There is a natural way to define a geometric family F on .0;1/ � B such that its
restriction to fag � B is pa

Š
E . In fact, we define F ´ .id.0;1/ � p/Š..0;1/ � E/

with the exception that we take the appropriate vertical metric.
Although the vertical metrics of F and pa

Š
E collapse as a! 0 the induced con-

nections and the curvature tensors on the vertical bundle T vq converge and simplify
in this limit. This fact is heavily used in local index theory, and we refer to [BGV04],
Section 10.2, for details. In particular, the integral

z�.a;E/´
Z
.0;a/�LB=LB

�.F /
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converges, and we have (see Definition 2.13 and (13) for notation)

�.paŠ E/
a!0���!

Z
LW=LB

yAc.o/ ^�.E/g;

�.paŠ E/ �
Z
LW=LB

yAc.o/ ^�.E/ D d z�.a;E/:

3.2.3. Let p W W ! B be a representable morphism between presentable compact
orbifolds which is a locally trivial fibre bundle with compact fibres and equipped with
a differential K-orientation represented by o. We now start with the construction of
the push-forward pŠ W yK.W /! yK.B/. For a 2 .0;1/ and a cycle .E; �/ we define

OpaŠ .E; �/´
�
paŠ E;

Z
LW=LB

yAc.o/ ^ �C z�.a;E/

C
Z
LW=LB

�.o/ ^R.ŒE; ��/
	
2 yK.B/:

(14)

Since yAc.o/ and R.ŒE; ��/ are closed forms, the map

�.LW /=im.d/ 3 � 7!
Z
LW=LB

yAc.o/ ^ � 2 �.LB/=im.d/

and the element Z
LW=LB

�.o/ ^R.ŒE; ��/ 2 �.LB/=im.d/

are well defined. It immediately follows from the definition thatpa
Š
W G.W /! yK.B/

is a homomorphism of semigroups (G.W / was introduced in Definition 2.8).

3.2.4. The homomorphism pa
Š
W G.W / ! yK.B/ commutes with pull-back. More

precisely, let f W B 0 ! B be a morphism of presentable compact orbifolds. Then we
define the submersion p0 W W 0 ! B 0 by the two-cartesian diagram

W 0

p0

��

F �� W

p

��
B 0

��

f �� B .

The differential of the morphism F W W 0 ! W induces an isomorphism
dF W T vW 0 ��!� F �T vW . Therefore the metric, the orientation, and the Spinc-
structure of T v� induce by pull-back corresponding structures on T vp0. We have
furthermore an induced horizontal distribution T hp0. Finally we set � 0 ´ LF �� 2
��.LW 0/=im.d/. The representative of a differential K-orientation given by these
structures will be denoted by o0 ´ f �o. An inspection of the definitions shows:
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Lemma 3.8. The pull-back of representatives of differentialK-orientations preserves
equivalence and hence induces a pull-back of differential K-orientations.

Recall from 3.1.4 that the representativeso ando0 of the differentialK-orientations
enhance p and p0 to geometric families W and W 0. We have f �W Š W 0.

Note that we have LF � yAc.o/ D yAc.o0/. If E is a geometric family over W ,
then an inspection of the definitions shows that f �pŠ.E/ Š p0

Š
.F �E/. The following

lemma now follows immediately from the definitions.

Lemma 3.9. We have f � B Opa
Š
D yp0a

Š B F � W G.W /! yK.B 0/.

3.2.5. We now consider the parameter a.

Lemma 3.10. The class Opa
Š
.E; �/ 2 yK.B/ does not depend on a 2 .0;1/.

Proof. The proof can be copied literally from [BS09], Lemma 3.11.

In view of this lemma we can omit the superscript a and write pŠ.E; �/ for
pa
Š
.E; �/.

3.2.6. Let E be a geometric family over W which admits a taming Et . Recall that
the taming is given by a family of smoothing operators .Qw/w2W .

The family of operators along the fibres of pŠE induced by Q is not a taming
of pa

Š
Et since it is not given by a smooth integral kernel but rather by a family of

fibrewise smoothing operators. Nevertheless it can be used in the same way as a
taming in order to define e.g. the 	-forms which we will denote by 	.pa

Š
Et /. To be

precise, we add the term �.ua�1/ua�1Q to the rescaled superconnection Au.paŠ E/,
where � vanishes near zero and is equal to 1 on Œ1;1/. This means that we switch on
Q at time u � a, and we rescale it in the same way as the vertical part of the Dirac
operator. In this situation we will speak of a generalized taming. We can control the
behaviour of 	.pa

Š
Et / in the adiabatic limit a! 0.

Theorem 3.11.

lim
a!0

	.paŠ Et / D
Z
LW=LB

yAc.o/ ^ 	.Et /:

Proof. The proof of this theorem can be obtained by combining standard methods
of equivariant local index theory with the adiabatic techniques developed by the
school of Bismut. Note again, that the analysis here is fibrewise. By pull-back along
morphisms T ! B from smooth manifolds T we reduce to the case of a fibre-bundle
over a smooth manifold.

Since the geometric family pa
Š
E admits a generalized taming it follows that

index.pa
Š
E/ D 0. Hence we can also choose a taming .pa

Š
E/t . The latter choice
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together with the generalized taming induce a generalized boundary taming of the
family paŠ E � Œ0; 1� over B . We have, as in [BS09], Lemma 3.13, the following
assertion.

Lemma 3.12. The difference of 	-forms 	..pa
Š
E/t /�	.paŠ Et / is closed. Its de Rham

cohomology class satisfies

Œ	..paŠ E/t / � 	.paŠ Et /� 2 chdR.K.B//:

3.2.7. We now show thatpŠ W G.W /! yK.B/ passes through the equivalence relation
�. Since pŠ is additive it suffices by Lemma 2.18 to show the following assertion.

Lemma 3.13. If .E; �/ is paired with . zE; Q�/, then OpŠ.E; �/ D OpŠ. zE; Q�/.

Proof. The proof can be copied from [BS09], Lemma 3.14, since it again only uses
formal properties of local index- and 	-forms which hold true in the present case.

3.2.8. We let
OpŠ W yK.W /! yK.B/ (15)

denote the map induced by the construction (14).

Definition 3.14. We define the integration of forms po
Š
W �.LW /! �.LB/ by

poŠ .!/ D
Z
LW=LB

. yAc.o/ � d�.o// ^ !

Since yAc.o/ � d�.o/ is closed we also have a factorization

poŠ W �.LW /=im.d/! �.LB/=im.d/;

denoted by the same symbol.
Our constructions of the homomorphisms

OpŠ W yK.W /! yK.B/ ; poŠ W �.LW /! �.LB/

involve an explicit choice of a representative o D .gT
vp; T hp; zr; �/ of the dif-

ferential K-orientation lifting the given topological K-orientation of p. But both
push-forward maps are actually independent of the choice of the representative.

Lemma 3.15. The homomorphisms OpŠ W yK.W / ! yK.B/ and po
Š
W �.W / ! �.B/

only depend on the differential K-orientation represented by o.

Proof. The proof can be copied literally from [BS09], Lemma 3.17.
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3.2.9. Let p W W ! B be a representable morphism between orbifolds which is a
locally trivial fibre bundle with closed fibres and equipped with a differential K-
orientation represented by o. We now have constructed the homomorphism (15).
In the present paragraph we obtain the compatibility of this construction with the
curvature R W yK ! �dD0 by copying the calculations from [BS09], Lemma 3.16:

Lemma 3.16. For x 2 yK.W / we have

R. OpŠ.x// D poŠ .R.x//:

3.2.10. Let p W W ! B be a representable morphism between orbifolds which is
a locally trivial fibre bundle with closed fibres and equipped with a topological K-
orientation. We choose a differential K-orientation which refines the given topolog-
ical K-orientation. In this case we say that p is differentiably K-oriented.

Definition 3.17. We define the push-forward OpŠ W yK.W / ! yK.B/ to be the map
induced by (14) for some choice of a representative of the differential K-orientation
and a > 0.

We also have well-defined maps

poŠ W �.LW /! �.BL/; poŠ W �.LW /=im.d/! �.LB/=im.d/:

Let us state the result about the compatibility of pŠ with the structure maps of differ-
ential K-theory as follows.

Proposition 3.18. The following diagrams commute:

K.W /
chdR ��

pŠ

��

�.LW /=im.d/ a ��

po
Š

��

yK.W / I ��

OpŠ

��

K.W /

pŠ

��
K.B/

chdR �� �.LB/=im.d/ a �� yK.B/ I �� K.B/,

yK.W /
OpŠ

��

R �� �dD0.W /

po
Š

��yK.B/ R �� �dD0.B/.

(16)

Proof. We can copy the proof of [BS09], Proposition 3.19, literally since it only uses
formal properties of the objects involved which hold true in the present situation.
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3.3. Functoriality

3.3.1. We now discuss the functoriality of the push-forward with respect to iterated
fibre bundles. Let p W W ! B be as before together with a representative of a dif-
ferential K-orientation op D .gT

vp; T hp; zrp; �.op//. Let r W B ! A be another
representable morphism between presentable compact orbifolds which is a locally
trivial fibre bundle with compact fibres. We assume that it is equipped with a topo-
logical K-orientation which is refined by a differential K-orientation represented by
or ´ .gT

vr ; T hr; zrr ; �.or//.
We can consider the geometric family W ´ .W ! B; gT

vp; T hp; S c.T vp//

and apply the construction 3.2.2 in order to define the geometric family ra
Š
.W/ over

A. The underlying submersion of this family is q ´ r B p W W ! A. Its vertical
bundle has a metric gT

vq
a , and is equipped with a horizontal distribution T hq. The

topological Spinc-structures of T vp and T vr induce a topological Spinc-structure on
T vq D T vp ˚ p�T vr . The family of Clifford bundles of rŠW is the spinor bundle
associated to this Spinc-structure.

In order to understand how the connection zraq behaves as a ! 0 we choose
local spin structures on T vp and T vr . Then we write S c.T vp/ Š S.T vp/ ˝ Lp
and S c.T vr/ Š S.T vr/ ˝ Lr for one-dimensional twisting bundles Lp , Lr with
connections. The two local spin structures induce a local spin structure on T vq Š
T vp ˚ p�T vr . We get S c.T vq/ Š S.T vq/ ˝ Lq with Lq ´ Lp ˝ p�Lr . The

connection ra;T vq
q converges as a ! 0. Moreover, the twisting connection on Lq

does not depend on a at all. Since ra;T vq
q and rLq determine zraq (see 3.1.4) we

conclude that the connection zraq converges as a ! 0. We introduce the following
notation for this adiabatic limit:

zradia ´ lim
a!0

zraq :

3.3.2. We keep the situation described in 3.3.1.

Definition 3.19. We define the composite oaq ´ or Ba op of the representatives of
differential K-orientations of p and r by

oaq ´ .gT
vq

a ; T hq; zraq ; �.oaq//;
where

�.oaq/´ �.op/ ^ p� yAc
�.or/C yAc

�.op/ ^ p��.or/

� zyAc
�.
zradia; zraq / � d�.op/ ^ p��.or/:

Lemma 3.20. This composition of representatives of differential yK-orientations pre-
serves the equivalence relation introduced in 3.1.6 and induces a well-defined com-
position of differential K-orientations which is independent of a.
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Proof. The proof is the same as the one of [BS09], Lemma 3.22.

3.3.3. We consider the composition of the K-oriented locally trivial fibre bundles

W

q

	�
p �� B

r �� A

with representatives of differential K-orientations op of p and or of r . We let oq ´
op Bpr be the composition of differentialK-orientations. These choices define push-
forwards OpŠ, OrŠ and OqŠ in differential K-theory.

Theorem 3.21. We have the equality of homomorphisms yK.W /! yK.A/:
OqŠ D OrŠ B OpŠ:

Proof. The proof only depends on the formal properties of transgression forms. It
can be copied from [BS09], Theorem 3.23.

3.3.4. We call a representative o D .gT
vp; T hp; zrp; �.op// of a differential K-

orientation of p W W ! B real if and only if �.op/ 2 �odd
R .LW /=im.d/. Further-

more, we observe that being real is a property of the equivalence class of o. If o is real,
then it immediately follows from (14) that the associated push-forward preserves the
real subfunctors, i.e., that by restriction we get integration homomorphisms

OpŠ W yKR.W /! yKR.W / ; OpoŠ W �R.LW /! �R.LW /:

3.4. The cup product

3.4.1. In this section we define and study the cup product

[W yK.B/˝ yK.B/! yK.B/:
It turns differential K-theory into a functor on compact presentable orbifolds with
values in Z=2Z-graded rings.

3.4.2. Let E and F be geometric families over B . The formula for the product
involves the product E �B F of geometric families over B . The detailed description
of the product is easy to guess, but let us employ the following trick in order to give
an alternative definition.

The underlying proper submersions of E and F give rise to a diagram

E �B F

��

ı �� F

p

��
E �� B .
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Let us for the moment assume that the vertical metric, the horizontal distribution,
and the orientation of p are complemented by a topological Spinc-structure together
with a Spinc-connection zr as in 3.2.1. The Dirac bundle V of F has the form
V Š W ˝ S c.T vp/ for a twisting bundle W with an hermitian metric and unitary
connection (and Z=2Z-grading in the even case), which is uniquely determined up
to isomorphism. Let p�E ˝W denote the geometric family which is obtained from
p�E by twisting its Dirac bundle with ı�W . Then we have

E �B F Š pŠ.p�E ˝W /:
In the description of the product of geometric families we could interchange the

roles of E and F .
If the vertical bundle of E does not have a global Spinc-structure, then it has at

least a local one. In this case the description above again gives a complete description
of the local geometry of E �B F (see the Remark in 3.2.1).

3.4.3. We now proceed to the definition of the product in terms of cycles. In order to
write down the formula we assume that the cycles .E; �/ and .F ; / are homogeneous
of degree e and f , respectively.

Definition 3.22. We define

.E; �/ [ .F ; /´ ŒE �B F ; .�1/e�.E/ ^  C � ^�.F / � .�1/ed� ^ �:
Proposition 3.23. The product iswell defined. It turnsB 7! yK.B/ into a functor from
compact presentable orbifolds to unital graded-commutative rings. By restriction it
induces a ring structure on the real subfunctor yKR.B/.

Proof. The proof can be copied from [BS09], Proposition 4.2, since it only uses
formal properties of the involved objects which extend to hold true in the orbifold
case. That the product preserves the real subspace immediately follows from the
definitions.

3.4.4. In this paragraph we study the compatibility of the cup product in differential
K-theory with the cup product in topological K-theory and the wedge product of
differential forms.

Lemma 3.24. For x; y 2 yK.B/ we have

R.x [ y/ D R.x/ ^R.y/ ; I.x [ y/ D I.x/ [ I.y/:
Furthermore, for ˛ 2 �.LB/=im.d/ we have

a.˛/ [ x D a.˛ ^R.x//:
Proof. Straightforward calculation using the definitions and that index.E �B F / D
index.E/ [ index.F / and �.E �B F / D �.E/ ^�.F /.
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3.4.5. Let p W W ! B be a proper submersion with closed fibres with a differential
K-orientation. In 3.2.7 we defined the push-forward OpŠ W yK.W / ! yK.B/. The
explicit formula in terms of cycles is (14). The following projection formula states
the compatibility of the push-forward with the [-product.

Proposition 3.25. Let x 2 yK.W / and y 2 yK.B/. Then

OpŠ. Op�y [ x/ D y [ OpŠ.x/:

The proof can again be copied from [BS09], Proposition 4.5, for the same reason
as in the case of Proposition 3.23.

3.4.6. We continue the example started in 2.7. Let G be a finite group, M a smooth
compact Spinc-manifold and consider the stack ŒM=G� where G acts trivially on
M . Let Op be a differential K-orientation of the projection p W M ! � and pull
it back to a differential K-orientation OpG of pG W ŒM=G� ! Œ�=G� along the map
� W Œ�=G�! �.

Lemma 3.26. We have a commutative diagram

R.G/˝ yK.M/
Š ��

id˝ OpŠ

��

yK.ŒM=G�/
. OpG/Š

��
R.G/˝ yK.�/ Š �� yK.Œ�=G�/.

(17)

Here we use the identification R.G/˝ yK.M/ Š yK.ŒM=G�/ of Section 2.7. We get
corresponding commutative diagrams for the integration of forms and in topological
K-theory.

Proof. Let �M W ŒM=G�!M be the projection and consider elements x 2 R.G/ Š
yK0.Œ�=G�/ and y 2 yK.M/. Then the corresponding element in yK.ŒM=G�/ is
p�
Gx [ ��

My. Therefore, by the projection formula (Proposition 3.25) and naturality
along pull-backs (Lemma 3.9) we get

. OpG/Š.p�
Gx [ ��

My/ D x [ . OpG/Š.��
My/ D x [ �� OpŠy:

This element corresponds to x˝ OpŠy 2 R.G/˝ yK.�/ under the lower isomorphism
of (17) as desired. The proofs for forms and topological K-theory work the same
way.
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3.5. Localization

3.5.1. In the present section we show that a version of Segal’s localization theorem
[Seg68] holds true for differential K-theory. Let B D ŒM=G� be an orbifold repre-
sented by the action of a finite groupG on a manifoldM . Then we have the projection
� W ŒM=G� ! Œ�=G�. For g 2 G let Œg� D fhgh�1 j h 2 Gg denote the conjugacy
class g. Note that M g is a smooth submanifold of M , and for h; l 2 G we have a
canonical diffeomorphism h W M l ! M h�1lh. We choose, G-equivariantly, tubular
neighbourhoods M h � zM h for all h 2 G, set zM Œg� ´ S

h2Œg� zM h � M , and we

consider the open suborbifoldBg ´ Œ zM Œg�=G� � B . We let i W Bg ! B denote the
inclusion. Note that Bg is considered as an orbifold approximation of the orbispace
Œ
S
h2Œg�M h=G� in the homotopy category of orbispaces.

3.5.2. Note that yK0.Œ�=G�/ Š R.G/, see Lemma 2.26. Therefore yK.B/ and yK.Bg/
becomeR.G/-modules via�� and��

g and the cup-product, where�g W Bg ! Œ�=G�
is the natural map. In this way i� W yK.B/! yK.Bg/ is a map of R.G/-modules.

If we identify, using the character, R.G/ with a subalgebra of the algebra of class
functions on G,

R.G/ � R.G/C Š CŒG�G ;

we see that Œg� gives rise to a prime ideal I.Œg�/ � R.G/ consisting of all class
functions which vanish at Œg�.

3.5.3. For anR.G/-module V we denote by VI.Œg�/ its localization at the ideal I.Œg�/.

Theorem 3.27. The restriction i� W yK.B/ ! yK.Bg/ induces, after localization at
I.Œg�/, an isomorphism

i� W yK.B/I.Œg�/ ! yK.Bg/I.Œg�/:

Proof. We use the following strategy: We will first observe that there is a natural
R.G/-module structure on �.LB/=im.d/ such that the sequence

! K.B/
ch�! �.LB/=im.d/

a�! yK.B/ I�! K.B/!
becomes an exact sequence of R.G/-modules. Then we will prove the analog of the
localization theorem for equivariant forms. Once this is established, we combine it
with Segal’s localization theorem [Seg68] in ordinary K-theory,

i� W K.B/I.Œg�/ ��!� K.Bg/I.Œg�/;

and the result then follows from the Five Lemma.
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3.5.4. Let us start with the R.G/-module structure on �.LB/. The map � W B !
Œ�=G� induces a homomorphism L�� W �.LŒ�=G�/ ! �.LB/. We now use the
identification �.LŒ�=G�/ Š CŒG�G Š R.G/C.

Lemma 3.28. The natural map

Li� W .�.LB/=im.d//I.Œg�/ ! .�.LBg/=im.d//I.Œg�/

is an isomorphism.

Proof. Since localization is an exact functor it commutes with taking quotients.
Therefore it suffices to show that

Li� W ker.d�.LB//I.Œg�/ ! ker.d�.LBŒg�//I.Œg�/;

Li� W �.LB/I.Œg�/ ! �.LB Œg�/I.Œg�/

are isomorphisms. We give the argument for the second case. The argument for the
first isomorphism is similar.

Let CG denote the set of conjugacy classes in G. For Œh� 2 CG we define the
G-manifold M Œh�´F

l2Œh�M l . Then

LB Š F
Œh�2CG

ŒM Œh�=G�

is a decomposition into a disjoint union of orbifolds. Accordingly, we obtain a
decomposition

�.LB/ Š L
Œh�2CG

�.M Œh�/G :

Let now h 2 G and hhi be the subgroup generated by h. If hhi \ Œg� D ;, then
there exists an element x 2 R.G/ with x.g/ 6D 0, i.e., x … I.Œg�/ and xjhhi D
0. As multiplication with x is the zero map on �.M Œh�/G and at the same time
an isomorphism after localization at I.Œg�/, we observe that �.M Œh�/G

I.Œg�/
D 0.

Therefore, we get

�.LB/I.Œg�/ Š
L

Œh�2CG;hhi\Œg�6D;
�.M Œh�/G

I.Œg�/
:

A similar reasoning applies to Bg in place of B:

�.LBg/I.Œg�/ Š
L

Œh�2CG;hhi\Œg�6D;
�.. zM Œg�/Œh�/G

I.Œg�/
:

If hhi \ Œg� 6D ;, then the restriction �.M Œh�/G ! �.. zM Œg�/Œh�/G is an isomor-
phism. In fact, the map . zM Œg�/Œh� !M Œh� is a G-diffeomorphism.

This finishes the proof of the localization theorem.
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4. The intersection pairing

4.1. The intersection pairing as an orbifold concept

4.1.1. We start with the definition of a trace on the complex representation ringR.G/
for a compact group G. Note that the underlying abelian group of R.G/ is the
free Z-module generated by the set yG of equivalence classes of irreducible complex
representations of G. The unit 1 2 R.G/ is represented by the trivial representation
of G on C.

We define
TrG W R.G/! Z; TrG.

P
�2 yG n��/´ n1:

The bilinear form

. 	 ; 	 / W R.G/˝R.G/! Z ; .x; y/ D TrG.xy/;

is non-degenerate. In fact, if � is an irreducible representation of G then

.�; � 0/ D
´
1; � 0 D ��;
0; else;

(18)

where �� denotes the dual representation of � .
The map TrG extends to the complexifications RC.G/´ R.G/˝C, the map

TrG W RC.G/! C

will be denoted by the same symbol.

4.1.2. Let G be a finite group. The Chern character gives an isomorphism,

ch W RC.G/ Š CŒG�G

via P
�2 yG

n�� 7! P
�2 yG

n��� ;

whereG acts by conjugations on itself, and where �� 2 CŒG�G denotes the character
of � . Under this identification,

TrG.f / D 1

jGj
X
g2G

f .g/:

Indeed, if � is a non-trivial irreducible representation, then 1
jGj

P
g2G ��.g/ D 0,

and 1
jGj

P
g2G �1.g/ D 1 by the orthogonality relations for characters.
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4.1.3. Let G be finite. Note that LŒ�=G� D ŒG=G�, where G acts on itself by
conjugation. We have �.ŒG=G�/ Š CŒG�G . We thus define

TrG W �.LŒ�=G�/! C; TrG.f /´ 1

jGj
X
g2G

f .g/:

Observe that for x 2 K.Œ�=G�/ Š R.G/ and f D ch.x/ we have TrG.f / 2 Z.
Therefore we get an induced map

TrG W �.LŒ�=G�/=im.ch/! C=Zμ T : (19)

4.1.4. We continue the example developed in Sections 2.7 and 3.4.6.
Let G be a finite group and M a smooth manifold with trivial G-action. Using

the isomorphism K.ŒM=G�/ Š R.G/˝K.M/ of Section 2.7, we define

TrMG ´ TrG ˝ id W K.ŒM=G�/! K.M/;

and correspondingly for yK.ŒM=G�/, �.LŒM=G�/, U.ŒM=G�/, where U.ŒM=G�/ is
the flat part of differential K-theory studied in Section 4.2.

Lemma 4.1. Assume thatG is a finite group andM a smooth compact manifold with
trivialG-action. Assume that p W M ! � isK-oriented by a Spinc-structure on TM
and pull this orientation back to a K-orientation of pG W ŒM=G�! Œ�=G�. Then

TrG BpGŠ D pŠ B TrMG :

Moreover, TrMG , TrNG is compatible with pull-backs along maps of manifoldsM ! N

and the induced map ŒM=G�! ŒN=G�.

Proof. The first assertion follows immediately from the compatibility of pŠ and pGŠ
of Example 3.4.6, the second is a direct consequence of the definition of TrMG .

4.1.5. LetG be a compact Lie group and consider a compactG-manifoldM with aG-
equivariantK-orientation. In this situation we have a push-forward f G

Š
W KG.M/!

KG.�/ along the projection f W M ! �. Note that Œf =G� W ŒM=G� ! Œ�=G� is a
representable map between orbifolds which is a locally trivial fibre bundle with fibre
M . It carries an induced topological K-orientation, and we have

KG.M/

f G
Š

��

Š �� K.ŒM=G�/

Œf=G�Š
��

KG.�/ Š �� K.Œ�=G�/.
We define the intersection form

. 	 ; 	 / W KG.M/˝KG.M/
[�! KG.M/

f G
Š��! KG.�/ Š R.G/ TrG��! Z: (20)
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4.1.6. In certain special cases this intersection form is compatible with induction.
Let G ,! H be an inclusion of finite groups. Then H �G M has an induced
H -equivariant K-orientation.

Proposition 4.2. If G ,! H is an inclusion of finite groups then the following
diagram commutes:

KG.M/˝KG.M/
.�;�/ ��

indH
G

˝indH
G

��

Z

D
��

KH .H �G M/˝KH .H �G M/
.�;�/ �� Z.

Proof. The cup product and the integration are defined on the level of orbifolds.
Hence they are compatible with induction, i.e.,

KG.M/˝KG.M/
[ ��

indH
G

˝indH
G

��

KG.M/

indH
G

��

f G
Š �� R.G/

indH
G

��
KH .H �G M/˝KH .H �G M/

[ �� KH .H �G M/
fH

Š �� R.H/

commutes. We thus must show that the following diagram commutes

R.G/

indH
G

��

TrG �� Z

R.H/
TrH �� Z.

If � 2 yG, then

indHG .�/ D ŒCŒH �˝ V� �G ;
where we use the right G-action on CŒH � in order to define the invariants. The
H -action is induced by the left action. Since ResGH 1 D 1, by Frobenius reciprocity,

TrH indHG .�/ D TrG V� ;

as TrH .V / counts the multiplicity of 1 in V .

IfG=H is not zero-dimensional, then anH -equivariantK-orientation ofM does
not necessarily induce a G-equivariant K-orientation of G �H M . The problem is
that G=H does not have, in general, an H -equivariant K-orientation.
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4.1.7. Let H � G be a normal subgroup of a finite group which acts freely on a
closed equivariantlyK-orientedG-manifoldN with quotientM ´ N=H . Then the
group K ´ G=H acts on the closed equivariantly K-oriented G-manifold M . We
have a map � W ŒN=G�! ŒM=K� of quotient stacks (see 2.1.1) which maps the pair
.P ! T; � W P ! N/ 2 ŒN=G�.T / to the pair .P=H ! T; x� W P=H ! M/ 2
ŒM=K�.T /, where P=H is the K-principal bundle obtaind as quotient of P by H ,
and x� is the natural factorization of �. It is well known that � is an equivalence
of stacks. In order to see this we show that its evaluation at the smooth manifold
T described above is an equivalence of groupoids. Let us construct an inverse.
Given a pair .Q! T; / 2 ŒM=K�.T / we define the associated G-principal bundle
P ´ Q �M N ! T . It carries the diagonal action by G and comes with the
G-equivariant map y W P ! N given by the projection to the second factor. This
construction defines a functor ŒM=K�.T / ! ŒN=G�.T /. We leave it as an exercise
to see that these functors induce inverse to each other equivalences.

Let f K W M ! � and f G W N ! � denote the corresponding projections to the
point.

If V is a representation of G, then K acts on the subspace invH .V / ´ V H of
H -invariants. We therefore get an induced homomorphism invH W R.G/! R.K/.

Proposition 4.3. The following diagram commutes:

KG.N /
f G

Š �� R.G/
TrG ��

invH

��

Z

KK.M/

��Š
��

fK
Š �� R.K/

TrK �� Z.

Proof. It follows from the relation invG D invK B invH , that the right square com-
mutes. We now show that the left square commutes, too. We give an analytic
argument. Let x 2 KK.M/ be represented by a K-equivariant geometric family
E . Then ��E is a G-equivariant geometric family over N . Then f K

Š
.x/ is repre-

sented by the K-equivariant geometric family f K
Š

E over the point �. The corre-
sponding element in R.K/ is the representation of K on ker.D.f K

Š
E//. Similarly,

f G
Š
.x/ is represented by the representation of G on ker.D.f G

Š
��E//. The projec-

tion f G
Š

E ! f K
Š

E is a regular covering with covering group H , respecting all the
geometric structure. In particular, we have H.f K

Š
E/ D H.f G

Š
��E/H (distinguish

between the Hilbert spaceH.: : : / associated to a geometric family and the groupH )
and ker.D.f K

Š
E// D ker.D.f G

Š
��E//H as representations of K. This implies the

commutativity of the left square.

4.1.8. In the following theorem we show that the intersection pairing is a well-defined
concept at least for orbifolds which admit a presentation as a quotient of a closed
equivariantly K-oriented G-manifold for a finite group G.
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Theorem 4.4. IfB is an orbifold which admits a presentationB Š ŒM=G� for a finite
group G such that ŒM=G�! Œ�=G� is K-oriented, then (20) induces a well-defined
intersection pairing

K.B/˝K.B/! Z:

Proof. We choose a presentation B Š ŒM=G� and define the pairing such that

K.B/˝K.B/
Š

��

.�;�/ �� Z

KG.M/˝KG.M/
.�;�/ �� Z

commutes. We must show that this construction does not depend on the choice of the
presentation. Let B Š ŒM 0=G0� be another presentation.

We use the setup of [PS10] where the 2-category of orbifolds is identified with a
localization of a full subcategory of Lie groupoids, [PS10], Theorem 3.4.

Let G ÌM und G0 ÌM 0 be the action groupoids. Since they represent the same
orbifold B , the isomorphism G ÌM Š G0 ÌM 0 in this localization is represented
by a diagram

K
u

��	
								

v

��










G ÌM G0 ÌM 0,
where K is a Lie groupoid and v und u are essential equivalences. By [PS10],
Proposition 7.1, this diagram is isomorphic (in the category of morphisms) between
G ÌM and G0 ÌM 0 to a diagram of the form

.G �G0/ ÌN
v

�������������
u

�������������

G ÌM G0 ÌM 0,

where now u W N ! M and v W N ! M 0 are equivariant maps over the projections
G �G0 ! G and G �G0 ! G0.

For Nx; Ny 2 K.B/ let x; y 2 KG.M/ and x0; y0 2 KG0.M 0/ be the correspond-
ing elements under K.B/ Š KG.M/ Š KG0.M 0/. We have u�x D v�x0 and
u�y D v�y0. The subgroups G0; G � G � G0 are normal and act freely on N . By
Proposition 4.3 we get

TrG.f
G
Š .x [ y// D TrG�G0.f G�G0

Š .u�x [ u�y//
D TrG�G0.f G�G0

Š .v�x0 [ v�y0//
D TrG0.f G

0

Š .x0 [ y0//;

where f G , f G�G0
and f G

0
are the corresponding projections to the point.
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4.2. The flat part and homotopy theory

4.2.1. If B is a presentable and compact orbifold, then we can consider the flat part

U.B/´ ker.R W yK.B/! �.LB//

of the differential K-theory of B . The functor B 7! U.B/ from compact presentable
orbifolds to Z=2Z-graded abelian groups is homotopy invariant. The main goal of
the present section is to identify this functor in homotopy-theoretic terms. In the
language of [BS10], Definition 5.4, we are going to show that U is topological.

4.2.2. A G-equivariant Spinc-structure on a closed G-manifold M induces a G-
equivariantK-orientation, i.e., aG-equivariant fundamental class ŒM � 2 KGdimM .M/.
For sake of completeness we will explain the local characterization of ŒM � which
makes clear why the usual proof of Poincaré duality extends from the non-equivariant
to the equivariant case. Let us represent K-homology in the equivariant KK-theory
picture (see [Bla98] for an introduction to KK-theory). The G-action on M induces
aG-action on theC �-algebraC.M/ of continuous functions onM , and by definition
we have

KGn .M/´ KKG.C.M/;Cliff.Rn//

where Cliff.Rn/ is the complex Clifford algebra of Rn with the standard Euclidean
inner product and trivialG-action. The equivariant fundamental class ŒM � 2 KGn .M/

of M is represented by the equivariant Kasparov module .L2.M;E/;D/, whereE ´
P �Spinc.n/ Cliff.Rn/ is the G-equivariant Dirac bundle associated to the equivariant
Spinc.n/-principal bundle P ! M determined by the equivariant K-orientation.
Note that the Dirac operator D of E commutes with the action of Cliff.Rn/ from the
right.

Let x 2 M und Gx be its stabilizer group. Then we have a Gx-invariant de-
composition TxM Š Tx.Gx/˚ N , such that Tx.Gx/ is fixed by Gx , and the only
Gx-invariant vector in the normal summand N is the zero vector. A tubular neigh-
bourhood of the orbit Gx can be identified with Ux ´ G �Gx

Vx , where Vx � N is
a disc. The restriction of the fundamental class to Ux gives an element

ŒM �Ux
2 KGn .Ux; @Ux/ Š KGx

n .Vx; @Vx/:

Note thatVx admits aGx-equivariant Spinc-structure. It is uniquely determined by the
equivariant Spinc-structure of M up to a choice of a Gx-equivariant Spinc-structure
on the vector space TŒGx �.G=Gx/. The Spinc-structure gives an equivariant Thom
class and the Thom isomorphism

R.Gx/ Š KGx

0 .�/ ThomŠ KGx
n .Vx; @Vx/

of R.Gx/-modules. The characterizing property of a fundamental class (which is
satisfied by the class of .L2.M;E/;D/) is that ŒM �Ux

is a generator of the R.Gx/-
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module KGx
n .Vx; @Vx/ for every x 2 M . This condition does not depend on the

choice of the Spinc-structure on TŒGx �.G=Gx/.
The equivariant K-theory fundamental class induces a Poincaré duality isomor-

phism

P W K�
G.M/

���\ŒM�����! KGn��.M/:

Using the Poincaré duality isomorphism the intersection pairing of Theorem 4.4) can
be written in the form

KG.M/˝KG.M/
1˝P���! KG.M/˝KG.M/

eval��! R.G/
TrG��! Z:

To see this we use the sequence of equalities

eval.y ˝ P.x// D eval.y ˝ .x \ ŒM �// D eval..x [ y/˝ ŒM �/ D f GŠ .x [ y/;
x; y 2 KG.M/, which relate the Poincaré duality isomorphism P with the push-
forward f G

Š
.

4.2.3. Recall that T ´ C=Z. We define a new G-equivariant cohomology theory
(compare with [BrCo], Section 1) which associates to a G-space M the group

kT
G .M/´ HomAb.K

G.M/;T /:

In fact, since T is a divisible and hence injective abelian group, the long exact
sequences for KG induce long exact sequences for kT

G .
Complex conjugation in T induces a natural involution on kT

G .M/. Its fixed

points will be denoted by kR=Z
G .M/. In other words,

k
R=Z
G .M/´ HomAb.K

G.M/;R=Z/ � HomAb.K
G.M/;T /:

In the terminology of [BrCo], Section 1, this is the Pontrjagin dual of KG .
If M is equivariantly K-oriented, then we have natural pairings

KG.M/˝ kT
G .M/

ev�! T ; KG.M/˝ kR=Z
G .M/

ev�! R=Z (21)

given by

x ˝ � 7! �.P.x//:

Since P is an isomorphism, by Pontryagin duality this pairing is non-degenerate in
the sense that it induces a monomorphism

KG.M/ ,! HomAb.k
T
G .M/;T /

and isomorphisms

kT
G .M/ Š HomAb.KG.M/;T /; KG.M/ Š HomAb.k

R=Z
G .M/;R=Z/:

For the latter, we use only continuous homomorphisms and the usual topology on
k

R=Z
G .M/ as a dual of a discrete group.



1080 U. Bunke and T. Schick

4.2.4. We now define cohomology theoriesKC
G (the complexification ofKG-theory)

and KT
G which fit into a natural Bockstein sequence

	 	 	 ! KiG.M/! K
C;i
G .M/! K

T ;i
G .M/! KiC1G .M/! 	 	 	 : (22)

For this we work in the stable G-equivariant homotopy category whose objects are
called naive G-spectra (see [May] for reference).

It is known by Brown’s representability theorem thatG-equivariant (co)homology
theories (on finiteG-CW-complexes) and transformations between them can be repre-
sented byG-spectra and maps between them. In certain cases (e.g. forKC

G orKT
G ) we

want to know that these spectra are determined uniquely up to unique isomorphism.
Similarly, we want to know that certain maps between these G-spectra are uniquely
determined by the induced transformation of equivariant homology theories.

The abelian group of morphisms between G-spectra X , Y will be denoted by
ŒX; Y �. A G-spectrum will be called cell-even if it can be written as a homotopy
colimit over even G-cells. We will repeatedly use the following fact.

Lemma 4.5. LetX; Y beG-spectra such thatX is cell-even and the odd-dimensional
homotopy groups of Y vanish. If f W X ! Y induces the zero map in homotopy
groups, then f D 0.
Proof. We write X as a homotopy colimit of even G-cells X Š hocolimi2I Zi and
consider the Milnor sequence

0! lim1

i2I Œ†
�1Zi ; Y �! ŒX; Y �! lim

i2I ŒZi ; Y �! 0:

Since f induces the zero map in homotopy groups it comes from the lim1-term.
Since the odd-dimensional homotopy groups of Y vanish we have Œ†�1Zi ; Y � D 0

for all i 2 I so that the lim1-term vanishes. It follows that f D 0.

We will represent a G-equivariant cohomology theory hG by a G-spectrum hG .
We start with the G-ring spectrum KG which represents G-equivariant K-theory.
It is cell-even, as it can be built using copies of BU and has only even-dimensional
homotopy groups. By Lemma 4.5 it is uniquely determined up to unique isomorphism
in the homotopy category we’re working in. Since RC.G/ ´ R.G/ ˝ C is a flat
R.G/-module we get a new KG-module homology theory

KGC .M/´ KG.M/˝R.G/ RC.G/ Š KG.M/˝Z C:

This G-equivariant homology theory can be represented by the G-spectrum KGC D
KG^MC. Here MC is the Moore spectrum for C. In general, a Moore spectrum MA
for an abelian groupA can be written as a colimit over a system of (zero-dimensional)
cells. Therefore KGC is again cell-even and has only even-dimensional homotopy

groups. The homology theoryKGC thus determines theKG-moduleG-spectrumKGC
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uniquely upto unique isomorphism. The transformation KG ! KGC of homology
theories induces a morphism ofKG-module G-spectraKG ! KGC which is unique,
again by Lemma 4.5. We choose an extension of this morphism to a distinguished
triangle

KG ! KGC ! KGT ! †KG (23)

which defines theKG-module G-spectrumKGT uniquely upto isomorphism. In fact,

we can writeKGT Š KG ^MT so thatKGT is again cell-even. Since it has only even-

dimensional homotopy groups, the KG-module G-spectrum KGT is actually defined
upto unique isomorphism.

We letKT
G denote the cohomology theory represented byKGT . It is aKG-module

theory. For trivial G-spaces, the construction and properties of Section 2.7, Sec-
tion 3.4.6 and Section 4.1.4 work also for KT

G .
In a similar manner, if we set KGR .M/´ KG.M/˝ R and consider the distin-

guished triangle
KG ! KGR ! KGR=Z ! †KG ;

then we uniquely define a KG-module cohomology theory KR=Z
G .

4.2.5. The cohomology theory kT
G is good for the non-degenerate pairing (21). On the

other hand, as an immediate consequence of the fibre sequence (23), the cohomology
theory KT

G fits into the Bockstein sequence (22). Since later in the present paper we
need both properties together we must compare the cohomology theories kT

G andKT
G .

In the present paragraph we start with the definition of a transformation i W KT
G ! kT

G .
In Lemma 4.6 we will give conditions under which i induces an isomorphism.

We extend the cohomology theory kT
G to G-spectra X in the natural way by

defining
kT
G .X/´ HomZ.K

G.X/;T /:

The evaluation between homology and cohomology extends to the complexifications

evalC W KC
G .X/˝KG.X/! KC

G .�/ Š RC.G/:

We consider the natural transformation between cohomology theories

c W KC
G .X/! kT

G .X/; K
C
G .X/ 3 x 7! fKG.X/ 3 z 7! ŒTrG.evalC.x˝z//� 2 T g;

where TrG has values in C, and the brackets Œ	 	 	 � denote the class in T D C=Z. The
triangle (23) induces a long exact sequence

	 	 	 ! kT
G .†K

G/! kT
G .K

G
T /

b�! kT
G .K

G
C /

a�! kT
G .K

G/! 	 	 	 :

We let C ´ c.idKG
C
/ 2 kT ;0

G .KGC /. Since the composition

KG.X/! KC
G .X/

c�! kT
G .X/
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vanishes we have a.C / D 0. Hence there exists a lift I 2 kT ;0
G .KGT / such that

b.I / D C . We claim that kT ;0
G .†KG/ D 0. The claim implies that the lift I is

uniquely determined. To see the claim we writeKG as a homotopy colimit over even
G-cells

KG Š hocolim
j2J Zj :

We then have

k
T ;0
G .†KG/ D HomAb.K

G
0 .†K

G/;T /

Š HomAb.K
G
0 .hocolim

j2J †Zj /;T /

Š lim
j2J HomAb.K

G
0 .†Zj /;T /

D 0:
The element I 2 kT ;0

G .KGT / induces the desired natural transformation of coho-

mology theories i W KT
G ! kT

G . In a similar manner we define a transformation

i W KR=Z
G ! k

R=Z
G .

4.2.6. We now analyse when the transformation of cohomology theories i defined in
4.2.5 is an isomorphism. Let H � G be a closed subgroup. Then we have

KG.G=H/ Š KH .�/ Š R.H/; KGC .G=H/ Š KHC .�/ Š RC.H/;

and hence, as the homotopy groups of our spectra are concentrated in even dimensions,

KGT .G=H/ Š RC.H/=R.H/ Š R.H/˝ T :

Furthermore

kT
G .G=H/ Š HomAb.K

G.G=H/;T / Š HomAb.K
H .�/;T / Š HomAb.R.H/;T /:

Let x 2 KC
G .G=H/ Š RC.H/ and Œx� 2 KT

G .G=H/ Š RC.H/=R.H/ be the
induced class. For i W KC

G .G=H/ D RC.H/! kT
G .G=H/ D HomAb.R.H/;T / we

then have
i.x/.y/ D ŒTrG.yx/� D Œ.y; x/� for all y 2 R.H/: (24)

Because of (18) the map i is injective. It is surjective if and only ifR.H/ is a finitely
generated abelian group, i.e., if H is finite.

Lemma 4.6. If G is finite, then the transformations i W KT
G ! kT

G and i W KR=Z
G !

k
R=Z
G are equivalences of cohomology theories on finite G-CW-complexes. If G is

compact and ifM is a compact G-manifold or a compact G-CW-complex on which
G acts with finite stabilizers, then i W KT

G .M/ ! kT
G .M/ and i W KR=Z

G .M/ !
k

R=Z
G .M/ are isomorphisms.
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Proof. We only discuss the complex case. The real case is similar. The first statement
follows from the discussion above since i induces an isomorphism for allG-cells. For
the second observe that a compactG-manifold has the structure of aG-CW-complex.
We then proceed by induction over G-cells which are of the form G=H �Dn with
finite H � G, using Mayer–Vietoris and again that i W KT

G .G=H/ ! kT
G .G=H/ is

an isomorphism for finite subgroups H � G.

Corollary 4.7. IfG is a compact group which acts on aG-equivariantlyK-oriented
closed manifoldM with finite stabilizers, then the pairing

h	 	 	 ; 	 	 	 i W KG.M/˝KT
G .M/

[�! KT
G .M/

fŠ�! R.G/
TrG��! T

is a non-degenerate pairing in the sense that the induced map

KG.M/! HomAb.K
T
G .M/;T /

is a monomorphism, and that

KT
G .M/! HomAb.KG.M/;T / ; K

R=Z
G .M/! HomAb.KG.M/;R=Z/

are isomorphisms.

Proof. Indeed, under the isomorphism i W KT
G .M/ ��!� kT

G .M/ the pairing h	 	 	 ; 	 	 	 i
is identified with the evaluation pairing (21).

4.2.7. Let B be a presentable and compact orbifold.

Definition 4.8. We define the flat K-theory of B (or its real part, respectively) as the
kernel of the curvature morphisms,

U.B/´ ker.R W yK.B/! �.LB//; U R.B/´ ker.R W yKR.B/! �R.LB//:

If B D ŒM=G� for a compact Lie group G acting on a compact manifold with finite
stabilizers, then we will also write

UG.M/´ U.ŒM=G�/ ; U R
G .M/´ U R.ŒM=G�/:

It follows from Proposition 2.24 that, as always for differential cohomology the-
ories, U.B/ fits into a long exact sequence

	 	 	 ! Kn�1.B/! Hn�1
dR .LB/! U n.B/! Kn.B/! Hn

dR.LB/! 	 	 	 :
IfB D ŒM=G� is a presentation, then we use the notationHG.M/´ HdR.LŒM=G�/

and KG.M/ D K.ŒM=G�/. The above long exact sequence now becomes

	 	 	 ! Kn�1
G .M/! Hn�1

G .M/! U nG.M/! KnG.M/! Hn
G.M/! 	 	 	 :
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4.2.8. We want to define maps

j W UG.M/! KT
G .M/; j W U R

G .M/! K
R=Z
G .M/

by constructing the lower horizontal map in the diagrams

KT
G .M/

i

Š ���
�������

UG.M/
jG ��

j
��

kT
G .M/,

K
R=Z
G .M/

i

Š ��	
		

		
		

		

U R
G .M/

jG ��

j
��










k
R=Z
G .M/.

(25)

Their construction involves integration

Z yK

ŒM=G�=Œ�=G�
W UG.M/! UG.�/

of flat classes along the map ŒM=G� ! Œ�=G�. In order to define this integration
we first chose a differential refinement of the topological K-orientation of this map
and then use the integration in differential K-theory given in Definition 3.17. By (16)
the integral preserves the flat subgroup. Moreover, as a consequence of homotopy
invariance, the integral of flat differential K-theory classes does only depend on the
underlying topologicalK-orientation of the map and not on its differential refinement.

In order to stay in the category of orbifolds for Œ�=G� we must assume that G is
a finite group. We set for � 2 KG.M/, u 2 UG.M/

jG.u/.�/´ TrG

� Z yK

ŒM=G�=Œ�=G�
u [ 2P�1.�/

�
2 T : (26)

Here 2P�1.�/ 2 yKG.M/ denotes a differential refinement of the Poincaré dual of
�. Its product with the flat class u is again a flat class which does not depend on the
choice of the differential refinement of P�1.�/. Furthermore note that the integral
has values in U.Œ�=G�/ Š �.LŒ�=G�/=im.ch/ (this group is concentrated in odd
degree). Finally, TrG is the factorization (19) of the trace map.

In the following we indicate by a superscript in which theory the integration is
understood. It is easy to see that jG restricts to the real parts.

Theorem 4.9. Assume that G is a finite group and that M is a G-equivariantly
K-oriented closed G-manifold. Then the maps

j W UG.M/! KT
G .M/; j W U R

G .M/! K
R=Z
G .M/

are isomorphisms.
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Proof. We discuss the complex case. The real case is similar. Since ŒM=G� is a good
orbifold, the Chern character induces an isomorphism (see [BC])

chG W KC
G .M/ ��!� HG.M/:

We consider the following diagram with exact horizontal sequences:

KG.M/
chG �� HG.M/

�a �� UG.M/

j

��

ˇ �� KG.M/
chG �� HG.M/

KG.M/ �� KC
G .M/

ŠchG

��

�� KT
G .M/

ı �� KG.M/ �� KC
G .M/.

chG Š
��

(27)

Lemma 4.10. The diagram commutes.

If we assume this lemma it follows from the Five Lemma that j is an isomorphism.

Note that all terms in (27) are KG.M/-modules and all transformations are
KG.M/-module maps. Moreover, all transformations are compatible with integra-
tion. We will use these facts in the proof of Lemma 4.10 which occupies the rest of
the present section.

The guiding idea of our proof of the most complicated part, the equality ıBj D ˇ,
is the following. Morally, we will show how to realize all relevant classes as push-
forwards of classes on Mn �M along the projection to M , where Mn is the Moore
space for Z=nZ. We will see that the equality ı B j D ˇ for Mn � M implies
the equality for M . Using the compatibility of the maps with integration and cup
products, by integration overM we can reduce to the equality in the non-equivariant
case for Mn. Indeed, the non-equivariant case is already known from [BS09] or
[BS10]. Since Mn is the mapping cone of the self map of degree n of S1 and not a
closed manifold, technically we will use S1 instead.

4.2.9. We now give the details of the proof of Lemma 4.10. It is clear that the first
and the fourth square commute. Next we show that the second square commutes.

We consider a class x 2 KC
G .M/. We must show the equality�jG.a.chG.x/// D

�.x/, where � W KC
G .M/ ! kC

G .M/ ! kT
G .M/ is the natural map (denoted by c

in 4.2.5). To this end we compare the evaluations of both sides at a homology class
� 2 KG.M/. We have

�.x/.�/ D TrG
� Z KG

M
x [ P�1.�/

�
T

D TrG
� Z HG

LŒM=G�=LŒ�=G�
yAc
�.LM/ [ chG.x/ [ chG.P

�1.�//
�

T

D �TrG
� Z yK
ŒM=G�=Œ�=G�

a.chG.x/ [ chG.P
�1.�///

�
T
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D �TrG
� Z yK
ŒM=G�=Œ�=G�

a.chG.x// [ 2P�1.�/
�

T

D �jG.a.chG.x///.�/:

4.2.10. Finally we show that the third square in (27) commutes. The argument is
surprisingly complicated. First of all note that im.ˇ/ D K tors

G .M/ � KG.M/ is the
torsion subgroup. Let t 2 K tors

G .M/. Then there exists an integer n 2 N such that
nt D 0.

Let f W S1 ! S1 be the covering of degree n. We form the mapping cone
sequence

S1
f �� S1 ��

�
���

������� C.f /

Mn,

�
��

(28)

whereMn is a compact manifold with boundary which is homotopy equivalent to the
cone C.f /. It is a smooth model of the Moore space of Z=nZ. Using the long exact
sequences of reduced cohomology and K-theory

zH.S1/ n � zH.S1/ ��

 �� zH.Mn/
ı �; zK.S1/ n � zK.S1/ ��

 �� zK.Mn/
ı �

we get

zH�.Mn/ Š 0 ; H�.Mn/ Š
´

C; � D 0;
0; � � 1;

and

zK�.Mn/ Š
´

Z=nZ; � D 0;
0; � D 1; K�.Mn/ Š

´
Z=nZ˚Z; � D 0;
0; � D 1:

This implies that

U 0.Mn/ Š Z=nZ ; U 1.Mn/ Š T :

In particular, we see that ˇ W U 0.Mn/! K0;tors.Mn/ is an isomorphism.
We now analyse the map �� W U 0.Mn/! U 0.S1/ Š T . We know from [BS09],

Section 2.5.4, and [BS10], Section 7, that the map j W U ! KT induces an iso-
morphism of reduced cohomology theories (i.e., the non-equivariant version of the
Theorem 4.9 holds). Since U is a reduced cohomology theory we have a mapping
cone sequence

U 0.S1/
n � U 0.S1/ ��

 �� U 0.Mn/
ı � U 1.S1/ 1 � U 1.S1/;
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where we use the known actions of f � onU 0.S1/ Š H 1.S1;Z/˝T andU 1.S1/ Š
H 0.S1;Z/˝ T . We get

0 �� U 0.Mn/

Š
��

�� U 0.S1/

Š
��

�� U 0.S1/

Š
��

0 �� Z=nZ �� T
n �� T .

In particular we see that the composition

In´
Z U

S1

B �� B ˇ�1 W Z=nZ Š K0;tors.Mn/! T Š U�1.�/

is the usual embedding Z=nZ ,! T . Note that in the non-equivariant case we have
ı B j D ˇ. Therefore, we also have

In D
Z KT

S1

B �� B ı�1:

The product of the mapping cone sequence (28) with M induces a long exact
sequence

KG.S
1 �M;� �M/

.f �id/� ����� KG.S1 �M;� �M/

.��id/� ����� KG.Mn �M;� �M/
ı1 � KG.S1 �M;� �M/

in equivariant K-theory. Note that KG.Mn �M;� �M/ is a torsion group which is
a summand in

KG.Mn �M/ Š KG.Mn �M;� �M/˚KG.M/: (29)

Further note that

KG.S
1 �M;� �M/˚KG.M/ Š KG.S1 �M/:

We now consider, with t 2 K tors
G .M/ chosen above and orS1 2 K1.S1/ Š Z the

K-orientation of S1,

orS1 � t 2 KG.S1 �M;� �M/:

Since
.f � id/�.orS1 � t / D n 	 orS1 � t D orS1 � nt D 0;

we can choose a class
z 2 KG.Mn �M;� �M/
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such that .� � id/�.z/ D orS1 � t . Since KG.Mn �M;� �M/ is a torsion group,
we can further find an element Oz 2 UG.Mn �M/ such that ˇ. Oz/ D z. Since ˇ is
natural, we have

ˇ B .� � id/�. Oz/ D orS1 � t:
Furthermore, we know that ˇ intertwines

R UG and
R KG . Therefore we have

ˇ B
Z UG

ŒS1�M=G�=ŒM=G�
B .� � id/�. Oz/ D t:

We define

Ot ´
Z UG

ŒS1�M=G�=ŒM=G�
B .� � id/�. Oz/ 2 UG.M/:

Because im.ˇ/ D K tors
G and im.˛/ D ker.ˇ/, if we let t run over all torsion classes

in KG.M/, then the set of corresponding Ot 2 UG.M/ generates UG.M/=im.a/.
Therefore, in order to show that the third square in (27) commutes, it suffices to show
that ˇ.Ot / D ı.j.Ot // for all these classes.

Let us for the moment assume that the degree of t has the opposite parity as
dim.M/. We calculate, using functoriality of integration, the projection formula, and
Section 4.1.4,

TrG B
Z UG

ŒM=G�=Œ�=G�
Ot D TrG B

Z UG

ŒS1�M=G�=Œ�=G�
.� � id/�. Oz/

D TrG B
Z UG

ŒS1=G�=Œ�=G�
B

Z UG

ŒS1�M=G�=ŒS1=G�

.� � id/�. Oz/

D
Z U

S1

B �� B TrG B
Z UG

ŒMn�M�=ŒMn=G�

Oz

D
Z U

S1

B �� B ˇ�1 B TrG Bˇ B
Z UG

ŒMn�M=G�=ŒMn=G�

Oz

D
Z U

S1

B �� B ˇ�1 B TrG B
Z KG

Mn�M=Mn

ˇ. Oz/

D
Z U

S1

B �� B ˇ�1 B TrG B
Z KG

Mn�M=Mn

z

D In
�

TrG B
Z KG

Mn�M=Mn

z

�
:

(30)

We also know that im.ı/ is the torsion subgroup. Therefore we can find Qz 2
KT
G .Mn �M/ such that ı. Qz/ D z, where here ı W KT

G .Mn �M/! KG.Mn �M/

and we consider z 2 KG.Mn �M/ using (29). Since ı is a natural transformation,
we have

ı B .� � id/�. Qz/ D orS1 � t:
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Furthermore, we have

ı B
Z KT

G

S1�M=M
B .� � id/�. Qz/ D t:

We define

Qt ´
Z KT

G

S1�M=M
B .� � id/�. Qz/:

Then we have, using the same rules as above,

TrG B
Z KT

G

M

Qt D TrG B
Z KT

G

S1�M
.� � id/�. Qz/

D TrG B
Z KT

G

S1

B
Z KT

G

S1�M=S1

.� � id/�. Qz/

D
Z KT

S1

B �� B TrG B
Z KT

G

Mn�M=Mn

Qz

D
Z KT

S1

B �� B ı�1 B TrG B ı B
Z KT

G

Mn�M=Mn

Qz

D
Z KT

S1

B �� B ı�1 B TrG B
Z KG

Mn�M=Mn

ı. Qz/

D
Z U

S1

B �� B ı�1 B TrG B
Z KG

Mn�M=Mn

z

D In
�

TrG B
Z KG

Mn�M=Mn

z

�
:

(31)

Let us now go back to consider t of arbitrary parity. We finally show that ı B
j.Ot / D t . Because of the KG.M/-module structure, in the calculation above we
can replace t by t [ pr�

M .P
�1.�// for � 2 KG.M/. Then Ot , Qt and z get replaced

by Ot [ 2P�1.�/, Qt [ P�1.�/ and z [ pr�
M .P

�1.�//. For all � 2 KG.M/ such that
deg.�/C deg.t/ 
 dim.M/C 1 we therefore have

i.j.Ot //.�/ (25)D jG.Ot /.�/
(26)D TrG B

Z UG

ŒM=G�=Œ�=G�
Ot [ 2P�1.�/

(30)D In.TrG B
Z KG

Mn�M=Mn

.z [ pr�
M .P

�1.�////

(31)D TrG B
Z KT

G

M

Qt [ P�1.�/

(24)D i.Qt /.�/:
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Since the pairing kT
G .M/˝KG.M/! T is non-degenerate and i is an isomorphism,

j.Ot / D Qt , and consequently ı B j.Ot / D ı.Qt / D t D ˇ.Ot /. This finishes the proof of
Lemma 4.10.

4.3. Non-degeneracy of the intersection pairing

4.3.1. In this section we introduce the notion of a differential K-orientation of an
orbifold B (Definition 4.13) and construct intersection pairings (Proposition 4.14)

yK.B/˝ yK.B/! T ; yKR.B/˝ yKR.B/! R=Z

for a compact differentiallyK-oriented orbifold B . The main result is Theorem 4.15
which states that the intersection pairing is non-degenerate.

4.3.2. In the following, for a possibly inhomogeneous element x 2 yK.Œ�=G�/, we
let x1 2 yK1.Œ�=G�/ denote the component of degree 1.

As in 4.1.7, we let G be a finite group, H � G be a normal subgroup, and
we define K ´ G=H . We assume that N is a G-manifold such that the action
of H is free, and we define the K-manifold M ´ N=H . In addition we assume
that the locally trivial bundle of orbifolds f G W ŒN=G�! Œ�=G� with fibre N has a
differentialK-orientation. This differentialK-orientation is given by certain data on
ŒN=G� (see 3.1.6) which in view of the equivalence � W ŒN=G� ��!� ŒM=K� induces
the data of an induced differential K-orientation on the locally trivial bundle of
orbifolds f K W ŒM=K� ! Œ�=K� with fibre M . Hence the integration maps Of G

Š

und Of K
Š

are defined.

4.3.3. We define the average

CŒG�G

Š
��

avH
�� C ŒK�K

Š
��

�.LŒ�=G�/ avH
�� �.LŒ�=K�/

over H -orbits by

avH .f /.Hg/´ 1

jH j
X
h2H

f .hg/:

IfV is a complex representation ofGwith character�V , then avH .�V / is the character
of the subspace of H -fixed points V H � V , considered as a representation of K.
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Therefore the left square in

R.G/

invH

��

�� �.LŒ�=G�/
avH

��

�� yK1.Œ�=G�/
avH

��

�� 0

R.K/ �� �.LŒ�=K�/ �� yK1.Œ�=K�/ �� 0

commutes, and this gives the dotted arrow which we also denote by avH .

4.3.4. Recall that by 4.1.7 we have an equivalence� W ŒN=G� ��!� ŒM=K�of orbifolds.

Proposition 4.11. The diagram

yK.ŒM=K�/
. OfK

Š
::: /1

��

Š ��

��

yK1.Œ�=K�/ TrK �� T

yK.ŒN=G�/
. Of G

Š
::: /1

�� yK1.Œ�=G�/
avH

��

TrG �� T

(32)

commutes.

Proof. Since TrK and TrG are given as averages over K and G, and the average in
stages, first over H and then over K, is equal to the average over G, we see that the
right square commutes.

We now show that the left square commutes. Consider Ox D ŒE; �� 2 yK1.ŒM=K�/,
where we actually think of E as aK-equivariant geometric family overM . According
to (14), the class f K

Š
. Ox/ is represented by�

f KŠ E;

Z
LŒM=K�=LŒ�=K�

. yAc.o/ ^ �C �.o/ ^R. Ox//C z�.1;E/
	
:

The pull-back ��E is aG-equivariant geometric family overN . The class f G
Š
.�� Ox/

is represented by�
f GŠ �

�E ;

Z
LŒN=G�=LŒ�=G�

L��. yAc.o/ ^ �C �.o/ ^R. Ox//C z�.1; ��E/

	
:

4.3.5. We first show that the left square of (32) commutes on classes of the form
Œ;; ��, i.e., we show that

.avH B f GŠ B L��/.�/ D f KŠ .�/:
To this end we make the isomorphism L�� W �.LŒM=K�/ Š �.LŒN=G�/ ex-

plicit. First recall that

�.LŒM=K�/ Š Œ L
k2K

�.M k/�K ; �.LŒN=G�/ Š Œ L
g2G

�.N g/�G :
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We write ! 2 �.LŒN=G�/ in the form ! DL
g2G !g with !g 2 �.N g/.

Let
O� W F

g2G
N g ! F

k2K
M k

be the G-equivariant map induced by the projection N !M .
If Hg 2 K fixes an element nH 2 M then n 2 N gh for a suitable h 2 H .

Indeed, ng D nh�1 for suitable h 2 H .
On the other hand, if n 2 N g , then nH 2 MHg . Indeed, nH 	Hg D nghH D

nH . It follows that for nH 2MHg we have

O��1.nH/ D F
h2H

.nH \N gh/:

Assume that n 2 N g and n Qh 2 N g . Then ng D n and n Qhg D n Qh D ng Qh, hence
n Qh D ng Qhg�1. Since g Qhg�1 2 H and H acts freely this implies that Qh 2 Hg . Vice
versa, if Qh 2 Hg then with n 2 N g we have also n Qh 2 N g . We conclude that for
n 2 N g we have nH \N g D nHg , so that

jnH \N g j D
´
jHg j; jHn \N g j 6D 0;
0; else:

Therefore N g !MHg is a jHg j-fold covering. Moreover, if nH 2MHg , then

jH j D jHnj D
X

h2H;jnH\Nghj6D0
jHghj: (33)

We consider g 2 G such thatN g 6D ;. Note that O�.N g/ �M gH is an open and
closed submanifold. If ! 2 �.LŒM=K�/, then

f GŠ .L�
�!/.g/ D

Z
Ng

O��
Hg!Hg D jHg j

Z
O�.Ng/

!Hgj O�.N g/
:

Altogether,

avHf GŠ .L�
�!/.Hg/ D 1

jH j
X
h2H

f GŠ .L�
�!/.gh/

D 1

jH j
X
h2H
jHghj

Z
O�.Ngh/

!Hgj
O�.N gh/

(33)D
Z
MHg

!Hg

D f KŠ .!/.Hg/:
This calculation shows that the left square in (32) commutes on elements of the form
Œ;; ��.
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4.3.6. We now consider a geometric family E over M . Note that z�.E; 1/ D f K
Š
.˛/

for some ˛ 2 �.LŒM=K�/. It follows from the locality of ˛ that z�.��E; 1/ D
f G
Š
.��˛/. Hence avH . z�.��E; 1// D z�.E; 1/.
We continue with classes of the form ŒE; 0�. As K1.Œ�=K�/ D 0, and as we

only consider odd classes, we can choose, after stabilization, a K-invariant taming
.f K
Š

E/t . It lifts to a G-invariant taming .f G
Š
��E/t . Note that

Œf KŠ E; 0� D Œ;;�	..f KŠ E/t /� ; Œf GŠ �
�E; 0� D Œ;;�	..f GŠ ��E/t /�:

Therefore, we must show that

avH .	..f GŠ �
�E/t // D 	..f KŠ E/t /:

To this end we write out the definition (7) of the eta-invariant. We have

	..f GŠ �
�E/t /.g/ D �1

�

Z 1

0

Tr g@tA�e
A2

�d
;

where A� ´ A� ..f
G
Š
��E/t / is the family of rescaled tamed Dirac operators on

the G-Hilbert space H.f G
Š
��E/. The important observation is now that H.f K

Š
E/

can naturally be identified with the subspace ofH -invariantsH.f G
Š
��E/H , and the

restriction of A� to this subspace is A� ..f KŠ E/t /. Note that 1
jH j

P
h2H h acts as the

projection onto the subspace of H -invariants. Therefore

avH .	..f GŠ �
�E/t //.Hg/ D 1

jH j
X
h2H

	..f GŠ �
�E/t /.hg/ D 	..f KŠ E/t /.Hg/:

Altogether we thus have shown that

avH Œf GŠ �
�E; 0� D Œf KŠ E; 0�:

This finishes the proof of Proposition 4.11.

4.3.7. LetB be an orbifold which admits a presentationB Š ŒM=G� for a finite group
G. We further assume that the map ŒM=G�! Œ�=G� is differentiably K-oriented.

Proposition 4.12. If B Š ŒM 0=G0� is another presentation of B with a finite group
G0, then ŒM 0=G0�! Œ�=G0� has an induced differential K-orientation. This corre-
spondence preserves reality of differential K-orientations.

Proof. We use the method and notation of the proof of Theorem 4.4. The differ-
ential K-orientation of ŒM=G� ! Œ�=G� is given by G-invariant data on M , see
3.1.6. It lifts toG �G0-equivariant data onN , and finally induces theG0-equivariant
data on M 0 which gives the induced orientation of ŒM 0=G0� ! Œ�=G0�. This cor-
respondence respects the equivalence relation between representatives of differential
K-orientations and reality.
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In view of Proposition 4.12 we can talk about a differential K-orientation of an
orbifold which admits a presentation ŒM=G� with a finite group G.

Definition 4.13. Assume thatB Š ŒM=G� is an orbifold presented with a finite group
G. A differential K-orientation o of an orbifold B is represented by a differential
K-orientation of the map ŒM=G�! Œ�=G�.

If o0 is a differential K-orientation represented by ŒM 0=G0� ! Œ�=G0�, where
B Š ŒM 0=G0� is a presentation of B for a another finite group G0, then o0 D o

if o0 is equal to the differential K-orientation induced on ŒM 0=G0� ! Œ�=G0� by o
according to Proposition 4.12. The differential K-orientation of B is called real if it
is represented by a real differential K-orientation of ŒM=G�! Œ�=G�.

Note that we only define the concept of a differentialK-orientation of an orbifold
if the latter admits a presentation as a quotient of a closed manifold by a finite group.

Proposition 4.14. We consider an orbifold which admits a presentationB Š ŒM=G�
for a compact manifold M and a finite group G, and which is equipped with a
differential K-orientation (represented by a differential K-orientation of ŒM=G�!
Œ�=G�). The pairing

yK.B/˝ yK.B/ [�! yK.B/ Š yK.ŒM=G�/ TrG B.RŒM=G�=Œ�=G�::: /
1

����������������! T

is well defined independent of the choice of the representative of the differential K-
orientation. If the orientation of B is real, then by restriction we get a well-defined
pairing

yKR.B/˝ yKR.B/! R=Z:

Proof. We again use the technique of the proof of Theorem 4.4. If B Š ŒM=K� and
B Š ŒM 0=K 0� are two presentations, then there is a third presentation B Š ŒN=G�

such that K;K 0 � G are normal subgroups and M Š N=K 0 and M 0 Š N=K. We
now use Proposition 4.11 which gives

TrK f
K
Š .x [ y/ D TrG.f

G
Š .�

�.x [ y/// D TrK0 f K
0

Š .x0 [ y0/;

where x; y 2 yK.ŒM=K�/ and x0; y0 2 yK.ŒM 0=K 0�/ are such that ��x D pr0�x0 and
��y D pr0�y0.

Theorem 4.15. Let B be an orbifold with a differentialK-orientation. The intersec-
tion pairing

yK.B/˝ yK.B/ .�;�/��! T

is non-degenerate. If the orientation of B is real (see 3.3.4), then the restriction

yKR.B/˝ yKR.B/
.�;�/��! R=Z

is non-degenerate.
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Proof. We can apply the argument of the proof of [FMS07], Proposition B6, using
the fact that

UG.M/˝KG.M/
[�! UG.M/

TrGB.RŒM=G�=Œ�=G�::: /
1

���������������! T ;

U R
G .M/˝KG.M/

[�! U R
G .M/

TrGB.RŒM=G�=Œ�=G�::: /
1

���������������! R=Z

are non-degenerate pairings by Theorem 4.9 and Corollary 4.7.

5. Examples

5.1. The differential K-theory class of a mapping torus

5.1.1. Let G be a finite group. We consider a geometric Z=2Z-graded G-bundle
V ´ .V; hV ;rV ; z/ over S1, where we let G act trivially on S1. Let 1 2 S1 be the
base point. The groupG acts on the fibres V1̇ of the homogeneous components of V .
We assume that V C

1 Š V �
1 as representations of G. Let V denote the corresponding

G-equivariant geometric family over S1. Equivalently, we can consider the family
ŒV=G� over ŒS1=G�.

By Proposition 2.24 we have an exact sequence

K1.ŒS1=G�/
ch�! �1.LŒS1=G�/=im.d/

a�! yK0.ŒS1=G�/ I�! K0.ŒS1=G�/! 0:

We identify, as in Section 2.7,

�1.LŒS1=G�/=im.d/ Š R.G/˝�1.S1/=im.d/ Š R.G/˝C

and

.�1.LŒS1=G�/=im.d//= ch.K1.ŒS1=G�// Š R.G/˝ T :

The class ŒV ; 0� 2 yK0.S1/ satisfies I.ŒV ; 0�/ D 0 and hence corresponds to an
element of R.G/˝ T . This element is calculated in the following lemma.

For g 2 G we decompose V ˙ D L
�2U.1/ V ˙./ according to eigenvalues of

the action of g. We set n˙
�
´ dim.V ˙.// and let �˙./ 2 U.n˙

�
/=conj denote the

holonomies of V ˙./ (well defined modulo conjugation in the group U.n˙
�
/).

Lemma 5.1. We have ŒV ; 0� D a.ˆ/, where ˆ 2 �1.LŒS1=G�/=im.d/ Š CŒG�G

is given by

ˆ.g/ D 1

2�i

X
�2U.1/

 log
det.�C.//
det.��.//

:
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Proof. We consider the map q W ŒS1=G�! Œ�=G� with the canonical K-orientation
given by the bounding Spin-structure of S1. By Proposition 3.18 we have a commu-
tative diagram

R.G/˝C
� ��

D
��

�1.LŒS1=G�/=.im.d/C im.ch//

pŠ

��

a �� yK0.ŒS1=G�/
pŠ

��
R.G/˝C

� �� �0.LŒ�=G�/=im.ch/
a �� yK1.Œ�=G�/.

In order to determine ŒV ; 0� it therefore suffices to calculate OqŠ.ŒV ; 0�/. Now observe
that q W S1 ! � is the boundary of p W D2 ! �. Since the underlying topological
K-orientation of q is given by the bounding Spin-structure we can choose a differ-
ential K-orientation of p with product structure which restricts to the differential
K-orientation of q. The bundle V is topologically trivial. Therefore we can find
a geometric G-bundle W D .W; hW ;rW ; z/, again with product structure, on D2

which restricts to V on the boundary. Let W denote the corresponding geometric
family over D2. Later we prove the bordism formula Proposition 5.4. It gives

OqŠ.ŒV ; 0�/ D Œ;; pŠR.ŒW ; 0�/� D �a

 Z

LŒD2=G�=LŒ�=G�
�2.W/

�
:

For g 2 G we have

�2.W/.g/ D 1

2�i
ch2.rW /.g/

D 1

2�i
.ch2.rdet.WC//.g/ � chG2 .rdet.W�//.g//

D �1
2�i

ŒTr gRrW C � Tr gRrW �

�

D �1
2�i

X
�

ŒRrdet W C.�/ �Rrdet W �.�/

�:

The holonomy det.�˙.// 2 U.1/ of det.V ˙.// is equal to the integral of the
curvature of det W ˙./:

log det.�˙/ D
Z
D2

Rrdet.W ˙/

:

It follows that OqŠ.ŒV ; 0�/ D a.ˆ/ with

ˆ.g/ D 1

2�i

X
�2U.1/

 log
det.�C.//
det.��.//

:
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5.1.2. Consider a finite group G and let E be a G-equivariant geometric family over
a point. We consider an additional automorphism � of E which commutes with the
action of G. Then we can form the mapping torus T .E; �/ ´ .R � E/=Z, where
n 2 Z acts on R by x 7! x C n, and by �n on E . The product R � E is a G � Z-
equivariant geometric family over R (the pull-back of E by the projection R ! �).
The geometric structures descend to the quotient by Z and turn the mapping torus
T .E; �/ into a geometric family over ŒS1=G� D Œ.R=Z/=G�, where G acts trivially
on S1. In the present section we study the class

ŒT .E; �/; 0� 2 yK.ŒS1=G�/:
In the following we will assume that the parity of E is even, and that index.E/ D 0.

Let dim W K0.ŒS1=G�/! R.G/ be the dimension homomorphism, which in this
case is an isomorphism. Since dim I.ŒT .E; �/; 0�/ D dim.index.E// D 0 we have
in fact

ŒT .E; �/; 0� 2 im.a/ Š .�1.LŒS1=G�/=im.d//= ch.K1.ŒS1=G�// Š R.G/˝ T ;

as in 5.1.1.
Set V ´ ker.D.E//. This graded G-vector space is preserved by the action of

�. We use the same symbol � in order to denote the induced action on V .
We form the zero-dimensional family V ´ .R�V /=Z over ŒS1=G�. This bundle

is isomorphic to the kernel bundle of T .E; �/. The bundle of Hilbert spaces of the
family T .E; �/ [ŒS1=G� Vop has a canonical subbundle of the form V ˚ Vop. We
choose the taming .T .E; �/ [ŒS1=G� Vop/t which is induced by the isomorphism

�
0 1

1 0

�

on this subbundle. Note that ŒT .E; �/; 0� D ŒV ; 	1..T .E; �/[ŒS1=G� Vop/t /�: Since

.T .E; �/ [ŒS1=G� Vop/t

lifts to a product under the pull-back R ! R=Z, we see that 	1..T .E; �/ [ŒS1=G�

Vop/t / D 0.
It follows that ŒT .E; �/; 0� D ŒV ; 0� 2 R.G/˝T . This class has been calculated

in terms of the action of � on V in Lemma 5.1.

5.2. Bordism

5.2.1. A zero bordism of a geometric family E over an orbifoldB is a geometric family
W over B with boundary such that E D @W . The notion of a geometric family with
boundary was discussed in detail in [Bun], Section 2. Note that the boundary here is
fibrewise so that the stackness of B does not introduce new problems.
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Proposition 5.2. If E admits a zero bordism W , then in yK�.B/ we have the identity

ŒE; 0� D Œ;; �.W/�: (34)

Proof. Since E admits a zero bordism we have index.E/ D 0. In order to see this
choose a presentation B Š ŒM=G�. Then M �B E is a G-equivariant geometric
family which admits a G-equivariant zero bordism M �B W . By the equivariant
bordism invariance of the index it follows that index.M �B E/ 2 KG.M/ vanishes.
This implies that index.E/ D 0 in K.B/.

It follows from Lemma 2.10 that after replacing E by E tB zE tB zEop and W by
W tB .E�I / for a suitable geometric family zE there exists a taming Et . This taming
induces a boundary taming Wbt . The obstruction to an extension of the boundary
taming to a taming of W is index.Wbt / 2 K.B/. Using the method described in 2.5.8
we can adjust the taming Et such that index.Wbt / D 0. Here it might be necessary
to add another family to zE . Then we extend the boundary taming Wbt to a taming
Wt , possibly after a further stabilization, i.e., after adding a family G tB G op with
closed fibres.

We now apply

Theorem 5.3. �.W/ D d	.Wt / � 	.Et /.

To prove Theorem 5.3, we adapt the proof of theorem [Bun], Theorem 4.13, using
the remarks made in the proof of Theorem 2.25. We see that .E; 0/ is paired with
.;; �.W//. This implies (34).

5.2.2. Let p W W ! B be a representable morphism which is a locally trivial fibre
bundle of compact manifolds with boundaries. We let q´ .pj@W / W .V ´ @W /!
B denote the locally trivial bundle of closed manifolds obtained by restriction of
p to the fibrewise boundaries. We assume that p has a topological K-orientation
and a differential K-orientation represented by op which refines the topological K-
orientation. We assume that the geometric data of op have a product structure near
V . In this case we have a restriction oq ´ opjV which represents a differential K-
orientation of q. It is easy to see that this restriction of representatives (with product
structure) preserves equivalence and gives a well-defined restriction of differential
K-orientations. We have the following version of bordism invariance of the push-
forward in differential K-theory.

Proposition 5.4. For y 2 yK.W / we set x´ yjV 2 yK.V /. Then we have

OqŠ.x/ D Œ;; poŠ R.y/�:

Proof. The proof can be literally copied from [BS09], 5.18.
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5.3. The intersection pairing for ŒCP1=.Z=kZ/�

5.3.1. We fix a number k 2 N and consider the finite group� ´ Z=kZ. We further-
more fix a primitive kth root of unity � and let� act on C2 by Œn�.z0; z1/ D .�nz0; z1/.
This induces an action of � on CP1. Let X ´ ŒCP1=�� be the corresponding orb-
ifold.

We cover CP1 by the standard charts U ´ fŒu W 1� j u 2 Cg and V ´ fŒ1 W v� j
v 2 Cg. The transition is given by v D 1

u
. Therefore � acts on U by Œn�u´ �nu,

and on V by Œn�v D ��nv.

5.3.2. We calculate K.X/ Š K	.CP1/ using the Mayer–Vietoris sequence asso-
ciated to the covering U [ V . These spaces are equivariantly homotopy equiva-
lent to points. Therefore we have isomorphisms of rings K	.U / Š K	.V / Š
R.�/ Š ZŒZ=kZ�. The latter is the free Z-module generated by the classes Œl �,
l 2 0; : : : ; k � 1, where Œl � is the representation of Z=kZ on C which sends Œ1� to
�l . Furthermore, we have an equivariant homotopy equivalence U \ V Š C� with
a free �-action. Note that C�=� Š C�. We therefore have

Ki	.C
�/ Š Z; i D 0; 1:

The Mayer–Vietoris sequence reads

K0.X/
ˇ �� R.�/˚R.�/ ˛ ��



��

Z

��
Z

ı

��

0� K1.X/.� 

The map ˛ maps a pair of representations .�; �/ of � to the difference of their
dimensions. In particular, it is surjective. Therefore K1	.X/ Š 0.

The map ımaps the integer 1 2 Z to the class represented by the differenceL�1,
where 1 Š CP1 � C with the trivial action of � on the fibres, and L is the bundle
obtained from U � C and V � C, again with trivial fibrewise action, glued with
.u; z/ 7! .u�1; ukz/. In order to see this, one can use the factorization through the
boundary map of the Mayer–Vietoris sequence for CP1 n f0;1gwith corresponding
decomposition (and for K-theory with compact supports). The main point is that the
action is free here, so that we can pass to the quotient with the projection map, where
everything is known.

We now define a split � as follows. Let l; h 2 Z with corresponding representa-
tions .Œl�; Œh�/ 2 R.�/˚ R.�/. Then ˛.Œl�; Œh�/ D 0. We define equivariant trivial
bundles LU ´ U � C and LV ´ V � C, where the actions on the fibres are
given by Œl � and Œ�h�, respectively. Then we can glue the trivial bundles equivari-
antly using the transition function C� �C 3 .u; z/ 7! .u�1; u�h�lz/. The result is
Ll;h´ �.Œl�; Œh�/.
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Note that, by construction, as equivariant bundles

Ll;h ˝ Ll 0;h0 Š LlCl 0;hCh0 ; L�
l;h Š L�l;�h;

Moreover, the bundle L from above is precisely L Š L0;�k .
Using a basis of ker.˛/ consisting of elements of the form Œl �, Œh� and the resulting

linear split of ˇ and ı we get a decomposition

K0.X/ Š Z˚ ker.˛/:

5.3.3. The manifold CP1 has an equivariant complex structure. It gives an equivari-
ant Spinc-structure and therefore an equivariant K-orientation. In the following we
calculate Z

ŒCP1=	�

W K.X/! R.�/:

The calculation is based on the explicit knowledge of the kernel and cokernel of the
Spinc-Dirac operator twisted by suitable representatives of elements ofK.X/. In fact,
the Spinc-Dirac operator is the Dolbeault operator D. Therefore for a holomorphic
bundle E ! CP1,

ker.DC ˝E/ Š H 0.CP1; E/;

coker.DC/ Š H 1.CP1; E/ Š H 0.CP1; K ˝E�/�;

where K denotes the canonical bundle. Observe that K Š L�1;�1, using that the
constant �1 showing up in the usual transition functions is homotopic to 1 in C�.

We now consider the case E D Ll;h with h; l 2 Z. The holomorphic sections
of Ll;h over U (viewed as functions in the trivialization fixed above) have a basis of
the form u 7! us with s � 0. They are transformed to v 7! v�sClCh on V . These
sections are holomorphic if 0 � s � l C h.

The section us is mapped by the generator of � to �l�sus , i.e., � acts by multi-
plication with �l�s . Consequently, as �-representation we get

H 0.CP1; Ll;h/ Š
lChL
sD0
Œl � s�:

The holomorphic sections on U of K ˝ L�
l;k

are given by usdu with s � 0.

They are transformed to �v�s�2�l�hdv on V . For holomorphy we hence need
0 � s � �l � h � 2.

We see that there is no cancelation between kernels and cokernels. As represen-
tations of � we have, using thatK˝L�

l;h
Š L�l�1;�h�1 and that we have to look at

the dual of the space of holomorphic sections,

H 1.CP1; Ll;h/ Š
�l�h�2L
sD0

Œl C s C 1�:
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5.3.4. For an explicit example, let us take k D 2. A basis of the Z-moduleK0.X/ Š
Z4 is given by

.ei /
4
iD1´ .1 D L0;0; L0;�2; L�1;0; L0;�1/:

The matrix of the intersection pairing

Ai;j ´ .ei ; ej /

is given by 0
BB@
1 0 0 0

0 �1 �1 �1
0 �1 0 �1
0 �1 �1 0

1
CCA ;

which has determinant �1. This illustrates that the pairings

K0.X/C ˝K0.X/ .�;�/ ��

��

C

��
K0.X/C=K

0.X/˝K0.X/ �� T

are non-degenerate. We have isomorphisms

�0.LX/=im.ch/ Š yK1.X/;
U 1.X/ Š H 0.LX/=im.ch/ Š K0.X/C=K0.X/;
U 0.X/ Š 0

and an exact sequence

0! �1.LX/=im.d/! yK0.X/! K0.X/! 0:

The pairing yK.X/ ˝ yK.X/ ! C=Z is non-degenerate, as we already know by
Theorem 4.15. In order to see this explicitly, assume that Ox 2 yK1.X/. If it pairs
trivially with the subgroup �1.LX/=im.d/, then we conclude that Ox 2 U 1.X/ Š
K0.X/C=K

0.X/. The pairing of Ox with yK0.X/ now factors over K0.X/. We can
conclude from the topological result that Ox D 0.

Similarly, if Ox 2 yK0.X/ pairs trivially with yK1.X/, then we conclude that Ox is
given by a closed form of odd degree which is necessarily exact. This again implies
that Ox D 0.

6. Open questions

We list a number of questions left open which would be interesting to clarify. More-
over, at some points we left out more than just a few details where one might wish
for a complete treatment.
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(1) Because we wanted to use our calculus of push-forward of orbifolds, we only
defined the non-degenerate intersection pairing for global quotients by a finite
group action. Indeed, one would not know what should replace K.Œ�=G�/
if, instead of ŒM=G� one considers a general orbifold. However, we expect
that the composition of the push-forward with TrG , which is the object which is
independent of the presentation, can be defined in general, at least for presentable
orbifolds. From this, one should then get the non-degenerate pairing in general.

(2) Non-equivariant differential K-theory satisfies a strong uniqueness property
[BS10] which can be used to automatically identify its many different mod-
els. Because the underlying homotopy theory for equivariant K-theory shares
the basic relevant features, we expect that a similar uniqueness theorem can be
established for orbifold differential K-theory, and probably for other interesting
differential extensions of orbifold cohomology theories, as well. In particular,
this would automatically give an identification of our theory with the one of Ortiz
[Ort]. Alternatively, it would also be intersting to compare the two constructions
directly.

(3) In this paper, we concentrate entirely on compact orbifolds. However, for many
purposes, a compactly supported theory for non-compact orbifolds is convenient
or neccessary. Secondly, a version for pairs is desireable. It should not be too
hard to work out the details and relations of such a theory, but will certainly
require care of some new technical details.

(4) We have used a couple of generalizations of local index theory which are not
trivial and it would be desireable to work out a presentation of the details. In
particular this applies to the details of the proof of Theorem 2.25 and of the
adiabatic limit formula for eta-forms of Theorem 3.11.
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