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Chow motives versus noncommutative motives
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Abstract. In this article we formalize and enhance Kontsevich’s beautiful insight that Chow
motives can be embedded into noncommutative ones after factoring out by the action of the
Tate object. We illustrate the potential of this result by developing three of its manyfold
applications: (1) the notions of Schur and Kimura finiteness admit an adequate extension to
the realm of noncommutative motives; (2) Gillet–Soulé’s motivic measure admits an extension
to the Grothendieck ring of noncommutative motives; (3) certain motivic zeta functions admit
an intrinsic construction inside the category of noncommutative motives.
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1. Introduction

In the early sixties Grothendieck envisioned the existence of a “universal” cohomol-
ogy theory of algebraic varieties. Among several conjectures and developments, a
contravariant functor

M W SmProjop ! ChowQ

from smooth projective varieties (over a base field) towards a certain category of Chow
motives was constructed; see §5.1 for details. Intuitively, ChowQ encodes all the geo-
metric/arithmetic information about smooth projective varieties and acts as a gateway
between algebraic geometry and the assortment of numerous cohomology theories
(de Rham, l-adic, crystalline, and others); for details consult the monograph [26].

During the last two decades Bondal, Drinfeld, Kaledin, Kapranov, Kontsevich,
Van den Bergh, and others, have been promoting a broad noncommutative geometry
program in which geometry is performed directly on triangulated categories and its
differential graded enhancements; see [9], [11], [19], [20], [27], [34], [33], [36], [35].
One of the beauties of this program is its broadness. It encompasses several research
fields such as algebraic geometry, representation theory of quivers, sympletic geome-
try, and even mathematical physics, making it a cornerstone of modern mathematics.
In analogy with the commutative world, a central problem is the development of a
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theory of noncommutative motives. By adapting the classical notions of smoothness
and properness to the noncommutative world, Kontsevich introduced recently a cate-
gory KMM of noncommutative motives; see §6.1 for details. The following question
is therefore of major importance.

Question. How to bridge the gap between Grothendieck’s category of Chow motives
and Kontsevich’s category of noncommutative motives?

This question was settled by Kontsevich in [35], §4.1.3. The purpose of this article
is to formalize and enhance his beautiful insight while illustrating its power through
three applications.

Recall from §5.1 that the category ChowQ is Q-linear, additive and symmetric
monoidal. Moreover, it is endowed with an important ˝-invertible object, the Tate
motive Q.1/. The functor � ˝ Q.1/ is an automorphism of ChowQ and so we can
consider the associated orbit category ChowQ =� ˝ Q.1/; consult §7 for the precise
construction. Informally speaking, Chow motives which differ from a Tate twist
become equal in the orbit category.

In the noncommutative world we have the category Hmo of dg categories up to
derived Morita equivalence and a universal functor U W Hmo ! Mot, with values
in a triangulated category, that preserves filtered homotopy colimits and sends exact
sequences to distinguished triangles; see §6 for details. Recall that a dg category A

is smooth and proper in the sense of Kontsevich if its complexes of morphisms are
perfect and A is perfect as a bimodule over itself. As explained in §6.1, Kontsevich’s
category KMM of noncommutative motives can be identified with the smallest thick
triangulated subcategory of Mot spanned by the objects U.A/, with A a smooth and
proper dg category. By first taking rational coefficients .�/Q and then passing to the
idempotent completion .�/\ we obtain in particular a natural inclusion KMM\

Q �
Mot\

Q; see §6.2–6.3.
The gap between algebraic varieties and dg categories can be bridged by asso-

ciating to every smooth projective variety X its dg category D
dg
perf.X/ of perfect

complexes of OX -modules; see Lunts–Orlov [38] or [16], Example 4.5.

Theorem 1.1 (Kontsevich). There exists a fully faithful, Q-linear, additive, and sym-
metric monoidal functor R making the diagram

SmProjop
D

dg
perf .�/

��

M
��

Hmo

U
��

ChowQ

�
��

Mot
.�/

\
Q��

ChowQ =� ˝ Q.1/
R

�� KMM\
Q � Mot\

Q

(1.2)

commutative up to a natural isomorphism.
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Intuitively speaking, Theorem 1.1 formalizes the conceptual idea that the commu-
tative world can be embedded into the noncommutative world after factoring out by
the action of the Tate object. In the next three sections we will illustrate the potential
of this result by describing some of its manyfold applications.

2. Schur and Kimura finiteness

By construction, the category KMM\
Q is Q-linear, idempotent complete and more-

over symmetric monoidal. Hence, given a partition � of a natural number n, we can
consider the associated Schur functor S� W KMM\

Q ! KMM\
Q which sends a non-

commutative motive N to the direct summand of N ˝n determined by �; see Deligne’s
foundational work [18]. We say that N is Schur finite if it is annihilated by some
Schur functor. When � D .n/, resp. � D .1; : : : ; 1/, the associated Schur functor
Symn ´ S.n/, resp. Altn ´ S.1;:::;1/, should be considered as the motivic analogue
of the usual nth symmetric, resp. wedge, product functor of Q-vector spaces. We say
that N is evenly, resp. oddly, finite dimensional if Altn.N /, resp. Symn.N /, van-
ishes for some n. Finally, N is Kimura finite if it admits a direct sum decomposition
N ' NC ˚ N� into a evenly NC and oddly N� finite dimensional object. Note that
Kimura finiteness implies Schur finiteness.

In the commutative world, the aforementioned general finiteness notions were
extensively studied by André–Kahn, Guletskii, Guletskii–Pedrini, Kimura, Mazza,
and others; see [1], [3], [24], [25], [32], [40]. For instance, Guletskii and Pedrini
proved that given a smooth projective surface X (over a field of characteristic zero)
with pg.X/ D 0, the Chow motive M.X/ is Kimura finite if and only if Bloch’s
conjecture on the Albanese kernel for X holds.

Theorem 1.1 establishes a precise relationship between the finiteness conditions
on the commutative and noncommutative worlds. For simplicity, let us write NC for
the composed functor U.D

dg
perf.�//

\
Q W SmProjop ! KMM\

Q.

Theorem 2.1. Let X be a smooth projective variety.

(i) If M.X/ is Schur finite, resp. Kimura finite, in ChowQ, then NC.X/ is Schur
finite, resp. Kimura finite, in KMM\

Q.

(ii) The converse for Schur finiteness holds, i.e., if NC.X/ is Schur finite in KMM\
Q,

then M.X/ is Schur finite in ChowQ.

Informally speaking, Theorem 2.1 shows that Schur finiteness is a notion which
is insensitive to commutativity. A potential application of this fact is the use of
noncommutative methods in order to prove Schur finiteness for certain Chow motives.
In what concerns Kimura finiteness, recall from [1] that all the Chow motives of the
form M.X/, with X an abelian variety, are Kimura finite. Using Theorem 2.1 and
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the stability of Kimura finiteness under several constructions (see [24], [40]), we then
obtain a large class of examples of Kimura finite noncommutative motives.

3. Motivic measures

Let k be a field and Vark the category of algebraic k-varieties. Recall that the
Grothendieck ringK0Var.k/of algebraick-varieties is the abelian group generated by
the isomorphism classes of objects in Var.k/ modulo the scissor congruence relations
ŒX� D ŒZ� C ŒX n Z�, where Z is a closed subvariety of X . Multiplication is given
by the fiber product over spec.k/. Although very important, the structure of this
ring remains rather mysterious. In order to capture some of its flavor several motivic
measures, i.e., ring homomorphisms � W K0Var.k/ ! A towards commutative rings,
have been built; see [37]. For instance, Gillet–Soulé [22] constructed for any perfect
field k (of arbitrary characteristic) an interesting motivic measure �GS W K0Var.k/ !
K0.ChowQ/ with values in the Grothendieck ring of Chow motives. By definition,
it sends the class ŒX� of a smooth projective variety X to the class ŒM.X/� of the
naturally associated Chow motive M.X/.

Recall that by construction KMM\
Q is a ˝-triangulated category. Hence, we can

consider its Grothendieck ring1 K0.KMM\
Q/ defined in the standard way. Theo-

rem 1.1 enables then the extension of Gillet–Soulé’s motivic measure to the noncom-
mutative world.

Theorem 3.1. Let k be a perfect field (of arbitrary characteristic). Then the assign-
ment X 7! ŒNC.X/� 2 K0.KMM\

Q/, where X is a smooth projective k-variety, gives
rise to a well-defined motivic measure

�NC W K0Var.k/ ! K0.KMM\
Q/:

Remark 3.2. Making use of Bittner–Looijenga’s [7], [37] presentation of K0Var.k/

in the case of a field k of characteristic zero, Bondal–Larsen–Lunts constructed in
[10] a motivic measure �BLL with values in a certain ring �.k/ of pre-triangulated dg
categories. Using arguments similar to those of [44], Prop. 7.3, it can be shown that
in this particular case the motivic measure �NC factors through �BLL via a natural
ring homomorphism

�.k/ ! K0.KMM\
Q/: (3.3)

Intuitively speaking, �NC measures the information concerning algebraic varieties
(modulo the scissor congruence relations) which can be recovered from their derived
categories of perfect complexes.

1A precise relationship between K0.KMM/ (and hence between K0.KMM\

Q/) and Toën’s secondary
K-theory is described in [16], §8.4.



Chow motives versus noncommutative motives 771

Example 3.4. Assume that k D C. Then the assignment

X 7! �c.X/ ´ P
i�0

.�1/i dim H i .X; �X /;

for every smooth projective C-variety X , gives rise to a well-defined Z-valued mo-
tivic measure ��c ; see [2]. Recall from [16], §8.4, that Hochschild homology HH
gives rise to a ˝-triangulated functor KMM ! Dc.C/. Since Dc.C/ is idempo-
tent complete and Q-linear, this functor extends uniquely to a ˝-triangulated functor
HH W KMMQ ! Dc.C/ and so it induces a ring homomorphism

K0.KMM\
Q/ ! K0.Dc.C// D K0.C/ D Z: (3.5)

The natural equalities

ŒHH.NC.X//� D ŒHH.D
dg
perf.X//� D ŒHH.X/� D P

i�0

.�1/i dim H i .X; �X /;

for every smooth projective C-variety X , combined with Bittner–Looijenga’s presen-
tation of K0Var.C/ (see [7], [37]), allow us then to conclude that ��c factors through
�NC via the ring homomorphism (3.5). By combining this factorization with the one
of Remark 3.2 we then obtain the illustrative diagram

K0Var.C/

�BLL

��

�NC

�������������
��c �� Z

�.C/
(3.3)

�� K0.KMM\
Q/.

(3.5)

������������

However, as the following non-example illustrates, the passage from the commu-
tative to the noncommutative world forgets some geometric/arithmetic information.

Non-Example 3.6. Assume that k D Fq , where q D pn with p a prime number
and n a positive integer. Then the assignment X 7! #X.Fq/, for every smooth
projective Fq-variety X , gives rise to a well-defined Z-valued motivic measure �#;
see [2]. In contrast with ��c , this motivic measure does not factor through �NC. Take
for instance X D P1. Beilinson’s [6] semi-orthogonal decomposition of D

dg
perf.P

1/

into two copies of D
dg
perf.Fq/ implies that NC.P1/ D U.Fq/

\
Q ˚ U.Fq/

\
Q. Hence,

since U.Fq/
\
Q is the unit of the ˝-triangulated category KMM\

Q, we conclude that

ŒNC.P1/� D 2 in K0.KMM\
Q/. This implies that any motivic measure � which

factors through �NC verifies the equality �.P1/ D 2, but this is clearly not the case
for �# since #.P1/ D q C 1. Intuitively speaking, from the noncommutative motive
NC.X/ we can only recover the number of points of X modulo q � 1.
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4. Motivic zeta functions

Recall from Kapranov [28] that the motivic zeta function of a smooth algebraic k-
variety X with respect to a motivic measure � is the following formal power series

��.X I t / ´
1P

nD0

�.ŒSn.X/�/tn 2 AŒŒt ��;

where Sn.X/ denotes the nth symmetric power of X . For instance, when � is the
motivic measure of the above Non-Example 3.6 we recover the classical Hasse–Weil
zeta function.

On the other hand, recall that by construction KMM\
Q is an idempotent complete

Q-linear category. Hence, given any noncommutative motive N , we can construct
its zeta function intrinsically inside KMM\

Q as follows:

�.N I t / ´
1P

nD0

ŒSymn.N /�tn 2 K0.KMM\
Q/ŒŒt ��:

Theorem 1.1 allows us then to compare this intrinsic construction with the motivic
zeta function associated to the motivic measure �NC.

Theorem 4.1. Let X a smooth projective k-variety. Then

�.NC.X/I t / D ��NC.X I t / 2 K0.KMM\
Q/ŒŒt ��:

As explained in [2], the motivic zeta function of a smooth projective k-variety
X with respect to the motivic measure of Example 3.4 is given by .1 � t /��c.X/.
Theorem 4.1 combined with Example 3.4 show us then that, in contrast with the
Hasse–Weil zeta function, this information can be completely recovered solely from
the intrinsic zeta function associated to the noncommutative motive NC.X/.

5. Some categories of motives

In this section we recall, and adapt to our convenience, the construction of some
categories of motives following Grothendieck, Manin, and Gillet–Soulé. These will
be used in the proof of Theorem 1.1. In what follows, k denotes a (fixed) base field.

5.1. Grothendieck’s category of Chow motives (consult [43]). Given a smooth
projective k-variety X and an integer d , we will write Zd .X/ for the d -codimensional
cycle group of X and Ad .X/ ´ .Zd .X/ ˝Z Q/=(rational equivalence) for the d -
codimensional Chow group with rational coefficients of X . If Z is a cycle on X ,
we will denote by ŒZ� its class in Ad .X/. Let X and Y be two smooth projective
k-varieties, X D qiXi the decomposition of X in its connected components, and
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di the dimension of Xi . Then Corrr.X; Y / ´ L
i Adi Cr.Xi � Y / is called the

space of correspondences of degree r from X to Y . Given f 2 Corrr.X; Y / and
g 2 Corrs.Y; Z/ their composition g Bf 2 CorrrCs.X; Z/ is defined by the classical
formula

g B f ´ .	XY /�.	�
XY .f / � 	�

YZ.g//: (5.1)

The category ChowQ of Chow motives (with rational coefficients) is defined as
follows: its objects are the triples .X; p; m/ where X is a smooth projective k-variety,
m is an integer, and p D p2 2 Corr0.X; X/ is an idempotent endomorphism; its
morphisms are given by

HomChowQ..X; p; m/; .Y; q; n// ´ q B Corrn�m.X; Y / B pI
composition is induced by the above composition (5.1) of correspondences. By
construction, the category ChowQ is Q-linear, additive and pseudo-abelian (i.e.,
every idempotent endomorphism has a kernel). Moreover, it carries a symmet-
ric monoidal structure defined on objects by the formula .X; p; m/ ˝ .Y; q; n/ ´
.X � Y; p ˝ q; m C n/. The unit object for this symmetric monoidal structure
is the Chow motive .spec.k/; id; 0/, where id D Œ
� is the class of the diagonal

 in Corr0.spec.k/; spec.k//. The Tate motive .spec.k/; id; 1/ will be denoted by
Q.1/. Note that Q.1/ is a ˝-invertible object. Finally, we have a natural symmetric
monoidal functor

M W SmProjop ! ChowQ; X 7! .X; id; 0/; (5.2)

which maps a morphism f W X ! Y in SmProj to Œ� t
f

�, where � t
f

is the transpose
of the graph �f D f.x; f .x// j x 2 Xg � X � Y of f .

5.2. Manin’s category of motives (consult [39]). The category CHMQ of Manin’s
motives (with rational coefficients) is defined as follows: its objects are the pairs
.X; p/, where X is a smooth projective k-variety and p2 D p 2 Corr0.X; X/ is an
idempotent endomorphism; its morphisms are given by

HomCHMQ..X; p/; .Y; q// ´ q B L
j 2Z

Corrj .X; Y / B pI

composition is induced by the above composition (5.1) of correspondences. Similarly
to ChowQ, the category CHMQ is Q-linear, additive, pseudo-abelian, and symmetric
monoidal. Moreover, we have a natural symmetric monoidal functor

SmProjop ! CHMQ; X 7! .X; id/: (5.3)

5.3. Gillet–Soulé’s category of motives (consult [22], [21]). The category KMQ of
Gillet–Soulé’s motives (with rational coefficients) is constructed in two steps.2 First,

2Gillet–Soulé did not consider the pseudo-abelianization procedure.
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consider the category KMQ whose objects are the smooth projective k-varieties and
whose morphisms are given by

HomKMQ
.X; Y / ´ K0.X � Y /Q D K0.X � Y / ˝Z Q:

Composition is defined by composing the bilinear pairing

K0.X � Y /Q � K0.Y � Z/Q ! K0.X � Y � Z/Q;

.ŒF �; ŒG �/ 7! P
i�0

.�1/i ŒTorOY

i .F ; G /�;

with the direct image homomorphism K0.X � Y � Z/Q ! K0.X � Z/Q induced
by the natural projection map. Gillet–Soulé used G-theory instead of K-theory.
However, since we are working with smooth projective varieties over a field these
theories agree; see Quillen [41], §7.1. Then take the pseudo-abelianization of KMQ.
The objects of the resulting category KMQ are the pairs .X; p/, where X is a smooth
projective k-variety and p2 D p 2 K0.X � X/Q is an idempotent endomorphism.
Morphisms are given by

HomKMQ..X; p/; .Y; q// ´ q B K0.X � Y /Q B p

and composition is induced from the one on KMQ. In particular, we have a natural
fully faithful functor KMQ ! KMQ. By construction, KMQ is Q-linear, additive
and pseudo-abelian, Moreover, it carries a symmetric monoidal structure defined on
objects by the formula .X; p/ ˝ .Y; q/ D .X � Y; p ˝ q/. Finally, we have a natural
symmetric monoidal functor

SmProjop ! KMQ; X 7! .X; id/; (5.4)

which maps a morphism f W X ! Y in SmProj to ŒO�t
f

� 2 K0.Y � X/Q.

6. Noncommutative motives

A differential graded (dg) category, over a fixed commutative base ring k, is a category
enriched over cochain complexes of k-modules (morphisms sets are such complexes)
in such a way that composition fulfills the Leibniz rule: d.f B g/ D .df / B g C
.�1/deg.f /f B .dg/; see Keller’s ICM address [31]. As proved in [44], the category
dgcat of dg categories carries a Quillen model structure whose weak equivalences are
the derived Morita equivalences, i.e., the dg functors F W A ! B which induce an
equivalence D.A/ ��!� D.B/ on derived categories; see [31], §4.6. The homotopy
category obtained is denoted by Hmo.

All the classical (functorial) invariants, such as Hochschild homology, cyclic ho-
mology and its variants (periodic, negative, …), algebraic K-theory, and even topo-
logical cyclic homology (see [46]), extend naturally from k-algebras to dg categories.
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In order to study all these classical invariants simultaneously, the notion of localiz-
ing invariant was introduced in [45]. This notion, that we now recall, makes use of
the language of Grothendieck derivators, a formalism which allows us to state and
prove precise universal properties; consult Appendix 9. Let L W HO.dgcat/ ! D be
a morphism of derivators, from the derivator associated to the derived Morita model
structure, towards a triangulated derivator D. We say that L is a localizing invariant
if it preserves filtered homotopy colimits and sends Drinfeld’s exact sequences of dg
categories (see [19]) to distinguished triangles

A ! B ! C 7! L.A/ ! L.B/ ! L.C/ ! †.L.A//

in the base category D.e/ of D. Thanks to the work of Blumberg–Mandell, Keller,
Schlichting, and Thomason–Trobaugh (see [8], [30], [29], [42], [47]), all the men-
tioned invariants satisfy localization3 and so give rise to localizing invariants. In [45],
the universal localizing invariant (with values in a strong triangulated derivator) was
constructed

U W HO.dgcat/ ! Mot:

Given any strong triangulated derivator D, we have an induced equivalence of cate-
gories

U� W HomŠ.Mot; D/ ��!� Homloc.HO.dgcat/; D/; (6.1)

where the right hand-side denotes the category of localizing invariants. Because
of this universality property, which is a reminiscence of motives, U is called the
universal localizing invariant and Mot the localizing motivator.

Notation. In order to simplify the exposition, the base category Mot.e/ of the lo-
calizing motivator will be denoted by Mot and called the triangulated category of
noncommutative motives (over k). The evaluation of the universal localizing invariant
U at the base category e will be denoted by

U W Hmo D HO.dgcat/.e/
U.e/���! Mot: (6.2)

Remark 6.3. The localizing motivator Mot (and hence the triangulated category
Mot) is characterized by the above universal property (6.1). A Quillen model for
Mot (and hence for Mot), given in terms of a Bousfield localization of presheaves of
(symmetric) spectra, can be found in [45], §11.

The tensor product of k-algebras extends naturally to dg categories, giving rise
to a symmetric monoidal structure on HO.dgcat/. The corresponding unit is the dg
category k with a single object and with the base ring k as the dg algebra of en-
domorphisms. Using Day’s (derived) convolution product, this monoidal structure
on HO.dgcat/ was extended (in a universal way) to Mot. The universal localizing

3In the case of algebraic K-theory we consider its non-connective version.
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invariant U becomes symmetric monoidal and the equivalence (6.1) admits an appro-
priate symmetric monoidal enhancement; see [16]. In particular, the category Mot is
˝-triangulated and the functor (6.2) is symmetric monoidal.

6.1. Kontsevich’s category. A dg category A is called proper if for each ordered
pair of objects .x; y/ in A the cochain complex of k-modules A.x; y/ is perfect, and
smooth if it is perfect as a bimodule over itself. As explained in [34], Kontsevich’s
construction of the category KMM of noncommutative motives decomposes in three
steps:

(i) First consider the category KPM (enriched over spectra) whose objects are the
smooth and proper dg categories and whose morphisms from A to B are given by
the non-connective K-theory spectrum K.Aop ˝ B/. Composition corresponds
to the (derived) tensor product of bimodules.

(ii) Then take the formal triangulated envelope of KPM. Objects in this new category
are formal finite extensions of formal shifts of objects in KPM.

(iii) Finally, add formal direct summands for idempotent endomorphisms and pass to
the underlying homotopy category. The resulting category KMM is in particular
triangulated and its morphisms are given in terms of K-theory groups.

In [16], Prop. 8.5, Kontsevich’s construction is characterized in a simple and elegant
way: KMM identifies with the thick triangulated subcategory of Mot spanned by the
objects U.A/, with A a smooth and proper dg category. In particular, KMM � Mot.
For smooth and proper dg categories A and B, we have

HomKMM.U.A/; U.B// ' K0.Aop ˝ B/ (6.4)

with composition given by the (derived) tensor product of bimodules. Finally, note
that since smooth and proper dg categories are stable under tensor product, KMM is
moreover a ˝-triangulated subcategory of Mot.

6.2. Rational coefficients. In this subsection we assume that k is a field. Let
KMMQ, resp. MotQ, be the category obtained form KMM, resp. from Mot, by ten-
soring each abelian group of morphisms with Q. By construction, we have natural
functors

.�/Q W KMM ! KMMQ; .�/Q W Mot ! MotQ: (6.5)

Lemma 6.6. The categories KMMQ and MotQ inherit from KMM and Mot, re-
spectively, a canonical ˝-triangulated structure making the natural functors (6.5)
˝-triangulated.

Proof. Since both cases are similar we focus on the category MotQ. The dg category
k is smooth and proper and so the above isomorphism (6.4) restricts to

HomMot.U.k/; U.k// ' K0.k/:
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Since by hypothesis k is a field, we conclude that the endomorphism ring of the unit
U.k/ of the ˝-triangulated category Mot is K0.k/ D Z. Hence, by applying [4],
Thm. 3.6, to the multiplicative set S ´ Z n f0g � K0.k/ of the endomorphism ring
of U.k/ we obtain a canonical ˝-triangulated structure on MotQ making the functor
.�/Q ˝-triangulated.

6.3. Idempotent completion. The ˝-triangulated categories KMMQ and MotQ of
the previous section are not idempotent complete. Thanks to Balmer–Schlichting
[5], their idempotent completions KMM\

Q and Mot\
Q carry a canonical triangulated

structure. By construction they carry also a canonical ˝-structure. Hence, we obtain
natural ˝-triangulated functors

.�/\ W KMMQ ! KMM\
Q; .�/\ W MotQ ! Mot\

Q:

7. Orbit categories

Let C be an additive category and F W C ! C an automorphism (a standard con-
struction allow us to replace an autoequivalence by an automorphism). By definition,
the orbit category C=F has the same objects as C and morphisms

HomC=F .X; Y / ´ L
j 2Z

HomC .X; F j Y /:

Composition is induced by the one on C . More precisely, given objects X; Y; Z and
morphisms

f D ffj gj 2Z 2 L
j 2Z

HomC .X; F j Y /; g D fglgl2Z 2 L
l2Z

HomC .Y; F lZ/;

the i th-component of the composition g B f is given by the finite sum

P
j

F j .gi�j / B fj : (7.1)

The canonical projection functor

	 W C ! C=F; X 7! X; f 7! f D ffj gj 2Z;

where f0 D f and fj D 0 for j ¤ 0, is endowed with a natural isomorphism
	 B F H)� 	 and is universal among all such functors. By construction, C=F is still
an additive category and the projection is an additive functor.

Remark 7.2. Let X be an object in C , m an integer, and � and � the following
morphisms in C=F

� W X ! F mX � W F mX ! X;
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where �j D idX for j D �m and �j D 0 for j ¤ �m, and �j D idF mX for
j D m and �j D 0 for j ¤ m. Then the above composition formula (7.1) allow us to
conclude that � and � are inverse of each other. As a consequence, X is canonically
isomorphic in the orbit category C=F to all the objects of the form F mX , m 2 Z.

Let us now suppose that C is moreover endowed with a symmetric monoidal
structure such that the tensor product � ˝ � is bi-additive.

Lemma 7.3. If the automorphism F is of the form � ˝ O, with O a ˝-invertible
object in C , then the orbit category C=� ˝ O inherits a natural symmetric monoidal
structure making the projection functor 	 symmetric monoidal.

Proof. Let us start by defining the tensor product on C=� ˝ O. On objects it is the
same as the one on C . On morphisms let

L
j 2Z

HomC .X; Y ˝ Oj / � L
j 2Z

HomC .Z; W ˝ Oj /

! L
j 2Z

HomC .X ˝ Z; .Y ˝ W / ˝ Oj /

be the unique bilinear morphism that sends the homogeneous maps f W X ! Y ˝Or

and g W Z ! W ˝ Os to the homogeneous map

X ˝ Z
f ˝g���! Y ˝ Or ˝ W ˝ Os ��! .Y ˝ W / ˝ O.rCs/;

where � is the commutativity isomorphism constraint. The associativity and com-
mutativity isomorphism constraints are obtain from the corresponding ones of C by
applying the projection functor 	 . A routine verification shows that these definitions
endow the orbit category C=� ˝ O with a symmetric monoidal structure making the
projection functor 	 symmetric monoidal.

8. Proof of Theorem 1.1

Proof. The bulk of the proof consists on constructing functors 1, 2 and 3 making
the diagram

SmProjop

M

��

SmProjop

(5.3)

��

SmProjop

(5.4)

��

D
dg
perf .�/

�� Hmo

U

��
ChowQ

�

��

Mot

.�/
\
Q

��
ChowQ =� ˝ Q.1/ CHMQ

�1

�� KMQ
�2

��
�3

�� KMM\
Q � Mot\

Q
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commutative up to a natural isomorphism. Let us start with the functor 1. Given
Chow motives .X; p; m/ and .Y; q; n/ the description of the orbit category given in
the previous section show us that

HomChowQ =�˝Q.1/..X; p; m/; .Y; q; n// D q B L
j 2Z

Corr.nCj /�m.X; Y / B p:

Hence we define 1 to be the functor that maps .X; p/ to .X; p; 0/ and which is
the identity on morphisms. By construction, it is clearly fully faithful. In order
to show that it is also essentially surjective, we need to prove that every object
.X; p; m/ in ChowQ =� ˝ Q.1/ is isomorphic to an object of the form .X; p; 0/.
Since .X; p; m/ D .X; p; 0/ ˝ Q.1/m, this follows from Remark 7.2 (applied to the
category C D ChowQ and to the functor F D � ˝ Q.1/). As a consequence, we
conclude that the functor 1 is an equivalence of categories. Note that it makes the
left rectangle in the above diagram commute up to a natural isomorphism. Moreover,
it is Q-linear, additive and symmetric monoidal.

Let us now focus our attention on the functor 2. Similarly to KMQ, the cate-
gory CHMQ is obtained as the pseudo-abelianization of a category CHMQ whose
objects are the smooth projective k-varieties. Hence, we define 2 to be the pseudo-
abelianization of the auxiliary functor �2 W KMQ ! CHMQ, X 7! X , defined as
follows

K0.X � Y /Q ! L
j 2Z

Corrj .X; Y /; ˛ 7! ch.˛/ � 	�
Y .Td.Y //;

where ch denotes the Chern character and Td the Todd genus. Note that the Grothen-
dieck–Riemann–Roch theorem guarantees that this functor �2 is well defined; see
[22], p. 39. Moreover, it is fully faithful and induces a bijection on objects. Hence,
the associated functor 2 is an equivalence of categories. Finally, the Grothendieck–
Riemann–Roch theorem and the fact that the functors (5.3) and (5.4) factor through
CHMQ and KMQ, respectively, allow us to conclude that the middle rectangle of
the above diagram is commutative up to a natural isomorphism. Note also that by
construction 2 is Q-linear, additive and symmetric monoidal.

Let us now consider the functor 3. Recall from §5.3 and §6.3 that we have a
pseudo-abelianization functor KMQ ! KMQ and an idempotent completion functor

KMMQ ! KMM\
Q. We will then construct an auxiliary functor �3 W KMQ !

KMMQ and define 3 as the canonical extension of the composed functor

KMQ

��3�! KMMQ
.�/\

���! KMM\
Q

to KMQ. Given smooth projective k-varieties X and Y we have the following natural
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isomorphisms:

HomKMMQ.U.D
dg
perf.X//Q; U.D

dg
perf.Y //Q/ D K0..D

dg
perf.X//op ˝ D

dg
perf.Y //Q

' K0.D
dg
perf.X/ ˝ D

dg
perf.Y //Q (8.1)

' K0.D
dg
perf.X � Y //Q (8.2)

' K0.X � Y /Q: (8.3)

Isomorphism (8.1) follows from the fact that the dg category D
dg
perf.X/ is self-dual, Iso-

morphism (8.2) from the natural isomorphism D
dg
perf.X/˝D

dg
perf.Y / ' D

dg
perf.X �Y /

in Hmo, and Isomorphism (8.3) from the classical fact that the Grothendieck group of
an algebraic variety can be recovered from its derived category of perfect complexes.
Under these isomorphisms, the composition operation in KMMQ corresponds to the
composition of the bilinear pairing

K0.X � Y /Q � K0.Y � Z/Q ! K0.X � Y � Z/Q;

.ŒF �; ŒG �/ 7! P
i�0

.�1/i ŒTorOY

i .F ; G /�;

with the direct image homomorphism K0.X � Y � Z/Q ! K0.X � Z/Q induced
by the natural projection map. Hence, we define �3 as the functor that sends a smooth
projective k-variety X to U.D

dg
perf.X/Q/ and which is the identity on morphisms (via

the isomorphisms (8.1)-(8.3)). By construction, we obtain then a fully faithful functor
3 which makes the right rectangle in the above diagram commute up to a natural
isomorphism. Moreover, it is Q-linear, additive and symmetric monoidal.

Finally, choose inverse functors �1
1 and �1

2 to 1 and 2 and define R as the
composition 3 B �1

2 B �1
1 . By construction, R is fully faithful and makes the

diagram (1.2) commute up to a natural isomorphism. The fact that it is Q-linear and
additive follows from the corresponding properties of the functors 1, 2 and 3. The
fact that it is moreover symmetric monoidal follows from the general Lemma 8.4
applied to the functors 1 and 2, and from the fact that 3 is symmetric monoidal.

Lemma 8.4. Let .C ; ˝C ; 1C / and .C ; ˝D ; 1D/ be two symmetric monoidal cate-
gories and F W C ��!� D a symmetric monoidal equivalence. Then every inverse
functor G W D ��!� C of F is naturally symmetric monoidal.

Proof. Let G be an inverse functor of F . Then we have a natural adjunction

D

G

��
C

F

��

(8.5)
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with G right adjoint to F . The unit, resp. counit, of this adjunction will be denoted
by � W IdC H)� G B F resp. by � W F B G H)� IdD . Since F is symmetric monoidal,
we have natural isomorphisms

�F
1 W 1D ��!� F.1C /; �F

c1;c2
W F.c1/ ˝D F.c2/ ��!� F.c1 ˝C c2/;

which are coherently associative and unital (see diagrams 6.27–6.29 of [12]).
Now let �G

1 W 1C ! G.1D/ be the morphism associated (under the above adjunc-
tion (8.5)) to the inverse .�F

1 /�1 of �F
1 . Given objects d1; d2 2 D , let �G

d1;d2
be the

morphism associated (under the above adjunction (8.5)) to the following composed
isomorphism

F.G.d1/ ˝C G.d2//
.�F

G.d1/;G.d2/
/�1

������������! .F B G/.d1/ ˝D .F B G/.d2/

	d1
˝	d2������! d1 ˝D d2:

(8.6)

The functor G endowed with the morphisms �G
1 and �G

d1;d2
is a lax symmetric

monoidal functor. Note that since the above adjunction (8.5) is an equivalence of
categories we have the following commutative diagrams:

.G B F /.1C /

' G..
F
1 /�1/

��
1C


G
1

��

�

'

������������
G.1D/,

.G B F /.G.d1/ ˝C G.d2//

' G.(8.6)/
��

G.d1/ ˝C G.d2/
�G

d1;d2

��

�

'

		����������������
G.d1 ˝D d2/.

This allow us to conclude that the morphisms �G
1 and �G

d1;d2
are isomorphisms. As

a consequence, we conclude that the functor G is symmetric monoidal.

9. Remaining proofs

Theorem 2.1. Recall from [18] that Schur and Kimura finiteness is preserved by
symmetric monoidal Q-linear functors. Hence, item (i) follows from the commuta-
tivity of diagram (1.2) and from the fact that both functors 	 and R are Q-linear and
symmetric monoidal. Item (ii) follows from the faithfulness of 	 and R.

Theorem 3.1. Since the functors 	 and R in diagram (1.2) are both additive and
symmetric monoidal, their composite gives rise to a ring homomorphism

K0.ChowQ/ ! K0.KMM\
Q/: (9.1)

Recall from [22], Corollary 5.13, that Gillet–Soulé’s motivic measure �GS sends a
smooth projective k-variety X to ŒM.X/�. Hence, by composing (9.1) with �GS we
obtain a well-defined motivic measure �NC sending a smooth projective k-variety X

to ŒNC.X/�.
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Theorem 4.1. By definition of the formal power series �.NC.X/I t / and ��NC.X I t /,
it suffices to show the equality

ŒSymn NC.X/� D �NC.ŒSn.X/�/ 2 K0.KMM\
Q/ (9.2)

for every natural number n. A similar equality

ŒSymn M.X/� D �GS.ŒSn.X/�/ 2 K0.ChowQ/ (9.3)

in the setting of Chow motives was proved by del Baño–Aznar in [17]. Since the
functors 	 and R in diagram (1.2) are both symmetric monoidal and Q-linear, their
composition gives rise to a ring homomorphism

K0.ChowQ/ ! K0.KMM\
Q/ (9.4)

which maps ŒSymn M.X/� to ŒSymn NC.X/�. Hence, by applying this ring homo-
morphism (9.4) to the equalities (9.3) we obtain the searched equalities (9.2).

Appendix. Grothendieck derivators

The original reference for the theory of derivators is Grothendieck’s original manu-
script [23]. See also a short account on Cisinski–Neeman [14], §1. Derivators
originate in the problem of higher homotopies in derived categories. For a triangulated
category T and for X a small category, it essentially never happens that the diagram
category Fun.X; T / D T X remains triangulated; it already fails for the category of
arrows in T , that is, for X D .� ! �/.

Now, very often, our triangulated category T appears as the homotopy category
T D Ho.M/ of some Quillen model M. In this case, we can consider the category
Fun.X; M/ of diagrams in M, whose homotopy category Ho.Fun.X; M// is often
triangulated and provides a reasonable approximation for Fun.X; T /. More impor-
tantly, one can let X move. This nebula of categories Ho.Fun.X; M//, indexed by
small categories X , and the various functors and natural transformations between
them is what Grothendieck formalized into the concept of derivator.

A derivator D consists of a strict contravariant 2-functor from the 2-category of
small categories to the 2-category of all categories

D W Catop ! CAT;

subject to certain conditions; consult [14], §1, for details. The essential example to
keep in mind is the derivator D D HO.M/ associated to a (cofibrantly generated)
Quillen model category M and defined for every small category X by

HO.M/.X/ D Ho.Fun.Xop; M//:
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We denote by e the 1-point category with one object and one identity morphism.
Heuristically, the category D.e/ is the basic “derived" category under consideration
in the derivator D. For instance, if D D HO.M/ then D.e/ D Ho.M/. Let us now
recall two slightly technical properties of derivators.

� A derivator D is called strong if for every finite free category X and every small
category Y , the natural functor D.X � Y / �! Fun.Xop; D.Y // is full and
essentially surjective.

� A derivator D is called triangulated (or stable) if it is pointed and if every global
commutative square in D is cartesian exactly when it is cocartesian; see [14],
Def. 1.15. A source of examples is provided by the derivators HO.M/ associated
to stable Quillen model categories M.

Recall from [14], §1.19, that given any triangulated derivator D and small category X ,
the category D.X/ has a canonical triangulated structure. In particular, the category
D.e/ is triangulated. Finally, given derivators D and D0, we denote by Hom.D; D0/
the category of all morphisms of derivators and by HomŠ.D; D0/ the category of
morphisms of derivators which preserve arbitrary homotopy colimits; consult [13],
§3.25, for details.
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