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Gerbes and the holomorphic Brauer group of complex tori

Oren Ben-Bassat

Abstract. The purpose of this paper is to develop the theory of holomorphic gerbes on complex
tori in a manner analogous to the classical theory for line bundles. In contrast to past studies on
this subject, we do not restrict to the case where these gerbes are torsion or topologically trivial.
We give an Appell–Humbert type description of all holomorphic gerbes on complex tori. This
gives an explicit, simple, cocycle representative (and hence gerbe) for each equivalence class
of holomorphic gerbes. We also prove that a gerbe on the fiber product of four spaces over a
common base is trivial as long as it is trivial upon restriction to any three out of the four spaces.
A fine moduli stack for gerbes on complex tori is constructed. This involves the construction
of a “Poincaré” gerbe which plays a role analogous to the role of the Poincaré bundle in the
case of line bundles.
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1. Introduction

Giraud [15], in 1971, began the study of gerbes, certain locally trivial stacks over a
variety or scheme. Equivalence classes of gerbes are in one to one correspondence
with the elements of a certain second cohomology group on the space. One can
define a gerbe over a space (or stack) as a torsor for Pic, the stack of O� torsors
on that space (or stack). Brylinski includes some developments relating to gerbes in
the analytic context in his book [8]. Gerbes typically play the role of parameterizing
certain moduli of geometric objects ([3], [4], [11], [12]). For a review on some
things known about this group in the analytic context see [21] and the references
therein. For our purposes the crucial fact is that O� gerbes (with trivial band) on a
complex manifold (or complex analytic space) X are classified up to equivalence by
H 2.X;O�/. By comparison, note that O� torsors (or their associated line bundles)
are classified up to equivalence by H 1.X;O�/. Previous studies ([13], [5], and
[16]) of the groupH 2.X;O�/ forX a complex torus or abelian variety have focused
mainly on the representability by Azumaya algebras in the torsion case. Line bundles
on Abelian varieties (or complex tori) and their associated theta functions have a rich
and distinguished history which we do not attempt to summarize here. We begin in
this paper a development for gerbes analogous to well-known results for line bundles
which can be found in a textbook on Abelian varieties or complex tori such as [19],
[6], [7] or [18]. Based on results of Appell [1] and Humbert [17] from the 1890s,
Weil [22] in 1958 gave the modern description of all line bundles on complex tori
known as the Appell–Humbert theorem. We will prove a similar theorem giving in
a concrete way a unique gerbe amongst the equivalence class corresponding to each
element of H 2.X;O�/. In contrast to the case of line bundles one cannot give a
unique cocycle in this manner. We will prove that in the relative setting that the
assignment of a space X to the group H 2.X;O�/ is a cubic functor in the sense of
page 55 of [18]. We call this the theorem of the hyper-cube as it relates to gerbes
on the product of four spaces. In particular, this extends some results of Hoobler
[16] to the analytic setting. We use this to derive formulas for the pullback of gerbes
under various translation and multiplication maps, as well as isogenies. We define
the moduli stack for topologically trivial gerbes as ŒH 2.X;O/=H 2.X;Z/� and define
the universal (Poincaré) gerbe on the product of a torus and the moduli stack, proving
that the moduli stack is fine. In the second appendix and comments on future work,
we call on some tools from and explain some relations with a recent preprint of
Polishchuk [20] and comment on similarities with work of Felder, Henriques, Rossi,
and Zhu [14].

2. Conventions

In this paper X will denote a complex torus of (complex) dimension g written as
V=ƒ where ƒ is a free group of rank n D 2g with ƒ˝ R D V , a vector space with
complex structure. The quotient map will be denoted p W V ! X .
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The exponential map will be written without the 2�i . In other words,

exp W C ! C�

always denotes the map
z 7! e2�iz :

Many of the computations in this paper make more explicit certain maps in the
long exact sequence of cohomology groups coming from the following short exact
sequence of sheaves of groups on X induced by the exponential map:

0 ! Z ! O ! O� ! 1: (1)

Unless stated explicitly, all vector spaces are over R or C. For any groups � and H ,
the notation Altp.�;H/ denotes the maps from�p toH that are skew-symmetric and
group homomorphisms in each variable. Here �p is the cartesian product of p copies
of � . Although much of this paper concerns a complex torus, in Sections 8 and 9
we will use complex analytic spaces [9], these are always assumed to be separated
and reduced. A reader who does not want to deal with this can feel free to substitute
complex manifolds for complex analytic spaces. In the relative context of a map
X ! S the same reader could assume that all fibers are complex manifolds. For any
spaceM we denote by Pic.M/ the groupoid of line bundles onM and we denote by
Gerbes.M/ the 2-category of gerbes on M . This category has a monoidal structure
which we denote by ˝. In particular we have the maps

Pic.M/ ! Pic.M/ D H 1.M;O�/
denoted by

L 7! ŒL�

and

Gerbes.M/ ! H 2.M;O�/
denoted by

G 7! ŒG�:

The reader is assumed to be familiar with group cohomology, we use the conventions
of [18]. The boundary map in the cochain complex defining the group cohomology
of a group � acting on a module R is denoted

ı W Cp.�;R/ ! CpC1.�;R/: (2)

Acknowledgments. I would like to thank A. Polishchuk, P. Deligne, D. Kazhdan,
T. Pantev, J. Block, J. de Jong, D. Gaitsgory, R. Hoobler, R. Livne, H. Farkas,
M. Leyenson and many others for helpful and interesting conversations. I would
also like to thank the anonymous referee for a helpful analysis. Thanks to the mathe-
matics department of the University of Salamanca and the Hebrew University where
this work took place.
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3. Cohomology and alternating classes

Let the discrete group � act freely and discontinuously on a complex analytic space
W and let � be a sheaf of groups on the quotient space W=� . Let

� W W ! W=�

be the quotient map. Then there is a spectral sequence

Hp.�;H q.W; ��1�// H) HpCq.W=�; �/: (3)

In particular, we get maps Hp.�;H 0.W; ��1�// ! Hp.W=�; �/ for all p. In the
case p D 1, the resulting map H 1.�;H 0.W; ��1�// ! H 1.W=�; �/ is induced
from the map sending a cocycle � W � ! H 0.W; ��1�/ to the � torsor defined inside
��� by the sections satisfying the equation � � � D �.�/� . For any p, the map can
be described in terms of a double complex comparing Čech and group cohomology,
see [18]. The spectral sequence (3) gives us maps

Hp.�;H 0.W; ��1�// ! Hp.W=�; �/: (4)

If we are also given sheaves of groups T and R and maps � � T ! R which respect
the group structure in each variable, the map (4) is compatible with the resulting cup
products. When the higher cohomology groups vanish,H q.W; ��1�/ D 0 for q > 0,
then the maps (4) become isomorphisms.

Remark 1. If we have any group action of � on W , similar results hold as long
as we pass to the stack ŒW=�� as proven in Theorem A.6 of [14]. In particular, if
H i .W; ��1�// D 0 for all i > 0 then

H i .ŒW=��; �/ Š H i .�;H 0.W; ��1�//

For the remainder of this section, we assume thatW is connected and contractible
and � is a free abelian group. Let R be a ring. We need a skew-symmetrization map
which we call s.

Definition 1. The skew-symmetrization map

s W Map.�p; R/ ! Map.�p; R/

is defined by

s.f /.�1; : : : ; �p/ D P
�2Sp

.�1/�f .��.1/; : : : ; ��.p//:

Note that when the ring R is divisible the map s has a section

1

pŠ
W Skew.�p; R/ ! Map.�p; R/:

Our main case of interest will beR D R orR D Z. Let � act onW to give a quotient
ŒW=��. We let � act trivially on the ring R, thought of as a constant sheaf on W .
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Lemma 1. Consider the group cohomology Hp.�;R/. The skew symmetrization
map s takes the group cocycles Zp.�;R/ to Altp.�;R/. Furthermore, s kills
Bp.�;R/ and the resulting map from Hp.�;R/ to Altp.�;R/ is an isomorphism.
When composed with

Altp.�;R/ Š ^p
.Hom.�;R// Š ^p

.H 1.ŒW=��; R// Š Hp.ŒW=��; R/

it agrees with the canonical isomorphism

Hp.�;R/ ! Hp.ŒW=��; R/

which comes from the spectral sequence when R is thought of as a constant sheaf of
groups on ŒW=��.

Proof. First of all suppose that f 2 Bp.�;R/. This means that we have a g 2
Cp�1.�;R/ such that

f .�0; : : : ; �p�1/

D g.�1; : : : ; �p�1/C � p�1P
iD0

.�1/iC1g.�0; : : : ; �i C �iC1; : : : ; �p�1/
�

C .�1/pg.�0; : : : ; �p�2/:

When we skew-symmetrize f , one again has three terms: the skew-symmetri-
zations of the first term, the term in the square brackets, and the last term respectively.
Explicitly, we haveP

�2Sp

.�1/�g.��.1/; : : : ; ��.p�1//

C � P
�2Sp

.�1/�
p�1P
iD0

.�1/iC1g.��.0/; : : : ; ��.i/ C ��.iC1/; : : : ; ��.p�1//
�

C P
�2Sp

.�1/� .�1/pg.��.0/; : : : ; ��.p�2//:

The first and last of these new terms cancel because in the last one, we can replace
every appearance of � in the summand with �� 0 where � 0 is the permutation sending
i to i � 1 for i � 0 and 0 to p. This permutation has sign .�1/.p�1/ making the first
and last terms cancel. For the remaining terms we can replace � in the summands
with �� 0 where � 0 is the permutation that flips i and iC1. This has sign �1meaning
the middle term is equal to its own negative, and hence is zero.

Up to this point we have only used the fact that R is an abelian group. Now we
use the ring structure. Notice that the projection

Zp.�;R/ ! Hp.�;R/ D [pH 1.�;R/

has a section defined by

Œ˛1� [ � � � [ Œ p̨� 7! Œ.�1; : : : ; �p/ 7! ˛1.�1/ : : : p̨.�p/�: (5)
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Therefore to prove that the skew-symmetrization of a cocycle is multi-linear, it suffices
to observe that the skew-symmetrization of the image of Œ˛1� [ � � � [ Œ p̨� under the
section (5) is multi-linear. This is clear.

To see that the map we have described agrees with the map coming from the
spectral sequence, it is enough to observe that both maps take cup products to wedge
products, and that the two maps agree for p D 0 and p D 1.

In this paper there are only two main cases where we will use the preceding part
of this section. The first case is W D V and � D ƒ, so that the stack ŒW=�� is just
a complex torus. The second is the case W D V � ^2 xV _, � D ƒ � Alt2.ƒ;Z/.
The second case will be used in Section 9. In the remainder of this section we will
focus only on the first case. The maps we have described are functorial with respect
to maps of the ring. In particular, the relevant case will be the inclusion Z � R. In
that case the situation is summarized in the commutative diagram

Hn.ƒ;Z/

s

��

�� Hn.ƒ;R/
D �� Hn.ƒ;R/

s

��
Altn.ƒ;Z/

D �� Altn.ƒ;Z/

1
nŠ

��

�� Altn.ƒ;R/,

where the outer vertical maps s are isomorphisms. If one picks a basis f	ig ofƒ then
for n D 2 there is an explicit inverse � of the left most map s. In fact, there is a group
homomorphism

� W Alt2.ƒ;Z/ ! Z2.ƒ;Z/

inducing a section to the map s. It is defined by

�.
/.	1; 	2/ D P
i<j


.n1;i	
i ; n2;j	

j / (6)

where

	˛ D P
i

n˛;i	
i :

4. Recollection of some facts about line bundles

In this section we recall the Appell–Humbert theorem which gives an explicit way to
pick a line bundle out of each isomorphism class of line bundles on a complex torus.
We also review the Poincaré bundle and some of its properties. Let X D V=ƒ be a
complex torus.

Define A.ƒ/ by

A.ƒ/ D fE 2 Alt2.ƒ;Z/ j E.ix; iy/ D E.x; y/g � Alt2.ƒ;Z/:
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Under the skew-symmetrization map s preceded by the map coming from the spectral
sequence

H 2.X;Z/ Š H 2.ƒ;Z/ Š Alt2.ƒ;Z/; (7)

A.ƒ/ corresponds to the image of H 1.X;O�/ under the map coming from (1).
Notice that we have used the unique extension of E to Alt2.V;R/ where we denote
it by the same letter. We will do this without notice in the remainder of this article.
Furthermore note that there is a natural identification

H 1.X;O/ Š xV _: (8)

Indeed, we have a Hodge projection map H 1.X;R/ ! H 1.X;O/ as well as

H 1.X;R/ D Hom.ƒ;R/ � V _ ˚ xV _ � xV _: (9)

Both these maps are isomorphisms, so this gives us the isomorphism in (8). Ex-
plicitly, the Hodge projection

Hom.ƒ;C/ D H 1.ƒ;C/ ! H 1.ƒ;O.V //

is just

c 7!
h
	 7! c.	/C ic.i	/

2

i
and the section of this map sends l 2 xV _ to the cohomology class coming from the
element of Z1.ƒ;O.V // given by Œ	 7! 2Re.l.	//�. We define ƒ_ as the image of
H 1.X;Z/ in xV _. This turns out to be

ƒ_ D fl 2 xV _ j 2Re.l.ƒ// � Zg:
This is slightly different from the normal definition which substitutes 2Re.l.ƒ// � Z
with the condition Im.l.ƒ// � Z. This discrepancy is discussed on p. 87 of [18].
The two “dual” tori that one gets from the two different possible definitions of ƒ_
are isomorphic.

In general we will denote the Hodge projection map induced by the inclusion
C ! O and given by either of the horizontal arrows in the diagram

Hp.X;C/ ��

Š
��

Hp.X;O/

Š
��

Altp.ƒ;C/ �� ^p xV _

by
� 7! �H :

Notice that H 1.X;Z/ is isomorphic to ƒ_ via the map

Hom.ƒ;Z/ ! ƒ_; h 7! hH ;
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which is an isomorphism compatible with equation (9) with inverse � 7! � C � .
The following theorem (see e.g. [18]) is implicit in the Appell–Humbert theorem
as usually presented, however we choose to present it in this way to emphasize the
analogy with our theorem in the case of gerbes. Here we consider . xV _=ƒ_/�A.ƒ/
as a category in the trivial way: the objects are points and the only morphisms are
the identity maps.

Theorem 1. There is a functor

ah W . xV _=ƒ_/ � A.ƒ/ ! Pic.X/; ah.Œl�; E/ D L.Œl�;E/;

such that c1.L.Œl�;E// corresponds to E under (7) and

ŒL.Œl�;0/� D Œl � 2 H 1.X;O/=H 1.X;Z/ � H 1.X;O�/

using (8). In the resulting isomorphism

. xV _=ƒ_/ � A.ƒ/ Š Pic.X/

the group structure on . xV _=ƒ_/ � A.ƒ/ induced from that on xV _ and Alt2.ƒ;Z/
corresponds to the tensor product of line bundles.

Proof. Consider the homomorphism

A.ƒ/ ! Z1.ƒ;O�.V //
given by

E 7! �E ;

where

�E
� .v/ D exp.#.	/ � i

2
E.iv; 	/C 1

2
E.v; 	/ � i

4
E.i	; 	//:

Here the map
# W ƒ ! R;

sometimes called a semi-character for E, is given in terms of some basis f	ig of ƒ
by

#.	/ D 1
2

P
i<j

E.ni	
i ; nj	

j /

where 	 D P
i ni	

i .
If we denote by LE the line bundle corresponding in the sense of (B.2) to �E ,

then it is easy to check that c1.LE / D @�E corresponds under (7) toE. Furthermore
we can define a functor

F W Œ xV _=ƒ_� ! Pic.X/:

On the level of objects, it sends l to the line bundle Ll corresponding in the sense of
(B.2) to the constant cocycle in Z1.ƒ;O�.V // given by

�l
�.v/ D exp.l.	//:
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The equivalence class ŒLl � 2 H 1.X;O�/ comes from l 2 H 1.X;O/ via the ex-
ponential map. On the level of morphisms, suppose that l2 � l1 D � 2 ƒ_. Then
we send � to the isomorphism Ll1

! Ll2
determined in the sense of (B.4) by the

element

v 7! exp.��.v//
of H 0.V;O�/ D C 0.ƒ;O�.V //, which has boundary

exp.��.	// D exp.�.	//:

F determines a map

F W . xV _=ƒ_/ ! Pic.X/;

each element in . xV _=ƒ_/ is sent to the disjoint union of all images of F of the
primage of the element in xV _ modulo the obvious action of ƒ_. Finally let

ah.˛;E/ D F.˛/˝ LE :

There exists a Poincaré line bundle P on X � . xV _=ƒ_/ with the property that,
by (8),

ŒP jX�f˛g� D ˛ 2 H 1.X;O/=H 1.X;Z/;

where addition in xV _ corresponds to tensor product of line bundles. We define the
Poincaré bundle as the bundle corresponding (see Section 3 and equation (B.2)) to
the cocycle

 2 Z1.ƒ;O�.V //
given by

 �;�.v; l/ D exp.l.	/C �.	/ � �.v//:

One can replace the map F with the map

˛ 7! P jX�f˛g:

The Poincaré bundle is needed to prove thatX_ D xV _=ƒ_ is a fine moduli space
for topologically trivial line bundles on X as formulated in the following theorem
[7]. In the cited book a proof is given which works both in the algebraic and analytic
context. We present here an analytic proof.

Theorem 2. For any connected normal complex analytic spaceT and any line bundle
L on X � T such that LjX�t is topologically trivial for each t there is a unique map
f W T ! X_ such that .1; f /�P Š L ˝ C , where C is a line bundle trivial on each
fiber X � ftg.
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Proof. In fact the normality assumption is not needed. Let UT be the universal cover
of T . Let � W X � T ! T and Q� W X � UT ! UT be the projection maps. Consider
the exact sequence

0 ! R1��Z ! R1��O ! .R1��O�/0 ! 1:

The image of the class in H 0.T; .R1��O�/0/ defined by restricting L to the fibers
defines a class

fL;Z 2 Hom.�1.T /;ƒ
_/ Š H 1.T;R1��Z/:

Consider now the exact sequence

0 ! R1 Q��Z ! R1 Q��O ! .R1 Q��O�/0 ! 1:

Define
fL;C W UT ! xV _

to be any lift to H 0.UT ; R
1 Q��O/ of the class in H 0.UT ; .R

1 Q��O�/0/ gotten by
restricting the pullback of L to X � UT to the fibers of the projection to UT . Such
an element fL;C exists because any obstructions live in

H 1.UT ; R
1 Q��Z/ D H 1.UT ;Hom.ƒ;Z// D 0:

The maps fL;C and fL;Z are compatible in the sense that

 � fL;C � fL;C D fL;Z./

for every  2 �1.T /. Thus they together define a map

f W T Š UT =�1.T / ! xV _=ƒ_ D X_:

The line bundle .1; f /�P has a cocycle representative

.1; f /� 2 Z1.ƒ � �1.T /;O
�.V � UT /

given by

.	; / 7!  �;fL;Z.�/.v; fL;C.u//;

where 	 2 ƒ,  2 �1.T /, v 2 V , and u 2 UT . An application of the Leray spectral
sequence which computesH 1.X �T;O�/ via the projection to T finishes the proof.

In the following two sections we will develop an analogous formalism in the
case of gerbes, that is to say replacing H 1.X;O�/ with H 2.X;O�/. In Section 5
we discuss the image in H 3.X;Z/ Š Alt3.ƒ;Z/ and in Section 6 we lift these
classes to cocycles and hence gerbes. Here we prove our Appell–Humbert theorem
for gerbes. In Section 9 we find the analogue of the Poincaré sheaf, a universal
gerbe parameterizing topologically trivial gerbes. There we also prove that we have
constructed a fine moduli stack.
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5. Topological classes of gerbes

Let X D V=ƒ be a complex torus. From the short exact sequence

0 ! Z ! O ! O� ! 1

we know that the image of H 2.X;O�/ in H 3.X;Z/ agrees with the kernel of the
map of H 3.X;Z/ to H 3.X;O/. Since X is a Kähler manifold, the Hodge decom-
position tells us that the image of H 2.X;O�/ in H 3.X;Z/ is the kernel of the map
H 3.X;Z/ ! H 3.X;O/, which is the following intersection in H 3.X;C/:

H 3.X;Z/ \ .H 1;2.X/˚H 2;1.X//:

In this section we will give some information about the image of this map and for
every element in the image. The sub-variety of the moduli space of complex tori
representing those tori which admit such a class is described by equation (14), which
we will derive.

We can give a parametrization of these elements as follows. Consider the vector
space H 3.X;R/ D ^3

R HomR.V;R/. Consider the inclusion map

H 1;2.X/˚H 2;1.X/ D .V _ ˝ ^2 xV _/˚ .
^2
V _ ˝ xV _/ ,! ^3

.V ˚ xV /_
D H 3.X;C/:

We will describe in an intrinsic way the real and integral elements of the image. The
real elements and the integral elements will be called A.V / and A.ƒ/, respectively.

Definition 2. We define the holomorphic topological Brauer group HTB.X/ of a
complex torus X by the image

HTB.X/ D imŒH 2.X;O�/ ! H 3.X;Z/� D H 3.X;Z/ \ .H 1;2.X/˚H 2;1.X//:

This is a free group and its rank satisfies

0 � rk.HTB.X// � 2n

�
n

2

�
:

because dimRH
1;2.X/ D 2n

�
n
2

�
. Consider the projection

p.1;2/C.2;1/ W ^3
R HomR.V;R/ ! Alt3.V;R/.1;2/C.2;1/

onto the .1; 2/C .2; 1/ part given by

.p.1;2/C.2;1/.E//.x; y; z/ D 3
4
E.x; y; z/

C 1
4
.E.ix; iy; z/CE.x; iy; iz/CE.ix; y; iz//:
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Definition 3. We define the subgroup A.ƒ/ of Alt3.ƒ;Z/ by

A.ƒ/ D fE 2 Alt3.ƒ;Z/ j p.1;2/C.2;1/.E/ D Eg
and similarly

A.V / D fE 2 ^3
R HomR.V;R/ j p.1;2/C.2;1/.E/ D Eg:

For further use we describe the equation which defines both A.ƒ/ and A.V / by

E.x; y; z/ D E.ix; iy; z/CE.x; iy; iz/CE.ix; y; iz/ (10)

and its equivalent form

E.ix; iy; iz/ D E.x; y; iz/CE.ix; y; z/CE.x; iy; z/: (11)

Using the skew-symmetrization map we have the isomorphism

H 3.X;Z/ Š H 3.ƒ;Z/ Š Alt3.ƒ;Z/;

which restricts to an isomorphism HTB.X/ Š A.ƒ/.
As we will explain below, even if the Picard number rk.NS.X// is zero, one could

still have non-zero elements in A.ƒ/. This means that there exists tori with only
topologically trivial line bundles, but which carry topologically non-trivial gerbes.

Recall that any complex torusX is biholomorphic to the quotient V=ƒ where we
let V D R2g with the complex structure J and ƒ D …Z2g . Here … is an element
of M.g � 2g;C/ thought of as a map R2g ! Cg which satisfies

i… D … B J (12)

as maps from R2g to Cg . Let

ai;j;k D E.…ei ;…ej ;…ek/

for the standard basis ei of Z2g . Since a is skew-symmetric, it is determined by its
values ai;j;k where i < j < k. Equation (10) reads

E.…ei ;…ej ;…ek/ D E.i…ei ; i…ej ;…ek/CE.i…ei ;…ej ; i…ek/

CE.…ei ; i…ej ; i…ek/:

Using (12) this becomes

ai;j;k D al;m;kJl;iJm;j C ai;m;nJm;jJn;k C al;j;nJl;iJn;k (13)

for Jes D Jt;set and a 2 Z.
2g
3 /: We will reexpress this equation as an intersection

of principal divisors on the moduli space of complex tori, each divisor corresponding
to a holomorphic function of the parameters � .
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Consider the matrix

� D
�

1

��
�
:

Then J� D �i�. So we have Jz;p�p;q D �i�z;q . In order to rewrite equation
(13) in terms of complex structure parameters � , we multiply (13) by �i;s�j;t�k;u and
sum over repeated indices. Notice that there is nothing lost by restricting to the case
s < t < u. After some simplifications on the right-hand side we get

ai;j;k�i;s�j;t�k;u D �3ai;j;k�i;s�j;t�k;u:

Therefore equation (13) implies that

ai;j;k�i;s�j;t�k;u D 0:

When we expand this out, we get

as;t;u � apCg;t;u�p;s � as;qCg;u�q;t � as;t;rCg�r;u

C as;qCg;rCg�q;t�r;u C apCg;t;rCg�p;s�r;u C apCg;qCg;u�p;s�q;t

� apCg;qCg;rCg�p;s�q;t�r;u D 0:

(14)

The number of solutions to equation (14) could possibly be maximized by choosing
the real and imaginary parts of the entries of � to be rational numbers. Equation (14)
has no solutions if the real and imaginary parts of the entries of � are chosen to be
algebraically independent over Q.

In the special case of a complex torus of complex dimension 3, equation (14)
becomes

a0;1;2 � P
p

a1;2;pC3�p;0 C P
q

a0;2;qC3�q;1 � P
r

a0;1;rC3�r;2

C P
q<r

a0;qC3;rC3.�q;1�r;2 � �r;1�q;2/ � P
p<r

a1;pC3;rC3.�p;0�r;2 � �r;0�p;2/

C P
p<q

a2;pC3;qC3.�p;0�q;1 � �q;0�p;1/ � a3;4;5 det.�/ D 0:

(15)

Lemma 2. Equation (14) is actually equivalent to equation (10).

Proof. Notice that
�
� N�� in an invertible matrix, and so equation (13) is equivalent

to the contracted equation that we get by multiplying both sides of equation (13) by�
� N��

i;s

�
� N��

j;t

�
� N��

k;u

and summing over i , j and k. Notice that J
�
� N�� D ��i� i N�� and so most of

the equations from the expansion come out to put no constraints on a. Indeed, the
terms with two copies of � and one copy of N� place no constraints on a. To see this,
notice that for the terms with two copies of � and one copy of N� the right-hand side of
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equation (13) contributes three terms to the contracted equation: two of them equal
to the left-hand side of the contracted equation, and one equal to minus the left-hand
side of the contracted equation. The same thing happens with the terms with one
copy of � and two copies of N�. The only remaining equations are those with three
copies of �, or three copies of N�. But we have already accounted for the former in
equation (14), and the latter arise from the former by complex conjugation.

Remark 2. For g D 1 all holomorphic gerbes are trivial, and for g D 2 the equation
(14) is a trivial equation as explained in Example 1. For g D 3 (and for all g > 3

as well) the equation might have no solutions as can be seen by choosing � to be
some matrix of complex numbers with det.Im.�// ¤ 0 whose collection of real and
imaginary parts are a set of real numbers algebraically independent over the rational
numbers. This is analogous to the fact that the generic torus of complex dimension
greater than or equal to 2 has only topologically trivial line bundles.

Example 1. Suppose that X is a complex torus of dimension g D 2. The Neron–
Severi group could be trivial, but nevertheless the holomorphic topological Brauer
group is never trivial. Indeed in the case g D 2we have HTB.X/ D H 3.X;Z/ Š Z4

since H 3;0.X/ D H 0;3.X/ D .0/. This is analogous to the fact that every elliptic
curveC over C has a non-trivial Neron–Severi groupH 1;1.C;Z/ D H 2.C;Z/. This
tells us that (13) is satisfied for any choice of the coefficients a. For instance, taking
a basis fe0; e1; e2; e3g and a0;1;2 D 1, and all the other entries zero when possible
this says that any complex structure J on a 4-dimensional real vector space satisfies

J0;0J1;1 C J1;1J2;2 C J0;0J2;2 � J0;1J1;0 � J1;2J2;1 � J0;2J2;0 D 1

in any basis.
The analysis in this example proves that the map

H 1.X;O�/˝H 1.X;Z/ ! H 2.X;O�/
induced by the map

O� � Z ! O�

given by

.f; n/ 7! f n

cannot be surjective in general.

Example 2. In this example we look at 3-dimensional complex tori X which are
the product of three elliptic curves, each of which has purely imaginary period. We
show that the group HTB.X/ can discriminate amongst different such tori, even
amongst tori with fixed Picard number. Notice also that algebraic dimension of the
product of three elliptic curves is always 3, showing that the group HTB.X/ has more
information than the invariants that are typically studied. Let X D R6=…Z6 where
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… D .�; 13/ as is always possible. Here � 2 M3.C/ is a .3 � 3/-matrix with the
imaginary part non-degenerate and 13 is the .3 � 3/-identity matrix. The complex
structure is given by the formula

J D
�

y�1x y�1

�y � xy�1x �xy�1

�
where

x D Re.�/ and y D Im.�/:

Since we are looking at the product of three elliptic curves with purely imaginary
periods, we consider complex structures of the form

� D
0
@i˛ 0 0

0 iˇ 0

0 0 i�

1
A

where ˛; ˇ; � 2 R � 0.
Because � is diagonal, the equation (15) becomes

a0;1;2 � a1;2;3�0;0 C a0;2;4�1;1 � a0;1;5�2;2 C a0;4;5�1;1�2;2

� a1;3;5�0;0�2;2 C a2;3;4�0;0�1;1 � a3;4;5�0;0�1;1�2;2 D 0:
(16)

Due to the fact that � is purely imaginary, equation (16) breaks up into the two
equations

a0;1;2 � a0;4;5ˇ� C a1;3;5˛� � a2;3;4˛ˇ D 0

and

�a1;2;3˛ C a0;2;4ˇ � a0;1;5� C a3;4;5˛ˇ� D 0:

Let R be the rank of the solution space to the above two equations. The 12 integers
a0;1;3, a0;1;4, a0;2;3, a0;2;5, a0;3;4, a0;3;5, a1;2;4, a1;2;5, a1;3;4, a1;4;5, a2;3;5 and a2;4;5

do not appear in these equations and are therefore unconstrained. Thus

rk.HTB.X.˛; ˇ; �/// D 12CR:

An easy computation using Proposition 3.4 on page 10 of [6] shows that the Neron–
Severi group has rank

rk.NS.X.˛; ˇ; �/// D 3CR1 CR2

where

R1 D #.f ˛
ˇ
; ˇ

�
; ˛

�
g \ Q/ and R2 D #.f˛ˇ; ˛�; ˇ�g \ Q/:

Therefore, if
˛ D 1; ˇ D p

2; � D p
3;
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then
rk.NS.X.˛; ˇ; �/// D 3; rk.HTB.X.˛; ˇ; �/// D 12;

while in contrast if

˛ D 1; ˇ D p
2; � D ˇ

1 � ˇ ;
then

rk.NS.X.˛; ˇ; �/// D 3; rk.HTB.X.˛; ˇ; �/// � 14:

Indeed, two new solutions for a are

a0;4;5 D a1;3;5 D a2;3;4 D 1;

ai;j;k D 0 for other values of fi; j; kg;
and

a0;2;4 D a0;1;5 D a3;4;5 D 1;

ai;j;k D 0 for other values of fi; j; kg:
If we chose instead ˛ 2 Q, ˇ 2 Q, and � 2 Q then both the rank of NS.X/ and the
rank of HTB.X/ are maximal, being 9 and 18 respectively.

We now explain more carefully the nature of the projections onto the .1; 2/C.2; 1/
part which we have used above. Recall the definition of A.V / from Definition 10.
We have an isomorphism

.V _ ˝ ^2 xV _ ˚ ^2
V _ ˝ xV _/R Š A.V / (17)

induced by the canonical isomorphism
^3
V _˚V _˝^2 xV _˚^2

V _˝ xV _˚^3 xV _ D ^3
.V _˚ xV _/D ^3

C.HomR.V;C//

Using the inclusions

.V _ ˝ ^2 xV _ ˚ ^2
V _ ˝ xV _/R � HomR.V ˝R V ˝R V;C/

and ^3
R HomR.V;R/ � HomR.V ˝R V ˝R V;C/:

Recall the definition of s from equation (1). The maps giving the isomorphism in
equation (17) are

1
3Š
s W .V _ ˝ ^2 xV _ ˚ ^2

V _ ˝ xV _/R ! A.V /

and its inverse

A.V / ! .V _ ˝ ^2 xV _ ˚ ^2
V _ ˝ xV _/R

is given by

E 7! Œ.x; y; z/ 7! 3
4
.E.x; y; z/CE.ix; iy; z/CE.ix; y; iz/ �E.x; iy; iz//�:
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The expression appearing on the right-hand side of the above equation is the real
part of the following element of V _ ˝ ^2 xV _:

3
4
.E.x; y; z/CE.ix; iy; z/CE.ix; y; iz/ �E.x; iy; iz/

C i.E.x; y; iz/CE.x; iy; z/ �E.ix; y; z/CE.ix; iy; iz///:

The above element is the analogue in this gerbey context to the Hermitian form living
in V _ ˝ xV _ which corresponds to the first Chern class of a line bundle. The real
part of this Hermitian form corresponds to the E mentioned for the line bundles case
in Section 4. However, in our analysis of gerbes it is E 2 A.ƒ/ that will play the
fundamental role.

6. The Appell–Humbert theorem for gerbes

In the following we will construct elements of Z2.ƒ;O�.V // as the image of el-
ements of Map.ƒ � ƒ;O.V // under the exponential map. Clearly this works if
and only if the boundary of the element is integral and so it will be killed by the
exponential. In general, looking at the diagram

Map.ƒpC1;O.V //

Map.ƒp;O.V //

ı

��

exp �� Map.ƒp;O�.V //

where the definition of ı can be found in (2), we can clearly see that

ı�1.Map.ƒpC1;Z// D exp�1.Zp.ƒ;O�.V ///:

We would like to find a cocycle ˆE D exp.‚E / 2 Z2.ƒ;O�.V // which satisfies
ı exp.‚E / D E. We do this in two stages. First we describe the preimage of E
under the map s B @ B exp:

Map.ƒ2;O.V //
exp��! Map.ƒ2;O�.V // @�! Map.ƒ3;Z/

s�! Map.ƒ3;Z/:

Of course the standard map @ is a boundary map in the long exact sequence in group
cohomology coming from the exponential short exact sequence. It is induced by a
map also called @ from Z2.ƒ;O�.V // to Z3.ƒ;Z/ which takes B2.ƒ;O�.V // to
B3.ƒ;Z/. Here, however, we simply use the same formula and symbol to define a
map Map.ƒ2;O�.V // to Map.ƒ3;Z/. Therefore, in the first step, we find solutions
‚E to the equation

s B @ B exp.‚E / D s B ı.‚E / D E: (18)
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Secondly, we find an element in this preimage such that when we apply ı the result
is integral. In other words, we impose the further constraint that

ı‚E 2 Map.ƒ �ƒ �ƒ;Z/: (19)

The exponential of this element, ˆE D exp.‚E /, is then the desired element of
Z2.ƒ;O�.V //.

Let ‚E 2 Map.ƒ �ƒ;O.V // be given by

.	1; 	2/ 7! ‚E
�1;�2

.v/

where

‚E
�1;�2

.v/ D H�1;�2
.v/C ˇ�1;�2

: (20)

Here we take

H�1;�2
.v/ D 1

8
.E.v; 	1; 	2/C 1

2
E.iv; i	1; 	2/C 1

2
E.iv; 	1; i	2//

C i
8
.1

2
E.v; i	1; 	2/C 1

2
E.v; 	1; i	2/ �E.iv; 	1; 	2//;

(21)

and ˇ�1;�2
are (for now) arbitrary complex constants. Notice that ‚E

�1;�2
is holo-

morphic because
H�1;�2

.iv/ D iH�1;�2
.v/:

Also we claim ‚E is a solution to equation (18). Indeed using the additivity of E in
its entries, one has

.ıH/�1;�2;�3
.v/ D H�2;�3

.v C 	1/ �H�1C�2;�3
.v/CH�1;�2C�3

.v/ �H�1;�2
.v/

D H�2;�3
.	1/:

Thus s B ı. / is the skew symmetrization of the map

.	1; 	2; 	3/

7! H�2;�3
.	1/ D 1

8
.E.	1; 	2; 	3/C 1

2
E.i	1; i	2; 	3/C 1

2
E.i	1; 	2; i	3//

C i
8
.1

2
E.	1; i	2; 	3/C 1

2
E.	1; 	2; i	3/ �E.i	1; 	2; 	3//:

Define

k.	1; 	2; 	3/ D Re.H�2;�3
.	1//

D 1
8
.E.	1; 	2; 	3/C 1

2
E.i	1; i	2; 	3/C 1

2
E.i	1; 	2; i	3//

(22)

and

l.	1; 	2; 	3/ D Im.H�2;�3
.	1//

D 1
8
.1

2
E.	1; i	2; 	3/C 1

2
E.	1; 	2; i	3/ �E.i	1; 	2; 	3//:

(23)
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The skew-symmetrization of the real part gives us

.sk/.	1; 	2; 	3/ D 1
8
.6E.	1; 	2; 	3/C 1

2
E.i	1; i	2; 	3/C 1

2
E.i	1; 	2; i	3/

� 1
2
E.i	1; i	3; 	2/ � 1

2
E.i	1; 	3; i	2/ � 1

2
E.i	2; i	1; 	3/

� 1
2
E.i	2; 	1; i	3/C 1

2
E.i	2; i	3; 	1/C 1

2
E.i	2; 	3; i	1/

C 1
2
E.i	3; i	1; 	2/C 1

2
E.i	3; 	1; i	2/

� 1
2
E.i	3; i	2; 	1/ � 1

2
E.i	3; 	2; i	1//

D 1
8
.6E.	1; 	2; 	3/C 2.E.i	1; i	2; 	3/CE.i	1; 	2; i	3/

CE.	1; i	2; i	3///

D E.	1; 	2; 	3/; (24)

where at the last step we have used equation (11). The skew-symmetrization of the
imaginary part comes out to be zero. Indeed,

8.sl/.	1; 	2; 	3/ D E.i	1; 	2; 	3/ �E.i	1; 	3; 	2/ �E.i	2; 	1; 	3/

CE.i	2; 	3; 	1/CE.i	3; 	1; 	2/ �E.i	3; 	2; 	1/

� 1
2
.E.	1; i	2; 	3/ �E.	1; i	3; 	2/ �E.	2; i	1; 	3/

CE.	2; i	3; 	1/CE.	3; i	1; 	2/ �E.	3; i	2; 	1//

� 1
2
.E.	1; 	2; i	3/ �E.	1; 	3; i	2/ �E.	2; 	1; i	3/

CE.	2; 	3; i	1/CE.	3; 	1; i	2/ �E.	3; 	2; i	1//

D 2E.i	1; 	2; 	3/C 2E.	1; i	2; 	3/C 2E.	1; 	2; i	3/

� 1
2
.2E.	1; i	2; 	3/C 2E.	1; 	2; i	3/C 2E.i	1; 	2; 	3//

� 1
2
.2E.	1; 	2; i	3/C 2E.	1; i	2; 	3/C 2E.i	1; 	2; 	3//

D 0:

Using Lemma 1 we have
s.ı.ˇ// D 0:

Recalling equation (20) we can conclude that equation (18) holds.
This concludes the first step. For the second step we need to consider the integrality

equation (19) which reads

H�2;�3
.	1/C ˇ�2;�3

� ˇ�1C�2;�3
C ˇ�1;�2C�3

� ˇ�1;�2
2 Z: (25)

for all 	1; 	2; 	3 2 ƒ. Let
ˇ D ˇ0 C iˇ00

be the decomposition of ˇ into real and imaginary parts. Consider the decomposition
of equation (25) into real and imaginary parts. In order to satisfy the imaginary part
we need

.ıˇ00/�1;�2;�3
C l.	1; 	2; 	3/ D 0 (26)
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or
ˇ00

�2;�3
� ˇ00

�1C�2;�3
C ˇ00

�1;�2C�3
� ˇ00

�1;�2
C l.	1; 	2; 	3/ D 0;

where l is defined in equation (23).
Before we find ˇ00, we record a general formula which will be useful to us in many

situations. If

��1;�2
D E.x1	1 C x2	2; x3	1 C x4	2; x5	1 C x6	2/

for some coefficients xi 2 C, then

.ı�/�1;�2;�3
D 2E.x1	1; .x5 � x6/	2; x4	3/C 2E.x3	1; .x6 � x5/	2; x2	3/

C 2E.x1	1; .x4 � x3/	2; x6	3/C 2E.x5	1; .x3 � x4/	2; x2	3/

C 2E.x3	1; .x1 � x2/	2; x6	3/C 2E.x5	1; .x2 � x1/	2; x4	3/:

(27)

Using equation (27) it is easily seen that equation (26) can be solved by

ˇ00
�1;�2

D 1
16
.E.i	1; 	2; 	1/ �E.	2; i.	1 C 	2/; 	1//: (28)

Taking the real part of equation (25) leaves us with

.ıˇ0/�1;�2;�3
C k.	1; 	2; 	3/ D 0 (29)

or

ˇ0
�2;�3

� ˇ0
�1C�2;�3

C ˇ0
�1;�2C�3

� ˇ0
�1;�2

C k.	1; 	2; 	3/ 2 Z;

where k is defined in equation (22). We can see that such a ˇ0 always exists by the
following argument. The short exact sequence

0 ! Z ! R ! U.1/ ! 1

leads to the following commutative diagram of short exact sequences, where the
vertical arrows are isomorphisms:

0 �� H 3.ƒ;Z/

s

��

�� H 3.ƒ;R/

s

��

�� H 3.ƒ;U.1//

s

��

�� 1

0 �� Alt3.ƒ;Z/ �� Alt3.ƒ;R/ �� Alt3.ƒ;U.1// �� 1.

Here the map s on the groups involving U.1/ is induced from the first two vertical
maps.

Observe that k 2 Z3.ƒ;R/ by linearity. Since k skew-symmetrizes to the integral
element

s.k/ D E 2 Alt3.ƒ;Z/ � Alt3.ƒ;R/;
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it corresponds to an integral cohomology class. Hence k is equivalent via an element
of B3.ƒ;R/ in Z3.ƒ;R/ to an element of Z3.ƒ;Z/. Hence the image of k in
Z3.ƒ;U.1// is trivializable by an element of B3.ƒ;U.1//. This precisely says that
ˇ0 exists. For an explicit construction see Appendix 1. The role of ˇ0 is similar to the
role of the semi-character # in Theorem 1. The solution for ˇ0 corresponding to E
appears in equation (A.2). Finally, we can conclude that given an elementE 2 A.ƒ/,
the element ˆE defined by

ˆE
�1;�2

.v/ D exp.‚E
�1;�2

.v// D exp.H�1;�2
.v/C ˇ0

�1;�2
C iˇ00

�1;�2
/ (30)

of Map.ƒ � ƒ;O�.V // lies in Z2.ƒ;O�.V // and the skew-symmetrization
s.@‚E / 2 Alt3.ƒ;Z/ of @‚E 2 Z3.ƒ;Z/ agrees with E. In the following two
definitions E is an element of A.ƒ/ which was defined in Definition 3 and B is an
element of

^2 xV _.

Definition 4. Suppose that GE is the gerbe on X corresponding via (B.12) toˆE 2
Z2.ƒ;O�.V //, which was defined in equation (30).

Definition 5. Let GB be the gerbe on X corresponding via (B.12) to the constant
cocycle ˆB 2 Z2.ƒ;O�.V // given by

ˆB
�1;�2

.v/ D exp.1
2
B.	1; 	2//:

We have a functor

F W Œ^2 xV _=Alt2.ƒ;Z/� ! Gerbes.X/

defined as follows: to every object B 2 ^2 xV _ we assign the gerbe GB . To any
morphism 
 2 Alt2.ƒ;Z/ mapping B1 to B2, in other words B2 � B1 D 
H , we
assign the isomorphism

F.
IB1; B2/ W GB1
! GB2

determined in the sense of (B.13) by the cocycle in C 1.ƒ;O�.V // given by the
same formula as the cocycle in equation (48). The functor F here is considered as a
functor between 2-categories where the 2-morphisms on the left-hand side are only
the identities.

Theorem 3. There is a functor (of 2-categories)

ah W Œ^2 xV _=Alt2.ƒ;Z/� � A.ƒ/ ! Gerbes.X/

such that, for any object .B;E/, the gerbe ah.B;E/ has topological class corre-
sponding to E and the cohomology class Œah.B; 0/� is the image of B 2 H 2.X;O/

insideH 2.X;O�/. The induced map

.
^2 xV _=Alt2.ƒ;Z/H / � A.ƒ/ ! H 2.X;O�/
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is an isomorphismof groups, where the group structure on the left-hand side is induced
from the groups

^2 xV _ and Alt3.ƒ;Z/ and on the right-hand side the group structure
comes from the monoidal structure on gerbes.

Proof. On the level of objects, the map is

.B;E/ 7! F.B/˝ GE :

On the level of morphisms, we have

Hom..B1; E/; .B2; E// ! Hom.F.B1/˝ GE ; F .B2/˝ GE /

given by


 7! F.
IB1; B2/˝ id:

The required properties have all been proven above.

As groups we have

.
^2 xV _=Alt2.ƒ;Z/H / D .Alt2.ƒ;R/=.Alt2.ƒ;R/.1;1/ C Alt2.ƒ;Z///:

Remark 3. Notice that for every gerbe we have constructed a cocycle representative
based on the choice ofB andE, but there is no unique choice because of the kernel of
the Hodge projection acting on B . We name these cocycle representatives ˆ.B;E/ 2
Z2.ƒ;O�.V //.

Definition 6. The cocycle ˆ.B;E/ D ˆBˆE is defined by

ˆ
.B;E/

�1;�2
.v/ D exp.1

2
B.	1; 	2/CH�1;�2

.v/C ˇ0
�1;�2

C iˇ00
�1;�2

/;

where H is defined in (21), ˇ0 is defined in (A.2), and ˇ00 is defined in (28).

7. A groupoid in sheaves of sets

The cocycle we have constructed ˆ D ˆ.B;E/ W ƒ � ƒ ! O�.V / is normalized in
the sense that ˆ�1;0 D ˆ0;�2

D 1 for all 	1; 	2 2 ƒ. It is easy to see that any such
cocycle defines a groupoid with structure maps

V �ƒ � C�

s

��

t

��
V ,e�� (31)

.V �ƒ � C�/t �V s.V �ƒ � C�/ m�! V
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and
.V �ƒ � C�/ 	�! .V �ƒ � C�/:

Here s is given by
s.v; 	; z/ D v;

t is given by
t .v; 	; z/ D v C 	;

and e is given by
e.v/ D .v; 0; 1/:

The inverse map is

�ˆ.v; 	; z/ D .v C 	;�	; z�1ˆ�1
�;��.v//

and the multiplication map is given by

mˆ..v1; 	1; z1/; .v2 D v1 C 	1; 	2; z2// D .v1; 	1 C 	2; z1z2ˆ�1;�2
.v1//:

Suppose that we have a groupoid with objects G0 and morphisms G1 in the
category of complex analytic spaces, and maps from the source and target to a complex
analytic space Y such that the following diagram commutes.

G1

���
��

��
��

��
��

��

s

		

t




G0

e��

����
��
��
��
��
��
�

Y

Now the sheaves of sections of the maps to Y form a groupoid in the category of
sheaves of sets on Y . The source, target, multiplication, and identity maps are all
the obvious ones induced on sheaves of sections. Let X D V=ƒ be a complex torus
and denote by V

p
X the sheaf on X given by sections of the map p W V ! X . Let ƒX

be the constant sheaf of groups on X with fiber ƒ. Starting with our groupoid in
equation (31) we get the following groupoid in the category of sheaves of sets on X :

V
p
X �ƒX � O�

X

s

��

t


V

p
X

e�� : (32)
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Recall that the action of a groupoid with objects G0 and morphisms G1 on a set
T is a map a0 W T ! G0 and a map a1 W G1s �G0 a0

T ! T compatible with the
composition map m W G1s �G0 tG1 ! G1. It is simply transitive whenever given
t1; t2 2 T there is a unique � 2 G1 such that s.�/ D a0.t1/ and a1.�; t1/ D t2.
Given a groupoid in sheaves of sets on X , a torsor for this groupoid is a sheaf of
sets on X along with an action of the groupoid in sheaves which is locally simply
transitive. Given a groupoid in the category of sheaves of sets over X , the category
of torsors on any open set forms a groupoid.

Denote the resulting stack on X of torsors for (32) by G.ˆ/. We claim that
G.ˆ/ is a gerbe and represents the class of ˆ in cohomology H 2.ƒ;O.V /�/ Š
H 2.X;O�/. In order to see this we can write down an explicit isomorphism from
the gerbe Gˆ associated to ˆ in Appendix 2, (B.11), to the torsors G.ˆ/ for (32).
Given an open set U � X D V=ƒ, Gˆ associates the groupoid whose objects are
pairs of an O�-torsor „ on the principal ƒ bundle p�1.U / ! U and isomorphisms

G� W 	�„ ! „

satisfying an obvious compatibility with ˆ. We can actually see that „ ! U is a
torsor over the groupoid in sheaves (32) restricted to U . There is an obvious map a0

which takes sections of „ over U to sections of p�1.U / over U . Now if q is a local
section of „ over U covering a local section & of p�1.U / over U , in other words
a0.q/ D & , then the triple .&; 	; f / of sections over U acts on q by taking it to

a1..&; 	; f /I q/ D f G�.	�q/:

In order to check that this is indeed an action, observe that for any section q of„ ! X

we have

a1..&; 	1; f1/I a1.&; 	2; f2I q// D a1..&; 	1; f1/If2G�2
.	2�q//

D f1f2G�1
.	1�G�2

/.	1 C 	2/�q
D f1f2G�1C�2

.ˆ�1;�2
.&//.	1 C 	2/�q

D a1.&; 	1 C 	2; f1f2.ˆ�1;�2
.&//I q/

D a1.mˆ..&; 	1; f1/; .& C 	1; 	2; f2//I q/;
as needed. We conclude that p�„ is a torsor for (32) for every „ in Gˆ.U /. This
sets up an isomorphism Gˆ ! G.ˆ/.

8. The interaction with the group structure

LetS be a complex analytic space. LetF be a contravariant functor from the category
of complex analytic spaces X over S with section x to abelian groups. Consider any
collection of complex analytic spaces Xi over S with sections xi . Any fiber product
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of these over S will be considered a complex analytic space over S with the obvious
section. We have the inclusion morphisms

�n
i W X0 �S � � � �S

cXi �S � � � �S Xn ! X0 �S � � � �S Xn

defined by using the section xi W S ! Xi in the i�th location. Applying the con-
travariant functor F , we get group homomorphisms

F.�; n/ D
nQ

iD0

F.�n
i / W F.X0 �S � � � �S Xn/ ! F.X0 �S � � � �S

cXi �S � � � �S Xn/:

Following [18], F is said to be of order n if the group homomorphisms F.�; n/ is
injective. For n D 0 such a F will be called constant, for n D 1 such a F will be
called linear, for n D 2 quadratic, and for n D 3 cubic. It is easy to see that if F is
of order n then it is also of order m for all m > n.

Let us say that a map f W X ! S satisfies condition Cp if for every point s 2 S
there is an arbitrarily small contractible neighborhood U containing s such that (i)
the inclusion map of the fiber f �1.s/ ,! f �1.U / induces an isomorphism

Hp.f �1.U /;Z/ Š Hp.f �1.s/;Z/ (33)

and (ii) the natural map of restricting to the fibers

Hp.f �1.U /;Z/ ! H 0.U;Rpf�Z/ (34)

is an isomorphism.

Lemma 3. If f W X ! S satisfies conditions Cp and CpC1 then an element of
H 0.S;Rpf�O�/ is trivial if and only if it is trivial when restricted to each fiber.

Proof. We will use the exact sequence

Rpf�Z ! Rpf�O ! Rpf�O� ! RpC1f�Z:

Choose any � 2 H 0.S;Rpf�O�/ and assume that it is trivial when restricted to each
fiber. That is to say that its image �s 2 Hp.f �1.s/;O�/ is trivial for each s 2 S .
If we fix s 2 S arbitrary, it suffices to produce a neighborhood U of s on which �
trivializes. Chose U 0 contractible containing s such that both the vertical and the
horizontal maps on the right-hand side of the commutative diagram

H 0.U 0; Rpf�O�/

��

�� H 0.U 0; RpC1f�Z/

��

HpC1.f �1.U 0/;Z/��

Hp.f �1.s/;O�/ �� HpC1.f �1.s/;Z/
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are isomorphisms. This diagram then shows that we can pick a preimage Q� 2
H 0.U 0; Rpf�O/ to � jU 0 . The image Q�s of Q� in each fiber Hp.f �1.s/;O/ actu-
ally comes from an element of Hp.f �1.s/;Z/. Chose a contractible neighborhood
U of s inside U 0 such that both the vertical and the horizontal maps on the left-hand
side of the diagram

Hp.f �1.U /;Z/ �� H 0.U;Rpf�Z/

��

�� H 0.U;RpC1f�O/

��
Hp.f �1.s/;Z/ �� HpC1.f �1.s/;O/

are isomorphisms. This shows finally that Q� jU comes from H 0.U;Rpf�Z/ and
hence that � is trivial when restricted to U . Hence � is trivial.

Lemma 4. Let f W X ! S be any proper analytic map of complex analytic spaces.
Then an element of H 0.S;Rpf�O�/ is trivial if and only if it is trivial when restricted
to each fiber.

Proof. This follows immediately from two theorems on constructible sheaves of
abelian groups with respect to an analytic Whitney stratification of a complex an-
alytic space. The first (Theorem 4.1.5 (i), (b), [10]) says that the sheaves Rpf�Z
(the push-forwards of the constructible sheaf Z under a proper analytic map) are
all constructible. The second (Theorem 4.1.9) [10]) says that for any constructible
sheaf � ! M on a complex analytic space M , and any point m 2 M , there ex-
ists arbitrarily small contractible neighborhoods U with m 2 U � M and such
that (i) Hp.U; �/ D 0 for all p > 0 and (ii) the inclusion map of m into U in-
duces an isomorphism H 0.U; �/ Š �m. Now by (i) the Leray spectral sequence for
Hp.f �1.U /;Z/ collapses, and we get the isomorphisms in (34). Finally, we use
the fact that .Rpf�Z/s Š Hp.f �1.s/;Z/ for any s 2 S and therefore (ii) imply the
isomorphism in (33). Therefore the topological constraintsCp andCpC1 are satisfied
by f , and we are done by Lemma 3.

Theorem 4. The functor F.X/ D H 2.X;O�/ is cubic when restricted to the full
subcategory of complex analytic spaces X , with a proper map f W X ! S with
section satisfying f�O D O. On this same category,H 1.X;O�/ is quadratic.

Notice that condition f�O D O follows if all fibers are reducible. We remark
that this theorem was inspired by a similar result in a paper [16] of R. Hoobler.
There he proves in an algebraic setting (where gerbes are topologically trivial) that
the analogous functor is quadratic. When our gerbes are topologically trivial along
the fibers, our results agree with his. It is possible that our results could be used to
extend the validity of his results to other cases in the algebraic setting over C. Before
proving the theorem, we will need a lemma proving it in the special case that S is a
point.
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Lemma 5. It follows from the Künneth decompositions for Z (see [10]) and O (see the
section on Grauert’s direct image theorem in Demailly’s book [9]) that for compact
complex analytic spaces in the absolute setting (S is a point) the functor

X 7! Hp.X;Z/=.tors.Hp.X;Z//

is cubic for p D 2, 3 and quadratic for p D 2. Similarly, the functor

X 7! H q.X;O/

is both quadratic and cubic for q D 1, 2. Therefore the functor X 7! H 1.X;O�/ is
quadratic, and the functor X 7! H 2.X;O�/ is cubic.

Proof of Theorem 4. Let f W Y ! S be a morphism of complex analytic spaces
satisfying f�O D O such that f has a section. For each i the pullback maps

f � W H i .S;O�/ ! H i .Y;O�/

have a left inverse provided by the pullback with respect to the section. In particular
they are injective maps of abelian groups. A sector of the E2-term of the spectral
sequence looks as follows where we have identified f�O�

X with O�
S .

p D 0 p D 1 p D 2

q D 2 H 0.S;R2f�O�/ H 1.S;R2f�O�/ H 2.S;R2f�O�/
q D 1 H 0.S;R1f�O�/ H 1.S;R1f�O�/ H 2.S;R1f�O�/
q D 0 H 0.S;O�/ H 1.S;O�/ H 2.S;O�/

The injectivity of the pullback maps imply that all differentials landing in the
bottom row must be zero and hence the bottom row does not change from page to
page. The same sector on the E1 page looks as follows.

p D 0 p D 1 p D 2

q D 2 ker.d2/ � �
q D 1 H 0.S;R1f�O�/ H 1.S;R1f�O�/ H 2.S;R1f�O�/=im.d2/

q D 0 H 0.S;O�/ H 1.S;O�/ H 2.S;O�/

We know that there is a filtration F iH 2.Y;O�/ such that the p C q D 2 terms
are identified with the associated graded groups. Therefore

F 0H 2.Y;O�/ D H 2.S;O�/;
F 2H 2.Y;O�/ D H 2.Y;O�/;

F 2H 2.Y;O�/=F 1H 2.Y;O�/ D kerŒd2 W H 0.S;R2f�O�/ ! H 2.S;R1f�O�/�;
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and there is an exact sequence

1 ! H 2.S;O�/ ! F 1H 2.Y;O�/ ! H 1.S;R1f�O�/ ! 1:

The section gives a mapH 2.Y;O�/ ! H 2.S;O�/ and, by restriction to the middle
term, can be used to split this sequence. Thus we have

H 2.S;O�/˚H 1.S;R1f�O�/ � H 2.Y;O�/;

where the quotient

Q.Y; f / D H 2.Y;O�/=.H 2.S;O�/˚H 1.S;R1f�O�// (35)

lies in H 0.S;R2f�O�/. Let us start with a class in

H 2.X1 �S X2 �S X3 �S X4;O
�/

which is trivial when restricted to each of the ’slices’Xi �S Xj �S Xk for 1 � i <

j < k � 4. We need to show that this class is trivial. Let

G 2 H 0.S;R2p1;2;3;4� O�/

be the restriction of the class to the fibers. Clearly, the restriction of G to each slice
of each fiber of

p1;2;3;4 W X1 �S X2 �S X3 �S X4 ! S

is trivial. Therefore by Lemma 4 and the fact that our theorem already holds for the
case that S is a point (see Lemma 5), we see thatG is trivial. So we have concluded so
far that the functor X 7! Q.X; f / is cubic. It therefore will suffice to prove that the
functorX 7! H 2.S;O�/˚H 1.S;R1f�O�/ is cubic. The factorX 7! H 2.S;O�/
is constant and hence cubic. It will therefore suffice to show that the functor

X 7! H 1.S;R1f�O�/

is quadratic, since a quadratic functor is cubic. Therefore we consider now the
projection

p1;2;3 W X1 �S X2 �S X3 ! S:

Suppose therefore that we have an element

G 2 H 1.S;R1p1;2;3� O�/

which is trivial when restricted to each of the spaces Xi �S Xj for 1 � i < j � 3.
We need to show that G is trivial.

We will use the notation

pi W Xi ! S;

pi;j W Xi �S Xj ! S;

p
i;j

k
W Xi �S Xj ! Xk;

pi;j;k
n W Xi �S Xj �S Xk ! Xn
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and

pi;j;k
n;m W Xi �S Xj �S Xk ! Xn �S Xm

to denote the projections. We can pick an open cover fU˛g of S such that we can
representG by a Čech cocycle, in other words by a collection of relative line bundles
on .p1;2;3/�1.U˛/. In other words, we pick

L˛;ˇ 2 H 0.U˛;ˇ ; R
1p1;2;3� O�/

satisfying

L˛;ˇ ˝ Lˇ;� D L˛;� ;

which representsG. For each i , j such that 1 � i < j � 3we know that there exists

M i;j
˛ 2 H 0.U˛; R

1pi;j� O�/
such that the restrictions

L
i;j

˛;ˇ
D L˛;ˇ jXi �S Xj

of L˛;ˇ to Xi �S Xj satisfy

L
i;j

˛;ˇ
D ..M i;j

˛ /˝ .M
i;j

ˇ
/
�1
/jU˛;ˇ

: (36)

Define

N 1
˛ D M 1;2

˛ jX1
2 H 0.U˛; R

1p1�O�/;
P 1

˛ D M 1;3
˛ jX1

2 H 0.U˛; R
1p1�O�/;

N 2
˛ D M 1;2

˛ jX2
2 H 0.U˛; R

1p2�O�/;
Q2

˛ D M 2;3
˛ jX2

2 H 0.U˛; R
1p2�O�/;

P 3
˛ D M 1;3

˛ jX3
2 H 0.U˛; R

1p3�O�/
and

Q3
˛ D M 2;3

˛ jX3
2 H 0.U˛; R

1p3�O�/:

Then we compute

..N 1
˛ /˝ .P 1

˛ /
�1/jU˛;ˇ

˝ ..N 1
ˇ /

�1 ˝ .P 1
ˇ //U˛;ˇ

D .L
1;2
˛;ˇ
/jX1

˝ .L
1;3
˛;ˇ
/�1jX1

D O
.p1/

�1
.U˛;ˇ/

;

..N 2
˛ /˝ .Q2

˛/
�1/jU˛;ˇ

˝ ..N 2
ˇ /

�1 ˝ .Q2
ˇ //jU˛;ˇ

D .L
1;2
˛;ˇ
/jX2

˝ .L
2;3
˛;ˇ
/�1jX2

D O
.p2/

�1
.U˛;ˇ/

;

and

..P 3
˛ /˝ .Q3

˛/
�1/jU˛;ˇ

˝ ..P 3
ˇ /

�1 ˝ .Q3
ˇ //jU˛;ˇ

D .L
1;3
˛;ˇ
/jX3

˝ .L
2;3
˛;ˇ
/�1jX3

D O
.p3/

�1
.U˛;ˇ/

:
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Define
T 1 2 H 0.S;R1p1�O�/

to be the element that restricts on every U˛ to .N 1
˛ /˝ .P 1

˛ /
�1, define

T 2 2 H 0.S;R1p2�O�/

to be the element that restricts on every U˛ to .Q2
˛/˝ .N 2

˛ /
�1, and define

T 3 2 H 0.S;R1p3�O�/

to be the element that restricts on every U˛ to .P 3
˛ /˝ .Q3

˛/
�1.

Then we have

M 1;2
˛ jX1

D M 1;3
˛ jX1

˝ T 1jU˛
;

M 2;3
˛ jX2

D M 1;2
˛ jX2

˝ T 2jU˛

and

M 1;3
˛ jX3

D M 2;3
˛ jX3

˝ T 3jU˛
:

Define

W 1;3
˛ D M 1;3

˛ ˝ .p
1;3
1 /

�
T 1jU˛

;

W 1;2
˛ D M 1;2

˛ ˝ .p
1;2
2 /

�
T 2jU˛

and

W 2;3
˛ D M 2;3

˛ ˝ .p
2;3
3 /

�
T 3jU˛

:

Then we have (just as in equation (36))

L
i;j

˛;ˇ
D ..W i;j

˛ /˝ .W
i;j

ˇ
/
�1
/jU˛;ˇ

: (37)

Also the W terms agree on their common factors and so we can define

W 1
˛ ´ W 1;2

˛ jX1
D W 1;3

˛ jX1
;

W 2
˛ ´ W 1;2

˛ jX2
D W 2;3

˛ jX2

and

W 3
˛ ´ W 2;3

˛ jX3
D W 1;3

˛ jX3
:

Finally, define M˛ 2 H 0.U˛; R
1p

1;2;3� O�/ by

M˛ D..p1;2;3
1;2 /

�
W 1;2

˛ /˝ ..p
1;2;3
1;3 /

�
W 1;3

˛ /˝ ..p
1;2;3
2;3 /

�
W 2;3

˛ /

˝ ..p
1;2;3
1 /

�
W 1

˛ /
�1 ˝ ..p

1;2;3
2 /

�
W 2

˛ /
�1 ˝ ..p

1;2;3
3 /

�
W 3

˛ /
�1:

(38)

It is easily checked that
M˛jXi �S Xj

D W i;j;
˛ :
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We want to prove that
M˛ ˝M�1

ˇ D L˛;ˇ : (39)

First of all using Lemma 3 it suffices to prove equation (39) after restricting to each
fiber

.p1;2;3/�1.s/ D .p1/�1.s/ � .p2/�1.s/ � .p3/�1.s/:

In fact, using Lemma 5 it suffices to prove equation (39) after restricting to each slice
of each fiber, the slices being .pi /�1.s/ � .pj /�1.s/ for 1 � i < j � 3. Since the
restriction of M˛ to .pi /�1.s/ � .pj /�1.s/ is nothing but W i;j

˛ js , we are done in
view of equation (37), which implies that

.W i;j
˛ js/˝ .W

i;j

ˇ
js/�1 D L

i;j

˛;ˇ
js:

Therefore G is trivial, and so we are done. The proof that X 7! H 1.X;O�/ is
quadratic uses precisely the same method as the proof that X 7! Q.X; f / is cubic.

From this proof we get the following corollary.

Corollary 1. Let F be the contravariant functor from complex analytic spaces
f W X ! S with section to abelian groups given by F.X/ D H 2.X;O�/. Then
there is short exact sequence of functors

1 ! G ! F ! G3 ! 1

and a decomposition

G D G0 ˚G2

such that G0 is constant, G2 is quadratic and G3 is cubic. Furthermore, G3 fits into
an exact sequence

1 ! K2 ! G3 ! K3 ! 1;

where K2 is quadratic and K3 is cubic. We also observe that G2 admits a filtration

1 ! H1 ! G2 ! H2 ! 1;

whereH1 is linear andH2 is quadratic.

Proof. The image of the natural mapH 2.X;O�/ ! H 0.S;R2f�O�/ is denoted by
G3.X/. Let G be the kernel of the map to F ! G3, G0.X/ D H 2.S;O�/, and
G2.X/ D H 1.S;R1f�O�/. Let K2.X/ and K3.X/ be the images of the natural
maps

H 0.S;R2f�O/ \G3.X/ ! G3.X/ ! H 0.S;R3f�Z/:

Let H1.X/ and H2.X/ be the images of the natural maps

H 1.S;R1f�O/ ! H 1.S;R1f�O�/ ! H 1.S;R2f�Z/:



438 O. Ben-Bassat

LetA be an complex analytic abelian group space overS . We will always consider
its section to be the identity of the relative group structure over S . Let

An D A.0/ �S � � � �S A.n�1/

denote the n-fold fiber product where each A.j / D A. We will say that A satisfies
the generalized theorem of the n-cube with respect to a functor F as in the above
corollary if the map

F.�n
i / W F.An/ ! F.An�1/

is injective. In other words A satisfies the generalized theorem of the n-cube with
respect to F precisely if the functor F is of order n� 1 when restricted to the object
A and its powers. Following tradition, we call the generalized theorem of the 1-cube
the generalized theorem of the segment, the generalized theorem of the 2-cube will be
called the generalized theorem of the square, the generalized theorem of the 3-cube
will be called the generalized theorem of the cube, and the generalized theorem of the
4-cube will be called the generalized theorem of the hyper-cube. Theorem 4 shows
that complex tori A ! S in the relative sense satisfy the generalized theorem of the
hyper-cube with respect to the functor F.A/ D H 2.A;O�/. This result parallels a
result in [16] and can be used in conjunction with Corollary 1 to show that any torsion
gerbe on A is representable by an Azumaya Algebra [5], [13], [16].

Let us derive some consequences of Theorem 4. Let A be an complex analytic
abelian group space over S . For any four maps fi W Xi ! A over S such that
fi jS is the identity section of A we see that there is an isomorphism of gerbes on
X1 �S X2 �S X3 �S X4,

..f1 C f2 C f3 C f4/
�G/˝ .

Q
1�i<j �4

.fi C fj /
�G/

Š .
Q

1�i<j <k�4

.fi C fj C fk/
�G/˝ .

Q
1�i�4

f �
i G/;

(40)

for the pullbacks of a gerbe G on A under of the various maps

X1 �S X2 �S X3 �S X4 ! A:

Indeed a simple calculation shows that the left and right sides of (40) are isomorphic
after restriction to any three out of the four spaces. Let a, b, c be sections of A ! S

and X1 D A, X2 D X3 D X4 D S , let f1 be the identity map, and let f2, f3, f4

be the sections a, b, and c, respectively. Now as a consequence of (40), we have the
following corollary of Theorem 4.

Corollary 2. For any gerbe G on an complex analytic abelian group space A ! S

and any sections a, b, c of A ! S we have

t�aCbCcG Š G ˝ t�a G�1 ˝ t�b G�1 ˝ t�c G�1 ˝ t�aCbG ˝ t�bCcG ˝ t�aCcG: (41)
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Similarly, if G is topologically trivial on the fibers, there are equations analogous
to (40) and (41) involving three spaces Xi or two sections of A, respectively.

LetX be a complex torus and let G be a gerbe onX . If n is any integer, we denote
by n the corresponding isogeny X ! X . We would like to say something about the
pullback n�G . Our Appell–Humbert theorem shows that G is a gerbe isomorphic to
that given (B.12) by a cocycle ˆ.B;E/ 2 Z2.ƒ;O�.V // described in Definition 6.
An easy computation shows that

.�1/�ˆ.B;E/ D ˆ.B;�E/ and n�ˆ.B;E/ D ˆ.n2B;n3E/:

Therefore we have the following corollary to Remark 3.

Corollary 3. For any integer n and any gerbe G on a complex torus X , there is an
isomorphism

n�G Š .G. n2Cn3

2 //˝ ..�1/�G. n2�n3

2 //:

This reduces to
n�G Š G.n2/

in the topologically trivial case. The same formulas hold for G replaced by an
element in Q.A;$/; see (35) for $ W A ! S a complex analytic abelian group
space. There the topological triviality option is of course replaced by fiber-wise
topological triviality. One can use an induction argument to see that this is consistent
with (40) in the case that all fi are replaced by isogenies.

9. The universal gerbe

In this section we find a complex analytic stack which serves as a fine moduli
stack for topologically trivial holomorphic gerbes on a complex torus. This is
analogous to Pic0.X/ D xV _=ƒ_ for topologically trivial line bundles. The short
exact sequence (1) suggests that this stack could be ŒH 2.X;O/=H 2.X;Z/�. Ac-
cepting this suggestion, our task becomes to find a universal gerbe P on X �
ŒH 2.X;O/=H 2.X;Z/�. We conclude this section by calculating the topological type
of this universal gerbe; for some general background material on gerbes over stacks
see [14], [20], [2] and the references therein. In order to do this, we parameterize this
stack as Œ

^2 xV _=Alt2.ƒ;Z/�, where Alt2.ƒ;Z/ acts by its image subgroup

Alt2.ƒ;Z/H � ^2 xV _

under the Hodge projection

H 2.X;Z/ � H 2.X;R/ ! H 2.X;C/ ! H 2.X;O/ D H 0;2.X/
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or

Alt2.ƒ;Z/ � Alt2.ƒ;R/ ! Alt2.ƒ;C/ ! ^2 xV _:

Explicitly, for v1; v2 2 V , the Hodge projection map takes ! to !H where

!H .v1; v2/ D 1
4
.!.v1; v2/ � !.iv1; iv2/C i!.iv1; v2/C i!.v1; iv2//: (42)

In contrast to the situation in Section 1, the image of Alt2.ƒ;Z/might not be closed
inside

^2 xV _ and cannot be described by equations.
We will describe a gerbe on the stack

V=ƒ � Œ^2 xV _=Alt2.ƒ;Z/� D Œ.V � ^2 xV _/=.ƒ � Alt2.ƒ;Z//�

by writing down an element

‰ 2 Z2.ƒ � Alt2.ƒ;Z/;O�.V � ^2 xV _//

and associating to it a gerbe via the method explained inAppendix 2. In fact all gerbes
on this stack come about from this method, see Remark 1 and Appendix 2. We will
then show that restricting the gerbe to a point of the stack results in a gerbe whose
associated class in H 2.ƒ;O�.V // equals the cohomology class of the image of the
point under � .

We define below a map

‰ W .ƒ � Alt2.ƒ;Z//2 ! O�.V � ^2 xV _/:

Given elements v 2 V , B 2 ^2 xV _, 	1; 	2 2 ƒ and 
1; 
2 2 Alt2.ƒ;Z/ let

‰.�1;
1/;.�2;
2/.v; B/ D exp.1
2
.B C 
H

1 C 
H
2 /.	1; 	2/C 1

2

H

2 .v; 	1/

� i
4
.
2.iv; 	1/ � 
2.v; i	1//

C 1
4
.
2.v; 	1/C 
2.iv; i	1//

� i
8
.
2.i	1; 	1/ � 
2.	1; i	1//

C 1
2
�.
2/.	1; 	1//:

(43)

The map � is defined in (6). It is easily seen that‰.�1;
1/;.�2;
2/ is a holomorphic
function on V � ^2 xV _ for every value of 	1, 	2, 
1, 
2. Lest this equation looks
too mysterious, let us notice that the terms in the second, third, and fourth line have
the same form as part of the canonical factor of automorphy for line bundles where
the form of type .1; 1/ has become

1
2
.
2.v1; v2/C 
2.iv1; iv2//;

although this is not integer-valued on the lattice. We need to show that the boundary

.ı‰/.�1;
1/;.�2;
2/;.�3;
3/.v; B/

D .‰.�2;
2/;.�3;
3/.v C 	1; B C 
H
1 //.‰.�1C�2;
1C
2/;.�3;
3/.v; B//

�1

.‰.�1;
1/;.�2C�3;
2C
3/.v; B//.‰.�1;
1/;.�2;
2/.v; B//
�1
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is trivial. The terms on the first line of (43) have boundary

exp.1
2

H

3 .	1; 	2/C 1
2

H

3 .	1; 	2//:

The terms on the second, third, and fourth line of (43) have boundary

exp.1
4
.
3.	1; 	2/C 
3.i	1; i	2///:

The boundary term on the last line of (43) is

exp.�1
2
.�.
3/.	1; 	2/C �.
3/.	2; 	1/// D exp.�1

2
.s�.
3//.	1; 	2//

D exp.1
2

3.	1; 	2//;

where we have used exp.1
2
Z/ � f˙1g. Therefore using (42)

.ı‰/.�1;
1/;.�2;
2/;.�3;
3/.v; B/

D exp.1
2

H

3 .	1; 	2/C 1
2

H

3 .	1; 	2/C 1
4
.
3.	1; 	2/C 
3.i	1; i	2//

C 1
2

3.	1; 	2//

D exp.1
4
.
3.	1; 	2/ � 
3.i	1; i	2//C 1

4
.
3.	1; 	2/C 
3.i	1; i	2//

C 1
2

3.	1; 	2//

D exp.
3.	1; 	2//

D 1:

Definition 7. Let P be the gerbe onX�ŒH 2.X;O/=H 2.X;Z/� corresponding under
(B.12) to ‰.

Restricting the gerbe P to X � ŒB� gives a gerbe on X isomorphic to that given
by the cocycle in Z2.ƒ;O�.V //,

exp.1
2
B.	1; 	2//;

whose equivalence class is the exponential of

B 2 ^2 xV _ Š H 2.X;O/ ! H 2.X;O�/:

Theorem 5. The gerbe P on X � ŒH 2.X � O/=H 2.X;Z/� has the property that
for any connected complex analytic space T and any gerbe G ! X � T which is
topologically trivial on each fiber Xt , there is a holomorphic map

f W T ! ŒH 2.X;O/=H 2.X;Z/�

such that

G Š ..1; f /�P/˝ C;

where C is a gerbe trivial on each fiber.
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Notice that we have already proven this in the case that T is a point.

Proof. Let UT be the universal cover of T . We will denote by

� W X � T ! T; Q� W X � UT ! UT and QQ� W X � �1.T / � UT ! �1.T / � UT

the natural projections. Let

G 2 H 0.UT ; .R
2 Q��O�/0/

be defined by pulling back G to X � UT and then restricting it to the fibers of the
projection to UT . Define

.R2��O�/0 D imŒR2��O ! R2��O�� D kerŒR2��O� ! R3��Z�

and

.R2 Q��O�/0 D imŒR2 Q��O ! R2 Q��O�� D kerŒR2 Q��O� ! R3 Q��Z�:

We now consider the short exact sequence

1 ! TLX ! R2 Q��O ! .R2 Q��O�/0 ! 1

of sheaves onUT , where TLX is the transcendental lattice ofX thought of as a constant
sheaf on UT . The obstruction to lifting our element G 2 H 0.UT ; .R

2 Q��O�/0/
to H 0.UT ; R

2 Q��O/ lives in H 1.UT ;TLX / D 0, which makes such a lift always
possible. The term

H 0.UT ; R
2 Q��O/ D Hol.UT ;

^2 xV _/

represents the holomorphic maps from UT to
^2 xV _. Define

fG;C W UT ! ^2 xV _

to be any lift of G.
We can calculate the group cohomology of �1.T / acting on the global sections

of any sheaf of groups � on UT by taking the homology groups of the sequence

H 0.UT ; �/ ! H 0.�1.T / � UT ; �/ ! H 0.�1.T / � �1.T / � UT ; �/ ! � � � :

We can combine these with the long exact sequences induced by the short exact
sequence of sheaves on UT :

0 ! TLX ! R2 Q��O ! .R2 Q��O�/0 ! 1:
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The result is a commutative diagram with exact columns:

H0.T; .R2��O�/0/
� � �� H0.UT ; .R

2 Q��O�/0/
�� H0.�1.T / � UT ; .R

2 QQ��O�/0/

H0.T;
^2 xV _ ˝ O/

��

� � �� H0.UT ;
^2 xV _ ˝ O/

����

�� H0.�1.T / � UT ;
^2 xV _ ˝ O/

��

H0.T;TLX /
��

��

Š �� H0.UT ;TLX /
��

��

0 �� H0.�1.T / � UT ;TLX /
��

��

��

(44)
The surjectivity is a result ofH 1.UT ;TLX / D 0. A simple diagram chase establishes
a diagonal map

D W H 0.T; .R2��O�/0/ ! H 0.�1.T / � UT ;TLX /:

In terms of the diagram (44), it corresponds to moving right, down, right, down. In
fact, the image of this map is in the kernel of the map

H 0.�1.T / � UT ;TLX / ! H 0.�1.T / � �1.T / � UT ;TLX /:

Upon taking homology in the horizontal direction the snake-like map corresponds to
the first boundary map in group cohomology

H 0.T; .R2��O�/0/ D H 0.UT ; .R
2 Q��O�/0/�1.T /

! H 1.�1.T /;TLX / D Hom.�1.T /;TLX /
(45)

coming from the short exact sequence

0 ! TLX ! H 0.UT ;
^2 xV _ ˝ O/ ! H 0.UT ; .R

2 Q��O�/0/ ! 1

of �1.T / modules. The diagonal map (45) factors using the Hodge projection

Alt2.ƒ;Z/ D H 2.X;Z/ ! TLX ; 
 7! 
H ; (46)

as

H 0.T; .R2��O�/0/ ! Hom.�1.T /;Alt2.ƒ;Z// ! Hom.�1.T /;TLX /:

In terms of the diagram (44) we took fG;C to be any element ofH 0.UT ;
^2 xV _ ˝O/

covering G. Consider the image of G under the map on cohomologyH.D/ induced
by the diagonal map D into

Hom.�1.T /;TLX /

D kerŒH 0.�1.T / � UT ;TLX / ! H 0.�1.T / � �1.T / � UT ;TLX /�:

By choosing a group-theoretic splitting of (46) we can chose lifts of such elements to

fG;Z 2 Hom.�1.T /;Alt2.ƒ;Z//:
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Therefore
H.D/.G/ D f H

G;Z:

Finally we conclude

fG;C. � u/ D .fG;Z.//
H C fG;C.u/ (47)

for all  2 �1.T / and u 2 UT . This follows from the fact that fG;C and f H
G;Z

map
to the same middle term of the rightmost column of (44).

Together fG;Z and fG;C define a holomorphic map

f W T Š UT =�1.T / ! Œ
^2 xV _=Alt2.ƒ;Z/�:

In what may perhaps be more familiar terms to the reader, we can rearrange this data
into an equivalent description given by a diagram:

.UT / ��1.T / Alt2.ƒ;Z/

��

‡ �� ^2 xV _

T .

In this diagram the vertical arrow is an Alt2.ƒ;Z/ principal bundle on T induced via
fG;Z by the�1.T / principal bundleUT ! T . The horizontal arrow is an Alt2.ƒ;Z/-
equivariant map given by to adding the map fG;C to the Hodge projection map

‡.u;
/ D fG;C.u/C 
H :

This is well defined because of equation (47). The gerbe .1; f /�P has cocycle
representative

.1; f /�‰ 2 Z2.ƒ � �1.T /;O
�.V � UT ///

given by

..	1; 1/; .	2; 2// 7! ‰..�1;fG;Z.�1//;.�2;fG;Z.�2//.v; fG;C.u//

for 	1; 	2 2 ƒ, 1; 2 2 �1.T /, u 2 UT and v 2 V . Restricting .1; f /�P toX�ftg
clearly gives a gerbe isomorphic GjX�ftg. Let

C D ..1; f /�P/�1G

be the correction term. The restriction of G to a point t 2 T gives a gerbe isomorphic
to the gerbe corresponding to the cocycle

.	1; 	2/ 7! exp.1
2
fG;C.u/.	1; 	2//;

where u is any lift of t .
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Let GX denote the action groupoid

H 2.X;Z/ �H 2.X;O/ ��
��
H 2.X;O/�� :

Notice that the above theorem provided a map from the objects of Hol.T;GX / to
gerbes onX �T which are topologically trivial on each fiber. We can in fact promote
this to a functor. The functor is a combination of the previous theorem together
with the following definition which gives the functor on morphisms. Because T is
connected and the image ofH 2.X;Z/ inH 2.X;O/ is countable, there is a morphism
(isomorphism) between the gerbes .1; f /�P and .1; g/�P if and only if the difference
f � g comes from some 
 2 Alt2.ƒ;Z/. The space of morphisms between f and
g is the group of 
 such that 
H D f � g. Hence we need to give a functorial
assignment to any such 
 of a trivialization of the gerbe .1; 
H /�P. This gerbe by
definition is the gerbe coming from the cocycle

.	1; 	2/ 7! exp.1
2

H .	1; 	2//:

Lemma 6. For every 
 2 Alt2.ƒ;Z/ we can assign a global trivialization L
 of
.1; 
H /�P in a way that

L
 ˝ L
0 Š L
C
0 :

These isomorphisms are compatible in the obviousway for three values of Alt2.ƒ;Z/.

Proof. We need to define, in a way linear in 
, a cochain in C 1.ƒ��1.T /;O
�.V �

UT // whose boundary in C 2.ƒ � �1.T /;O
�.V � UT // is

.	1; 	2/ 7! exp.1
2

H .	1; 	2//:

The type decomposition presents any 
 as sum of alternating pieces


 D 
.0;2/ C 
.1;1/ C 
.2;0/ D 
H C 
.1;1/ C 
H :

It is easy to bound separately the terms aside from 
H and combine them into a
boundary for

1
2

H D 1

2
.Œ
� � Œ
.1;1/� � Œ
H �/:

An easy calculation shows that the map

� W ƒ � �1.T / ! O�.V � UT /

defined by

.	; / 7! exp.1
2
.Œ�.
/.	; 	/� � Œ�i

2

.1;1/.iv; 	/

C 1
2

.1;1/.v; 	/ � i

4

.1;1/.i	; 	/� � Œ
H .v; 	/�//

(48)

does the job. We define L
 to be the trivialization of .1; 
H /�P corresponding
(B.11) to � as explained in Appendix 2.
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Corollary 4. Let Gerbes.X � T /0 be the category of gerbes topologically trivial on
each fiber of the projection to T . We have defined a functor

Hol.T; ŒH 2.X;O/=H 2.X;Z/�/ ! Gerbes.X � T /0:
The corresponding map on equivalence classes

Hol.T; ŒH 2.X;O/=H 2.X;Z/�/

	 Š H 0.T; .R2��O�/0/

is an isomorphism of groups. Thus every gerbe on X � T topologically trivial along
the fibers is equivalent up to multiplication by gerbes trivial along the fibers to a
pullback of P under a map .1 � f / where f is unique up to equivalence. This, in
combination with Theorem 5, concludes the proof that ŒH 2.X;O/=H 2.X;Z/� is a
fine moduli stack.

We now compute the topological type of P. The topological class of P lives in

H 3.X � ŒH 2.X;O/=H 2.X;Z/�;Z/ D H 3.ƒ � Alt2.ƒ;Z/;Z/:

The cocycle ı log‰ 2 Z3.ƒ � Alt2.ƒ;Z/;Z/ is

.ı log‰/.�1;
1/;.�2;
2/;.�3;
3/ D 1
2

3.	1; 	2/� 1

2
.�.
3/.	1; 	2/C�.
3/.	2; 	1//:

The associated class

s.ı log‰/ 2 Alt3.ƒ � Alt2.ƒ;Z/;Z/

given as the image of the isomorphism

s W H 3.ƒ � Alt2.ƒ;Z/;Z/ Š Alt3.ƒ � Alt2.ƒ;Z/;Z/

is the skew-symmetrization of the above cocycle, which is easily calculated to be the
assignment

.	1; 	2; 	3; 
1; 
2; 
3/ 7! 
1.	2; 	3/ � 
2.	1; 	3/C 
3.	1; 	2/;

because the skew-symmetrization of �.
3/.	1; 	2/C �.
3/.	2; 	1/ is zero.

10. Future directions

Perhaps the strongest missing link with the analogy we have drawn between line
bundles and gerbes on complex tori is the question of theta functions. What is the
correct analogue of theta functions for the gerbes we have described? There does not
seem to exist a reasonable definition of positivity in this context, and hence allowing
“zeros”, no holomorphic sections exist. One option is to study meromorphic sections
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of a given gerbe. This direction has been pursued in a different context in the paper
of Felder, Henriques, Rossi, and Zhu [14] and we hope that in our context those kind
of relationships exist as well. There are likely to be other connections with that work,
for instance on a complex surface with Picard number 3, our moduli stack is a trivial
gerbe over a “triplic curve” defined in [14]. In future work, we will explain various
other phenomena including the representation by Azumaya algebras, and analogues
of the theta and Heisenberg group.

Appendices

A. Appendix 1

Define the group S.ƒ/ as the group of elements of C 2.ƒ;R/ � A.ƒ/ which satisfy
equation (29). We provide here a group-theoretic splitting of the short exact sequence

1 ! Z2.ƒ;U.1// ! S.ƒ/ ! A.ƒ/ ! 0: (A.1)

Fix an element E 2 A.ƒ/. We wish to lift it to .ˇ0; E/ 2 S.ƒ/. Indeed the main
purpose of this appendix is to find ˇ0, the real part of ˇ, which appears in the cocycle

ˆE
�1;�2

D exp.H�1;�2
.v/C ˇ�1;�2

/

living inZ2.ƒ;O�.V // as in Definition 4. Notice that 1
6
E.	1; 	2; 	3/ agrees by (24)

after skew-symmetrization with k.	1; 	2; 	3/ (defined in equation (22)) and hence
by Lemma 1 they are equivalent elements of Z3.ƒ;R/. In order to find ˇ0 we will
first write down an element u 2 Map.ƒ �ƒ;R/ such that

.ıu/�1;�2;�3
C 1

6
E.	1; 	2; 	3/

D u�2;�3
� u�1C�2;�3

C u�1;�2C�3
� u�1;�2

C 1
6
E.	1; 	2; 	3/ 2 Z:

Then we will account for the difference between 1
6
E.	1; 	2; 	3/ and k.	1; 	2; 	3/.

We can find u by choosing an ordered basis f	ig for ƒ and expanding the elements
	˛ 2 ƒ as 	˛ D P

i n˛;i	
i for n˛;i 2 Z:

u�1;�2
D P

i<j <k

Œ 5
12
E.n1;i	

i ; n1;j	
j ; n2;k	

k/C 9
12
E.n1;i	

i ; n2;j	
j ; n1;k	

k/

C 1
12
E.n2;i	

i ; n1;j	
j ; n1;k	

k/C 5
12
E.n1;i	

i ; n2;j	
j ; n2;k	

k/

C 9
12
E.n2;i	

i ; n1;j	
j ; n2;k	

k/C 1
12
E.n2;i	

i ; n2;j	
j ; n1;k	

k/�:
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Using equation (27) we see that

.ıu/�1;�2;�3

D 5
12
.

P
i<j <k

E.n1;i	
i ; n2;j	

j ; n3;k	
k/ � P

j <i<k

E.n1;i	
i ; n2;j	

j ; n3;k	
k//

C 9
12
.

P
i<k<j

�E.n1;i	
i ; n2;j	

j ; n3;k	
k/C P

j <k<i

E.n1;i	
i ; n2;j	

j ; n3;k	
k//

C 1
12
.

P
k<i<j

E.n1;i	
i ; n2;j	

j ; n3;k	
k/ � P

k<j <i

E.n1;i	
i ; n2;j	

j ; n3;k	
k//

C 5
12
.

P
i<j <k

E.n1;i	
i ; n2;j	

j ; n3;k	
k/ � P

i<k<j E.n1;i	
i ; n2;j	

j ; n3;k	
k//

C 9
12
.

P
j <i<k

�E.n1;i	
i ; n2;j	

j ; n3;k	
k/C P

k<i<j

E.n1;i	
i ; n2;j	

j ; n3;k	
k//

C 1
12
.

P
j <k<i

E.n1;i	
i ; n2;j	

j ; n3;k	
k/ � P

k<j <i

E.n1;i	
i ; n2;j	

j ; n3;k	
k//

D 10
12

P
i<j <k

E.n1;i	
i ; n2;j	

j ; n3;k	
k/ � 14

12

P
i<k<j

E.n1;i	
i ; n2;j	

j ; n3;k	
k/

� 14
12

P
j <i<k

E.n1;i	
i ; n2;j	

j ; n3;k	
k/C 10

12

P
j <k<i E.n1;i	

i ; n2;j	
j ; n3;k	

k/

C 10
12

P
k<i<j

E.n1;i	
i ; n2;j	

j ; n3;k	
k/ � 2

12

P
k<j <i

E.n1;i	
i ; n2;j	

j ; n3;k	
k/


 �1
6

P
i;j;k

E.n1;i	
i ; n2;j	

j ; n3;k	
k/

D �1
6
E.	1; 	2; 	3/:

Under the decomposition

ˇ0 D uC r;

all that remains is to solve the equation

.ır/�1;�2;�3
C k.	1; 	2; 	3/ � 1

6
E.	1; 	2; 	3/

D r�2;�3
� r�1C�2;�3

C r�1;�2C�3
� r�1;�2

C k.	1; 	2; 	3/ � 1
6
E.	1; 	2; 	3/

D 0:

This can be solved by

r�1;�2
D 2E.	1; i	2; i	1/CE.	2; i	2; i	1/;
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as is easily checked by equation (27). In conclusion

ˇ0
�1;�2

D u�1;�2
C r�1;�2

D P
i<j <k

Œ 5
12
E.n1;i	

i ; n1;j	
j ; n2;k	

k/C 9
12
E.n1;i	

i ; n2;j	
j ; n1;k	

k/

C 1
12
E.n2;i	

i ; n1;j	
j ; n1;k	

k/C 5
12
E.n1;i	

i ; n2;j	
j ; n2;k	

k/

C 9
12
E.n2;i	

i ; n1;j	
j ; n2;k	

k/C 1
12
E.n2;i	

i ; n2;j	
j ; n1;k	

k/�

C 2E.	1; i	2; i	1/CE.	2; i	2; i	1/:

(A.2)

Since ˇ0 depends additively on E, we have provided the promised splitting of (A.1)
sending E to ˇ0.

B. Appendix 2

In this appendix we need to explain a natural way to go from group cocycles to
geometric objects: line bundles and gerbes on stacks. When two cocycles differ by
the boundary of a cochain, then this cochain can be assigned in a natural way an
isomorphism between the geometric objects determined by the two cocycles. The
material in this appendix is more or less just a quick summary of certain tools from
Polishchuk’s recent paper [20]. We have added only minor details and changed some
notation and conventions to match the philosophy of the current work. Let a discrete
group � act from the right on a spaceW so that we can form the stack ŒW=��. Then
there is a functor

ŒZ1.�;O�.W //=C 0.�;O�.W //� ! Pic.ŒW=��/ (B.1)

inducing the standard isomorphism of groups

H 1.�;O�.W // Š kerŒPic.ŒW=��/ ! Pic.W /�:

On the level of objects, the functor (B.1) is defined as the map

Z1.�;O�.W // ! ob.Pic.ŒW=��/ (B.2)

denoted by

� 7! L� :

Suppose we are given � 2 Z1.�;O�.W // and a diagram

P

$

��

c �� W

U

(B.3)
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where $ is a �-principal bundle and c is �-equivariant. Then let

L�.U / D ff 2 O�.P / j � � f D .�.�/ B c/f g:
This defines an O�-torsor on ŒW=��. On the level of morphisms, the functor (B.1)
is described by the map

I W ı�1.�2 � �1/ ! Hom.L�1
; L�2

/; (B.4)

which we now describe. Given a boundary � 2 C 0.�;O�.W // such that

ı� D �2 � �1

we can get an isomorphism

I� W L�1
! L�2

given by

f 7! .c��/f:

Remark B1. To get a stack over ŒW=�� on which C� acts with quotient ŒW=��, one
simply considers the quotient

Œ.W � C�/=�� ! ŒW=��

determined by �. One can get a functor from ŒZ1.�;O�.W //=C 0.�;O�.W //� into
such stacks and following this with the functor of taking sections gives a functor
naturally equivalent to the one described.

In [20], Polishchuk defines a category (see Remark B2) of 1-cocycles of � with
values in the groupoid Pic.W /. He uses these cocycles to define certain interesting
categories of sheaves which serve as noncommutative objects in algebraic geometry.
In fact, he actually defines a category of 1-cocycles to a group acting on any groupoid.
In particular one can apply this as a tool to describe gerbes on families of complex
tori. This can be used to unify our previous work [3] with the current project. For
the current case we will only use the action groupoid of � acting on W . We will
denote the category by Z1.�;Pic.W //. An object in this category will be denoted
.L; N /. It consists of a collection of O�-torsor L� for every � 2 � together with
isomorphisms

N�1;�2
W L�1

˝ �1�L�2
! L�1�2

(B.5)

satisfying the natural consistency condition

N�1�2;�3
B .N�1;�2

˝ 1/ D N�1;�2�3
B .1˝ �1�N�2;�3

/

of maps

L�1
˝ �1�L�2

˝ �1��2�L3 ! L�1�2�3
:
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A morphism .L.1/; N .1// ! .L.2/; N .2// consists of a pair .M; K/, comprising an
O� torsor M on W , together with isomorphisms

K� W L.2/
� ! M ˝ L.2/

� ˝ ��M�1 (B.6)

satisfying

N .1/
�1;�2

B .K�1
˝ �1�K�2

/ D K�1�2
BN .2/

�1;�2

as maps

L.2/
�1

˝ �1�L.2/
�2

! M ˝ L.1/
�1�2

˝ .�1�2/�M�1:

We now describe a functor (see Remark B2) from 1-cocycles of � in Pic.W / to
gerbes on ŒW=�� whose pullback to W is trivial:

Z1.�;Pic.W // ! Gerbes.ŒW=��/: (B.7)

On the level of objects the functor (B.7) consists of a map

ob.Z1.�;Pic.W /// ! ob.Gerbes.ŒW=��//

to be denoted by

.L; N / 7! GL;N :

To each map U ! ŒW=�� defined by diagram (B.3), we assign the groupoid
GL;N .U / whose objects consist of a pair of an O�-torsor „ on P together with
a collection of isomorphisms

G� W c�L� ˝ ��„ ! „

satisfying

c�N�1;�2
˝G�1�2

D G�1
B .1˝ �1�G�2

/

together with the obvious notion of morphism. We also have the map

mor.Z1.�;Pic.W /// ! mor.Gerbes.ŒW=��// (B.8)

defined by

Hom..L.1/; N .1//; .L.2/; N .2/// ! Hom.GL.1/;N .1/ ;GL.2/;N .2//;

.M; K/ 7! IM;K :

Now say we are given a morphism

.M; K/ W .L.1/; N .1// ! .L.2/; N .2//

as above. We need to assign this to an isomorphism of gerbes

GL.1/;N .1/ ! GL.2/;N .2/ ;
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which we provide by giving a compatible collection of groupoid isomorphisms

GL.1/;N .1/.U / ! GL.2/;N .2/.U /

for each U as in (B.3). Such an isomorphism is given by

„ 7! c�M ˝„ and G.1/
� BK� D G.2/

� ;

where the definition of the functor on the level of morphisms on the two groupoids
is clear.

Let BC� denote the groupoid of C�-torsors. Given such a 1-cocycle, allows one
to define the action of the group � on W � BC� in a way that commutes with the
action of � on the first factor only. Indeed for each � 2 � one has a functor F� in
Aut.W � BC�/ given on objects by

.w;M/ ! .w�;L� jw��1 ˝M/:

The definition on morphisms is clear. Then there exist natural isomorphisms

F�1
B F�2

) F�1�2

corresponding to (B.5) and these obey a coherence condition corresponding to that
mentioned above. The result is that one can take the quotient in a way that one still
has a map to the original stack

Œ.W � BC�/=�� ! ŒW=��:

The sections of this projection form an O� gerbe isomorphic to GL;N and in general
the situation is analogous to that in Remark B1.

There is a functor (see Remark B2)

ŒZ2.�;O�.W //=C 1.�;O�.W //� ! Z1.�;Pic.W //; (B.9)

which we now describe. On objects it is the map

Z2.�;O�.W // ! ob.Z1.�;Pic.W //

given by

ˆ 7! .O; ˆ/

defined for ˆ 2 Z2.�;O�.W // by choosing the line bundle to be trivial and the
isomorphism in (B.5) to be multiplication by ˆ�1;�2

. On the level of morphisms the
map is

ı�1.ˆ2 �ˆ1/ ! Hom..O; ˆ1/; .O; ˆ2//; C 7! .O; C /:

Here C 2 C 1.�;O�.W // satisfies

ˆ2 �ˆ1 D ıC (B.10)
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and .O; C / is comprised of the isomorphisms (B.6) consisting of multiplication by
C� .

Combining the functors (B.9) and (B.7) we get a functor (see Remark B2)

ŒZ2.�;O�.W //=C 1.�;O�.W //� ! Gerbes.ŒW=��/: (B.11)

On objects this is the map

Z2.�;O�.W // ! ob.Gerbes.ŒW=��// (B.12)

to be denoted by

ˆ 7! Gˆ

and on morphisms

ı�1.ˆ2 �ˆ1/ ! Hom.Gˆ1
;Gˆ2

/; C 7! IC : (B.13)

Remark B2. Notice that for all three categories we have mentioned in this appendix,

ŒZ2.�;O�.W //=C 1.�;O�.W //�; Z1.�;Pic.W // and Gerbes.ŒW=��/;

it is unreasonable to demand that morphisms satisfy the associativity condition in
the strict sense. Rather, for every three morphisms, there is a canonical natural
isomorphism between the two ways of composing the three morphisms. This natural
isomorphism satisfies a consistency condition involving four morphisms. Also the
functors we described are not really functors in the strict sense, but rather there is
a natural isomorphism (consistent with the associativity ones) between the functor
applied to a composition of two morphisms and the composition of the images of the
two morphisms. There are two ways of dealing with these issues. One way is to force
each of the three categories to become an honest category by replacing morphisms
with the obvious notion of equivalence classes of morphisms. With that definition
we have associativity and all our functors as we have described them correspond to
honest functors. The other way is to treat each of the three categories as a 2-category.
While we leave most of the details to the meticulous reader we simply remark that
all the functors we have described can be promoted to functors of 2-categories. A 2-
morphism in ŒZ2.�;O�.W //=C 1.�;O�.W //� between two elementsC .1/ andC .2/

which both satisfy (B.10) is an element D 2 C 0.�;O�.W // such that

ıD C C .1/ D C .2/:

A 2-morphism in Z1.�;Pic.W // between two pairs .M1; K
.1// and .M2; K

.2// of
isomorphisms from .L.1/; N 1/ to .L.2/; N 2/ as in (B.6)) consists of an isomorphism
y W M2 ! M1 satisfying

.y�1 B 1 B ��y_/ BK.1/
� D K.2/

�

as maps

L.2/
� ! M2 ˝ L.1/

� ˝ M�1
2 :
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The 2-morphisms in Gerbes.ŒW=��/ are all given by multiplication by some nowhere
zero �-invariant holomorphic function on P . All these notions can be made to
correspond with the previously given maps on 1-morphisms in an obvious way.
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