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Comonoidal W�-Morita equivalence for
von Neumann bialgebras
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Abstract. A theory of Galois co-objects for von Neumann bialgebras is introduced. This
concept is closely related to the notion of comonoidal W�-Morita equivalence between von
Neumann bialgebras, which is a Morita equivalence taking the comultiplication structure into
account. We show that the property of ‘being a von Neumann algebraic quantum group’
(i.e. ‘having invariant weights’) is preserved under this equivalence relation. We also introduce
the notion of a projective corepresentation for a von Neumann bialgebra, and show how it leads
to a construction method for Galois co-objects and comonoidal W�-Morita equivalences.
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Introduction

In the literature, there are several equivalent ways of introducing the concept of
a W�-Morita equivalence between von Neumann algebras, for example by means
of the categorical formalism ([23], [5], [13]), Connes’ correspondences ([5], [22]),
Paschke’s Hilbert W�-modules ([21], [13], called rigged modules in [23]), or linking
von Neumann algebras ([5], [13]).

Let us state the definition of W�-Morita equivalence in terms of linking von
Neumann algebras.

Definition 0.1 ([5], [24]). Let P and M be two von Neumann algebras. A linking
von Neumann algebra between P and M consists of a von Neumann algebra Q
together with a self-adjoint projection e 2 Q and �-isomorphisms P ! eQe and
M ! .1 � e/Q.1 � e/ such that both e and .1 � e/ are full projections (i.e., have
central support equal to 1).

Two von Neumann algebras P and M are called W�-Morita equivalent if there
exists a linking von Neumann algebra between them.

�Supported in part by the ERC Advanced Grant 227458 OACFT “Operator Algebras and Conformal
Field Theory”.
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In this paper, we will introduce a notion of comonoidal W�-Morita equivalence
between von Neumann bialgebras. Let us first recall the definition of the latter
structure.

Definition 0.2. A von Neumann bialgebra .M;�M / consists of a von Neumann
algebra M and a faithful normal unital �-homomorphism �M W M ! M x̋ M

satisfying the coassociativity condition

.�M ˝ �/�M D .�˝�M /�M :

Remark. In the literature, von Neumann bialgebras appear under the name ‘Hopf–
von Neumann algebras’. We prefer to use the above terminology since it is in better
correspondence with the purely algebraic nomenclature.

Our proposal for a notion of comonoidal W�-Morita equivalence between von
Neumann bialgebras is the following.

Definition 0.3. Let .P;�P / and .M;�M / be two von Neumann bialgebras. A
linking weak von Neumann bialgebra between .P;�P / and .M;�M / consists of a
linking von Neumann algebra .Q; e/ between P andM , together with a (non-unital)
coassociative normal �-homomorphism �Q W Q ! Q x̋ Q satisfying

�Q.e/ D e ˝ e; �Q.1 � e/ D .1 � e/˝ .1 � e/

and, with Q11 D eQe and Q22 D .1 � e/Q.1 � e/,
.Q11; .�Q/jQ11/ Š .P;�P /;

.Q22; .�Q/jQ22/ Š .M;�M /

by the isomorphisms appearing in the definition of a linking von Neumann algebra.
Two von Neumann bialgebras .P;�P / and .M;�M / are called comonoidally

W�-Morita equivalent if there exists a linking weak von Neumann bialgebra between
them.

We will give some more information on the terminology we use at the beginning
of the second section.

In contexts where linking structures appear, one often has a ‘unilateral version’
accompanying it. This one-sided version should then arise as the corner of some
linking structure. For von Neumann algebras, we will call this structure a Morita (or
imprimitivity) Hilbert W�-module.

Definition 0.4 ([21]). LetM be a von Neumann algebra. A self-dual (right) Hilbert
W�-module forM consists of a rightM -moduleN , together with a (non-degenerate)
M -valued Hermitian inner product h � ; � iM , such that for any bounded M -module
map T from N to M there exists x 2 N for which T .y/ D hx; yiM for all y 2 N .
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When the self-dual Hilbert W�-module is full (or saturated ), in the sense that the
linear span of all hx; yiM , with x; y 2 N , is � -weakly dense in M , we call N a
(right) Morita Hilbert W�-module for M (or a Morita Hilbert M -module).

The following definition will then correspond to the unilateral version of a linking
weak von Neumann bialgebra.

Definition 0.5. A right Galois co-object for a von Neumann bialgebra .M;�M /
consists of a Morita Hilbert W�-module N for M , together with a coassociative
normal and faithful linear map�N W N ! N x̋ N for which the following conditions
are satisfied:

(1) for x 2 N and m 2 M , we have �N .xm/ D �N .x/�M .m/;

(2) for x; y 2 N , we have �M .hx; yiM / D h�N .x/;�N .y/iM x̋M ;

(3) the linear span of f�N .x/.m1˝m2/ j x 2 N; m1; m2 2 M g is � -weakly dense
in N x̋ N .

So the first two conditions give compatibility relations between �N , �M and
h � ; � iM , while the final one is a non-degeneracy condition.

Remark. It would also be interesting to see if one can define this concept without
mentioning M at all, by putting an appropriate coalgebra structure on a W�-TRO-
algebraN ([32]). This should be a von Neumann algebraic equivalent of Grunspan’s
quantum torsors ([14]).

Given a notion of Morita equivalence, it is important to consider what properties
are invariant under it. The main theorem of this paper will consist of establishing one
such an invariant. Let us first introduce the relevant terminology.

Definition 0.6 ([19], [30]). Let .M;�M / be a von Neumann bialgebra. We call
.M;�M / a von Neumann algebraic quantum group if there exist nsf (normal semi-
finite faithful) weights 'M and  M onM such that for all normal states ! onM and
all x 2 MC we have

'M ..! ˝ �/�M .x// D 'M .x/ (left invariance);

 M ..�˝ !/�M .x// D  M .x/ (right invariance):

Note that ‘being a von Neumann algebraic quantum group’ is introduced as a
property of a von Neumann bialgebra. However, since the weights 'M and  M
above turn out to be unique up to scaling with a positive constant, it is customary to
consider them as part of the given data.

Such von Neumann algebraic quantum groups turn out to have a very rich structure,
and seem to form the right framework in which to study the theory of locally compact
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quantum groups. See for example [16], [19], [27], [17], [29] and [28] for some
generalizations to this setting of a large part of the theory of locally compact groups.

The following is the main result of the present paper which we alluded to.

Theorem 0.7. If .P;�P / and .M;�M / are comonoidally W�-Morita equivalent von
Neumann bialgebras, then .M;�M / is a von Neumann algebraic quantum group iff
.P;�P / is a von Neumann algebraic quantum group.

The proof of this theorem will consist in making the connection with the theory
of [8]. Indeed, there a notion of Galois objects was introduced. Although one can
in fact obtain a complete duality theory between Galois objects (for a von Neumann
algebraic quantum group) and Galois co-objects (for the dual von Neumann algebraic
quantum group), we have refrained from carrying out this discussion in full here, as
the details are somewhat technical (in essence, the details of the duality construction
can be found in [6], but one first needs to prove Theorem 0.7 of the present paper to
be able to use those results).

An essential ingredient which allows us to use the theory of [8] will be the notion
of a projective corepresentation of a von Neumann bialgebra. This notion was also
introduced in [8], but only for von Neumann algebraic quantum groups.

Definition 0.8. Let .M;�M / be a von Neumann bialgebra. A (unitary) projective
(left) corepresentation of .M;�M / on a Hilbert space H is a left coaction of .M;�M /
on B.H/, i.e. a normal faithful unital �-homomorphism

˛ W B.H/ ! M x̋ B.H/
satisfying the coaction property

.�˝ ˛/˛ D .�M ˝ �/˛:

In the third section, we will show that from any projective corepresentation for
a von Neumann bialgebra, one can construct from it a Galois co-object for this von
Neumann bialgebra. This will generalize the construction of a 2-cocycle function
from a projective representation of a (locally compact) group.

As linking von Neumann bialgebras between von Neumann algebraic quantum
groups turn out to have a lot of extra structure, such as an associated C�-algebraic
description (see again [6]), we prefer to use the following terminology in this case.

Definition 0.9. Let .M;�M / and .P;�P / be von Neumann algebraic quantum
groups. Then a linking weak von Neumann bialgebra .Q; e;�Q/ between .P;�P /
and .M;�M / will be called a von Neumann algebraic linking quantum groupoid.

Indeed, it is intuitively very helpful to see such a von Neumann algebraic linking
quantum groupoid between .P;�P / and .M;�M / as a kind of L1-space on a ‘quan-
tum groupoid’ having a classical object space consisting of two objects, for which
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the .M;�M / and .P;�P / then play the role of ‘group von Neumann algebras of the
isotropy groups’, and for which the off-diagonal corners eQ.1 � e/ and .1 � e/Qe

play the role of a certain topological linearization of ‘the space of arrows between the
two objects’. See the first section of [7] for some more information (and, for a similar
interpretation in a more algebraic setting, see [1]). We note that such von Neumann
algebraic linking quantum groupoids then fit into the theory of ‘measured quantum
groupoids’ as introduced in [20].

The concrete structure of this paper is as follows.
In the first section, we will give some more preliminary information on the notions

of linking von Neumann algebras and Hilbert W�-modules.
In the second section, we will show how any linking weak von Neumann bialgebra

gives rise to a Galois co-object, and, conversely, how any Galois co-object can be
completed to a linking weak von Neumann bialgebra. We also show that comonoidal
W�-Morita equivalence is indeed an equivalence relation. We end by introducing,
in the setting of Galois co-objects for von Neumann algebraic quantum groups, an
analogue of the right regular corepresentation.

In the third section, we prove the main result concerning projective corepresen-
tations which we mentioned above, and use it to give a proof of Theorem 0.7.

In the short fourth section we will consider again the special situation of unitary
2-cocycles for a von Neumann bialgebra, which was also treated partly in [8]. Such 2-
cocycles correspond precisely to those linking weak von Neumann bialgebras whose
underlying linking von Neumann algebra is trivial. We note that, in the operator
theoretic framework, these 2-cocycles were introduced in [11].

1. W�-Morita equivalence

The results in this section are well-known, and most of them are essentially rephras-
ings of the results in [21], [23] and [26] (Section IX.3). We therefore refrain from
giving detailed proofs but will mostly simply point to the relevant statements in these
references.

1.1. Morita Hilbert W�-modules. In Definition 0.1, we already recalled what we
mean by a linking von Neumann algebra .Q; e/ between two von Neumann algebras
P and M . Let us give some more information on the notation we will use for this
concept. First of all, we will always simply identify P andM with their parts inside
a linking von Neumann algebra, thus neglecting the identifying maps. We will also
write Qij D ei iQejj with e11 D e and e22 D 1 � e, and

Q D
�
Q11 Q12
Q21 Q22

�
:

This matrix algebra notation is very convenient in practice. Note that this decom-
position makes sense for any projection e 2 Q, but the special (and characterizing)
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property of linking von Neumann algebras is that Q12 � Q21 is � -weakly dense in
Q11 (by definition of fullness for 1� e), while Q21 �Q12 is � -weakly dense in Q22
(by definition of fullness for e).

We will further talk simply of ‘a linking von Neumann algebra’(without specifying
what the corners are) or of ‘a linking von Neumann algebra for the von Neumann
algebra M ’ (without specifying the von Neumann algebra in the upper left corner;
admittedly, this puts the lower left corner in a privileged position terminology-wise).
In fact, this terminology dictates the strongness of the isomorphism one is interested in
(keeping none, one or both of the diagonal entries pointwise fixed). The same remark
then applies to more general morphisms: if for example M1 and M2 are two von
Neumann algebras, .Q1; e/ and .Q2; f / linking von Neumann algebras for resp.M1

and M2, and � W M1 ! M2 a normal unital �-homomorphism, then a �-compatible
unital morphism between .Q1; e/ and .Q2; f / is a normal unital �-homomorphism
ˆ W Q1 ! Q2 sending e to f , whose restriction to a map Q1;22 D M1 ! Q2;22 D
M2 coincides with �.

We also defined already the notion of a Morita HilbertW�-module (Definition 0.4).
We introduce the following terminology concerning maps between Morita Hilbert
W�-modules.

Definition 1.1. When M1, M2 are two von Neumann algebras, � W M1 ! M2 a
unital normal �-homomorphism, and N1 and N2 Morita Hilbert W�-modules for
resp. M1 and M2, we call a linear map ˆ W N1 ! N2 a �-compatible morphism
when ˆ.xm/ D ˆ.x/�.m/ and hˆ.x/;ˆ.y/iM2 D �.hx; yiM1/ for all x; y 2 N1
and m 2 M1.

When M is a von Neumann algebra, and N1 and N2 two Morita Hilbert M -
modules, then we callN1 andN2 isomorphic if there exists a bijective �M -compatible
morphism N1 ! N2, where �M W M ! M is the identity map.

Let us recall from [21], Proposition 3.10, that if M is a von Neumann algebra,
and N a right (Morita) Hilbert M -module, then any bounded right M -module map
N ! N is adjointable, and the �-algebra of all such maps is a von Neumann algebra.
We then introduce the following concept (see [23]).

Definition 1.2 ([23]). If M and P are von Neumann algebras, a P -M -equivalence
bimodule is a P -M -bimodule N which is at the same time a right Morita Hilbert
M -module and left Morita Hilbert P -module, and such that

x � hy; ziM D hx; yiP � z for all x; y; z 2 N:

The following lemma makes the connection between Morita Hilbert W�-modules
and linking von Neumann algebras concrete.



Comonoidal W�-Morita equivalence for von Neumann bialgebras 553

Lemma 1.3. (1) Let .Q; e/ be a linking von Neumann algebra between the von
Neumann algebras P and M . Then Q12, together with the M -valued inner product

hx; yiM D x�y; x; y 2 Q12
and the P -valued inner product

hx; yiP D xy�; x; y 2 Q12;
is a P -M -equivalence bimodule.

(2) If N is a right Morita HilbertM -module, there exists a linking von Neumann
algebra .Q; e/ and an isomorphism � of right Hilbert W�-modules from N to Q12.
Moreover, .Q; e/ is then unique up to isomorphism of linking von Neumann algebras
for M .

Proof. The first part of this lemma can be deduced from Theorem 6.5 of [23], choosing
a concrete representation of Q. As for the second part, we can construct the .Q; e/
associated with N in a natural way as the von Neumann algebra of right M -module
maps on the direct sum right Hilbert W �-module

�
N
M

�
over M , together with the

projection e ontoN . The fact that this is then a linking von Neumann algebra follows
from the proof of Corollary 7.10 in [23], which shows that N is a P -M -equivalence
bimodule. Finally, the uniqueness statement follows from Proposition 7.6 of [23],
which shows that in any linking von Neumann algebra .Q; e/, the von Neumann
algebra Q11 can be identified with the set of bounded right Q22-module maps on
Q12. This then easily allows one to identify this linking von Neumann algebra with
the canonical one we constructed above.

In the following, we will always regard a Morita Hilbert W�-module as the upper
right corner of its associated linking von Neumann algebra. This allows us to introduce
a lot of operations for Morita Hilbert W�-modules in a straightforward way. For
example, if N is a Morita Hilbert W�-module, and .Q; e/ the associated linking von
Neumann algebra, then the predual ofN , whose existence was proven in [21], may be
identified with the space of normal functionals on Q which vanish on all Qij except
Q12. The � -weak topology of N as the dual of its predual then coincides with the
restriction of the � -weak topology on N � Q. This allows us to talk about normal
maps between Morita Hilbert W�-modules without any ambiguity.

The following lemma shows how to complete maps which are only defined on a
subspace of a Morita Hilbert W�-module.

Lemma 1.4. LetM1,M2 be von Neumann algebras, equipped with a unital normal
�-homomorphism� W M1 ! M2. LetN1 andN2 be right Morita HilbertW�-modules
over resp.M1 andM2. Suppose thatN1 is a� -weakly denseM -submodule ofN1, and
suppose that there exists a linear map � W N1 ! N2 such that �.xm/ D �.x/�.m/

and h�.x/; �.y/iM2 D �.hx; yiM1/ for all x; y 2 N1 and m 2 M . Then � has a
unique extension to a normal �-compatible morphism‰ W N1 ! N2. If � is faithful,
then‰ will be faithful. If � is bijective, and � has � -dense image, then‰ is bijective.
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Proof. As N1 is a linear space, it is also � -strongly dense inN1. Further, from the �-
compatibility condition on� , we easily get that if a net x˛ 2 N1 converges � -strongly
to 0, then also �.x˛/ ! 0 in the � -strong topology. From these two observations,
it follows that � can be uniquely extended to a normal map ‰ W N1 ! N2, which is
then of course still M -linear and �-compatible.

If � is faithful, then ‰.x/ D 0 for x 2 N1 would imply �.hy; xiM1/ D 0 for
all y 2 N1, hence x D 0; thus also ‰ is faithful. If further � is bijective and � has
� -dense image, then, as the range ‰.N1/ is � -weakly closed, it must equal N2, and
hence ‰ is bijective.

The next lemma provides a further weakening of the conditions in the previous
lemma.

Lemma 1.5. LetM1,M2 be von Neumann algebras, � W M1 ! M2 a unital normal
�-homomorphism. LetN1; N2 be right Morita Hilbert W�-modules for resp.M1 and
M2. Let I be an index set, and suppose that xi 2 N1 and yi 2 N2 are elements such
that �.hxi ; xj iM1/ D hyi ; yj iM2 for all i; j 2 I , and suppose that the M1-linear
span of the xi is � -weakly dense in N1. Then there exists a unique �-compatible
morphism � W N1 ! N2 of Hilbert W�-modules such that �.xi / D yi .

Proof. Let N1 be the right M1-module spanned by the xi . Then the map

� W N1 ! N2 W
nP
iD1

ximi !
nP
iD1

yi�.mi /; mi 2 M;

is a well-defined �-intertwining map since, by the compatibility between the xi and
yi , we have

h
nP
iD1

ximi ;
nP
iD1

ximi iM1 D 0 H) h
nP
iD1

yi�.mi /;
nP
iD1

yi�.mi /iM2 D 0:

The lemma then follows immediately by the previous one.

The way in which linking von Neumann algebras most frequently appear is the fol-
lowing (see also Theorem 8.15 and its footnote in [23]). The proof of the proposition
essentially follows by Proposition 1.3 and Proposition 1.1 (2) of [23].

Proposition 1.6. LetZ be a von Neumann algebra, and let H1 and H2 be two Hilbert
spaces equipped with faithful normal �-representations �1 and �2 of Z. Denote
M D �2.Z/

0 and P D �1.Z/
0. Then the space N of �1-�2-intertwiners is a right

Morita Hilbert M -module, and the commutant Q of the direct sum representation
�1 ˚ �2, together with the projection e on H1, is a linking von Neumann algebra
between P and M .
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In particular, this shows that the notion of ‘linking algebra’ which was used in [8]
coincides with the terminology of the present paper.

Another way to create Morita HilbertW�-modules is the following. It is essentially
a concrete, spatial approach to ternary W�-algebras.

Proposition 1.7. Let H and K be two Hilbert spaces, and letN � B.H;K/ be a � -
weakly closed linear space for which the linear span of the set fxy�z j x; y; z 2 N g
equals N . Then with M denoting the � -weak closure of the linear span of fx�y j
x; y 2 N g, we have thatM is a von Neumann algebra andN a right Morita Hilbert
M -module for the M -valued inner product hx; yiM D x�y.

Proof. Denote O D N �, the set of adjoints of elements in N . By the condition that
linear span of fxy�z j x; y; z 2 N g equals N , we have that O �N D fPn

iD1 x�
i yi j

n 2 N0; xi ; yi 2 N g and N � O are �-algebras. Hence their respective � -weak
closures M and P are von Neumann algebras (possibly with different units than
1B.H/ and 1B.K/). As N is � -weakly closed, N is a P -M -bimodule, and then it is
immediate that

�
P N
O M

�
is a von Neumann algebra. By the wayM andP were defined,

it is a linking von Neumann algebra between P and M . In particular, N is a right
Morita Hilbert M -module.

We also record the following lemma for further use.

Lemma 1.8. Let M1 and M2 be von Neumann algebras, and N1 and N2 Morita
Hilbert W�-modules for resp.M1 andM2. Let �22 W M1 ! M2 be a normal unital �-
homomorphism, and �12 W N1 ! N2 a �22-compatible normal morphism. If .Q1; e/
and .Q2; f / are the linking von Neumann algebras associated with respectively N1
and N2, then there exists a unique �22-compatible, not necessarily unital morphism
� W .Q1; e/ ! .Q2; f / such that �.e/ � f , �.1 � e/ D 1 � f , and such that the
restriction to N1 coincides with �12.

If the right M2-module generated by �12.N1/ is � -weakly dense in N2, then
�.e/ D f , and hence � unital.

Proof. The uniqueness of � is immediate. Also the existence of � W .Q1; e/ !
.Q2; f / as a normal �-homomorphism follows from basic von Neumann algebraic
techniques. If �12.N1/ �M2 is � -weakly dense in N2, then �.e/ acts as a unit on N2
by left multiplication, and hence equals f .

1.2. Tensor products and composition. Suppose thatM1;M2; P1; P2 are von Neu-
mann algebras, and that .Q1; e/, resp. .Q2; f /, is a linking von Neumann algebra
between P1 and M1, resp. P2 and M2. Then we denote Q1 � Q2 for the corner of
Q1 x̋ Q2 by the projection e˝f C .1�e/˝ .1�f /. The reason for this notation is
that this can (easily) be shown to be a special case of a fibred product of von Neumann
algebras (i.e., fibred over C2); see [12], Sections 2.3 and 2.4.
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It is easy to see that .Q1 � Q2; e ˝ f / will be a linking von Neumann algebra
between P1 x̋ P2 and M1 x̋ M2. The operation � is an associative operation on
linking von Neumann algebras.

If N1, resp. N2, is a Morita Hilbert W�-module for a von Neumann algebra M1,
resp. M2, we can define N1 x̋ N2 to be the right hand corner of Q1 � Q2, with
.Q1; e/ and .Q2; f / the linking von Neumann algebras associated with respectively
N1 andN2. We then have a natural injectionN1ˇN2 ! N1 x̋ N2, where ˇ denotes
the algebraic tensor product, and this allows us also to see N1 x̋ N2 as a concrete
realization of the ‘self-dual completion’ of the pre-Hilbert W�-module N1 ˇN2 for
M1 x̋ M2 (see Theorem 3.2 of [21], and also Proposition 8.5 in [23]). Moreover,
.Q1 �Q2; e ˝ f / will then be a linking von Neumann algebra associated with the
Morita Hilbert W�-module N1 x̋ N2 over M1 x̋ M2. In the same way, we can take
the tensor product of the lower left corners of Q1 and Q2, and thus, if we write

Qi D
�
Pi Ni
Oi Mi

�
, we can write

Q1 �Q2 D
�
P1 x̋ P2 N1 x̋ N2
O1 x̋ O2 M1 x̋ M2

�
:

Finally, if N1, N2 and N3 are Morita Hilbert W�-modules, and � W N1 ! N2 is
a normal map, it is clear, by passing again to the enveloping linking von Neumann
algebra picture, that one can define a slice map �˝� W N1 x̋ N3 ! N2 x̋ N3, uniquely
determined by the property that it is normal and satisfies .�˝ �/.x˝y/ D �.x/˝y

for elementary tensors x ˝ y 2 N1 x̋ N3.
Let us also comment on how Morita Hilbert W�-modules can be composed, which

will show in particular that W�-Morita equivalence is an equivalence relation. Let
M1, M2 and M3 be von Neumann algebras, and let N12 be an M1-M2-equivalence
bimodule, andN23 anM2-M3-equivalence bimodule. Consider the associated linking
von Neumann algebras, which we will denote by

Q1 D
�
M1 N12
N21 M2

�
; Q2 D

�
M2 N23
N32 M3

�
:

Then we can consider the direct sum right Hilbert W�-module

�
N12
M2
N32

�
forM2. LetQ

be the von Neumann algebra of bounded rightM2-linear maps on this module (using
again Proposition 3.10 of [21]). Then we can decompose Q as

Q D
0
@M1 N12 N13
N21 M2 N23
N31 N32 M3

1
A :

As then N13 � N12 � N23 and N31 � N32 � N21, we see that N31 � N13 contains
N32 � .N21 � N12/ � N23. As N21 � N12 is � -weakly dense in M2, and N32 � N23 is
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� -weakly dense in M3, we get that N31 � N13 is � -weakly dense in M3. Similarly,
N13 �N31 is � -weakly dense in M1. This implies that�

M1 N13
N31 M3

�

is a linking von Neumann algebra betweenM1 andM3, which we call the composition
ofQ1 andQ2. TheN13-part, considered as aM1-M3-equivalence bimodule, is called
the composition of the equivalence bimodules N12 and N23. One could also call the
total structureQ, together with the units of its diagonal components, a ‘.3�3/ linking
von Neumann algebra’.

1.3. Compatibility with weight theory. Let us now comment on the relation with
weight theory for von Neumann algebras (see [26], and especially Chapter IX, Sec-
tion 3, for a discussion of material closely related to ours).

Let M be a von Neumann algebra, and let  be an nsf (i.e., normal semi-finite
faithful) weight on M . We denote by NM; the space of elements x 2 M for which
 .x�x/ < 1, by MC

 the space of elements x 2 MC for which  .x/ < 1, and

by M we denote the linear span of MC
 , which also coincides with N�

M; � NM; .
Then one can linearly extend  to M , and we will use the same notation for this
extension.

Now suppose that N is a right Morita Hilbert M -module. Then we can also
form the space NN; of elements x 2 N for which  .hx; xiM / < 1. Clearly,
this space is � -weakly dense in N as it contains the set N � NM; (in fact, it equals
this set by a polar decomposition argument). We can then turn NN; into a pre-
Hilbert space by the scalar product hx; yi D  .hx; yiM / (we will take the scalar
product in our Hilbert spaces conjugate linear in the first variable since this is the
most natural thing to do in this context). We denote by L2.N; / its completion,
and by �N; the natural embedding map NN; ,! L2.N; /. Applying the same
construction to M considered as a right Morita M -module, we obtain the ordinary
GNS-construction associated with  . The latter however also comes with a normal
left representation �M; of M on L2.M/, uniquely determined by the property that
�M; .x/�M; .y/ D �M; .xy/ fory 2 N andx 2 M . A similar left representation
can then be obtained for N , but it will not act on one Hilbert space, but as linear
operators between two different Hilbert spaces. Namely, for x 2 N and y 2 NM; ,
we have k�N; .xy/k � khx; xiMk1=2 k�M; .y/k, so that one can define �N; .x/
as the unique bounded linear operator

�N; .x/ W L2.M; / ! L2.N; /

such that �N; .x/�M; .y/ ! �N; .xy/ for all y 2 NM; . Then �N; will be a
normal map of N into B.L2.M; /;L2.N; //, and clearly

�N; .xy/ D �N; .x/�M; .y/ for all x 2 N and y 2 M:



558 K. De Commer

It is also easily computed that

�N; .x/
��N; .y/ D �M; .hx; yiM / for x; y 2 N:

If .Q; e/ is the linking von Neumann algebra associated withN , we can represent

it in a faithful, normal and unit-preserving way on
�

L2.N; /

L2.M; /

�
, again essentially by

extending the left multiplication operation on
�

NN; 
NM; 

�
. In particular, we have a unital

faithful normal �-representation ofP on L2.N /. The above constructions can further
be brought in connection with the theory of GNS-representations forQ, and one could
also develop a theory of ‘standard’ representations. However, in this paper, we will
not need this further structure, so we refrain from making these further elaborations.

Since we will only need one nsf weight at any particular moment, we will in the
following unburden the notation somewhat by dropping the symbol  in the notation
for the GNS-construction.

Let us now give some comments on the tensor product theory of weights. If M1

andM2 are von Neumann algebras, and  i an nsf weight onMi , then one can define
the tensor product weight  1 ˝ 2 onM1 x̋ M2. In Definition VIII.4.2 of [26], this
is introduced by using the language of (left) Hilbert algebras. Alternatively,  1˝ 2
can also be introduced using operator-valued weights: one can consider .�˝ 2/ as an
(nsf) operator-valued weight fromM1 x̋ M2 toM2, while . 1˝ �/ can be considered
an (nsf) operator-valued weight from M1 x̋ M2 to M1. Then  1 B .� ˝  2/ and
 2 B . 1 ˝ �/ are well-defined nsf weights on M1 x̋ M2, and they can be shown to
be equal to each other (for example, by using that an nsf weight can be written as the
pointwise limit of a net of increasing positive functionals). It can then be shown that
this agrees with the nsf weight  1 ˝  2 as defined in the first way.

Let now N1 and N2 be right Morita Hilbert W�-modules for respective von Neu-
mann algebras M1 and M2, and  i an nsf weight on Mi . Then one can identify
L2.N1 x̋ N2/ unitarily with L2.N1/ ˝ L2.N2/ by the unique unitary which sends
�N1 x̋N2.x ˝ y/ into �N1.x/ ˝ �N2.y/ for x 2 NN1; 1 and y 2 NN2; 2 . In the
following, we will then always use L2.N1/˝L2.N2/ for the GNS-space of 1˝ 2,
but we will then write the associated GNS-map as �N1 ˝ �N2 . Of course, the as-
sociated representation of N1 x̋ N2 then becomes the tensor product representation
�N1 ˝ �N2 into B.L2.M1/˝ L2.M2/;L

2.N1/˝ L2.N2//.

2. Comonoidal W�-Morita equivalence

Suppose that P andM are von Neumann algebras which also have some extra struc-
ture. One would then like an appropriate kind of W�-Morita equivalence which takes
this structure into account. This leads quite naturally to the notion of comonoidal W�-
Morita equivalence between von Neumann bialgebras, introduced in Definition 0.1.
Let us remark that the notion of a linking weak von Neumann bialgebra .Q; e;�Q/ can



Comonoidal W�-Morita equivalence for von Neumann bialgebras 559

also be defined more succinctly using the operation � introduced above in Section 1.2.
Indeed, then it becomes simply a linking von Neumann algebra .Q; e/ equipped
with a coassociative normal unital morphism �Q W .Q; e/ ! .Q; e/ � .Q; e/ D
.Q �Q; e ˝ e/. We will further use the following simplifying notation:

�ij W Qij ! Qij x̋ Qij
denotes the restriction of �Q to Qij . We also follow the same conventions as for
linking von Neumann algebras, and will talk about ‘a linking weak von Neumann
bialgebra’ or ‘a linking weak von Neumann bialgebra for .M;�M /’.

Let us comment now on the terminology we use. The term ‘weak von Neumann
bialgebra’ is a straightforward analogue of the notion of a ‘weak bialgebra’, as intro-
duced in [3]. (Although the terminology von Neumann weak bialgebra would then
be more accurate, this seems more awkward to use.) The terminology ‘von Neumann
algebraic linking quantum groupoid’ (Definition 0.9) has already been motivated
somewhat in the introduction. Finally, to explain the terminology ‘comonoidal’,
let us suppose for the moment that we are in the finite-dimensional setting, and
that we do not consider the associated �-structure. Then it is not difficult to show
that if .Q; e;�Q/ is a ‘linking weak bialgebra’, we have an equivalence functor
M -Mod ! P -Mod by taking the balanced tensor product on the left with PNM .
This equivalence functor is naturally endowed with a weak comonoidal structure F .
Namely, if V;W 2 M -Mod, we have

F W N ˝M .V ˝W / ! .N ˝M V /˝ .N ˝M W /;

x ˝M .v ˝ w/ 7! .x.1/ ˝M v/˝ .x.2/ ˝M w/;

where we have used the Sweedler notation for �N . In case the corners of Q are
Hopf algebras, this weak comonoidal structure can be shown to be strong. A similar
discussion then holds in the analytic setting: for a general linking weak von Neumann
bialgebra, we will get a weakly comonoidal �-equivalence between the monoidal cat-
egories Rep� of normal unital �-representations of the corner von Neumann algebras
on Hilbert spaces, and this will be strongly comonoidal if these corners are von Neu-
mann algebraic quantum groups (see again [6] for details). In any case, we have seen
that it is the comonoidal structure which appears most naturally, hence we use it to
designate the structure.

In the introduction, we also introduced the notion of a Galois co-object (Def-
inition 0.5). Let us remark that one may drop the assumption of faithfulness and
normality of the map �N in that definition, as they are a consequence of the second
compatibility condition.

The following proposition provides the connection between Galois co-objects and
linking weak von Neumann bialgebras.

Proposition 2.1. Let .N;�N / be a right Galois co-object for a von Neumann bial-
gebra .M;�M /, and let .Q; e/ be a linking von Neumann algebra associated with
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N . Then there exists a unique linking weak von Neumann bialgebra structure�Q on
.Q; e/ such that the restriction of �Q to N coincides with �N .

Conversely, if .Q; e;�Q/ is a linking weak von Neumann bialgebra for a von
Neumann bialgebra .M;�M /, then the upper right hand corner .Q12; �12/ is a
Galois co-object for .M;�M /.

Proof. Let .N;�N / be a right von Neumann algebraic Galois co-object, and let
.Q; e/ D �

P N
O M

�
be the linking von Neumann algebra associated with N as in

Lemma 1.3. Then we can apply Lemma 1.8 with respect to �N and �M to obtain a
faithful normal �-homomorphism �Q W Q ! Q �Q � Q˝Q with �Q.1 � e/ D
1� e. By the uniqueness statement in that lemma, we have that�Q is coassociative,
since .�Q ˝ �/�Q and .� ˝ �Q/�Q coincide when restricted to N and M . As
�N .N /.M x̋ M/ is � -weakly dense in N x̋ N by definition of a Galois co-object,
the ‘non-degeneracy’ condition in that lemma is satisfied, so that �Q W Q ! Q �Q
is unital. Hence .Q; e;�Q/ is a linking weak von Neumann bialgebra.

Conversely, suppose that .Q D �
P N
O M

�
; �Q/ is a linking weak von Neumann

bialgebra. Then it is clear that .N;�N / satisfies the first two conditions of a Galois
co-object. Suppose that �N .N /.M x̋ M/ is not � -weakly dense in N x̋ N . Since
the former space is a non-trivial right M x̋ M -module, we can find a non-zero
x 2 P x̋ P such that x�N .y/ D 0 for all y 2 N . (Indeed, the � -weak closure of
�N .N /.O x̋ O/ will be a non-trivial right ideal inside P x̋ P , hence there exists a
non-zero projection x 2 P x̋ P which annihilates it by left multiplication.) But then
x�P .yz/ D 0 for all y 2 N , z 2 O . Since the space N �O is � -weakly dense in P ,
also x�P .w/ D 0 for all w 2 P . Since �P .1P / D 1P ˝ 1P , we find that x D 0, a
contradiction. Hence �N .N /.M x̋ M/ is � -weakly dense in N x̋ N .

Remark. If .M;�M / is a von Neumann algebraic quantum group, we know that
�M .M/.1 ˝ M/ is � -weakly dense in M x̋ M (this follows from Corollary 6.11
of [18], applied to the associated reduced C�-algebraic quantum group)). Hence in
this case, we may relax the density condition for a von Neumann algebraic Galois
co-object to ‘�N .N /.1˝M/ being � -weakly dense inN x̋ N ’. This is more in line
with the way Galois co-objects are defined in the setting of Hopf algebras (see [25],
Section 4, although the terminology of Galois co-object is not used there).

The following proposition is mandatory to prove if we want to use the terminology
introduced.

Proposition 2.2. Comonoidal W�-Morita equivalence induces an equivalence rela-
tion between von Neumann bialgebras.

Proof. It is clear that if .M;�M / is a von Neumann bialgebra, then it is como-
noidallyW�-Morita equivalent with itself by the linking weak von Neumann bialgebra
.Q;�Q/ which hasQ D M ˝M2.C/, and with�ij D �M onQij D M . Further,
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if .P;�P / and .M;�M / are comonoidally W�-Morita equivalent by a linking weak
von Neumann bialgebra .Q; e;�Q/, then also .M;�M / and .P;�P / are, by the
linking weak von Neumann bialgebra .Q; 1 � e;�Q/.

Now let .Q1; e;�Q1/ and .Q2; f;�Q2/ be two linking weak von Neumann bial-
gebras. As explained in the second part of Section 1.2, we can combine .Q1; e/ and
.Q2; f / into a global .3 � 3/-linking von Neumann algebra

Q D
0
@Q11 Q12 Q13
Q21 Q22 Q23
Q31 Q32 Q33

1
A ;

with .Q1; e/ isomorphic to the upper left hand block, and .Q2; f / isomorphic to the
lower right hand block. We then have an obvious extension of � to such .3�3/-linking
von Neumann algebras (which is then a fibred product over C3), and we can write

Q �Q D
0
@Q11 x̋ Q11 Q12 x̋ Q12 Q13 x̋ Q13
Q21 x̋ Q21 Q22 x̋ Q22 Q23 x̋ Q23
Q31 x̋ Q31 Q32 x̋ Q32 Q33 x̋ Q33

1
A :

Transporting the comultiplication structures from .Q1; e;�Q1/ and .Q2; f;�Q2/,
we then have maps�ij W Qij ! Qij x̋ Qij for ji � j j � 1. Now denote by zQ13 the
setQ12 �Q23, which will then be a � -weakly dense subset ofQ13 (because, if not, it
would have, being a right Q33-module, a non-zero left annihilator in Q11, which is
clearly impossible sinceQ12 �Q23 �Q32 �Q21 is � -weakly dense inQ11). Applying
Lemma 1.5 to the elements xy and �12.x/�23.y/ for x 2 Q12; y 2 Q23, we see
that we can find a normal faithful linear map �13 W Q13 ! Q13 x̋ Q13, which will
then be �11-�33-compatible and coassociative. Defining

�31 W Q31 ! Q31 x̋ Q31 W x ! .�13.x
�//�;

we get that ��
Q11 Q13
Q31 Q33

�
;

�
�11 �13
�31 �33

��
is a linking weak von Neumann bialgebra between .Q11; �11/ and .Q33; �33/. From
this it follows immediately that comonoidal W�-Morita equivalence is a transitive
relation, which finishes the proof.

We now construct, in the setting of Galois co-objects for von Neumann algebraic
quantum groups, an analogue of the right regular corepresentation for a von Neumann
algebraic group.

Proposition 2.3. Let .M;�M / be a von Neumann algebraic quantum group with a
right invariant nsf weight M . Let .N;�N / be a right Galois co-object for .M;�M /.
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Then, for all x 2 NN; M and y 2 NM; M , the element �N .x/.1 ˝ y/ lies in
NN x̋N; M˝ M , and there exists a unitary element zV 2 B.L2.N // x̋ N such that

zV �N .x/˝ �M .y/ D .�N ˝ �N /.�N .x/.1˝ y//:

Furthermore, if x 2 NN; M and ! 2 N�, then .�˝ !/.�N .x// 2 NN; M and

.�˝ !/. zV /�N .x/ D �N ..�˝ !/�N .x//:

Proof. The proof that zV is a well-defined isometry is completely the same as in
the case of von Neumann algebraic quantum groups, by the simple observation that
�N .x/

��N .y/ D �M .x
�y/ for x; y 2 N , and the fact that . M ˝ �/.�M .x�y// D

 M .x
�y/1M for x; y 2 NN; M , by (polarization and) definition of right-invariance.

But in this case also the proof that zV is a unitary is easy. Indeed, since�N .xy/ D
�N .x/�M .y/ for x 2 N and y 2 M , we have

zV �N .xy/˝ �N .z/ D �N .x/.�M ˝ �M /.�M .y/.1˝ z//

forx 2 N andy; z 2 NM; M . Now elements of the form .�M˝�M /.�M .y/.1˝z//
have dense linear span in L2.M/˝L2.M/. Hence the range of zV contains the closure
of the set �N .N / � L2.M/˝ L2.M/. As �N .N /.M ˝M/ is � -weakly dense in
N x̋ N by definition of a Galois co-object, we see that indeed the range of zV equals
L2.N /˝ L2.N /, so that zV is in fact a unitary.

We prove that zV 2 B.L2.N // x̋ N . Using that B.L2.N // x̋ N is a corner of
B.L2.N // x̋ Q, it follows that it is sufficient to show that .! ˝ �/. zV / 2 N for each
! 2 B.L2.N //�. We may further simplify by taking! of the form h�N .z/; ��N .y/i
for y; z 2 NN; M , as the linear span of such elements is dense in B.L2.N //. But
then it follows from the definition of zV and a Fubini type argument that

.! ˝ �/. zV / D . M ˝ �/..z� ˝ 1/�N .y// 2 N;
where we remark that .z� ˝ 1/�N .y/ lies in the domain M.‰M˝�/ of the operator-
valued weight‰M˝� fromM x̋Q toQ Š 1˝Q, since�N .y/��N .y/ D �M .y

�y/
and .z�z ˝ 1/ are inside MC

.‰M˝�/.
Finally, if x 2 NN; M and ! 2 N� � Q�, we have the Cauchy–Schwarz

inequality

.�˝ !/.�N .x//
�.�˝ !/.�N .x// � k!k .�˝ j!j/.�M .x�x//;

where j!j is the absolute value of !. It follows that .� ˝ !/.�N .x// 2 NN; M .
If there further exist y 2 NN; M and z 2 NM; M such that ! is of the form
h�M .z/; ��N .y/i, it follows from the definition of zV that

.�˝ !/. zV /�N .x/ D �N ..�˝ !/�N .x//:

By the closedness of �N and the density of the linear span of such functionals inN�,
it follows that this formula holds for any ! 2 N�.
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Definition 2.4. Let .N;�N / be a Galois co-object for a von Neumann algebraic quan-
tum group .M;�M /. We call the unitary zV the right regular .N;�N /-corepresen-
tation of .N;�N /.

Similarly, one can define a left such corepresentation eW , such that eW � will then
be an element of N x̋ B.L2.N //.

The following proposition is an easy consequence of the definition of zV .

Proposition 2.5. Let .N;�N / be a Galois co-object for a von Neumann algebraic
quantum group .M;�M /. Let V be the regular right corepresentation for .M;�M /,
and let zV be the right regular .N;�N /-corepresentation for .N;�N /.

(1) For any x 2 N , we have

zV .x ˝ 1/ zV � D �N .x/:

(2) The following pentagonal equation holds:

zV12 zV13V23 D zV23 zV12:

Proof. Choose y 2 NM; M and x 2 N . Then xy 2 NN; N , and �N .xy/ D
x�M .y/. From this it is immediately seen, using the definition of zV and V , that
zV .x ˝ 1/ D �N .x/V , and hence zV �.x ˝ 1/V D �N .x/.

Since zV 2 B.L2.N // x̋ N , and since we can implement �N by V and zV by
means of the first point, the pentagon identity for zV can be rewritten as .�˝�N /. zV / D
zV12 zV13. It is then enough to prove that, for any !1; !2 2 N�, we have

.�˝ ..!1 ˝ !2/ B�N //. zV / D .�˝ !1/. zV /.�˝ !2/. zV /:
But this follows immediately by applying these operators to a vector �N .x/ with
x 2 NN; M , and using the final part of the previous proposition together with the
coassociativity of �N .

3. Projective corepresentations

In order to prove Theorem 0.7, we will use the notion of a projective corepresentation
of a von Neumann bialgebra. This is not the most natural way of proving the theorem,
but the more direct manner would require a lot of the arguments which are very similar
to the ones of [8], some of which are quite technical and subtle. We therefore thought
it better to avoid this, and to actually use the results of [8].

The notion of a projective corepresentation was already introduced in Defini-
tion 0.8. Let us however state clearly here what we mean by an isomorphism between
projective corepresentations.
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Definition 3.1. Let .M;�M / be a von Neumann bialgebra. We call two projective
corepresentations ˛1 and ˛2 of .M;�M / on respective Hilbert spaces H1 and H2

unitary equivalent if there exists an isomorphism � W B.H1/ ! B.H2/ such that
˛2 D .� ˝ �/˛1.

The crucial property of a projective corepresentation will be that it can be imple-
mented, in the same way as ordinary projective representations of a locally compact
group can be implemented by choosing a (measurable) section U.H/=S1 ! U.H/,
with U the (Polish) group of unitaries of a (separable) Hilbert space. The notion we
need for this is the following.

Definition 3.2. Let .M;�M / be a von Neumann bialgebra, and .N;�N / a (right) Ga-
lois co-object for .M;�M /. A (unitary) projective (left) .N;�N /-corepresentation
of .M;�M / consists of a unitary G 2 N x̋ B.H/ (i.e., unitary as a map from
L2.M/˝ H to L2.N /˝ H), satisfying the corepresentation property

.�N ˝ �/G D G13G23:

If G1 and G2 are two .N;�N /-corepresentations on respective Hilbert space H1

and H2, we call G1 and G2 unitary equivalent if there exists a unitary u W H1 ! H2

such that G2.1˝ u/ D .1˝ u/G1.
If H is a Hilbert space, ˛ W B.H/ ! M x̋ B.H/ a projective representation

of .M;�M / on H, and .N;�N / a Galois co-object for .M;�M /, we say that a
projective .N;�N /-corepresentation G implements ˛ if

˛.x/ D G �.1˝ x/G for all x 2 B.H/:
It is easy to see that any projective .N;�N /-corepresentation G on a Hilbert space

H implements in a unique way a projective corepresentation ˛ on H, precisely by the
formula ˛.x/ D G �.1 ˝ x/G . The fact that this is a coaction follows immediately
by the relation between G with �N .

We next want to show that any projective corepresentation is implemented by
an .N;�N /-projective corepresentation (for some .N;�N /), but we first establish a
uniqueness result. It will make use of the following lemma.

Lemma 3.3. Let .N;�N / be a Galois co-object for a von Neumann bialgebra
.M;�M /, and let G be an .N;�N /-projective corepresentation on a Hilbert space
H. Then theM -linear span of the space f.�˝!/G j ! 2 B.H/�g is � -weakly dense
in N .

Proof. Let zN be the � -weak closure of the space f.�˝ !/.G /m j ! 2 B.H/�; m 2
M g, and suppose that zN ¤ N . If Q is the linking von Neumann algebra associated
with N , there exists a non-zero annihilator x 2 Q11 of zN , again since this space
is a non-trivial right M -submodule of N . But this means that x.� ˝ !/.G / D 0

for all ! 2 B.H/�, and hence .x ˝ 1/G D 0. As G is a unitary, we get x D 0, a
contradiction. Hence zN D N .
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Proposition 3.4. Let .M;�M / be a von Neumann bialgebra, and ˛ W B.H/ !
M x̋ B.H/ a projective corepresentation of .M;�M / on a Hilbert space H.

If .N1; �N1/ and .N2; �N2/ are two Galois co-objects for .M;�M /, both
equipped with a .Ni ; �Ni /-projective corepresentation Gi implementing ˛, then there
exists an isomorphism � W .N1; �N1/ ! .N2; �N2/ of Galois co-objects such that
.� ˝ �/G1 D G2.

Here the notion of isomorphism for Galois co-objects is of course an isomorphism
of Morita Hilbert W�-modules intertwining the comultiplication structures.

Proof. For 	, 
 vectors in H, denote !�;� D h	; � 
i, and write ��;� for the finite rank
operator � ! h
; �i	. If 	1, 	2, 
1, 
2 are vectors in H, it is easily seen that

.�˝ !�1;�1/.Gi /
�.�˝ !�2;�2/.Gi / D .�˝ !�1;�2/.G

�
i .1˝ ��1;�2/Gi /

D .�˝ !�1;�2/.˛.��1;�2//

for both i 2 f1; 2g.
The proposition then follows immediately by the previous lemma and Lemma 1.5.

However, this does not imply that if .N;�N / is a Galois co-object, and G1 and G2
two projective .N;�N /-corepresentations implementing the same projective corep-
resentation, that they are isomorphic. The reason is that for projective .N;�N /-
corepresentations with fixed .N;�N /, the notion of isomorphism is stronger. The
concrete situation is the following.

Proposition 3.5. Let .N;�N / be a Galois co-object for a von Neumann bialgebra,
and let .Q;�Q/ be the associated linking weak von Neumann bialgebra. Suppose
that G1 and G2 are two projective .N;�N /-corepresentations on a Hilbert space H
such that

˛.x/ D G �
1 .1˝ x/G1 D G �

2 .1˝ x/G2 for all x 2 B.H/:
Then there exists a group-like unitary u 2 P such that G1 D .v ˝ 1/G2.

We recall that the group-like property means that �P .v/ D v ˝ v.

Proof. As
G1G

�
2 2 P x̋ B.H/ � B.L2.N // x̋ B.H/

commutes with all .1 ˝ x/ with x 2 B.H/, there exists a unitary v 2 P such that
G1 D .v ˝ 1/G2. We must show that v is group-like. This follows by plugging
in the above equality in the identities .�N ˝ �/.Gi / D .Gi /13.Gi /23, using that
�N .xy/ D �P .x/�N .y/ for x 2 P and y 2 N .



566 K. De Commer

Of course, it is still possible that .v˝ 1/G and G are isomorphic, but this will not
always be the case.

Let us now prove that any projective corepresentation is implemented. In [8], we
proved this for von Neumann algebraic quantum groups, but in a very roundabout
way. Here we give a rather elementary proof, which is valid in the more general
setting of von Neumann bialgebras. Nevertheless, we will later on actually need the
result as it appears in [8] because it contains some more information.

Proposition 3.6. Let .M;�M / be a von Neumann bialgebra, H a Hilbert space, and
˛ W B.H/ ! M x̋ B.H/ a projective corepresentation of .M;�M / on H. Then
there exists a Galois co-object .N;�N / for .M;�M /, together with a projective
.N;�N /-corepresentation G on H which implements ˛.

Proof. Choose an index set I with cardinality dim.H/, and let 0 be a distinguished
element of I . Choose a basis fei j i 2 I g of H, and denote by eij the matrix units
in B.H/ with respect to this basis. Let further K be a Hilbert space on which M is
faithfully and normally represented, and denote I D ˛.e00/.K ˝ H/.

We can then define a unitary

G W K ˝ H ! I ˝ H; 	 7! P
i2I
.˛.e0i /	/˝ ei ;

the adjoint being

G � W I ˝ H ! K ˝ H; 	 ˝ ei 7! ˛.ei0/	:

For any x 2 B.H/, we have

G �.1˝ x/G D ˛.x/;

which follows most easily if one takes x a matrix unit for example.
Denote then by N the � -weakly closed linear span of

f.�˝ !0j /.G /m j j 2 I; m 2 M g � B.K; I/:

By definition, this is a rightM -module. Moreover, just as in Proposition 3.4 one has,
denoting !ij D hei ; � ej i, that

.�˝ !0j /.G /
�.�˝ !0l/.G / D .�˝ !jl/.˛.e00//; j; l 2 I:

Hence N becomes a Hilbert W�-module by the formula hx; yiM D x�y.
Now for j; k; l 2 I , we have

.�˝ !jk/.G / D .�˝ !0l/..1˝ e0j /G .1˝ ekl//

D .�˝ !0l/.G˛.e0j /.1˝ ekl//

D P
i2I
.�˝ !0i /.G /.�˝ !il/.˛.e0j /.1˝ ekl//:
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Hence, each .�˝ !jk/.G / lies in N , and thus G 2 N x̋ B.H/.
In particular, we have .�˝ !i0/.G / 2 N . Since

.�˝ !i0/.G /
�.�˝ !i0/.G / D .�˝ !00/.˛.ei i //

for i 2 I , we see that the linear span of the range of h � ; � iM contains .�˝!00/.˛.1// D
1M , and soN is a full HilbertM -module. As it arises as a � -weakly closed subspace
of B.K; I/, we have that N is a Morita Hilbert M -module by Proposition 1.7.

Denote

xij D .�˝ !ij /.G / 2 N;
and

yij D .�˝ �˝ !ij /.G13G23/ 2 N x̋ N;
with i; j 2 I . Since x�

ijxkl D .�˝ !jl/.˛.eik//, while

y�
ijykl D .�˝ �˝ !jl/..�˝ ˛/˛.eik// D �M .x

�
ijxkl/;

by an easy computation we can apply Lemma 1.5 to obtain a �M -compatible mor-
phism �N W N ! N x̋ N such that .�N ˝ �/G D G13G23. The proposition will
then be proven if we can show that .N;�N / is a Galois co-object.

In fact, by the above compatibility with G , and the fact that the first leg of G gen-
eratesN as a rightM -module, it follows immediately that�N will be coassociative.
The only thing which remains to be seen is whether �N .N /.M x̋ M/ is � -weakly
dense in N x̋ N . But this follows precisely as in the proof of Lemma 3.3.

Remark. In particular, the foregoing allows one to construct from a projective corep-
resentation of .M;�M / (i.e., a coaction on a type I -factor) a Galois co-object
.N;�N /, and hence, by Proposition 2.1, a linking weak von Neumann bialgebra
.Q;�Q/, which contains in turn a (possibly) new von Neumann bialgebra .P;�P /
in its upper left corner. In [7], we applied this construction to the action of SUq.2/
on the standard Podleś sphere (whose associated von Neumann algebra is indeed a
type I-factor) to ‘rediscover’ Woronowicz’s quantum E.2/ group ([31]). In [9], we
applied it to the action of SUq.2/ on a Z2-quotient of the equatorial Podleś sphere
(which can be interpreted as a quantized projective plane, with again a type I-factor as
its associated von Neumann algebra), to ‘rediscover’ the extended quantum SU.1; 1/
group (as it appears in [15]). We hope in future work to obtain in this way some
interesting q-deformations of higher-dimensional non-compact Lie groups.

The following proposition will be an immediate corollary of Proposition 3.4 and
the results of [8]. We first remark however that the object . yQ;� yQ/ which appears
in the beginning of the first section of [8] is a linking weak von Neumann bialgebra
in the sense of the present paper. Indeed, yQ is a linking von Neumann algebra
by the remark following Proposition 1.6 of the present paper, and since � yQ was
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constructed in [8] as a unital map yQ ! yQ � yQ, it will hence make yQ a linking weak
von Neumann bialgebra. In fact, as we showed in [8] that this specific linking von
Neumann bialgebra has von Neumann algebraic quantum groups at its corners, it is a
von Neumann algebraic linking quantum groupoid in the terminology of the present
paper.

Proposition 3.7. Let ˛ be a projective corepresentation of a von Neumann algebraic
quantum group .M;�M / on a Hilbert space H. Let .N;�N / be a Galois co-object
for which there exists a projective .N;�N /-corepresentation implementing ˛. Then
the linking weak von Neumann bialgebra associated with .N;�N / is a von Neumann
algebraic linking quantum groupoid.

Proof. In Theorem 6.2 of [8], we constructed a von Neumann algebraic linking quan-
tum groupoid . zQ;f;� zQ/ such that the Galois co-object . zQ12; �12/ had a projective

. zQ12; �12/-corepresentation implementing ˛. If .Q; e;�Q/ is the linking weak
von Neumann bialgebra associated with .N;�N /, we have, by Proposition 3.4 and
Lemma 1.3, an isomorphism � from .Q; e;�Q/ to . zQ;f;� zQ/, which intertwines
� because the restriction to the 12-part does. Hence .Q11; �11/ is a von Neumann
algebraic quantum group.

Finally, we use the previous proposition to prove Theorem 0.7.

Proof of Theorem 0.7. Let .M;�M / be a von Neumann algebraic quantum group,
and let .N;�N / be a Galois co-object for .M;�M /. By Proposition 3.7, it is enough
to show that there exists a left .N;�N /-corepresentation. But it is easy to see that,
with † denoting the flip map and zV the regular right .N;�N /-corepresentation as-
sociated with .N;�N /, we have that † zV † 2 N x̋ B.L2.N // is a left .N;�N /-
corepresentation by the pentagonal equation for zV . This concludes the proof.

Remark. The above proof is of course very sparse with information on how the
invariant weights on the comonoidally W�-Morita equivalent von Neumann bialgebra
.P;�P / are obtained. The crucial point to observe is that in [8] we proved that there
exists a one-parameter-group of unitaries on L2.N / which implements the modular
one-parametergroup (of say the left invariant weight) on �r.M/, where �r is the
natural right representation of M on L2.N /. A theorem due to Connes implies that
this one-parameter-family is in fact generated by the spatial derivative between (the
opposite of) the left invariant weight on M and a uniquely determined weight on P .
We then showed that this new weight is left invariant.

The way in which the above-mentioned one-parameter-group of unitaries was
constructed is in itself not so straightforward, and is heavily influenced by the way in
which all structures on a von Neumann algebraic quantum group interact with each
other. In any case, even though the intuition from [8] could in principle be used to
prove Theorem 0.7 without recourse to the (dual) theory in [8], we have deemed this
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task not worth the effort, as there seemed to be little gain in reiterating all technical
arguments.

4. 2-cocycles

Let us now briefly consider the special case of cleft Galois co-objects, which are those
Galois co-objects constructed from a unitary 2-cocycle ([10]). This discussion will
then supplement the one in the fifth section of [8].

Definition 4.1. Let .M;�M / be a von Neumann bialgebra and  2 M x̋ M a
unitary. We call  a unitary 2-cocycle if  satisfies the 2-cocycle identity

.˝ 1/.�M ˝ �/./ D .1˝/.�˝�M /./:

Proposition 4.2. If  is a unitary 2-cocycle for a von Neumann algebraic quantum
group .M;�M /, then

.N;�N / ´ .M;�M . � //;
with hx; yiM D x�y, for x; y 2 M , is a right Galois co-object for .M;�M /.

Proof. The fact that �N is coassociative is immediate from the 2-cocycle identity.
Also the other properties of Galois co-objects are trivial to verify.

The following propositions are quite trivial to prove, but it is important to note
them.

Proposition 4.3. If .N;�N / is a Galois co-object for a von Neumann algebraic
quantum group, andN Š M as right Hilbert W�-modules, then there exists a unitary
2-cocycle  such that .N;�N / Š .M;�M . � //.
Proof. Identifying N with M as a right Hilbert W�-module, we have that  D
�N .1M / is a unitary, satisfying the 2-cocycle condition since �N is coassociative
and �N .x/ D �N .1M /�M .x/ for x 2 M . This final identity then also proves that
�N D �M . � /.

Hence these Galois co-objects can be characterized as those for which the as-
sociated underlying W�-Morita equivalence (i.e., without the comonoidal structure)
is trivial. We note that for certain von Neumann bialgebras, there may well exist
non-cleft Galois co-objects (see [2]).

Proposition 4.4. Let1 and2 be two unitary 2-cocycles for a von Neumann alge-
braic quantum group .M;�M /, and let .N1; �N1/ and .N2; �N2/ be the associated
Galois co-objects. Then .N1; �N1/ and .N2; �N2/ are isomorphic iff 1 and 2
are coboundary equivalent in the sense that there exists a unitary v 2 M with

2 D .v� ˝ v�/1�M .v/:
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Proof. If 1 and 2 are coboundary equivalent by a unitary v, it is immediately
verified that left multiplication by v� provides an isomorphism between .N1; �N1/
and .N2; �N2/.

Conversely, suppose that .M;1�M . � // and .M;2�M . � // are isomorphic as
right N -Galois co-objects by a map �. Then �.1M / is a unitary, whose adjoint we
denote by v. Then �.m/ D v�m for allm 2 M . As � intertwines the coproducts, we
find that2�M .v�/ D .v� ˝ v�/1, so that1 and2 are coboundary equivalent.
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