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Abstract. Using the Chamseddine–Connes approach of the noncommutative action on spectral
triples, we show that there are no tadpoles of any order for compact spin manifolds without
boundary, and also consider a case of a chiral boundary condition. Using pseudodifferential
techniques, we study noncommutative integrals in commutative geometries.
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1. Introduction

The history of noncommutative residue is now rather long [35], so we sketch it only
briefly: after some approaches byAdler [2] and Manin [42] on the Korteweg–de Vries
equation using a trace on the algebra of formal pseudodifferential operators in one
dimension, and of Guillemin with his “soft” proof of Weyl’s law on the eigenvalues of
an elliptic operator [29], the noncommutative residue in any dimension was essentially
initiated by Wodzicki in his thesis [50]. This residue gives the unique non-trivial trace
on the algebra of pseudodifferential operators. Then a link between this residue and
the Dixmier’s trace was given by Connes in [10]. Due to Connes [11], [12], the setting
of classical pseudodifferential operators on Riemannian manifolds without boundary
was extended to a noncommutative geometry where the manifold is replaced by a
not necessarily commutative algebra A plus a Dirac-like operator D via the notion
of spectral triple .A;H ;D/, where H is the Hilbert space acted upon by A and
D . The previous Dixmier’s trace is extended to the algebra of pseudodifferential
operators naturally associated to the triple .A;H ;D/. This spectral point of view
appears quite natural in the general framework of noncommutative geometry which
goes beyond Riemannian geometry. From a physicist point of view, this framework
has many advantages: the spectral approach is motivated by quantum physics but not
only since classical observables and infinitesimals are now on the same footing and
even Dixmier’s trace is related to renormalization. It is amazing to observe that most
of the classical geometrical notions like those defined in relativity or particle physics
can be extended to this really noncommutative setting. Among others, some physical
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actions still make sense as in [10], where Dixmier’s trace is used to compute the
Yang–Mills action in the context of noncommutative differential geometry. Another
example is the Einstein–Hilbert action: on a compact spin Riemannian 4-manifold,ª

D�2 coincides (up to a universal scalar) with the Einstein–Hilbert action, where
ª

is precisely the noncommutative residue, a point first noticed by Connes; then there
were some brute force proof [36] and generalization [34] (see also [1]) of this fact
which is particularly relevant here.

Since then the case of compact manifolds with boundary has been studied, making
clearer the links between noncommutative residues, Dixmier’s trace and heat kernel
expansion. This was made using Boutet de Monvel’s algebra [20], [46], [27], in the
case of conical singularities [45], [40] or when the symbols are log-polyhomogeneous
[39]. Besides, applications of noncommutative residues for such manifolds to classi-
cal gravity were found [49], and better, when the gravity is unified with fundamental
interactions [8]. Needless to say that in field theory the one-loop calculation di-
vergences, anomalies and different asymptotics of the effective action are directly
obtained from the heat kernel method [48], so all of the above-mentioned mathemat-
ical results have profound applications to physics.

The Chamseddine–Connes action [7] associated to a spectral triple .A;H ;D/ is,
for a 1-form A D P

i ai ŒD ; bi �, ai ; bi 2 A,

�.DA; ˆ;ƒ/ D
X

0<k2SdC

ˆkƒ
k

«
jDAj�k Cˆ.0/�DA

.0/C O.ƒ�1/; (1)

where DA ´ D C A (or D QA ´ D C QA, QA ´ A C �JAJ�1 in the real case),
ˆk D 1

2

R 1
0
ˆ.t/tk=2�1dt and SdC is the strictly positive part of the dimension

spectrum of the spectral triple. When DA is not invertible, we invert in (1) the
invertible operator DA CPA, where PA is the projection on Ker DA which is a finite
dimensional space.

The coefficient �DA
.0/ related to the constant term in (1) can be computed from

the unperturbed spectral action since it was proved in [16] (with an invertible Dirac
operator and a 1-form A such that D C A is also invertible) that

�DCA.0/ � �D.0/ D
nX

qD1

.�1/q

q

«
.AD�1/q; (2)

using �X .s/ D Tr.jX j�s/.
It is important to be able to compute (1) and here we look at the possible can-

cellation of terms in this formula. We focus essentially on commutative spectral
triples, where we show that there are no tadpoles, i.e., terms like

ª
AD�1 are zero:

in field theory, D�1 is the Feynman propagator and AD�1 is a one-loop graph with
fermionic internal line and only one external bosonic line A looking like a tadpole.
More generally, the tadpoles are the A-linear terms in (1).
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D�1

A

In [44], a few computations of
ª jD j�k are presented and a formula like (2) also

appears in [41] in the context of pseudodifferential elliptic operators.
For examples of spectral action in the real noncommutative setting, see [9], [6],

[37] for the case of almost commutative instances which pops up in particle physics,
[21] for the Moyal plane (and few points for non-compact manifolds [22]), [23], [19]
for the noncommutative torus, and [33] for the quantum group SUq.2/. In the latter
case there are tadpoles.

As a starting point, we investigate in Section 2 the existence of tadpoles for
manifolds with boundaries and consider, following Chamseddine and Connes [8],
the case of a chiral boundary condition on the Dirac operator. One of Chamseddine
and Connes’ original motivations was to show that the first two terms in spectral
action come with the right ratio and sign for their coefficients as in the modified
Euclidean action used in gravitation. We generalize this approach to the perturbed
Dirac operator by an internal fluctuation, ending up with no tadpoles up to order 5
(see Definition 3.4).

However, this approach stems from explicit computations of first heat kernel
coefficients, so we cannot conclude that other integrals of the same type as tadpoles
are zero. It is then natural to restrict to manifolds without boundary via a different
method.

We gather in Section 3 some basic results concerning the use of the reality op-
erator J . We use these results to prove Theorem 4.3 in Section 4.2, which asserts
that there are no tadpoles of any order in commutative geometries. After some useful
facts using the link between

ª
and the Wodzicki residue, we study in Section 4.3

some tadpole-like noncommutative integrals, and prove Theorem 4.6, which extends
Theorem 4.3. Finally, we conclude in Section 4.4 with a few remarks about nonlinear
terms appearing in the spectral action (1).

Technical proofs and a few definitions about pseudodifferential operators, dimen-
sion spectrum are postponed to the Appendix.

2. Tadpoles and compact spin manifolds with boundary

Let M be a smooth compact Riemannian d -dimensional manifold with smooth
boundary @M and V be a given smooth vector bundle on M . We denote by dx
(resp. dy) the Riemannian volume form on M (resp. on @M ).

Recall that a differential operator P is of Laplace type if it has locally the form

P D �.g��@�@� C A�@� C B/; (3)
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where .g��/1��;��d is the inverse matrix associated to the metric g on M , and A�

and B are smooth L.V /-sections on M (endomorphisms). A differential operator D
is of Dirac type ifD2 is of Laplace type, or equivalently if it has locally the following
form

D D �i��@� C �;

where .��/1���d gives V a Clifford module structure: f��; ��g D 2g��IdV ,
.��/� D ��.

A particular case of Dirac operator is given by the following formula

D D �i��.@� C !�/; (4)

where the !� are in C1.L.V //.
IfP is a Laplace type operator of the form (3), then (see [25], Lemma 1.2.1) there is

a unique connection r on V and a unique endomorphismE such that P D L.r; E/,
where by definition

L.r; E/ ´ �.Trg r2 CE/; r2.X; Y / ´ ŒrX ;rY � � rrg
X

Y ;

X , Y are vector fields on M and rg is the Levi-Civita connection on M . Locally

Trg r2 ´ g��.r�r� � ��
��r�/;

where ��
�� are the Christoffel coefficients of rg . Moreover (with local frames of

T �M and V ), r D dx� ˝ .@� C !�/ and E are related to g�� , A� and B through

!� D 1
2
g��.A

� C g�"��
�"Id/;

E D B � g��.@�!� C !�!� � !��
�
��/:

Suppose that P D L.r; E/ is a Laplace type operator on M , and assume that �
is an endomorphism of V@M so that �2 D IdV . We extend � on a collar neighborhood
C of @M in M with the condition rd .�/ D 0, where the d -th coordinate here is the
radial coordinate (the geodesic distance of a point in M to the boundary @M .)

Let V˙ ´ …˙V the sub-bundles of V on C where …˙ ´ 1
2
.IdV ˙ �/ are the

projections on the ˙1 eigenvalues of �. We also fix an auxiliary endomorphism S

on VC@M extended to C .
This allows to define the mixed boundary operator B D B.�; S/ as

Bs ´ …C.rd C S/…Csj@M ˚…�sj@M ; s 2 C1.V /: (5)

These boundary conditions generalizes Dirichlet (…� D IdV , so � D �IdV ) and
Neumann–Robin (…C D IdV , so � D IdV ) conditions.

We define PB as the realization of P on B, that is to say the closure of P defined
on the space of smooth sections of V satisfying the boundary condition Bs D 0.
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We are interested in the behavior of heat kernel coefficients ad�n defined through
its expansion as ƒ ! 1 (see [25], Theorem 1.4.5)

Tr.e�ƒ�2D2
B / � P

n�0

ƒd�nad�n.D;B/;

where D is a self-adjoint Dirac type operator. Moreover, we will use a perturbation
D ! D C A, where A is a 1-form (a linear combination of terms of the type
f ŒD; g�, where f and g are smooth functions onM ). More precisely, we investigate
the linear dependence of these coefficients with respect to A. It is clear that, since
A is differential operator of order 0, a perturbation D 7! D C A transforms a Dirac
type operator into another Dirac type operator.

This perturbation has consequences on the E- and r-terms:

Lemma 2.1 ([48]). LetD be a Dirac type operator locally of the form (4) such that
r� ´ @� C !� is connection compatible with the Clifford action � . Let A be a
1-form associated toD so that A is locally of the form �i��a� with a� 2 C1.U /,
.U; x�/ being a local coordinate frame onM .

Then .D C A/2 D L.rA; EA/ andD2 D L.r; E/, where

!A
� D !� C a�; thus rA

� D r� C a�IdV ;

EA D E C 1
4
Œ��; �� �F�� ; E D 1

2
���� Œr�;r� �; F�� ´ @�.a�/ � @�.a�/:

Moreover, the curvature of the connection rA is	A
�� D 	�� C F�� , where	�� D

Œr�;r� �.
In particular TrEA D TrE.

Observe that even if quadratic terms in A2 appear in the local presentation of
the perturbation D2 ! .D C A/2 (in the b-term), these terms do not appear in the
invariant formulation .r; E/ since they are hidden in rA

� rA
� .

In the following, D and A are fixed and satisfy the hypothesis of Lemma 2.1.
Indices i , j , k, and l range from 1 through the dimension d of the manifold and
index a local orthonormal frame fe1; : : : ; ed g for the tangent bundle. Roman indices
a, b, c, range from 1 through d�1 and index a local orthonormal frame for the tangent
bundle of the boundary @M . The vector field ed is chosen to be the inward-pointing
unit normal vector field. Greek indices are associated to coordinate frames.

Let Rijkl , 
ij ´ Rikkj and � ´ 
i i be the components of the Riemann tensor,
Ricci tensor and scalar curvature of the Levi-Civita connection, respectively. Let
Lab ´ .rea

eb; ed / be the second fundamental form of the hypersurface @M in
M . Let “;” denote multiple covariant differentiations with respect to rA, and let
“:” denote multiple covariant differentiations with respect to r and the Levi-Civita
connection of M .

We will look at a chiral boundary condition. This is a mixed boundary condition
natural to consider in order to preserve the existence of chirality onM and its boundary



304 B. Iochum and C. Levy

@M which are compatible with the (selfadjoint) Clifford action: we assume that the
operator � is selfadjoint and satisfies the relations

f�; �d g D 0; Œ�; �a� D 0 for all a 2 f1; : : : ; d � 1g: (6)

This condition was shown in [8] a natural assumption to enforce the hermiticity
of the realization of the Dirac operator. It is known [25], Lemma 1.5.3, that ellipticity
is preserved.

Since �d is invertible, dim VC D dim V� and Tr � D 0.
For an even-dimensional oriented manifold, there is a natural candidate � satis-

fying (6), namely

� ´ �@M D .�i/d=2�1�.e1/ : : : �.ed�1/

(this notation is compatible with (11)). Recall that

Tr.� i1 : : : � i2kC1/ D 0 for all k 2 N; Tr.� i�j / D dim V ıij : (7)

The natural realization of this boundary condition for the Dirac type operator
DCA is the operator .DCA/� which acts asDCA on the domain fs 2 C1.V / W
…�sj@M D 0g. It turns out (see [4], Lemma 7) that the natural boundary operatorBA

�

defined by
BA

� s ´ …�.D C A/sj@M ˚…�sj@M (8)

is a boundary operator of the form (5) provided thatS D 1
2
…C.�i Œ�d ; A��Laa�/…C.

Lemma 2.2. Actually, S and �Ia are independent of the perturbation A:

(i) S D �1
2
Laa…C.

(ii) �Ia D �Wa.

Proof. (i) Since A is locally of the form �i�jaj with aj 2 C1.U /, we obtain from
(6)

�Œ�d ; A�D �iaj�Œ�
d ; �j �D �i P

j <d

aj�Œ�
d ; �j �D i

P
j <d

aj Œ�
d ; �j ��D �Œ�d ; A��

and the result as a consequence of …C Œ�d ; A� D Œ�d ; A�…� and …C…� D 0.
(ii) We have rA

i D ri C ai IdV where A DW �i�jaj , and since .rA
i �/s D

rA
i .�s/ � �.rA

i s/ for any s 2 C1.V /, it follows Lemma 2.1 from that rA
i .�/ D

Œri C ai IdV ; �� D Œri ; �� D ri .�/.

While S is not sensitive to the perturbationA, the boundary operator BA
� depends

a priori on A. We shall denote B� the boundary operator BA
� when A D 0.

The coefficients ad�k for 0 � k � 4 have been computed in [3] for general mixed
boundary conditions in the case of Laplace type operators and in [4], Lemma 8, for
Dirac type operators with chiral boundary conditions. We recall here these coefficients
in our setting:
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Proposition 2.3.

ad .D C A;BA
� / D .4�/�d=2

Z
M

TrV 1 dx;

ad�1.D C A;BA
� / D 0;

ad�2.D C A;BA
� / D .4�/�d=2

6

� Z
M

TrV .6E
A C �/ dx

C
Z

@M

TrV .2Laa C 12S/dy

�
;

ad�3.D C A;BA
� / D .4�/�.d�1/=2

384

Z
@M

TrV f96�EA C 3L2
aa C 6L2

ab

C 96SLaa C 192S2 � 12�2Iag dy;

ad�4.D C A;BA
� / D .4�/�d=2

360

� Z
M

TrV f60�EA C 180.EA/2 C 30.	A
ij /

2

C 5�2 � 2
2 C 2R2g dx
C

Z
@M

TrV

˚
180�EA

Id C 120EALaa C 720SEA

C 60��Ia	A
ad C T gdy

�
:

where

T ´ 20�Laa C 4RadadLbb � 12RadbdLab C 4RabcbLac

C 1
21
.160L3

aa � 48L2
abLcc C 272LabLbcLac

C 120�S C 144SL2
aa C 48SL2

ab C 480.S2Laa C S3/

� 42�2IaLbb C 6�Ia�IbLab � 120�2IaS/

is independent of A.

The following proposition shows that there are no tadpoles (linear terms in A) in
the heat kernel coefficients ad�k.D C A;BA

� / for k � 5 in the case of manifolds
endowed with a chiral boundary condition.

Theorem 2.4. LetM be an even d -dimensional compact oriented spin Riemannian
manifold with smooth boundary @M and spin bundle V . Let D ´ �i�j rj be
the classical Dirac operator and � D �@M D .�i/d=2�1�.e1/ : : : �.ed�1/, where
.ei /1�i�d is a local orthonormal frame of TM .

The perturbation D ! D C A, where A D �i�jaj is a 1-form for D, induces,
under the chiral boundary condition, the following perturbations on the heat kernel
coefficients, where we set cd�k.A/ ´ ad�k.D C A;BA

� / � ad�k.D;B�/:
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(i) cd .A/ D cd�1.A/ D cd�2.A/ D cd�3.A/ D 0,

(ii) cd�4.A/ D � 1

6.2�/d=2

Z
M
F��F

�� dx.

In other words, the coefficients ad�k for 0 � k � 3 are unperturbed; ad�4 is only
perturbed by quadratic terms in A, and there are no A-linear terms in ad�k.D C
A;BA

� / for k � 5.

Remark 2.5. We conjecture that there are no A-linear terms in the heat kernel coef-
ficients ad�k.DCA;BA

� / for any k 2 N. Since we want to work with a selfadjoint
realization .D C A/�, the chiral boundary condition was chosen. This condition
corresponds to a realization acting as D C A on the domain f W �. / D � g. As
we saw, this condition yields on the square ..DCA/�/2 a mixed boundary condition:
..D C A/�/

2 D ..D C A/2/BA
�

where BA
� is the mixed boundary operator given in

(8), with a fixed endomorphism S . In particular, S is fixed by the chiral condition on
D C A. In other words, there is no other possible choice for S .

Note that the Dirichlet condition .� D �idV / and Neumann–Robin .� D idV /

would not yield a selfadjoint realization since (6) would not be satisfied in this case.

Remark 2.6. IfA is selfadjoint, all coefficients ad�k.DCA;BA
� / and ad�k.D;B�/

are real, while linear contributions inA are purely imaginary, modulo traces of � and
�-matrices and their covariant derivatives. Since the invariant terms appearing as
integrands of

R
M

and
R

@M
in the coefficients at higher order are polynomial in S , �,

R, EA and 	A, and their covariant derivatives, one expects no linear terms in A at
any order.

We study more examples in [32] with a generalization of Theorem 4.3.

Proof. (i) The fact that cd .A/ D cd�1.A/ D 0 follows from Proposition 2.3.
Since by Lemma 2.2, cd�2.A/ D .4�/�d=2

R
M

TrV .E
A �EA/dx, it follows that

cd�2.A/ D 0 because TrV E
A D TrV E by Lemma 2.1.

From Proposition 2.3 and Lemma 2.2, we get

cd�3.A/ D 1

4
.4�/�.d�1/=2

Z
@M

TrV f�.EA �E/g:

Since �.EA �E/ D .�i/d=2�1 : : : �d�1Œ�j ; �k�Fjk , (7) yields TrV �.E
A �E/ D 0

because d is even.
(ii) Since TrV .E

A � E/ D 0 and TrV �.E
A � E/ D 0, Lemma 2.2 implies that

TrV S.E
A �E/ D 0. Thus, using Proposition 2.3 and Lemma 2.2,

cd�4.A/ D .4�/�d=2

360

� Z
M

TrV f180..EA/2 �E2/C 30..	A
ij /

2 � .	ij /
2/g dx

C
Z

@M

TrV f180�.EA
Id �EWd /C 60��Ia.	A

ad �	ad /gdy
�
:



Tadpoles and commutative spectral triples 307

We obtain locally TrV

�
.EA/2 �E2

� D 1
16

Tr.Œ��; �� �Œ��; �� �/F��F�� using Lich-
nérowicz’s formula E D �1

4
� . Since TrV .Œ�

�; �� �Œ��; �� �/ D 4 � 2d=2.g��g�� �
g��g�� /, we have

TrV

�
.EA/2 �E2

� D � 2d=2�1F��F
�� :

r being the spin connection associated to the spin structure of M , we have 	ij D
1
4
�k� lRijkl . So Rijkl D �Rijlk implies that TrV 	ij D 0. Hence, by Lemma 2.1,

TrV ..	
A
ij /

2 �	2
ij / D 2d=2F 2

ij D 2d=2F��F
�� :

Also, EA
Id D Œrd Cad ; E

A� D Œrd ; EC 1
4
Œ� i ; �j �Fij � D EWd C 1

4
Œrd ; Œ�

i ; �j ��Fij .

Using Œri ; �
i � D �.riej / and (7), we obtain

TrV .�.E
A
Id �EWd // D .�i/d=2 1

2
Fij TrV f�1: : : �d�1.�.rdei /�

j C� i�.rdej //g D 0:

It remains to check that TrV

�
��Wa.	A

ad
� 	ad /

� D 0. Let �M D �i��d be the
grading operator (see (11).) Since �M commutes with the spin connection operator
r (see [26], p. 396),

0 D Œra; �M � D Œra; ��
d � D �Wa�d C �Œra; �

d � D �Wa�d C ��.raed /

and thus ��Wa D ��.raed /�
d D ��j

ad
�j �d , where �j

ad
D ��d

aj since .ej / is an

orthonormal frame. So TrV .��Wa/ D ��j

ad
ıjd D ��d

ad
D 0. Finally, the result on

cd�4 follows from Lemma 2.1 as TrV

�
��Wa.	A

ad
�	ad /

� D TrV .��Wa/Fad .
The coefficient ad�5.D C A;BA

� / is computed in [5]. One can check directly
as above that the linear terms in A are not present. The computation uses the fact
that the traces of the terms �EA

Idd
, EA

IdS , �.EA/2, EAS2, �Ia�Ib	A
ab

, �2IaEA do not
have linear terms in A.

In the following, we prove the above conjecture for compact spin manifolds with-
out boundary using Connes–Chamseddine’s pseudodifferential calculus. We also see,
using the Wodzicki residue, how to compute some noncommutative (tadpole-like) in-
tegrals in this setting.

3. Tadpoles in spectral triples

Let .A;D ;H / be a spectral triple of dimension d .
Let J be the reality operator (if it exists) satisfying

JD D �DJ; � D ˙1;
according to the dimension: � D C1 when the dimension d is 0, 2, 3, 4, 6, 7 mod 8
and � D �1 when d D 1, 5 mod 8.
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When the triple is even, we also use the chirality operator�which is a grading on H

and which commutes with A, anti-commutes with D , and also satisfies J� D �0�J ,
where �0 D 1 for d D 0, 4 mod 8 and �0 D �1 for d D 2, 6 mod 8.

Let us recall a few definitions; see [12], [13], [18], [19], [31]:

Definition 3.1. A 1-formA is a finite sum of operators like a1ŒD ; a2�where ai 2 A.
The set of 1-forms is denoted by 	1

D
.A/.

For definitions about the algebra‰.A/ of pseudodifferential operators, zeta func-
tions and dimension spectrum, we refer the reader to the Appendix.

A. Connes introduced the notation«
X ´ Res

sD0
Tr.X jD j�s/; X 2 ‰.A/:

ª
is a trace on ‰.A/ (not necessarily positive, see Lemma 4.14.)
We assume D to be invertible since otherwise one can replace D with the invertible

operator D CP , P being the projection on Ker D . This change does not modify the
computation of the integrals

ª
that follow.

Lemma 3.2. Let .A;D ;H / be a spectral triple and X 2 ‰.A/. Then

«
X� D

«
X:

If the spectral triple is real, then, for X 2 ‰.A/, JXJ�1 2 ‰.A/ and

«
JXJ�1 D

«
X� D

«
X:

Proof. The first result follows from (for s large enough, so the operators are traceable)

Tr.X�jD j�s/ D Tr
�
.jD j�Ns/X/�

� D Tr.jD j�NsX/ D Tr.X jD j�Ns/:

The second result is due to the anti-linearity of J , Tr.J YJ�1/ D Tr.Y /, and
J jD j D jD jJ , so

Tr.X jD j�s/ D Tr.JX jD j�sJ�1/ D Tr.JXJ�1jD j�Ns/:

Corollary 3.3. For any 1-form A D A�, and for k; l 2 N we have«
AlD�k 2 R;

«
.AD�1/k 2 R;

«
Al jD j�k 2 R;

«
�Al jD j�k 2 R;

«
AlD jD j�k 2 R:
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In [17], the following definition is introduced:

Definition 3.4. In .A;H ;D/, the tadpole TadDCA.k/ of order k, for k 2 fd � l W
l 2 Ng is the term linear in A D A� 2 	1

D
in the ƒk-term of (1) (considered as an

infinite series) where DA D D C A.
If moreover, the triple .A;H ;D ; J / is real, the tadpole Tad

DC QA.k/ is the term

linear in A, in the ƒk-term of (1) where DA D D C QA.

Proposition 3.5. Let .A;H ;D/ be a spectral triple of dimension d with simple
dimension spectrum. Then

TadDCA.d � k/ D �.d � k/
«
AD jD j�.d�k/�2 for all k ¤ d;

TadDCA.0/ D �
«
AD�1: (9)

Moreover, if the triple is real, then Tad
DC QA D 2TadDCA.

Proof. By [19], Lemma 4.6 and Proposition 4.8 , we have the following formula, for
any k 2 N,«

jDAj�.d�k/

D
«

jD j�.d�k/ C
kX

pD1

k�pX
r1;:::;rpD0

Res
sDd�k

h.s; r; p/Tr."r1.Y / : : : "rp .Y /jD j�s/;

where

h.s; r; p/ ´ .�s=2/p
Z
0�t1�����tp�1

g.�st1; r1/ : : : g.�stp; rp/ dt;
"r.T / ´ r.T /D�2r ; r.T / ´ ŒD2; T �;

g.z; r/ ´ �
z=2

r

�
with g.z; 0/ ´ 1;

Y � PN
qD1

PN �q

k1;:::;kqD0
�k

q .X/D
�2.jkj1Cq/ mod OP�N �1 for any N 2 N�;

X ´ QAD C D QAC QA2; QA ´ AC �JAJ�1;

�k
q .X/ ´ .�1/jkj1CqC1

jkj1Cq
rkq .Xrkq�1.: : : Xrk1.X/ : : : // for all q 2 N�;

k D .k1; : : : ; kq/ 2 Nq:

As a consequence, for k ¤ n, only the terms with p D 1 contribute to the linear part:

Tad
DC QA.d � k/ D LinA

� «
jDAj�.d�k/

�

D
k�1X
rD0

Res
sDd�k

h.s; r; 1/Tr."r.LinA.Y //jD j�s/:
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We check that for any N 2 N�,

LinA.Y / �
N �1X
lD0

� l
1.

QAD C D QA/D�2.lC1/ mod OP�N �1:

Since� l
1.

QADCD QA/ D .�1/l

lC1
rl. QADCD QA/ D .�1/l

lC1
frl. QA/;Dg, we get, assuming

the dimension spectrum to be simple,

Tad
DC QA.d � k/

D
k�1X
rD0

Res
sDd�k

h.s; r; p/Tr."r.LinA.Y //jD j�s/

D
k�1X
rD0

h.n � k; r; 1/
k�1�rX

lD0

.�1/l
l C 1

Res
sDd�k

Tr."r.frl. QA/;Dg/jD j�s�2.lC1//

D 2

k�1X
rD0

h.d � k; r; 1/
k�1�rX

lD0

.�1/l
l C 1

«
rrCl. QA/D jD j�.d�kC2.rCl//�2

D �.n � k/
«

QAD jD j�.d�k/�2

because in the last sum it remains only the case r C l D 0, so r D l D 0.
Formula (9) is a direct application of [19], Lemma4.5. The link between Tad

DC QA
and TadDCA follows from JD D �DJ and Lemma 3.2.

It is known that the noncommutative torus gives rise to a real spectra triple [11],
[26].

Corollary 3.6. There are no tadpoles in the noncommutative torus.

Proof. This follows from Proposition 3.5 and [19], Lemma 5.6.

Note that this is independent of a Diophantine condition.

Corollary 3.7. In a real spectral triple .A;H;D/, ifA D A� 2 	1
D
.A/ is such that

QA D 0, then TadDCA.k/ D 0 for any k 2 Z, k � d .

The vanishing tadpole of order 0 has the following equivalence (see [16])«
AD�1 D 0 for all A 2 	1

D.A/ ()
«
ab D

«
a˛.b/ for all a; b 2 A; (10)

where ˛.b/ ´ DbD�1.
We finish this section with a remark on the value of the zeta function at zero when

the spectral triple is 2-dimensional.
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Lemma3.8. In any spectral triple of dimension2 (commutative or not) with vanishing
tadpoles of order zero (i.e., (10) is satisfied ) we have �DCA.0/ D �D.0/ for any 1-
form A.

Proof. Let a1; a2; b1; b2 2 A. Then, with A1 D a1ŒD ; b1�,«
A1D�1a2ŒD ; b2�D

�1 D
«
A1ŒD

�1; a2�ŒD ; b2�D
�1C

«
A1a2D�1ŒD ; b2�D

�1:

The first term is zero since the integrand is in OP�3, while the second term is equal
to

ª
.a1˛.b1a2/ � a1b1˛.a2//.˛.b2/ � b2/, so is zero using ˛.x/˛.y/ D ˛.xy/,ª

xy D ª
x˛.y/ by (10) and the fact that

ª
is a trace. Thus

ª
.AD�1/2 D 0, and

the result follows.

4. Commutative spectral triples

4.1. Commutative geometry

Definition 4.1. Consider a commutative spectral triple given by a compact Rie-
mannian spin manifold M of dimension d without boundary and its Dirac operator
D associated to the Levi–Civita connection. This means .A ´ C1.M/;H ´
L2.M; S/;D/, where S is the spinor bundle over M . This triple is real since, due
to the existence of a spin structure, the charge conjugation operator generates an
anti-linear isometry J on H such that

JaJ�1 D a� for all a 2 A;

and when d is even, the grading is given by the chirality matrix

�M ´ .�i/d=2�1�2 : : : �d : (11)

Such a triple is said to be a commutative geometry (see [14] and [15] for the role
of J in the nuance between spin and spinc manifold).

Since JaJ�1 D a� for a 2 A, we get that in a commutative geometry

JAJ�1 D �� A� for all A 2 	1
D.A/: (12)

As the following remark shows, being a commutative geometry is more than just
having a commutative algebra:

Remark 4.2. Note that QA D 0 for all A D A� 2 	1
D

, when A is commutative and
JaJ�1 D a� for all a 2 A; see (12). Thus one can only use DA D D C A.

But we can have A commutative and JaJ�1 ¤ a� [14], [38]:
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Let A1 D C ˚ C represented on H1 D C3 with, for some complex number
m ¤ 0,

�1.a/ ´
0
@b1 0 0

0 b1 0

0 0 b2

1
A for a D .b1; b2/ 2 A;

D1 ´
0
@ 0 m m

xm 0 0

xm 0 0

1
A ; �1 ´

0
@1 0 0

0 �1 0

0 0 �1

1
A ; J1 ´

0
@1 0 0

0 0 1

0 1 0

1
A B cc;

where cc is the complex conjugation. Then (A1;H1;D1) is a commutative real spec-
tral triple of dimension d D 0 with non-zero 1-forms and such that J1�1.a/J

�1
1 D

�1.a
�/ only if a D .b1; b1/.

Take a commutative geometry (A2 D C1.M/;H D L2.M; S/;D2; �2; J2)
introduced in Definition 4.1, where d D dimM is even, and then the tensor product
of the two spectral triples, namely A D A1 ˝ A2, H D H1 ˝ H2, D D D1 ˝�2 C
1˝ D2, � D �1 ˝�2, and J is either �1J1 ˝J2 when d 2 f2; 6g mod 8, or J1 ˝J2

otherwise; see [14], [47].
Then .A;H ;D/ is a real commutative triple of dimension d such that QA ¤ 0 for

some selfadjoint 1-form A, so is not exactly like in Definition 4.1.

4.2. No tadpoles. The appearance of tadpoles never occurs in commutative geome-
tries, as quoted in [17], p. 212, Lemma 1.149, for the dimension d D 4. This fact
means that a given geometry .A;H ;D/ is a critical point for the spectral action (1)
[17], p. 210.

Theorem 4.3. There are no tadpoles on a commutative geometry. Namely, for any
1-form A D A� 2 	1

D
.A/, TadDCA.d � k/ D 0, for any k 2 N.

Proof. Since QA D 0 when A D A� by (12), the result follows from Corollary 3.7.

There are similar results in the following

Lemma 4.4. Under same hypothesis, for any k; l 2 N, the following hold:

(i)
«
AD�k D ��kC1

«
AD�k .

(ii)
«
�AD�k D ��kC1

«
�AD�k .

(iii)
«
Al jD j�k D .��/l

«
Al jD j�k .

(iv)
«
�Al jD j�k D .��/l

«
�Al jD j�k .
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Proof. To show (i), consider

«
AD�k D

«
JAD�kJ�1

D
«
JAJ�1.�kD�k/

D ��kC1

«
A�D�k D ��kC1

«
D�kA D ��kC1

«
AD�k :

The same argument gives the other equalities using �A D �A� and �jD j D jD j�.

Lemma 4.5. For any 1-form A,
ª
.AD�1/k D 0 when k 2 N is odd.

Proof. We have

«
.AD�1/k D

«
J.AD�1/kJ�1

D
«
.JAJ�1JD�1J�1/k

D .�1/k�2k

«
.A�D�1/k D .�1/k

«
.AD�1/k

(13)

(which shows again that
ª
AD�1 D 0).

4.3. Tadpole-like integrals. The goal of this section is to prove the following the-
orem, which extends Theorem 4.3 to tadpole-like integrals of the form

ª
BjD j�k:

Theorem 4.6. Let .A;H ;D/ be a commutative geometry of dimension d .
(i) IfB is a polynomial in A and D , then

«
BjD j�.d�q/ D 0 for any odd integer q.

(ii) IfB is an element of the polynomial algebra generated by A and ŒD;A�, then«
BF jD j�.d�q/ D 0 for F D D jD j�1 and for any odd integer q.

(iii) For any 1-form A,
«
AjD j�q D 0, q 2 N, in either of the following cases:

d ¤ 1 mod 8 and d ¤ 5 mod 8,

d D 1 mod 8 or d D 5 mod 8 and q is even or q � dC3
2

.

In order to prove that these integrals are zero despite the fact that the use of the
operator J in the trick (13) is not sufficient, we need to use the Wodzicki residue (see
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[51], [52]): in a chosen coordinate system and local trivialization .x; / of T �M , this
residue is

wresx.X/ ´
Z

S�
x M

Tr.�X
�d .x; // jdj jdx1 ^ � � � ^ dxd j; (14)

where �X
�d
.x; / is the symbol of the classical pseudodifferential operator X in the

chosen coordinate frame .x1; : : : ; xd /, which is homogeneous of degree �d ´
�dim.M/ and taken at point .x; / 2 T �.M/, and d is the normalized restriction
of the volume form to the unit sphere S�

xM ' Sd�1; so we assume d � 2 to get
S�

xM connected.
This wresx.X/ appears to be a one-density not depending on the local represen-

tation of the symbol (see [52], [26]), so

Wres.X/ ´
Z

M

wresx.X/

is well defined.
The noncommutative integral

ª
coincides with the Wodzicki residue, up to a

scalar: since both
ª

and Wres are traces on the set of pseudodifferential operators,
the uniqueness of the trace [52] gives the proportionality«

X D cd Wres.X/

where cd is a constant depending only on d . Computing separately
ª jD j�d and

Wres.jD j�d /, we get cd > 0 (note that
ª

is not a positive functional, see Lemma 4.14).

Lemma 3.2 follows for instance from the fact that
R

M
wresx.X

�/D R
M

wresx.X/.
Note that Wres is independent of the metric.
As noticed by Wodzicki,

ª
X is equal to �2 times the coefficient in log t of

the asymptotics of Tr.X e�t D2
) as t ! 0. It is remarkable that this coefficient is

independent of D and this gives a close relation between the � function and heat
kernel expansion with Wres. Actually, by [28], Theorem 2.7,

Tr.Xe�tD2

/ �t!0C

1P
kD0

akt
.j �ord.X/�d/=2 C

1P
kD0

.�a0
k

log t C bk/t
k; (15)

so
ª
X D 2a0

0. Since, via Mellin transform,

Tr.X D�2s/ D 1

�.s/

Z 1

0

t s�1 Tr.Xe�tD2

/ dt;

the non-zero coefficient a0
k

, k ¤ 0, creates a pole of Tr.X D�2s/ of order kC2 sinceR 1

0
t s�1 log.t/k D .�1/kkŠ

skC1 and

�.s/ D 1
s

C � C sg.s/; (16)
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where � is the Euler constant and the function g is also holomorphic around zero.
We have

ª
1 D 0 and more generally, Wres.P / D 0 for all zero-order pseudod-

ifferential projections [51].
For extension to log-polyhomogeneous pseudodifferential operators, see [39].
When M has a boundary, some a0

k
are non-zero, the dimension spectrum can be

non simple (even if it is simple for the Dirac operator, see for instance [40].)
On a spectral triple .A;H ;D/, the fact to change the product on A may or not af-

fect the dimension spectrum: for instance, there is no change when one goes from the
commutative torus to the noncommutative one (see [19]), while the dimension spec-
trum of SUq.2), which is bounded from below, does not coincide with the dimension
spectrum of the sphere S3 corresponding to q D 1; see [33], Corollary 4.10.

We first introduce few necessary notations. In the following we fix a local co-
ordinate frame .U; .xi /1�i�n/ which is normal at x0 2 M , and denote by �X

k
the

k-homogeneous symbol of any classical pseudodifferential operator X on M , in
this local coordinate frame. We denote by g the Riemannian metric on M and by
gij ´ Œg�ij its coordinates. The Dirac operator is locally of the form, compatible
with (4),

D D �i�.dxj /.@xj C !j .x//; (17)

where !j is the spin connection, � is the Clifford multiplication of 1-forms; see [26],
p. 392. Here we make the choice of gauge given by Œh� ´ p

Œg�, which leads with
Œ Qh� ´ Œh��1 to (see [26], Exercise 9.6)

!i D �1
4
.�k

ijgkl � @xj .h
˛
j /ı˛ˇh

ˇ

l
/�.dxj /�.dxl/; �.dxj / D Qhjk�k;

where �j D �j are the selfadjoint constant � matrices satisfying f� i ; �j g D ıij .
Thus

�D.x; / D Qhjk�k.j � i !j .x//:

We have chosen normal (or geodesic) coordinates around the base point x0. Since

gij .x/ D gij .x0/C 1
3
Rijklx

kxl C o.kxk3/;

gij .x/ D gij .x0/ � 1
3
Ri

k
j

lx
kxl C o.kxk3/;

gij .x0/ D ıij ; �k
ij .x0/ D 0;

the matrices h.x/ and h�1.x/ have no linear terms in x. Thus

!i .x0/ D 0:

We could also have said that parallel translation of a basis of the cotangent bundle
along the radial geodesics emanating from x0 yields a trivialization (this is the radial
gauge) such that !i .x0/ D 0. In particular, using product formula for symbols and
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the fact that in the decomposition D D D C P , P 2 OP�1, we get for k 2 N

�D
1 .x; / D Qhjk.x/�kj D �./; �D

1 .x0; / D �j j ; (18)

�D
0 .x; / D �i Qh jk.x/�k!j .x/; �D

0 .x0; / D 0; (19)

@xk�D
1 .x0; / D 0; (20)

�D�1

�1 .x; / D Qh jk.x/�j kkk�2
x ; kk2

x ´ gjk.x/ j k; (21)

@xk�D�1

�1 .x0; / D 0: (22)

We will use freely the fact that the symbol of a 1-form A can be written as

�A.x; / D �A
0 .x/ D �iak.x/�

k (23)

with ak.x/ 2 iR when A D A�.
When d is even (so � D 1), observe that for k D l , Ai D ai ŒD ; bi � and a DQk

iD1 ai , by [18], p. 231 (actually, � is missing), [43] or [26], p. 479, when k D d

(M is supposed to be oriented),
«
�A1 : : : AkjD j�k D c0

k

Z
M

OA.R/.d�k/ ^ adb1 ^ � � � ^ dbk;

where OA.R/ is the OA-genus associated to the Riemannian curvatureR. It follows from
OA.R/ 2 L

j 2N	
4j .M;R/ that

ª
�AkjDj�k can be non-zero only when k D d�4j .

For instance in dimension d D2, for j D 0,

�
�A1A2D�2

�2 .x; / D �
�A1A2

0 .x/�D�2

�2 .x; /

D �a1.x/a2.x/�g
jk.x/�j �k

1

glm.x/lm

:

Thus wresx.�A1A2D�2/ D �2a1.x/a2.x/
p

det gx Tr.��j �k/, so if �g is the Rie-
mannian density, we have

«
�A1A2D�2 D �2cd Tr.��j �k/

Z
M

a1a2�g : (24)

Actually, this last equality is nothing else than Wodzicki–Connes’ trace theorem, see
[26], Section 7.6, and this is equal to c0

d

R
M
a1a2db1 ^ db2 as claimed above.

We now introduce a few subspaces of the pseudodifferential operators space
‰.M/. Let

Be ´ fP 2 ‰.M/ W �P
j 2 Ej for all j 2 Zg; e for even;

Bo ´ fP 2 ‰.M/ W �P
j 2 Oj for all j 2 Zg; o for odd;
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such that, for m D 2Œd=2�,

Ej ´ ˚
f 2 C1.U � Rd n f0g;Mm.C// W f .x; / D P

i2I
	ˇi

k	k2ki
x

hi .x/; I ¤ ;;
ki 2 N; ˇi 2 Nd ; jˇi j � 2ki D j; hi 2 C1.U;Mm.C//

�
;

Oj ´ ˚
f 2 C1.U � Rd n f0g;Mm.C// W f .x; / D P

i2I
	ˇi

k	k2ki C1
x

hi .x/; I ¤ ;;
ki 2 N; ˇi 2 Nd ; jˇi j � .2ki C 1/ D j; hi 2 C1.U;Mm.C//

�
:

The space Be and Bo capture the information associated to the even or odd char-
acter of the polyhomogeneous expansion of the pseudodifferential operators symbols.

We also want to pay attention to the real or purely imaginary nature (indepen-
dently of the appearance of gamma matrices) of homogeneous symbols of a given
pseudodifferential operator. For this reason, we define

C ´ fP 2 ‰p.M/ W �P
p�j 2 Ij for all j 2 Ng;

where Ik D Ie if k is even and Ik D Io if k is odd, with

Ie ´ ff 2 C1.U � Rn;Mm.C// W f D �k1
: : : �kq

h.x; /; h real valuedg;
Io ´ ff 2 C1.U � Rn;Mm.C// W f D i�k1

: : : �kq
h.x; /; h real valuedg:

These spaces satisfy the following technical lemmas, which are proven in Ap-
pendix A.3:

Lemma 4.7. For any j; j 0 2 Z and ˛ 2 Nd , the following hold:

(i) EjEj 0 � Ej Cj 0 and @˛
	
Ej � Ej �j˛j; @˛

xEj � Ej .

(ii) OjOj 0 � Ej Cj 0 and @˛
	
Oj � Oj �j˛j, @˛

xOj � Oj .

(iii) OjEj 0 and Ej 0Oj are included in Oj Cj 0 .

(iv) Be is a subalgebra of ‰.M/.

(v) BeBe, BoBo are included in Be, and BeBo, BoBe are included in Bo.

Lemma 4.8. (i) Let P 2 Be (resp. Bo) be an elliptic classical pseudodifferential
operator in ‰p.M/ with �P

p .x; / D kkp
x , p 2 N. Then any parametrix P�1 of P

is in Be (resp. Bo).
(ii) For any k 2 Z, Dk 2 Be and when k is odd, jD jk 2 Bo.
(iii) If d is odd, then

ª
P D 0 for any P 2 Be.

(iv) If d is even, then
ª
P D 0 for any P 2 Bo.

(v) For any pseudodifferential operator P 2 ‰1.A/ (see Appendix A.1),

when d is odd, then
ª
P D 0,

when d is even, then
ª
P jD j�1 D 0.
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Lemma 4.9. (i) C is a subalgebra of ‰.M/.
(ii) If P 2 C is elliptic then P�1 2 C .
(iii) Dk 2 C and jD jk 2 C for any k 2 Z.

We can now prove the main result of this section:

Proof of Theorem 4.6. (i) This is a direct consequence of Lemma 4.8 (v).
(ii) We may assume that B is selfadjoint, so

ª
BF jD j�.d�q/ 2 R.

By Lemma 4.9, �BF jDj�.d�q/

�d
D �B

0 �
F jDj�.d�q/

�d
2 Iq . Thus

ª
BF jD j�q 2 iR

and the result follows.
(iii) In the case d ¤ 1 mod 8 and d ¤ 5 mod 8, the result follows from the fact

that � D 1.
The case d even and q odd or d odd and q even is done by Lemma 4.8 (v).
Suppose that d is even and q is even. In this case we look at the information

given by the gamma matrices. If q D 2k, with a recurrence and the symbol product
formula, we see that �D2k

2k�j
and all its derivatives are linear combinations of terms of

the form f .x; /˝ �j1 : : : �ji , where i is even and less than 2j (with the convention
�j1 : : : �ji D 1 if i D 0). We call this property .Pj /. The parametrix equation

D2kD�2k D 1 entails that �D�2k

�2k
D .�D2k

2k
/�1 and for any j � 1,

�D�2k

�2k�j D ��D�2k

�2k

� j �1X
rDmaxfj �2k;0g

�D2k

2k�.j �r/�
D�2k

�2k�r

C
X

1�j˛j�2k

j �j˛jX
rDmaxfj �2k;0g

.�i/j˛j

˛Š
@˛

	 �
D2k

2k�.j �j˛j�r/@
˛
x�

D�2k

�2k�r

�
:

Note that �D�2k

�2k
satisfies .P0/. By recurrence, this formula shows that �D�2k

�2k�j

satisfies .Pj / for any j 2 N. In particular, �D�2k

�d
satisfies .P�2kCd / and the result

then follows from (23), and the fact that the product of an odd number (different from
the dimension) of gamma matrices is traceless.

Suppose now that d is odd, q is odd and d � q. In that situation, any odd number
of gamma matrices � i1 : : : � ir is traceless when r < d .

Using the parametrix equation jD j�qjD j�q D D�2q , once can check that
�

jDj�q

�q .x; / D kk�q
x and for any j 2 N�,

�
jDj�q

�q�j D 1

2kk�q
x

�
�D�2q

�2q�j �
X

0<k<j

�
jDj�q

�q�j Ck
�

jDj�q

�q�k

C
X

0<j˛j�j

j �j˛jX
kD0

i j˛j .�1/j˛j

˛Š
@˛

	 �
jDj�q

�q�j Cj˛jCk
@˛

x�
jDj�q

�q�k

�
:
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We saw that each � jDj�2q

�2q�j satisfies (Pj ), that is to say, is a linear combination of
terms of the form f .x; /˝ �j1 : : : �ji , where i is even and less than 2j . Again, a
straightforward induction argument shows that � jDj�q

�q�j satisfies (Pj ) for any j 2 N.
In particular, ��d .AjD j�q/ is a linear combination of terms of the form f .x; / ˝
�j1 : : : �jr where r � 2.d � q/C 1 is odd. This yields the result.

Finally, we note that the equality
ª
AD�dC1 D 0, a consequence of Theorem 4.6,

is also a consequence of the fact that �D�dC1

�d
.x0; / D 0:

Lemma 4.10. For all k 2 N�, we have �Dk

k�1
.x0; / D �D�k

�k�1
.x0; / D 0.

Proof. We already know that �D
0 .x0; / D 0, see (19). We proceed by recurrence,

assuming �Dk

k�1
.x0; / D 0 for k D 1; : : : ; n. Then �DnC1

n D �Dn

n �D
0 C �Dn

n�1�
D
1 �

i@	k
�Dn

n @xk�D
1 , thus by (19) and (20), �DnC1

n .x0; / D 0.

Since DD�1 D 1 yields �D�1

�2 .x0; / D ��
�D�1

�1 �D
0

�
.x0; / D 0, we assume

�D�k

�k�1
.x0; / D 0 for k D 1; : : : n. Then �D�n�1

�n�2 D �D�n

�n �D�1

�2 C �D�n

�n�1�
D�1

�1 �
i @	k

�D�n

�n @xk�D�1

�1 . Using (22) and recurrence hypothesis, �D�n�1

�n�2 .x0; / D 0.

4.4. Remarks on nonlinear terms. We conclude this section with a few remarks on
terms in the spectral action expansion (1) that, in the case of commutative geometries,
are nonlinear in the perturbation A.

Remark 4.11. The function �X .s/ ´ Tr.jX j�s/ is regular at point 0 when X is an
elliptic selfadjoint differential operator of order one (see [24]):

One checks that �X .s/ D 1

.s/

R 1
0
t s�1 Tr.e�t jX j/ dt for Re.s/ > d . Because of

the asymptotic expansion

Tr.e�t jX j/ D t�d
NP

nD0

tnanŒX�C O.tN C1�d / (25)

and meromorphic extension to the whole complex plane, Res
sDd�n

�X .s/ D anŒX�

.d�n/

. In

particular, �X .s/ D �.s/�1.ad ŒX�
s

C f .s//, where f is holomorphic around s D 0.
By (16) we get that �X .s/ is regular around zero and �X .0/ D ad ŒX� if d is even and
�X .0/ D 0 if d is odd.

Corollary 4.12. �DCA.0/ D �D.0/ D 0 when d D dim.M/ is odd.
When d is even, �DCA.0/ � �D.0/ D Pd=2

kD1
1

2k

ª
.AD�1/2k .

Proof. The result follows from (2) and Lemma 4.5.
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A proof of (2) also follows from � log.1CAD�1/ � P1
kD1

.�1/k

k
� .AD�1/

k

with

log.X/ ´ @
@z jzD0

Xz . Thus Wres.log.1CAD�1// D Pd
kD1

.�1/k

k
Wres.AD�1/

k
/

since .AD�1/
k

has zero Wodzicki residue if k > d and moreover �DCA.0/ D
� Wres.log.D C A//. Actually, the important point is that det.X/ ´ eWres.log.X//

is multiplicative (see [41].) Moreover, such determinant is different from the �-
determinant e�� 0

X
.0/ used for instance by Hawking [30] in his regularization via the

partition function which suffers from conformal anomalies.
The fact that in the asymptotic expansion (25) of the heat kernel the terma2ŒDCA�

does depend only on the scalar curvature, so is independent of A, is reflected in
Lemma 3.8 when the dimension is equal to 2.

Note that �DCA.0/ � �D.0/ is usually non-zero: consider for instance the flat
4-torus and as a generic selfadjoint 1-form A, take

A ´ � 2 Œ0; 2�Œ4 7! �i�˛
P

l2Z4

a˛;le
ilk�k ;

where a˛;l is in the Schwartz space �.Z4/ and a˛;l D �a˛;�l . We have by [19],

Lemma 6.12 (with c D 8�2

3
, jl j2 D P

kl
k2

and ‚ D 0),

�DCA.0/ � �D.0/ D
«
.AD�1/2 D c

X
l2Z4

a˛1;la˛2;�l.l
˛1 l˛2 � ı˛1˛2 jl j2/

since
ª
.AD�1/4 D 0.

This last equality suggests that Lemma 4.5 can be extended:

Proposition 4.13. For any 1-form A,
ª
.AD�1/d D 0 if d D dim.M/.

Proof. As in the proof of Lemma 3.8, D�1 commutes with the element in the algebra
as the integrand is in OP�d . So for a family of ai ; bi 2 A and using a ´ Qd

iD1 ai ,

«
dQ

iD1

.ai ŒD ; bi �D
�1/ D

«
.

dQ
iD1

ai /
dQ

iD1

.ŒD ; bi �D
�1/ D

«
a

dQ
iD1

.˛.bi / � bi /:

We obtain, since ˛.bi / � bi 2 OP�1,

�
a

Qd
iD1 ˛.bi /�bi

�d
D a

dQ
iD1

�
˛.bi /�bi�1 D a

dQ
iD1

�
˛.bi /
�1 :

Further, �Dbi D�1

�1 .x0; / D 0: we already know by Lemma 4.10 that �D�1

�2 .x0; / D
0, by (21) that @xk�D�1

�1 .x0; / D 0 for all k, and �Dbi

0 .x0; / D bi .x0/�
D
0 .x0; / D

0 giving the claim and the result.
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This proposition does not survive in noncommutative spectral triples, see for
instance [33], Table 1.

Note that for a 1-form A,
ª
Ad D�d ¤ ª

.AD�1/�d D 0: in dimension d D 2,
as in (24), «

A2D�2 D �2cd Tr.�k� l/

Z
M

akal�g :

It is known (see [17], p. 214, Proposition 1.153) that the d � 2 term (for d D 4)
in the spectral action expansion

ª jD C Aj�2 is independent of the perturbation A.
This is why the Einstein–Hilbert action S.D/ D ª jD j�dC2 D �c R

M
�
p
g dx (see

[26], Theorem 11.2) is so fundamental. Here � is the scalar curvature (positive on
the sphere) and c is a positive constant.

We give here another proof of this result.

Lemma 4.14. We have
ª jD C Aj�dC2 D ª jD j�dC2 D �c R

M
�
p
g dx with

c D d�2
24

ª jD j�d .

Proof. We get from [19], Lemma 4.10 (ii), the following equality, whereX ´ AD C
DAC A2:

«
jD C Aj�dC2 �

«
jD j�dC2 D .d � 2/

2

�
d

4

«
X2jD j�d�2 �

«
X jD j�d

�
:

Since the tadpole terms vanish, we have
ª
X jD j�d D ª

A2jD j�d . Moreover, since
mod OP1,X2 D .AD/2 C .DA/2 CAD2ACDA2D , we get with ŒD2; A� 2 OP1,

«
X2jD j�d�2 D 2

«
.AD/2jD j�d�2 C 2

«
A2jD j�d ;

which yields

«
jD C Aj�dC2 �

«
jD j�dC2

D d.d � 2/
4

� «
.AD/2jD j�d�2 � 2 � d

d

«
A2jD j�d

�
:

Thus, it is sufficient to check that

Z
S�

x0
M

Tr.��d ..AD/2jD j�d�2/.x0; // d

D 2 � d
d

Z
S�

x0
M

Tr.��d .A
2jD j�d / .x0; // d:
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A straightforward computation yields, with A DW �ia��
� and �D

1 .x0; / D
���,

Z
S�

x0
M

��d ..AD/2jD j�d�2/.x0; / d D � 1
d
a�a Tr.����� ��/Vol.Sd�1/;

Z
S�

x0
M

��d .A
2jD j�d /.x0; / d D �a�a Tr.���  /Vol.Sd�1/:

Now
ª jD C Aj�dC2 D ª jD j�dC2 follows from the equality Tr.����� ��/ D

.2 � d/Tr.���  /. The constant c is given in [26], Theorem 11.2 and normalization
(11.2).

Remark4.15. In [17], p. 210, Definition 1.147, the above result justifies the definition
of a scalar curvature for .A;H ;D/ as R.a/ ´ ª

ajD j�dC2 for a 2 A. This map
is of course a trace on A for a commutative geometry. But for the triple associated
to SUq.2/ this not a trace since (see [33])

R.aa�/ D
«
aa�jD j�1 D �q4 C 6q2 C 3

2.1 � q2/
2

;

while

R.a�a/ D
«
a�ajD j�1 D 3q4 C 6q2 � 1

2.1 � q2/
2
:

Appendix

A.1. Pseudodifferential operators

Definition A.1. Let us define D.A/ as the polynomial algebra generated by A,
JAJ�1, D and jD j.

A pseudodifferential operator is an operator T such that there exists d 2 Z such
that, for any N 2 N, there exist p 2 N0, P 2 D.A/ and R 2 OP�N (p, P and R
may depend on N ) with PD�2p 2 OPd and

T D PD�2p CR:

Define‰.A/ as the set of pseudodifferential operators and‰.A/k ´ ‰.A/\ OPk .

Note that the notion of pseudodifferential operator is modified as ‰.A/ now
includes JAJ�1; see [19].

If A is a 1-form, then A and JAJ�1 are in D.A/ and moreover D.A/ �S
k2N0

OPk . Since jD j 2 D.A/ by construction and P0 is a pseudodifferential
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operator, jDjk is a pseudodifferential operator (in OPk) for any k 2 Z. Let us also
remark that D.A/ � ‰.A/ � S

k2Z OPk .
The set of all pseudodifferential operators ‰.A/ is an algebra. We denote by

‰1.A/ the subalgebra of ‰.A/ defined in the same way as ‰.A/, replacing D.A/

with the polynomial algebra generated by D , A and JAJ�1. This algebra is similar
to the one defined in [16].

A.2. Zeta functions and dimension spectrum

For any operator B and if X is either D or DA, we define

�B
X .s/ ´ Tr

�
BjX j�s

�
; �X .s/ ´ Tr

�jX j�s
�
:

The dimension spectrum Sd.A;H ;D/ of a spectral triple has been defined in
[12], [18]. It is extended here to pay attention to the operator J and to our definition
of pseudodifferential operator.

Definition A.1. The spectrum dimension of the spectral triple is to be defined as the
subset Sd.A;H ;D/ of all poles of the functions �P

D
´ s 7! Tr

�
P jD j�s

�
where P

is any pseudodifferential operator in OP0. The spectral triple .A;H ;D/ is said to
be simple when these poles are all simple.

The following is part of folklore in noncommutative geometry, even if sometimes
it is unclear if there is an equality or an inclusion of Sp.M/ in fd � k W k 2 Ng.

Proposition A.2. Let Sp.M/ be the spectrum dimension of a commutative geometry
of dimension d . Then Sp.M/ is simple and Sp.M/ D fd � k W k 2 Ng.
Proof. Let a 2 A D C1.M/ such that its trace norm kakL1 is non-zero and let
Pk ´ ajDj�k for k 2 N. Then Pk 2 OP�k 	 OP0 and its associated zeta-function
has a pole at d � k:

Res
sDd�k

�P
D.s/ D Res

sD0
�P

D.s C d � k/
D Res

sD0
Tr.ajD j�kjD j�.sCd�k//

D
«
ajD j�d

D
Z

M

a.x/

Z
S�

x M

Tr..� jDj
1 /�d .x; //jdj jdxj

D
Z

M

a.x/

Z
S�

x M

kk�d=2jdj jdxj

D
Z

M

a.x/�g.x/ D kakL1 ¤ 0;
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where �g is the Riemann density normalized on g-orthonormal basis of TM .
Conversely, since ‰.A/0 is contained in the algebra of all pseudodifferential

operators of order less or equal to 0, it is known (see [29], [51], [52]) that Sp.M/ 	
fd � k W k 2 Ng.

The fact that all poles are simple is due to the fact that D being differential and
M being without boundary, a0

k
D 0 for all k 2 N� in (15).

A.3. Proof of technical lemmas

Proof of Lemma 4.7. (i) Let f 2 Ej and ˛ 2 Nd . If f .x; / D P
i2I

	ˇi

k	k2ki
x

hi .x/

it follows that

@˛
	 f D

X
i2I

@˛
	

	
	ˇi

k	k2ki
x



hi .x/ D

X
i2I

X
��˛

�
˛

�

�
@

˛��

	
.ˇ i

/@
�

	

	
1

k	k2ki
x



hi .x/:

We check by induction that we can write

@
�

	

	
1

k	k2ki
x



D 1

kk2ki .j� jC1/
x

X
p

�p

j� jY
j D1

@
ˇj;p

	
kk2ki

x ;

where �p are real numbers, the sum on indices p is finite, and
Pj� j

j D1 ˇ
j;p D � . As a

consequence, since kk2ki
x D .gkl.x/kl/

ki is a homogeneous polynomial in  of
degree 2ki , we get @˛

	
f 2 Ej �j˛j. The inclusions EjEj 0 � Ej Cj 0 , @˛

xEj � Ej are
straightforward.

(ii) The proof is similar to .i/ since by induction

@
�

	

�
1

k	kx

� D 1

kk2j� jC1
x

X
p

�p

j� jY
j D1

@
ˇj;p

	
kk2

x

where �p are real numbers, the sum over the indices p is finite and
Pj� j

j D1 ˇ
j;p D � .

(iii) Straightforward.
(iv) The product symbol formula for two classical pseudodifferential operators

P 2 ‰p.M/, Q 2 ‰q.M/ gives

�
PQ
pCq�j D

X
˛2Nd

X
k�0;j˛jCk�j

i j˛j .�1/j˛j

˛Š
@˛

	 �
P
p�j Cj˛jCk@

˛
x�

Q

q�k
: (A.1)

It is the presence of the factor i j˛j that will be crucial in later arguments like, e.g., in
Lemma 4.9.
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IfP;Q 2 Be, then (i) implies that @˛
	
�P

p�j Cj˛jCk
2 Ep�j Ck and @˛

x�
Q

q�k
2 Eq�k .

Again by (i), we obtain @˛
	
�P

p�j Cj˛jCk
@˛

x�
Q

q�k
2 EpCq�j , so the result follows from

(A.1).
(v) A similar argument as (iv) can be applied, using (ii) to obtain BoBo � Be and

(iii) to get BoBe � Bo, BeBo � Bo.

Proof of Lemma 4.8. Assume P 2 Be so p is even. From the parametrix equation
PP�1 D 1, we obtain �P �1

�p D .�P
p /

�1 D kk�p
x 2 E�p . Moreover, using (A.1),

we see that

�P �1

�p�j D �.�P
p /

�1

� X
0�k<j

�P
p�j Ck�

P �1

�p�k

C
X

0<j˛j�j

j �j˛jX
kD0

i j˛j .�1/j˛j

˛Š
@˛

	 �
P
p�j Cj˛jCk@

˛
x�

P �1

�p�k

� (A.2)

for any j 2 N�. We prove by induction that �P �1

�p�j 2 E�p�j for any j 2 N:

suppose that for j 2 N� we have �P �1

�p�j 0 2 E�p�j 0 for any j 0 < j . We then directly

check with Lemma 4.7 and (A.2) that �P �1

�p�j 2 E�p�j .
The case P 2 Bo is similar.
(ii) Since D 2 Be, D�2 is in Be by .i/ and 4.7 and so is Dk .
Using (A.1) for the equation jD jjD j D D2, we check that � jDj

1 .x; / D kkx

and

�
jDj
1�j D 1

2kkx

�
�D2

2�j �
X

0<k<j

�
jDj
1�j Ck

�
jDj
1�k

C
X

0<j˛j�j

j �j˛jX
kD0

i j˛j .�1/j˛j

˛Š
@˛

	 �
jDj
1�j Cj˛jCk

@˛
x�

jDj
1�k

� (A.3)

for any j 2 N�. Again, a straightforward induction argument shows that � jDj
1�j 2

O1�j for any j 2 N, and thus jD j 2 Bo. The result now follows as above.

(iii) Since �P
�d

2 E�d , we have �P
�d
.x; / D P

i2I
	ˇi

k	k2ki
x

hi .x/, where the jˇi j
are odd. The integration on the cosphere in (14) therefore vanishes.

(iv) The same argument can be applied.
(v) Direct consequence of (iii) and (iv).

Proof of Lemma 4.9. (i) Consequence of (A.1).
(ii) Consequence of (A.2).
(iii) It is clear that D 2 C and the fact that jD j 2 C follows from (A.3).
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