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Kernel algebras and generalized Fourier–Mukai transforms

Alexander Polishchuk�

Abstract. We introduce and study kernel algebras, i.e., algebras in the category of sheaves
on a square of a scheme, where the latter category is equipped with a monoidal structure
via a natural convolution operation. We show that many interesting categories, such as D-
modules, equivariant sheaves and their twisted versions, arise as categories of modules over
kernel algebras. We develop the techniques of constructing derived equivalences between these
module categories. As one application we generalize the results of [44] concerning modules
over algebras of twisted differential operators on abelian varieties. As another application we
recover and generalize the results of Laumon [33] concerning an analog of the Fourier transform
for derived categories of quasi-coherent sheaves on a dual pair of generalized 1-motives.
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Introduction

The classical Morita theory gives a way to construct all equivalences between the
categories of modules over rings A and B in terms of A-B-bimodules. This theory
was generalized to bounded derived categories of module categories by Ricard [45].
On the other hand, starting from the pioneering work of Mukai [38] algebraic geome-
ters got interested in the study of the functors between bounded derived categories of
coherent sheaves on projective varieties X and Y associated with complexes of co-
herent sheaves (kernels) onX �Y (we refer to such functors as integral transforms).
The result of Orlov [40] states that in the case when X and Y are smooth projective
varieties all exact equivalences between these derived categories are of this form.
Note that the latter theory belongs to the commutative world, although there exist
generalizations to stacks (see [32], [12]) and to twisted sheaves (see [17]). There are
interesting “noncommutative” categories of geometric origin that are left out from
this picture, such as categories of D-modules. It seems that there is no straightfor-
ward generalization of the above theory to this case. One way to include both the
derived Morita theory and the Fourier–Mukai transforms into one framework is by
working with dg-categories, as outlined in [49]. In the present paper we propose a
more specialized extension of the techniques of integral transforms to a (partially)
noncommutative world that does not require passing to dg-categories. Our immediate
goal was to understand and generalize two concrete examples, namely, the Fourier
duality for generalized 1-motives (see [33]) and for modules over algebras of twisted
differential operators on abelian varieties (see [44]). The resulting framework, al-
though much more limited in applicability than the dg-techniques, covers both these
examples and their generalizations.

The main idea is quite simple. Composition of integral transforms between derived
categories of sheaves corresponds to taking convolution of kernels (see Section 2.1).
In particular, we get a monoidal structure on the category of kernels on X �X with
the unit object ��OX , where � W X ! X � X is the diagonal. Thus, in the context
of derived equivalences it is natural to work with algebra objects with respect to this
monoidal structure. This is what we call kernel algebras. The key observation is that
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many interesting categories, such as categories of twisted sheaves on global quotient
stacks, can be viewed as suitably defined categories of modules over kernel algebras.
Note that a very similar setup involving algebra objects in the monoidal category of
sheaf bimodules is used in [50] to define noncommutative P1-bundles.

We observe that a derived equivalence between coherent sheaves on X and Y
leads to a correspondence between kernel algebras over X and Y . The natural idea
then is to try to extend derived equivalences between X and Y to those for modules
over kernel algebras overX and Y . However, one finds that even defining categories
of modules over kernel algebras is not quite straightforward. One possibility would
be to work with dg-categories and to try to define dg-categories of modules over
suitable dg-models of kernel algebras. In the present paper we follow a more classical
approach by considering only those kernel algebras for which it is possible to define
first an abelian category of modules. The restriction we impose for this is a kind of
flatness condition: the transform from the derived category of sheaves on X to itself
defined by our kernel algebra should preserve the abelian subcategory of sheaves. We
call kernel algebras with this property pure. Generalizing Theorem 6.5 of [44], we
prove that an equivalence of derived categories of sheaves on X and Y extends to a
correspondence between kernel algebras over X and Y such that the corresponding
derived categories of modules are equivalent, provided both kernel algebras are pure
(and other technical assumptions are satisfied). Note that anyD-algebra in the sense
of [7] can be viewed as a pure kernel algebra, so the context of [44] is embedded into
our framework. We also show that one can associate a kernel algebra with an action
of a finite group scheme G (or a formal group) on the derived category Dqc.X/ of
quasi-coherent sheaves onX (provided this action is given by integral transforms). In
the case when such an action is geometric (i.e., induced by the action ofG on X ) the
category of modules over the corresponding pure kernel algebra is equivalent to the
category of G-equivariant sheaves on X . More generally, one can associate a pure
kernel algebra with an appropriate class of groupoids (resp. formal groupoids). We
also consider in detail the situation when G acts on the category of sheaves on X by
autoequivalences induced by automorphisms of X combined with tensoring by line
bundles. Modules over the corresponding G-algebras can be interpreted as twisted
G-equivariant sheaves on X .

Let us explain how kernel algebras can be used to establish an analog of the
Fourier–Mukai duality for the derived categories of sheaves on generalized 1-motives
considered in [33]. We consider a slightly broader class of generalized 1-motives than
in [33], namely, complexes ŒG ! E� concentrated in degrees �1 and 0, where G
is a commutative formal group (satisfying some finiteness assumptions) and E is a
commutative algebraic group.1 Quasicoherent sheaves on ŒG ! E� are simply G-
equivariant quasi-coherent sheaves on E, so they can be described by an appropriate
pure kernel algebra on E. Note that E is an extension of an abelian variety A by an
affine algebraic group. Using an appropriate notion of the push-forward for kernel

1Thus, unlike in [33], we allow G to have torsion and E to be nonconnected.



156 A. Polishchuk

algebras we can equivalently describe sheaves on K D ŒG ! E� as modules over
some pure kernel algebra A.K/ on A. The dual 1-motive D.K/ is presented by
a complex ŒG0 ! E 0�, where E 0 is an extension of the dual abelian variety OA by
an affine group. Applying the same procedure to D.K/ we get a kernel algebra
A.D.K// on OA responsible for sheaves on D.K/. Furthermore, we interpret A.K/

(resp. A.D.K//) as the kernel algebra associated with a homomorphism fromG�G0
to Auteq.Dqc.A// (resp. Auteq.Dqc. OA//). Thus, sheaves on K (resp. D.K/) can be
viewed as twisted G � G0-equivariant sheaves on A (resp. OA). Using this point of
view we check that A.K/ and A.D.K// correspond to each other under the standard
Fourier–Mukai transform which gives an equivalence between the derived categories
of sheaves on A and on OA. This immediately leads to the desired equivalence of
derived categories of sheaves on K and on D.K/.

The paper is organized as follows. In Section 1 we collect some results on quasi-
coherent sheaves over schemes and formal schemes, as well as few facts about bi-
extensions. Most of these results are well known. However, in some cases we had
to prove simple extensions of the known theorems to new situations (for example,
we give three versions of the base change formula for sheaves on formal schemes).
Also, we prove here some auxiliary statements involving duality for sheaves on for-
mal schemes. Section 2 develops the theory of kernel algebras. Here we define a
convolution operation for modules over pure kernel algebras satisfying an additional
technical assumption. The main result of this section is Theorem 2.5.1, which ex-
tends equivalences between derived categories of sheaves on schemes X and Y to
derived categories of modules over kernel algebras over X and Y . In Section 3 we
define the notion of a kernel representation of a group scheme (or a formal group)
G over a scheme X , which is a scheme-theoretic version of a homomorphism from
a discrete group to Auteq.Dqc.X//. In the case when G is a finite flat group scheme
(resp. formal group) we construct a kernel algebra over X associated with a kernel
representation. We study in particular such kernel algebras corresponding to homo-
morphisms from G to Aut.X/ Ë Pic.X/, or equivalently, with 1-cocycles of G with
values in Pic.X/. In the case when G is commutative the interplay between such al-
gebras and the Cartier duality plays a crucial rule in applications to 1-motives. On the
other hand, Theorem 3.3.1 establishes an equivalence between the category of sheaves
equivariant with respect to an action of a groupoid (resp. formal groupoid) on X and
modules over the corresponding kernel algebra. We also construct an equivalence of
derived categories for twistedG-equivariant sheaves on a pair of dual abelian schemes
(see Theorem 3.7.3) generalizing equivalences for modules over twisted differential
operators considered in [44]. Finally, in Section 4 we apply the developed techniques
to constructing an analog of Fourier–Mukai transform for generalized 1-motives and
to generalizing Theorem 3.7.3 to this context.

Acknowledgment. I am grateful to Alexander Beilinson, Oren Ben-Bassat, Joseph
Lipman and Daniel Hernandez Ruiperez for useful discussions. I also thank the
referee for helpful suggestions.
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Notations and conventions. All schemes in this paper are assumed to be noetherian
(this applies also to the fibered products appearing in our constructions), and all
formal schemes are assumed to be locally noetherian. For our conventions on formal
groups see the beginning of Section 3. By an algebraic group over a field k we mean
a group scheme of finite type over k. By flat topology we mean the fppf topology.

Starting from Section 2, all functors are assumed to be derived. Thus, for a
morphism f between schemes f� (resp. f �) will denote the derived push-forward
(resp. pull-back) of complexes of sheaves of O-modules. Similarly, ˝ will denote
the derived tensor product (also starting from Section 2). Recall that these functors
are defined on the unbounded derived categories of O-modules (see [48] and Chap. 2
of [35]). Similar conventions are applied for formal schemes.

All inductive (resp. projective) systems are assumed to be small and filtered.
We denote by lim (resp. lim �) the inductive (resp. projective) limit of an inductive
(resp. projective) system.

1. Preliminaries

1.1. Quasicoherent sheaves on schemes. Our primary source regarding derived
categories of quasi-coherent sheaves on schemes are the notes [35] (although we are
not aiming at the same level of generality). Recall that we assume all schemes to be
noetherian, so every morphism between them is quasi-compact and quasi-separated
(see [25], (6.1.13)). We denote by Qcoh.X/ (resp. Coh.X/) the category of quasi-
coherent (resp. coherent) sheaves of O-modules on a scheme X . We denote by
Dqc.X/ (resp. Dc.X/) the full subcategory in the derived category of O-modules
consisting of complexes with quasi-coherent (resp. coherent) cohomology.

First, we observe that the standard (derived) functors with complexes of O-
modules preserve the subcategories Dqc. For the pull-back functors and for the
tensor product this requires no assumptions on the schemes involved (see [35], 3.9.1
and 2.5.8). For the push-forward functor this is true because we consider only noethe-
rian schemes ([35], 3.9.2). For the same reason for a map f W X ! Y the functor
Rf� W Dqc.X/ ! Dqc.Y / is bounded above ([35], 3.9.2), i.e., it sends D�0

qc .X/ to
D�n

qc .Y / for some n (it is also bounded below for trivial reasons). In the case when
f W X ! Y is an affine morphism the functor f� is exact and the induced functor
Dqc.X/! Dqc.Y / is conservative (this follows from the fact that for an affine scheme
X D Spec.A/ the functor of global sections induces an equivalence of Dqc.X/ with
D.A-mod/).

The following result follows immediately from Lemma 3.9.3.1 in [35]. Note that
the crucial case of R0f� traces back to the proof of Theorem 3.10 in [24].

Lemma 1.1.1. Let f W X ! Y be a morphism of schemes. Then Rif� commutes
with inductive limits.
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We will use the following versions of the projection formula and the base change
formula.

Theorem 1.1.2 ( [35], 3.9.4). Let f W X ! Y be a morphism of schemes. Then the
natural map

Rf�F ˝L G ! Rf�.F ˝L Lf �G/
is an isomorphism for F 2 Dqc.X/, G 2 Dqc.Y /.

Theorem 1.1.3 ([35], 3.9.5 and 3.10.3; [5], Prop. A.85). Assume that we have a
cartesian diagram

X 0

f 0

��

v �� X

f

��
Y 0 u �� Y

where either u or f is flat. Then forF 2 Dqc.X/ the base change mapLu�Rf�F !
Rf 0�Lv�F is an isomorphism.

A scheme X is called semi-separated if the diagonal morphism X ! X � X is
affine. It is easy to see that any morphism from an affine scheme to a semi-separated
scheme is affine. For a quasi-coherent sheaf on a semi-separated scheme one can
construct a quasi-isomorphic complex of flat quasi-coherent sheaves (using Čech
resolution, see [1], Prop. 1.1). This easily implies the following statement (see also
[37], Prop. 16).

Lemma 1.1.4. Let X be a semi-separated scheme. Then for every quasi-coherent
sheaf F on X there exists a surjection P ! F , where P is flat quasi-coherent.
Moreover, this surjection can be constructed functorially in F .

Recall that for a finite morphism f W X ! Y the functor f� W Dqc.X/! Dqc.Y /

admits the right adjoint f Š W Dqc.Y /! Dqc.X/. We need the following simple fact
about this functor.

Proposition 1.1.5. Let f W X ! Y be a finite flat morphism. Then f ŠOY is a
coherent sheaf on X , flat over Y , and for F 2 Dqc.Y / the natural morphism

f ŠOY ˝ f �F ! f ŠF

in Dqc.X/ is an isomorphism. Given any morphism u W U ! Y let us consider the
cartesian square

V

g

��

v �� X

f

��
U

u �� Y .

Then one has a natural isomorphism of functors Lv�f Š ' gŠLu�.
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Proof. It is enough to check that our map becomes an isomorphism after applying
f�. By the local duality isomorphism we have

f�f ŠF ' Hom.f�OX ; F /:

Note that f�OX is a vector bundle, so the natural map

Hom.f�OX ;OY /˝ F ! Hom.f�OX ; F /

is an isomorphism. It remains to observe that the target of this map is isomorphic to
f�.f ŠOX ˝ f �F / (by the projection formula).

Given the base change diagram as above, we have a natural morphism v�f ŠOY !
gŠOU corresponding by adjunction to

g�v�f ŠOY ' u�f�f ŠOY ! OU :

To check that it is an isomorphism it is enough to compare the push-forwards by g.
It remains to use the isomorphism

Hom.g�OV ;OU / ' u� Hom.f�OX ;OY /

that follows from g�OV ' u�f�OX .

1.2. Sheaves on formal schemes. We use the definitions of [25] concerning formal
schemes. All formal schemes considered in the present paper are assumed to be
locally noetherian. Thus, our formal schemes are locally of the form Spf.A/, where
A is an adic noetherian ring. Following [2] we say that a morphism f W X ! Y

between formal schemes is of pseudofinite type (resp. pseudofinite) if there exist
ideals of definition JX � OX , JY � OY such that JY OX � JX and the induced
map of schemes .X;OX=JX /! .Y;OY =JY / is of finite type (resp. finite).

By a sheaf on X we always mean a sheaf of OX -modules. We denote by A.X/
the abelian category of sheaves onX and byD.X/ its (unbounded) derived category.

Following [2] we work with several full subcategories of A.X/ andD.X/. First,
we consider the categoriesAqc.X/ � A.X/ (resp.Ac.X/) of quasi-coherent (resp. co-
herent) sheaves. Next, let us recall the definition of torsion sheaves on X . For a
coherent ideal sheaf J � OX one defines the subfunctor of the identity functor

�JF D lim
n

Hom.OX=J
n;F /:

This functor is left exact and depends only on the topology on OX defined by J.
By definition, J-torsion sheaves are sheaves F satisfying �JF D F . For a formal
scheme X torsion sheaves on X are defined as J-torsion sheaves, where J is an
ideal of definition for X (recall that on locally noetherian formal schemes ideals of
definition exist globally, see [25], Prop. (10.5.4)). We denote by Aqct.X/ � Aqc.X/

the subcategory of torsion quasi-coherent sheaves.
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Although we are mainly interested in the categories Ac.X/ and Aqct.X/, it is
sometimes convenient to work with the subcategory AEc.X/ � Aqc.X/ of sheaves
that can be presented as direct limits of coherent sheaves. Note that AEc.X/ contains
bothAc.X/ andAqct.X/ (see Lemma 5.1.4 of [2]). Also, locally every quasi-coherent
sheaf is in AEc (see Cor. 3.1.4 of [2]).

For a pair of quasi-coherent sheaves F and G on a formal scheme X we set

bHom.F;G/ D lim �
n

Hom.F;G ˝OX=J
n/; (1.2.1)

where J is an ideal of definition for X . It is easy to see that these groups do not
depend on a choice of an ideal of definition. If in W Xn ,! X is a closed embedding
of the subscheme corresponding to the ideal sheaf Jn then we have

bHom.F;G/ D lim �
n

Hom.i�nF; i�nG/:

Hence, we have a natural composition law for bHom. Given an element˛ 2 bHom.F;G/
then for every morphism f W Y ! X of formal schemes we have the induced element
f �˛ 2 bHom.f �F; f �G/ (use ideals of definition JX 2 OX and JY 2 OY such that
JXOY � JY ).

For � D c; qc; Ec; qct we denote by D�.X/ the full subcategory of complexes
with cohomology in A�.X/.

Let R�J denote the derived functor to �J . For a complex of sheaves with J-
torsion cohomology the natural map R�JF ! F is an isomorphism (see the proof
of Proposition 5.2.1 (a) of [2]). In the case when J is an ideal of definition of X we
set R� 0

X D R�J . For F 2 Dqc.X/ we have R� 0
X .F / 2 Dqct.X/. Also, for such F

the natural map R� 0
X .F / ! F is an isomorphism if and only if F 2 Dqct.X/ (see

Prop. 5.2.1 of [2]).
Since we consider only locally noetherian formal schemes, by Cor. 3.1.2 of [1],

the natural map
E ˝L R� 0

X .F /! R� 0
X .E ˝L F / (1.2.2)

is an isomorphism for all E;F 2 D.X/.

Lemma 1.2.1. LetX be a formal scheme The subcategoriesDc.X/,DEc.X/ andDqc

are all stable under the derived tensor product functor˝L W D.X/�D.X/! D.X/.
Also, if A 2 D.X/ has J-torsion cohomology, where J � OX is a coherent ideal
sheaf then the same is true for A˝L B for any B 2 D.X/.

Proof. Using the formulaA˝LB D limm;n ��mA˝L��nB and the spectral sequence
we can reduce the first assertion to showing that for F;G 2 A�.X/ (where � D c,
Ec, qc) one has Torn.F;G/ 2 A�.X/. In the case F and G are coherent sheaves this
is clear by reducing to the affine case, where the tensor product simply corresponds
to the tensor product over the corresponding ring (see [25], Prop. (10.10.2.3)). The



Kernel algebras and generalized Fourier–Mukai transforms 161

case F;G 2 AEc.X/ follows because Torn commutes with direct limits (see 2.5 of
[35]). Since locally any quasi-coherent sheaf is in AEc.X/, this also implies the case
of � D qc.

As above, the last statement can be reduced to the case when A is a J-torsion
sheaf. Now the assertion follows by choosing a q-flat resolution of B and using the
similar statement for the underived tensor product of sheaves.

For a morphism f W X ! Y of formal schemes one has the derived functors of
push-forward Rf� W D.X/ ! D.Y / and pull-back Lf � W D.Y / ! D.X/. In the
following proposition we collect some of their properties (mostly proved in [2]).

Proposition 1.2.2. (i) One has Lf �DEc.Y / � Dqc.X/. If in addition, Y is affine
then Lf �DEc.Y / � DEc.X/. On the other hand, if f is flat then f �Dc.Y / � Dc.X/

and f �DEc.Y / � DEc.X/.
(ii) Let J � OY be a coherent sheaf of ideals, and let DJ.Y / � D.Y / (resp.

DJOX
.X/ � D.X/) denote the subcategory of complexeswithJ-torsion (resp.JOX -

torsion) cohomology. There is an isomorphism of functors

Lf �R B �J ' R�JOX
B Lf �:

Hence, Lf �DJ.Y / � DJOX
.X/. If X is noetherian then we also have

R�J BRf� ' Rf�R B �JOY
;

so in this case Rf�DJOX
.X/ � DJ.Y /.

(iii) Assume that X and Y are noetherian. Then the functor Rf� is bounded on
DEc.X/.

(iv) Assume that f is quasi-compact. Then Rf�Dqct.X/ � Dqct.Y /.
(v) Assume that f is quasi-compact. Then the functor Rf� commutes with small

direct sums in DEc.X/. Also, in this case the functors Rif� commute with (small
filtered) direct limits.

(vi) If f is proper then Rf�Dc.X/ � Dc.Y /. If in addition X and Y are
noetherian then Rf�DEc.X/ � DEc.Y /.

(vii) If f is affine then f� is exact onDEc.X/ and f�DEc.X/ � Dqc.Y /.

Proof. (i) The first two assertions follow from Prop. 3.3.5 of [2]. For the last assertion
we use the well-known facts that f �Ac.Y / � Ac.X/ and f � commutes with direct
limits.

(ii) See Prop. 5.2.8 (b),(d) of [2].
(iii) See Prop. 3.4.3 (b) of [2].
(iv) Since the assertion is local in Y , we can assume thatX and Y are noetherian.

Then we can use Prop. 5.2.6 of [2].
(v) Since the assertion is local in Y , we can assume that X and Y are noetherian.

Then the first assertion follows from Prop. 3.5.2 of [2]. The second assertion is
checked exactly as in the case of schemes (see Lemma 1.1.1).
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(vi) Since the first assertion is local in Y , it is enough to consider the case when
X and Y are noetherian, so we can use Prop. 3.5.1 of [2].

(vii) We can assume that bothX and Y are affine: X D Spf.A/ and Y D Spf.B/.
Exactness of f� follows from Lemma 3.4.2 of [2]. By part (v), it is enough to check
that f�Ac.X/ � Aqc.Y /. Every coherent sheaf on X is of the form M� for some
finitely generated A-module M . It is easy to see that f�.M�/ is the OY -module
associated with M viewed as a B-module via the construction of Prop. 3.2 of [52].
Hence, f�M 2 AEc.Y / � Aqc.Y /.

We will also use push-forwards with quasi-compact support in a very special case.
Instead of developing the general theory we will give an ad hoc definition for this
case.

Definition. (i) Let P be some property of morphisms between formal schemes, local
over base, and let f W X ! Y be a morphism of formal schemes. We say that f is
ldu-P (‘ldu’ means locally disjoint union) if there exists an open covering .Ui / of Y
such that for every i , f �1.Ui / is a disjoint union of formal schemes Vi;j such that
all the maps f jVi;j

W Vi;j ! Ui have property P. Note that if the property P is stable
under base changes then the same is true for the property “ldu-P”.

(ii) Let f W X ! Y be an ldu-quasi-compact morphism between formal schemes.
Let us consider the subfunctor

f�� W A.X/! A.Y /

in f�, where f��.F / � f�.F / is the subsheaf of sections with quasi-compact support
over Y . This functor is left exact and we denote byRf�� W D.X/! D.Y / its derived
functor. Note thatY can be covered by open subsetsU � Y such thatf �1.U / D tVj

where each fj D f jVj
W Vj ! U is quasi-compact, and we have

Rf��.F /jU '
M

j

Rfj �.F jVj
/:

Observe also that the definition of f�� is local in Y . Hence, Proposition 1.2.2 (iv)
implies that Rf��Dqct.X/ � Dqct.Y /. If f is quasi-compact then f�� D f�. In the
case when f is ldu-pseudofinite we will denote f�� by fŠ (note that this functor is
exact).

One can immediately generalize many properties of the push-forward functors for
formal schemes to the functorsRf�� for ldu-quasi-compact morphisms. For example,
for ldu-quasi-compact maps of formal schemes f W X ! Y and g W Z ! X one has
R.f B g/�� ' Rf�� BRg��.

We now turn to versions of the projection and base change formulae for formal
schemes.
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Theorem 1.2.3. Let f W X ! Y be a quasi-compact map of formal schemes. Then
for F 2 DEc.X/ and G 2 DEc.Y / the natural map

G ˝L Rf�F ! Rf�.Lf �G ˝L F /

is an isomorphism. The similar result holds if f is ldu-quasi-compact and Rf� is
replaced with Rf��.

Proof. The question is local in Y , so we can assume that Y is affine andX is noethe-
rian (replacing X by one of its connected component in the second case). Note
that Lf �G 2 DEc.X/ by Proposition 1.2.2 (i). Hence, Lf �G ˝L F 2 DEc.X/ by
Lemma 1.2.1. First, assume that both F and G are bounded above. Fix F . Then
both sides respect coproducts as functors inG (use [2], Prop. 3.5.2). IfG D OY then
the statement is clear. Now use the fact that every object of AEc.Y / is a quotient of
a free module plus boundedness above of both sides (by the way out argument – see
[35], 1.11.3.1). The case when F and G are unbounded can be deduced from this as
in [35], 3.9.4, with Dqc replaced by DEc.

Remark. In the above theorem it is enough to assume that there exists an open
covering .Ui / of Y such that GjUi

2 DEc.Ui / and F 2 DEc.f �1.Ui // (since the
question is local in Y ). For example, if f is a closed embedding then the projection
formula holds for F 2 Db

qc.X/ and G 2 Db
qc.Y /.

We will use two versions of the flat base change formula for sheaves on formal
schemes based on Proposition 7.2 of [2]. In addition we prove a base change formula
for flat adic morphisms (part (i) (b) of the theorem below).

Theorem 1.2.4. (i) Let

V

g

��

v �� X

f

��
U

u �� Y

be a cartesian diagram of formal schemes.
(a) Assume that f is proper and u is flat. Then for every F 2 DEc.X/ the natural

map
�F W Lu�Rf�F ! Rg�Lv�F

is an isomorphism.
(b) Now assume that f is flat. In addition assume that f is adic and quasi-

compact (resp. proper). Then the map �F is an isomorphism for every F 2 Dqct.X/

(resp. F 2 DEc.X/).
(ii) Consider a cartesian diagram as above, where f is of pseudofinite type and

u is flat. Assume also that � is a coherent sheaf of ideals on U such that if J is
an ideal of definition on Y then JOU C � is an ideal of definition on U . Then for
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every F 2 Dqct.X/ and every G 2 Dqc.U / such that G has �-torsion cohomology
sheaves, the map induced by the base change map

u�Rf�F ˝L G ! Rg�v�F ˝L G (1.2.3)

is an isomorphism.
(iii) The assertions of (i) and (ii) also hold if Rf� (resp. Rg�) is replaced with

Rf�� (resp. Rg��), and every property P of f is replaced with “ldu-P”.

Proof. Let us observe that all the assertions are local in Y and U , so in the proof we
can (and will) assume them to be noetherian.

(i) (a) Using Proposition 7.2 (c) of [2] we see that R� 0
U �F is an isomorphism.

By Prop. 6.2.1 of [2] this implies that �F itself is an isomorphism when F is a
coherent sheaf. Indeed, in this case the source and the target of �F are in Dc.Y

0/ by
Proposition 1.2.2 (vi). It follows that �F is an isomorphism for F 2 AEc.X/ (using
Proposition 1.2.2 (v)). By Proposition 1.2.2 (iii), the source and the target of �F are
bounded functors, so we can finish the proof by the way out argument (see [35],
1.11.3).

(b) Since the assertion is local inU , we can assume it to be affine. Then it is enough
to check that the map u��F on Y is an isomorphism. Note that Rf�F 2 Dqct.Y / by
Proposition 1.2.2 (iv) (resp. Rf�F 2 DEc.Y / by Proposition 1.2.2 (vi)). Therefore,
using the projection formula (see Theorem 1.2.3) we can identify the source of u��F

with u�OU ˝L Rf�F and the target of u��F with Rf�.v�OV ˝L F /. It remains
to use the isomorphism v�OV ' f �u�OU (recall that f is adic) and the projection
formula again.

(ii) By Proposition 7.2 (b) of [2], the map

R� 0
Uu

�Rf�F ! R� 0
URg�v�F

is an isomorphism. Using the isomorphism (1.2.2) we see that the map (1.2.3) be-
comes an isomorphism after applying R� 0

U . It remains to check that the target and
the source of (1.2.3) have torsion cohomology sheaves. SinceG has �-torsion coho-
mology sheaves, it is enough to check that the cohomology of u�Rf�F andRg�v�F
are JOU -torsion sheaves. For u�Rf�F this follows from the fact that Rf�F has
J-torsion cohomology (see Proposition 1.2.2 (ii)). On the other hand, by the same
proposition, to check that the cohomology of Rg�v�F are JOU -torsion sheaves it
is enough to check that v�F has JOV -torsion cohomology. But this immediately
follows from the assumption that F has torsion cohomology on X .

(iii) Shrinking Y we can assume that all the connected components Xi of X are
noetherian. Then replacing X by Xi and V by Vi D U �Y Xi , we reduce ourselves
to the situation considered in (i) and (ii).

Remark. One situation where the case (ii) of the above theorem applies is this.
Assume that X , Y and Z are formal schemes over a usual scheme S , where Z is
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flat over S . Then for a map f W X ! Y of pseudofinite type we can consider the
cartesian diagram

X 0 �S Z

f �idZ

��

p1 �� X

f

��
Y �S Z

p1 �� Y .

Then for every F 2 Dqct.X/ and G 2 Dqct.Z/ the natural map

p�
1Rf�F ˝L Lp�

2G ! R.f � idZ/�p�
1F ˝L Lp�

2G

is an isomorphism. Similar assertion holds forRf�� instead ofRf� provided f is of
ldu-pseudofinite type.

Finally, we need a version of Proposition 1.1.5 for a certain class of morphisms
between formal schemes. For the kind of morphisms we are interested in the situation
is much simpler than in the general duality setup considered in [2] (in particular, in
our case the functor f Š can be easily constructed at the level of abelian categories of
sheaves).

Definition. Let f W X ! Y be a flat morphism of formal schemes. We say that f
is nicely ind-finite if each connected component of X is affine over Y and can be
presented as the inductive limit of a system of closed formal subschemesX0 � X1 �
� � � � X , where each Xn is flat and finite over Y . We say that f is locally nicely
ind-finite if the above condition holds locally in Y . We say that a formal scheme
X over a usual scheme S is (locally) nicely ind-finite flat over S if the morphism
� W X ! S is such.

It is easy to see that the property of a flat morphism to be nicely ind-finite (resp. lo-
cally nicely ind-finite) is preserved under arbitrary base changes. Also, if f is locally
nicely ind-finite morphism then it is ldu-pseudofinite, so we have the exact functor fŠ.

Proposition 1.2.5. (i) Let f W X ! Y be a finite flat morphism of formal schemes.
There exists a natural coherent sheaf f ŠOY on X , equipped with a morphism

f�f ŠOY ! OY ; (1.2.4)

such that for every map from a usual scheme Y 0 to Y the pull-back of f ŠOY to
X 0 D Y 0 �Y X is isomorphic to .f 0/ŠOY 0 , where f 0 W X 0 ! Y 0 is the induced
finite flat morphism of usual schemes. Under this isomorphism the pull-back to Y 0
of the map (1.2.4) gets identified with the canonical map f 0�.f 0/ŠOY 0 ! OY 0 . The
formation of f ŠOY and of the map (1.2.4) is also compatible with arbitrary base
changes Y 0 ! Y of formal schemes.
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If we define the functor

f Š W Aqc.Y /! Aqc.X/ W G 7! f ŠG D f ŠOY ˝ f �G

then for F 2 Aqct.X/ and G 2 Aqc.Y / the composed map

Hom.F; f ŠG/! Hom.f�F; f�f ŠG/! Hom.f�F;G/;

where the second arrow is induced by (1.2.4), is an isomorphism.
If g W Z ! X is another finite flat morphism then .fg/Š ' gŠ B f Š on Aqc.Y /.
If i W X 0 ,! X is a closed embedding of formal schemes such that f 0 D f B

i W X 0 ! Y is still flat then we have a natural map

i�.f 0/ŠOY ! f ŠOY (1.2.5)

inducing similar canonical maps after an arbitrary base change Y 0 ! Y with Y ’
a usual scheme. The push-forward of this map by fŠ is compatible with the maps
(1.2.4) for f and f 0. For G 2 Aqc.Y / the induced map

i�.f 0/ŠG ! Hom.i�OX 0 ; f ŠG/ (1.2.6)

is an isomorphism.
(ii) Let f W X ! Y be a locally nicely ind-finite flat morphism of formal schemes.

Then the functor fŠ W Aqct.X/ ! Aqct.Y / admits an exact right adjoint functor
f Š W Aqct.Y /! Aqct.X/.

In the case when Y is a usual scheme so that OY 2 Aqct.Y / D Qcoh.Y /, the
natural map fŠf

ŠOY ! OY induces an isomorphism

f ŠOY ˝ f �G ��!� f ŠG (1.2.7)

for G 2 Qcoh.Y /.
(iii) Let f W X ! Y be a (globally) nicely ind-finite morphism of formal schemes.

Then there exists a sheaf f ŠOY 2 AEc.X/ (possibly depending on a nicely ind-finite
structure .Xn/), flat over Y , equipped with a morphism cf W fŠ.f

ŠOY /! OY , such
that we have the induced isomorphism (1.2.7) for G 2 Aqct.Y /. The formation of
.f ŠOY ; cf / is compatible with arbitrary base changes (where the presentation as a
limit is obtained by the base change).

Let g W Z ! X be another nicely ind-finite flat morphism. Then fg W Z ! Y has
a natural nicely ind-finite structure and there is an isomorphism

g�.f ŠOY /˝ gŠOX ��!� .fg/ŠOY (1.2.8)

and an isomorphism of functors

.fg/Š ' gŠ B f Š W Aqct.Y /! Aqct.X/: (1.2.9)



Kernel algebras and generalized Fourier–Mukai transforms 167

Furthermore, for F 2 Aqct.Y / the diagram

g�f �F ˝ g�f ŠOY ˝ gŠOX

��

�� .fg/�F ˝ g�f ŠOY ˝ gŠOX
�� .fg/�F ˝ .fg/ŠOY

��
g�f ŠF ˝ gŠOX

�� gŠf ŠF �� .fg/ŠF

is commutative with arrows induced by (1.2.7), (1.2.8) and (1.2.9).
(iv) Let f W X ! Y be a locally nicely ind-finite morphism from a formal scheme

X to a usual scheme Y . Then for quasi-coherent sheaves F on X and G on Y one
has a natural isomorphism

Hom.F ˝ f ŠOY ; f
�G ˝ f ŠOY / ' bHom.F; f �G/; (1.2.10)

local in Y (see (1.2.1)).

Proof. (i) Let us represent Y as the limit of closed subschemes in W Yn ,! Y ,
and set jn W Xn D f �1.Yn/ ,! X , fn D f jXn

W Xn ! Yn. Note that Xn are
usual schemes and X is the inductive limit of Xn. Then every F 2 Aqct.X/ is
the inductive limit of the subsheaves jn�Fn, where Fn D j �

n Hom.jn�OXn
; F /.

Note that each Fn is quasi-coherent (see [2], Cor. 3.1.6(d)). Also, by Proposi-
tion 1.2.2 (v), we have f�F D limn in�fn�Fn. Similarly, for G 2 Aqc.Y / let us
denote Gn D i�n Hom.in�OYn

; G/ 2 Aqc.Yn/. Then by Proposition 1.1.5, we have

Hom.f�F;G/ D lim �Hom.fn�Fn; Gn/

' lim �Hom.Fn; f
Š

nGn/

' lim �Hom.Fn; f
Š

nOYn
˝ f �

n Gn/:

Using the compatibility of f Š
nC1 with the base change Yn ! YnC1 (Proposition 1.1.5)

we obtain
f Š

nC1OYnC1
jXn
' f Š

nOYn
:

Therefore,
f ŠOY ´ lim �

n

jn�f Š
nOYn

is a coherent sheaf on X equipped with isomorphisms j �
n f

ŠOY ' f Š
nOYn

. Hence,

Hom.F; f ŠOY ˝G/ ' lim �Hom.jn�Fn; f
ŠOY ˝ f �G/

' lim �Hom.Fn; j
�
n .f

ŠOY /˝ f �
n Gn/

' lim �Hom.Fn; f
Š

nOYn
˝ f �

n Gn/

which gives a natural isomorphism

Hom.f�F;G/ ' Hom.F; f ŠG/:
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Furthermore, we have
f�f ŠOY ' lim �fn�f Š

nOYn
;

so the canonical maps fn�f Š
nOYn

! OYn
give rise to a map (1.2.4). Is is easy to see

that the above isomorphism is induced by (1.2.4) (one can replace F by jn�Fn, so
the statement reduces to the similar statement for fn).

Now let us consider a base change diagram

V

g

��

v �� X

f

��
U

u �� Y .

Assume first that U is a usual scheme. Then using the adjoint pair .g�; gŠ/ and
the morphism f�f ŠOY ! OU , as in the proof of Proposition 1.1.5, we construct a
natural morphism

v�f ŠOY ! gŠOU : (1.2.11)

Since the map U ! Y locally factors through some subscheme Yn it follows eas-
ily from our construction that (1.2.11) is an isomorphism. Next, if U is a formal
scheme we can represent it as the limit limn Un of closed subschemes and con-
sider the corresponding closed subschemes Vn � V so that V D limn Vn, and let
gn W Vn ! Un be the induced morphisms. Let also vn W Vn ! X be the morphisms
induced by v W V ! X . Then the above argument gives a natural isomorphism
v�

nf
ŠOY ' gŠ

nOUn
for each n. Passing to inverse limits we get that (1.2.11) is an

isomorphism (to represent the left-hand side as a limit we use the fact that f ŠOY is
a coherent sheaf on X ).

If g W Z ! X is another finite flat morphism then to construct an isomorphism of
functors .f B g/Š ' gŠ B f Š is equivalent to constructing an isomorphism

.f B g/ŠOY ' gŠOY ˝ g�f ŠOY

of coherent sheaves on Z. By choosing a representation Y D limn Yn as above and
using the definitions this immediately reduces to the case of schemes, where we can
use Proposition 1.1.5.

Let i W X 0 ! X be a closed embedding such that f 0 D f B i W X 0 ! Y is still flat.
The map (1.2.5) is obtained by passing to limit from the similar maps associated with
the closed embeddings X 0 \ Xn ! Xn and the finite flat maps fn W Xn ! Yn. The
proof of the fact that (1.2.6) is an isomorphism easily reduces to the case of schemes.

(ii) First, let us replace Y by its affine open subset and X by its connected com-
ponent so that X is affine and is the inductive limit of a sequence of closed formal
subschemes kn W Xn ,! X , where each Xn is finite and flat over Y . Note that in this
situation we have fŠ D f�. Set fn D f B kn W Xn ! Y . Since X and Xn are affine,
we have X D Spf.A/, Xn D Spf.A=In/, where A D lim �n

A=In as a topological
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ring. Therefore, any ideal of definition J � A contains In for some n. It follows
that for every F 2 Aqct.X/ we have F D limn Hom.OX=�n; F /, where �n � OX

is the ideal sheaf of Xn. Set Fn D k�
n Hom.OX=�n; F / 2 Aqct.Xn/. As in part (i),

we have
Hom.f�F;G/ ' lim �

n

Hom.Fn; f
Š

nG/:

Next, by part (i), for G 2 Aqct.Y / we have isomorphisms

.kn;nC1/�.f Š
nG/ ' Hom..kn;nC1/�OXn

; f Š
nC1G/;

where kn;nC1 W Xn ,! XnC1 is the natural embedding. Therefore, we have natural
maps kn�f Š

nG ! .knC1/�f Š
nC1G so that setting

f ŠG ´ lim
n
kn�f Š

nG (1.2.12)

we have kn�f Š
nG ' Hom.OX=�n; f

ŠG/. It follows that

lim �
n

Hom.Fn; f
Š

nG/ ' lim �
n

Hom.kn�Fn; f
ŠG/ ' Hom.F; f ŠG/;

so G ! f ŠG is right adjoint to f�.
Next, assume that Y is covered by open subsets Yi such that the morphisms

fYi
W Xi D f �1.Yi / ! Yi have the above structure. Then for each i we have the

exact functor f Š
Yi
W Aqct.Yi /! Aqct.Xi /, right adjoint to .fYi

/Š. Furthermore, these
functors are compatible with restrictions to open subsets, so we can glue them into
an exact functor f Š W Aqct.Y /! Aqct.X/, right adjoint to fŠ.

The isomorphism (1.2.7) in the case when Y is a usual scheme will follow from
part (iii).

(iii) Let us again consider the situation from the beginning of the proof of (ii). We
have natural maps

.kn;nC1/�.f Š
nOY /! Hom..kn;nC1/�OXn

; f Š
nC1OY /! f Š

nC1OY ;

so the sheaves .kn�f Š
nOY / form an inductive system in Ac.X/, and we can set

f ŠOY D lim
n
kn�f Š

nOY : (1.2.13)

Note that in the case when Y is a usual scheme we have OY 2 Aqct.Y /, and this
definition agrees with (1.2.12). Each kn�f Š

nOY is flat over Y , hence so is f ŠOY .
Now using part (i) and (1.2.12) we obtain for G 2 Aqct.Y /

f ŠOY ˝ f �G ' lim
n
kn�.f Š

nOY ˝ f �
n G/ ' lim

n
kn�f Š

nG D f ŠG

as claimed. Note also that f�f ŠOY D limn fn�f Š
nOY and we have a system

of compatible morphisms fn�f Š
nOY ! OY (see part (i)), so we get a morphism

f�f ŠOY ! OY . Hence, by the projection formula, we have a natural map

f�.f ŠOY ˝ f �G/ ' f�f ŠOY ˝G ! G;
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hence, by adjunction, a map (1.2.7). One can easily check that it coincides with the
above isomorphism by reducing to the case of a finite morphism.

The fact that the formation of f ŠOY is compatible with any base change Y 0 ! Y

follows from a similar result for finite morphisms (see part (i)).
If g W Z ! Y is another nicely ind-finite morphism then replacing Z by its

connected component we can assume thatZ D limmZm, wheregm D gjZm
W Zm !

X are finite and flat. Let us set Zm;n D g�1
m .Xn/ � Zm. Then the induced map

gm;n W Zm;n ! Xn is finite and flat, hence, Zm;n is finite and flat over Y . Thus,
Z D limm;nZm;n is a nicely ind-finite structure on fg W Z ! Y . The isomorphism
.fg/Š ' gŠ B f Š follows by passing to adjoint functors from .fg/Š ' fŠ B gŠ.

To construct a map (1.2.8), we note that it should correspond by adjunction to a
map

.fg/Š.g
�f ŠOY ˝ gŠOX / ' fŠ.f

ŠOY ˝ gŠg
ŠOX /! OY ;

where we used the projection formula. We clearly have such a map induced by the
maps gŠg

ŠOX ! OX and fŠf
ŠOY ! OY . To see that it is an isomorphism we apply

the definitions (1.2.13) using the nicely ind-finite structures on f , g and fg. Namely,
let lm W Zm ! Z and lm;n W Zm;n ! Z denote the natural closed embeddings. Then
we have

g�f ŠOY ˝ gŠOX

.1/' g�f ŠOY ˝ lim
m
lm�gŠ

mOX

.2/' lim
m
lm�.g�

mf
ŠOY ˝ gŠ

mOX /

.3/' lim
m;n

lm;n�.g�
m;nf

Š
nOY ˝ gŠ

m;nOX /

.4/' lim
m;n

lm;n�.fngm;n/
ŠOY

.5/' .fg/ŠOY ;

where (1) and (5) are given by (1.2.13), (2) follows from the projection formula, (3)
uses (1.2.13) and the compatibility of gŠ

mOX with the base change (see part (i)), and
(4) uses an isomorphism (1.2.8) for finite morphisms that follows from part (i).

The proof of the commutativity of the diagram is tedious but straightforward:
since the target vertex is .fg/ŠF , we can use adjunction to rewrite the commutative
diagram applying .fg/Š D fŠgŠ to other vertices.

(iv) It is enough to consider the situation when X D limXn, where each Xn is
flat and finite over Y . Let us use the same notation as in part (ii). The natural map
is obtained as follows: an element ˛ 2 bHom.F; f �G/ induces a map k�

nF ! f �
n G

for each n, hence, we get a compatible system of maps

F ˝ kn�f Š
nOY ! f �G ˝ kn�f Š

nOY :
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Taking the inductive limits and using the formula (1.2.13) we get a mapF˝f ŠOY !
f �G ˝ f ŠOY . To see that it is an isomorphism we use (1.2.7):

Hom.F ˝ f ŠOY ; f
�G ˝ f ŠOY / ' lim �.k

�
n.k

�
nF ˝ f Š

nOY ; f
ŠG/

' lim �.k
�
nF ˝ f Š

nOY ; f
Š

nG/:

By Proposition 1.1.5, this is isomorphic to

lim �.k
�
nF; f

�
n G/ ' bHom.F; f �G/:

Example. Let k be a field. A formal schemeX is nicely ind-finite over Spec.k/ if and
only it is ldu-pseudofinite over k, i.e., every connected component ofX is of the form
Spf.A/, where A is a noetherian adic k-algebra, such that A=J is finite-dimensional
over k for an ideal of definition J . Thus, if G is a formal k-group (see the beginning
of Section 3 for our conventions on formal k-groups) then G is nicely ind-finite over
Spec.k/. More generally, if X is a formal scheme over k, and f W E ! X is a
G-torsor then f is locally nicely ind-finite (this immediately reduces to the case of a
trivial G-torsor).

Let us point out the following corollary from Proposition 1.2.5. For a formal
schemeX , locally nicely ind-finite flat over a usual scheme S , we set !X=S D !� ´
� ŠOS 2 Aqct.X/, where � W X ! S is the structure morphism.

Corollary 1.2.6. Let S be a scheme, X and Y formal schemes over S , where Y
is locally nicely ind-finite flat over S . Then for F 2 Dqct.X/ there is a natural
isomorphism on X �S Y

˛X;Y W p�
XF ˝ p�

Y!Y=S ��!� pŠ
XF; (1.2.14)

where pX and pY are the projections fromX �S Y toX and Y , respectively. Assume
that T is another scheme, Y ! T is a morphism, and Z is a formal scheme, nicely
ind-finite flat over T . Let us form the fibered productX �S Y �T Z, and let pX , pY ,
pXY , etc., denote the projections from this product to the partial products of factors.
Then Y �T Z is locally nicely ind-finite flat over T , and the diagram

p�
X F ˝ p�

Y !Y=S ˝ p�
Z!Z=T

˛X;Y

��

p�
YZ ˛Y;Z�� p�

X F ˝ p�
YZ.pYZ

Y /Š!Y=S
�� p�

X F ˝ p�
YZ!Y �T Z=S

˛XY;Z

��
p�

XY ..pXY
X /ŠF / ˝ p�

Z!Z=T

˛XY;Z �� pŠ
XY .pXY

X /ŠF �� pŠ
X F

is commutative, where pXY
X W X �S Y ! X (resp. pYZ

Y W Y �T Z ! Y ) are the
natural projections, the marked arrows are induced by (1.2.14), the remaining arrows
are obtained from the natural isomorphism .fg/Š ' gŠ B f Š.
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Proof. By adjunction, a map (1.2.14) should correspond to morphism on X

pXŠ.p
�
XF ˝ p�

Y!Y=S / ' F ˝ pXŠp
�
Y!Y=S ! F

(where we used the projection formula). Applying Theorem 1.2.4 (ii), (iii) to the
cartesian diagram

X �S Y

pX

��

pY �� Y

�Y

��
X

�X �� S

we obtain an isomorphism F ˝pXŠp
�
Y!Y=S ' F ˝��

X .�Y Š/!Y=S . Now the desired
morphism is induced by the canonical map �Y Š!Y=S D �Y Š�

Š
Y OS ! OS . To check

that (1.2.14) is an isomorphism we can argue locally in S , so we can assume that
�Y W Y ! S is (globally) nicely ind-finite. Then we can apply the compatibility of
the formation of !Y=S D � Š

Y OS with the base change, which gives an isomorphism
p�

Y!Y=S ' pŠ
XOX . Now (1.2.14) follows from (1.2.7).

In the case whenZ is nicely ind-finite over T , then the projection Y �T Z ! S is
the composition of pYZ

Y with �Y , so it is nicely ind-finite. The desired commutativity
of the diagram follows from the commutativity of the diagram in Proposition 1.2.5 (iii)
applied to the composition of pXY

X with pXY (note that both these projections are
nicely ind-finite).

1.3. Biextensions. Let � be a site, and let �h.�/ denote the category of sheaves of
abelian groups over � . We refer to sec. 1.4 of [18] for basic definitions concerning
(strictly commutative) Picard stacks over � . Roughly speaking, these are sheaves of
categories P over � equipped with a commutative group law P �P ! P satisfying

appropriate axioms. If K D ŒK�1 d! K0� is a complex over �h.�/, concentrated in
degrees �1 and 0, then one has the corresponding Picard stack ch.K/ with objects
given by sections ofK0, where a morphism between x and y inK0.U / is an element
f 2 K�1.U / such that df D y � x. In fact, every Picard stack can be represented
in this way (see [18], 1.4.13). For example, if G is a sheaf of abelian groups then the
Picard stack of G-torsors is equivalent to ch.GŒ1�/ (see [18], 1.4.21).

For a pair of Picard stacks P1, P2 there is a natural Picard stack HOM.P1;P2/ of
homofunctors P1 ! P2 (the corresponding term in [18], 1.4 is “foncteur additif”).
For complexes of sheaves K1 and K2, concentrated in degrees �1 and 0, one has

HOM.ch.K1/; ch.K2// ' ch ��0RHom.K1; K2/; (1.3.1)

where on the right-hand side we view K1 and K2 as objects of the derived category
Db.�h.�// (see [18], (1.4.18.1)).

Lemma 1.3.1 ([18], 1.4.23). Let K D ŒK�1 ! K0� be a complex over �h.�/, and
let G 2 �h.�/. Then the Picard stack of extensions EXT.K;G/ (i.e., of extensions
of K0 by G, trivialized over K�1) is equivalent to HOM.ch.K/; ch.GŒ1�//.
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For a triple P1, P2, P3 of Picard stacks there is a Picard stack HOM.P1;P2IP3/

of biadditive functors P1 � P2 ! P3 (see [18], 1.4.8). In terms of complexes of
sheaves K1, K2, K3 as above, we have

HOM.ch.K1/; ch.K2/I ch.K3// ' ch ��0RHom.���1.K1 ˝L K2/;K3/

' ch ��0RHom.K1 ˝L K2; K3/
(1.3.2)

(using [18], (1.4.8.1), 1.4.20 and (1.3.1)).

Lemma 1.3.2. One has a natural equivalence

HOM.P1;P2IP3/ ' HOM.P1;HOM.P2;P3//: (1.3.3)

Proof. This can be deduced directly from the definitions. Alternatively, we can realize
each Picard stack Pi as ch.Ki / for some complexes Ki (i D 1; 2; 3) concentrated
in degrees �1 and 0. Using (1.3.1) and (1.3.2) we obtain similar representations for
both sides of (1.3.3). It remains to use the isomorphism

RHom.K1 ˝L K2; K3/ ' RHom.K1; RHom.K2; K3//

' RHom.K1; ��0RHom.K2; K3//: �

Proposition 1.3.3. LetP ,Q andG be three sheaves of commutative groups on some
site. Then the category of biextensions of P �Q by G is equivalent to the category
of homofunctors P ! EXT.Q;G/.

Proof. Let BIEXT.P;QIG/ denote the Picard stack of biextensions of P � Q by
G. Then we have a natural functor

BIEXT.P;QIG/! HOM.ch.P /; ch.Q/I ch.GŒ1�//; (1.3.4)

which associates with a biextension the corresponding map from pairs of sections
.p; q/ of P �Q to G-torsors. Using (1.3.3) and Lemma 1.3.1 we see that the right-
hand side is equivalent to the Picard stack of homofunctors from P to EXT.Q;G/.
Thus, it suffices to prove that (1.3.4) is an equivalence. This can be checked directly
using the definition of the biextension as in [28], 2.0. Here is a different way to check
this. By (1.3.2), we have

HOM.ch.P /; ch.Q/I ch.GŒ1�// ' ch ��0RHom.P ˝L Q;GŒ1�/:

Therefore, the sheaf of automorphisms of the neutral object of this Picard stack is
Hom.P˝LQ;G/while the sheaf associated with the isomorphism classes of objects
is Ext1.P˝LQ;G/. But these are exactly the same sheaves as one gets for the Picard
stack of biextensions (see [28], 2.5.4 and 3.6.5).

The following result follows immediately from [29], (1.1.6) and 1.5 (it can also be
derived from the above Proposition by considering the subcategory of locally trivial
extensions in EXT.Q;G/).
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Proposition 1.3.4. For P ,Q, G as above there is a fully faithful functor

EXT.P;Hom.Q;G//! BIEXT.P;QIG/:
If Ext1.Q;G/ D 0 then this functor is an equivalence.

The condition Ext1.Q;G/ D 0 is satisfied in the following important case.

Lemma 1.3.5 ([29], 3.3.1). Let G be a finite flat group scheme over S . Then
Ext1.G;Gm/ D 0.

Now let k be a field of characteristic zero. Then similar vanishing holds for affine
commutative algebraic groups over k and for formal k-groups (for our assumptions
on formal k-groups see the beginning of Section 3).

Lemma 1.3.6. (i) LetG be an affine commutative algebraic group over k or a formal
k-group. Then Ext1.G;Gm/ D 0 (with respect to flat topology).

(ii) If 0 ! G1 ! G2 ! G3 ! 0 is an exact sequence of formal k-groups
then there exists a finite field extension k � k0 and a section .G3/k0 ! .G2/k0 (not
required to be a group homomorphism). Hence, G2 ! G3 is a G1-torsor in flat
topology.

Proof. (i) For affine commutative algebraic groups this follows immediately from the
Cartier duality since Gm is dual to Z. Now assume G is a formal k-group. Let G0

be the component of identity in G. Passing to a finite extension of k we can assume
that G=G0 is a finitely generated discrete abelian group, so Ext1.G=G0;Gm/ D 0.
Now if we have a group extension

1! Gm ! H ! G0 ! 1

then we can pass to the corresponding extension of Lie algebras

0! k ! LH ! LG0 ! 0:

Since the characteristic of k is zero and all the Lie brackets here are trivial, we have
a splitting LG0 ! LH that induces a splitting G0 ! H

(ii) Since all our formal k-groups are assumed to be commutative, the extension
splits over G0

3 (by considering the extension of Lie algebras). Thus, it is enough to
consider the case when G3 is étale. Passing to a finite extension of k we can assume
that G3 is a finitely generated discrete abelian group, in which case the statement is
clear.

Remark. The vanishing in Lemma 1.3.6 (i) also holds for formal groups over fields
of finite characteristic – one can reduce this to the case of finite group schemes.
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2. Kernel algebras

In this section we present a formalism generalizing the techniques of Fourier–Mukai
transforms for D-algebras developed in [44]. We consider more general “nonlocal”
algebras and generalize the main construction of the “circle product” from [44] by
making use of appropriate resolutions. The main result of this section is Theorem 2.5.1
generalizing Thm. 6.5 of [44]. Throughout this section we work over a fixed base
scheme S , and all our schemes are assumed to be S -schemes. We denote simply by
X � Y the fibered product over S . All schemes in this section are assumed to be
semi-separated.

2.1. Convolution for quasi-coherent sheaves. Let us start by recalling the basic
properties of the convolution operation for quasi-coherent sheaves (called the circle
product in [44]). Given F 2 Dqc.X � Y / and G 2 Dqc.Y �Z/ we set

F BY G D p13�.p�
12F ˝ p�

23G/;

where pij are the projections from X � Y �Z to the double products of factors.

Lemma 2.1.1. (i) Assume that in each pair of S -schemes .X;Z/ and .Y; T / at least
one is flat over S . Then forF 2 Dqc.X�Y /,G 2 Dqc.Y �Z/ andH 2 Dqc.Z�T /
one has

.F BY G/ BZ H ' F BY .G BZ H/:
(ii) Assume that X is flat over S . Then for F 2 Dqc.X � Y / and G 2 Dqc.Y /

one has
F BY ��G ' F ˝ p�

2G:

The proof is a simple application of the projection and base change formulae
(cf. [38], Prop. 1.3).

Lemma 2.1.2. (i) Assume that we are given a morphism g W Y ! Y 0 and let X
and Z be schemes. If g is flat or Z is flat over S then for F 2 Dqc.X � Y / and
G0 2 Dqc.Y

0 �Z/ we have a natural isomorphism

..idX � g/�F / BY 0 G ' F BY .g � idZ/
�G:

Similarly, ifg isflat orX isflat overS then forF 0 2 Dqc.X�Y 0/andG 2 Dqc.Y �Z/
one has

F 0 BY 0 .g � idZ/�G ' ..idX � g/�F 0/ BY G:
(ii) Assume that we are given morphisms f W X ! X 0 and h W Z ! Z0. If f is

flat or Z is flat over S then for F 2 Dqc.X � Y / and G 2 Dqc.Y � Z/ we have a
natural isomorphism

.f � idZ/�.F BY G/ ' ..f � idY /�F / BY G:
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Similarly, if h is flat or X is flat over S then one has

.idX � h/�.F BY G/ ' F BY .idY � h/�G:
(iii) Assume that we are given morphisms f W X ! X 0 and h W Z ! Z0, and let

Y be a scheme. Assume that either f and h are flat or Y is flat over S . Then for
F 2 Dqc.X

0 � Y / and G 2 Dqc.Y �Z0/ one has a natural isomorphism

.f � h/�.F BY G/ ' ..f � idY /
�F / BY ..idY � h/�G0/: (2.1.1)

(iv) Assume that we are given morphisms f W X ! X 0, g W Y ! Y 0, and let
Z be a scheme. Assume that either f and g are flat or Z is flat over S . Then for
F 2 Dqc.X � Y / and G 2 Dqc.Y

0 �Z/ one has a natural isomorphism

..f � g/�F / BY 0 G ' .f � idZ/�.F BY .g � idZ/
�G/: (2.1.2)

Proof. The proofs of (i), (ii) and (iii) are easy applications of the projection and base
change formulae. (iv) follows from (i) and (ii).

Assume we are given a triple of morphisms f W X ! X 0, g W Y ! Y 0, h W Z !
Z0, where either all these morphisms are flat, or X and Z0 are flat over S , or X 0 and
Z are flat over S . Then we can define for F 2 Dqc.X � Y / and G 2 Dqc.Y �Z/ a
natural morphism

.f � g/�F BY 0 .g � h/�G ! .f � h/�.F BY G/: (2.1.3)

Indeed, say, assume that X and Z0 are flat over S . Then using (2.1.2) we get an
isomorphism

.f � g/�F BY 0 .g � h/�G ' .f � idY /�.F BY .g � idZ/
�.g � h/�G/:

Now using the adjunction morphism

.g � idZ/
�.g � h/�G ' .g � idZ/

�.g � idZ/�.idY � h/�G ! .idY � h/�G
we get a morphism from .f � g/�F BY 0 .g � h/�G to

.f � idY /�.F BY .idY � h/�G/ ' .f � h/�.F BY G/;
where the last isomorphism follows from Lemma 2.1.2 (ii). We leave for the reader to
formulate and prove the associativity of this construction, say, under the assumption
that all schemes involved are flat over S .

Definition. An object K 2 Dqc.X � Y / is B-flat over Y (or BY -flat) if for every
quasi-coherent sheaf F on Y the object K BY F 2 Dqc.X/ is a sheaf. In the case
X D S we haveK 2 Dqc.Y / and the condition of BY -flatness means that the functor
F 7! ��.F ˝K/ on Dqc is t -exact, where � W Y ! S is the projection.
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Note that the condition of B-flatness over Y is local over X .

Lemma 2.1.3. (i) Let f W X ! X 0 and Qg W QY ! Y be affine morphisms and let
Qf W QX ! X and g W Y ! Y 0 be flat morphisms. Then .f �g/� sends BY -flat objects

to BY 0-flat objects. Assume in addition that either Qg is flat or QX is flat over S . Then
. Qf � Qg/� sends BY -flat objects to B QY -flat objects.

(ii) IfK 2 Dqc.X �Y / is BY -flat thenK is a quasi-coherent sheaf onX �Y , flat
over Y . If Y is affine over S then the converse is also true.

(iii) Let K be a BY -flat quasi-coherent sheaf on X � Y , and let Z be a scheme.
Assume that either X or Z is flat over S . Then for any quasi-coherent sheaf L on
Y �Z the object K BY L 2 Dqc.X �Z/ is a sheaf.

(iv) LetK 2 Qcoh.X � Y / be BY -flat and L 2 Qcoh.Y �Z/ be BZ-flat. Assume
that either X or Z is flat over S . Then K BY L 2 Dqc.X �Z/ is also BZ-flat.

(v) Assume again that eitherX orZ is flat over S . IfK 2 Qcoh.X �Y / is BY -flat
andL is a quasi-coherent sheaf on Y �Z, flat overZ, thenK BY L 2 Qcoh.X �Z/
is also flat over Z.

(vi) Let q W K�

1 ! K�

2 is a quasi-isomorphism of bounded complexes of quasi-
coherent sheaves on X � Y with BY -flat terms. Then for every L 2 Qcoh.Y � Z/
the induced morphism of complexes K�

1 BY L! K�

2 BY L is a quasi-isomorphism.

Proof. (i) This follows from the isomorphisms of Lemma 2.1.2.
(ii) Without loss of generality we can assume S to be affine. Assume first that

Y is also affine. Then the functor p1� W Dqc.X � Y / ! Dqc.X/ is t -exact and
conservative. Hence, the condition of BY -flatness is equivalent to the condition that
the functor F 7! K ˝ p�

2F W Dqc.Y / ! Dqc.X � Y / is t -exact. Taking F D OY

we immediately see that K itself is a sheaf. Furthermore, this exactness condition is
easily seen to be equivalent to flatness of K over Y .

Now for arbitrary Y , using part (i), we see that KjX�U is BU -flat for any open
affine subset U � Y . As we have just shown this implies that KjX�U is a sheaf, flat
over U . Hence, K itself is a sheaf, flat over Y .

(iii) The problem is local in Z, so we can assume that Z is affine. Then it is
enough to check that pXZ

X� .K BY L/ 2 Dqc.X/ is a sheaf, where pXZ
X W X �Z ! X

is the projection. Since X is flat over S , by Lemma 2.1.2, one has

pXZ
X� .K BY L/ ' K BY .pYZ

Y �L/;

where pYZ W Y � Z ! Y is the projection. Now we observe that pYZ
Y �L is a sheaf

on Y and use the fact that K is BY -flat.
(iv) This follows from the associativity of the convolution in this case (see Lem-

ma 2.1.1 (i)).
(v) Without loss of generality we can assume S and Z to be affine. Now the

statement follows from (ii) and (iv).
(vi) It is enough to check that if a bounded complexK� of quasi-coherent sheaves

onX �Y with BY -flat terms represents an object F 2 Dqc.X �Y / then the complex
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K� BY L represents F BY L 2 Dqc.X �Z/. This can be easily proved by induction
in the length of K�.

Lemma 2.1.4. (i) Let f W Z ! X be an affine morphism and g W Z ! Y a morphism
of schemes. Then for any quasi-coherent sheafF onZ, flat overY , the quasi-coherent
sheaf .f; g/�F on X � Y is B-flat over Y .

(ii) The same assertion is true for the sheaf .f; g/��F if X and Y are schemes,
Z is a formal scheme, f is ldu-affine, and F is a sheaf in Aqct.Z/, flat over Y .

Proof. (i) The fact that F is flat over Y implies that the functor

Dqc.Y /! Dqc.Z/ W G 7! F ˝ g�G

is t -exact. Now the assertion follows from the isomorphism

.f; g/�F BY G ' f�.F ˝ g�G/

for G 2 Qcoh.Y / (that follows from the projection formula for the map .f; g/).
(ii) One can repeat the above argument using the projection formula for sheaves

on formal schemes (see Theorem 1.2.3) and the fact that f�� is exact for ldu-affine f .

Lemma 2.1.5. Let X , Y and Z be schemes, where either X or Z is flat over S .
(i) Let K be a BY -flat quasi-coherent sheaf on X � Y . Then the functor

Qcoh.Y �Z/! Qcoh.X �Z/ W F 7! K BY F
commutes with inductive limits.

(ii) Let .Ki / be an inductive system of BY -flat quasi-coherent sheaves on X � Y .
Then limi Ki is still BY -flat, and for every quasi-coherent sheaf F on Y � Z the
natural map

lim.Ki BY F /! .limKi / BY F
is an isomorphism.

Proof. (i) By definition,KBY F D pXZ�.p�
XYK˝p�

YZF /, where we use projections
from X � Y � Z to double products of factors. Recall that K BY F is a sheaf by
Lemma 2.1.3 (iii), andK is flat over Y by Lemma 2.1.3 (ii). It follows that the sheaf
p�

XYK is flat over Y �Z, so we can use the underived functors in the above formula
for K BY F . All of them commute with inductive limits (for the push-forward see
Lemma 1.1.1).

(ii) Note that limKi is flat over Y , so for F 2 Qcoh.Y �Z/ we have

p�
XY .limKi /˝ F ' .lim p�

XYKi /˝ F ' lim.p�
XYKi ˝ F /;

where we can use the underived functors. Now using Lemma 1.1.1 we find that
the derived push-forward of this sheaf by pXZ is concentrated in degree 0 and is
isomorphic to limKi BY F .
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2.2. Kernel algebras. LetX be a flat scheme overS . We denote by� W X ! X�X
the (relative over S ) diagonal embedding. Note that this is an affine morphism, since
X and S are semi-separated.

Definition. (i) A kernel algebra overX is an object A 2 Dqc.X �X/ equipped with
a morphism � W A BX A ! A (product) and a morphism u W ��OX ! A (unit),
subject to the usual associativity and unit axioms. Note that in these axioms we use
the isomorphisms

.A BX A/ BX A ' A BX .A BX A/ and A BX ��OX ' ��OX BX A ' A

(see Lemma 2.1.1). Homomorphisms between kernel algebras over the same scheme
X are defined in an obvious way. A kernel algebra A over X is called pure if A is a
quasi-coherent sheaf on X �X , B-flat over X with respect to both projections.

(ii) A left (resp. right) module over a pure kernel algebra A is a quasi-coherent
sheafF onX equipped with a morphism ABXF ! F (resp.F BX A! F ) satisfying
the usual associativity and unitality axioms. We denote by A-mod the category of
left A-modules.

(iii) We say that a pure kernel algebra A over X is finite (on the left) if A is a
coherent sheaf on X �X , and the support of A is proper over X with respect to the
first projection. In this case a (left) module F over A is called coherent if F is a
coherent sheaf on X . We denote by A-modc the category of coherent A-modules.

Henceforward, whenever we consider kernel algebras over X we implicitly as-
sume X to be flat over S .

Note that if A is a pure kernel algebra then by Lemma 2.1.3 (ii), the object ABX A 2
Dqc.X � X/ (resp. A BX F , F BX A) appearing in the above definition is a sheaf.
Using exactness of the functor F 7! A BX F one can immediately check that A-mod
(resp. A-modc if A is finite) is an abelian category.

Lemma 2.2.1. Let A be a pure kernel algebra overX . Then for any inductive system
of left A-modules .Fi / there is a natural A-module structure on the quasi-coherent
sheaf F D limi Fi . The obtained A-module F is the limit of .Fi / in the category of
A-modules.

Proof. For each map Fi ! Fj in this inductive system there is an induced map of
quasi-coherent sheaves A BX Fi ! A BX Fj , so we get a map of inductive systems
.A BX Fi /! .Fi /. Passing to the limit and using Lemma 2.1.5 (i) we get a map

A BX limFi ' lim A BX Fi ! limFi ;

so we get an action of A on F D limFi . It is easy to check that this is a structure
of an A-module on F , and that it is the limit of .Fi / in the category of A-modules.
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Lemma 2.2.2. Let A be a pure kernel algebra over X , F a left A-module. Then the
complex of left A-modules

: : :
d2�! A BX A BX F

d1�! A BX F
d0�! F ! 0

is exact, where the differentials di are alternating sums of the appropriate operations
in two consecutive factors.

Proof. Note that in the case when X is a point this complex is the bar complex of
a module over an associative algebra. Generalizing the construction of the standard
contracting homotopy from this case, we can consider the map sn W ABX n BX F !
ABX .nC1/ BX F induced by the unit morphism u W ��OX ! A in the first factor. One
immediately checks that .sn/ is a contracting homotopy for our complex, hence it is
acyclic.

Lemma 2.2.3. Let A be a finite pure kernel algebra overX . Then the natural functor
D�.A-modc/! D�.A-mod/ is fully faithful, and its essential image consists of all
complexes of A-modules with bounded above coherent cohomology.

Proof. This is proved in the same way as for usual sheaves of OX -modules (see
e.g. [4], Cor. 2.10, 2.11). One only has to check that for every surjection of A-modules
F ! G, where G is coherent, there exists a coherent A-submodule F0 � F that
still surjects onto G. We can start with a coherent subsheaf F 0 � F surjecting onto
G and then replace it with the image of the corresponding morphism of A-modules
A BX F 0 ! F .

Examples. 1. If A is a D-algebra on X (see [7]), flat as a left and as a right OX -
module, then the associated sheaf ıA onX�X has a structure of pure kernel algebra,
and the modules over ıA are exactly modules over A in the usual sense. Note that
B-flatness of ıA overX (with respect to either projection) reduces to the usual flatness,
since ıA is supported on the diagonal.

2. Let G be a discrete group acting on a scheme X . Then we have a natural pure
kernel algebra structure on

AG
X ´

L
g2G

O�g
;

where �g � X �X is the graph of the action of g�1 2 G onX , i.e., �g D f.gx; x/ j
x 2 Xg. The product is induced by the natural isomorphisms O�g

BX O�g0 ' O�gg0 .
For every F 2 Qcoh.X/ we have natural isomorphisms O�g

BX F ' .g�1/�F . It
is easy to see that AG

X -modules are exactly G-equivariant quasi-coherent sheaves on
X . Later we will generalize this example to actions of finite group schemes and of
formal groups (see Corollary 3.3.2).

3. Assume that X and S are affine, X D SpecA, S D SpecR. Then a pure
kernel algebra A over X corresponds to an associative ring �.A/ equipped with a
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homomorphism A ! �.A/ such that the image of R is in the centre of �.A/, and
such that �.A/ is flat as a left (resp. right) A-module. Modules over A are usual
modules over �.A/.

We are going to describe several basic operations with kernel algebras. Let us
denote by 	 W Y � X ! X � Y the permutation isomorphism. Then for K 2
Dqc.X � Y / and L 2 Dqc.Y �Z/ we have a natural isomorphism

	�.K BY L/ ' 	�L BY 	�K (2.2.1)

on Z �X .

Definition. For a kernel algebra A over X the opposite kernel algebra Aopp is 	�A,
where 	 is the permutation of factors in X �X . The product structure is induced by
the product structure on A using the isomorphism (2.2.1). Note that the opposite of
a pure kernel algebra is pure. The isomorphism (2.2.1) also shows that in the pure
case there is an equivalence of the category of left Aopp-modules with the category
of right A-modules (and vice versa).

For K 2 Dqc.X � Y / and K 0 2 Dqc.X
0 � Y 0/ we denote the external product

K �K 0 D 	�
23.p

�
XYK ˝ p�

X 0Y 0K
0/ 2 Dqc.X �X 0 � Y � Y 0/;

where 	23 W X �X 0 � Y � Y 0 ! X � Y �X 0 � Y 0 is the transposition.

Lemma 2.2.4. (i) ForK 2 Dqc.X � Y /, L 2 Dqc.Y �Z/,K 0 2 Dqc.X
0 � Y 0/ and

L0 2 Dqc.Y
0 �Z0/ one has

.K �K 0/ BY �Y 0 .L� L0/ ' .K BY L/� .K 0 BY 0 L0/

provided Y and Y 0 are flat over S .
(ii) For K and K 0 as above and for F 2 Dqc.Y � Y 0/ one has a natural isomor-

phism on X �X 0,

.K �K 0/ BY �Y 0 F ' .K BY F / BY 0 .	�K 0/;

provided either X 0 or Y is flat over S .
(iii) Assume that X and X 0 are flat over S . If K (resp. K 0) is a quasi-coherent

sheaf on X � Y (resp. X 0 � Y 0), B-flat over Y (resp. Y 0) then K �K 0 is B-flat over
Y � Y 0.

Proof. Parts (i) and (ii) are easy applications of the projection and base change for-
mulae. Part (iii) follows from (ii) and from Lemma 2.1.3 (iii).

Definition. If A is a kernel algebra over X and B is a kernel algebra over Y then
their external product A � B has a natural structure of the kernel algebra overX �Y
induced by an isomorphism of Lemma 2.2.4 (i). If A and B are pure then so is A�B

(the required B-flatness follows from Lemma 2.2.4 (iii)).
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Lemma 2.2.5. Let A (resp. B) be a pure kernel algebra over X (resp. Y ). Let F
be a quasi-coherent sheaf on X � Y . Then an A � Bopp-module structure on F is
determined by a pair of morphisms ˛ W A BX F ! F , ˇ W F BY B ! F that satisfy
the left and right module axioms and that commute with each other, i.e., the diagram

A BX F BY B

��

�� A BX F

��
F BY B �� F

is commutative.

Proof. This follows easily from the natural isomorphism

.A � Bopp/ BX�Y F ' A BX F BY B

provided by Lemma 2.2.4 (ii).

For example, taking B D ��OY we see that an A ���OY -module structure on
a quasi-coherent sheaf F on X � Y is given by a morphism A BX F ! F on X � Y
satisfying the module axioms.

Definition. Let f W X ! Y be a morphism of flat S -schemes. If A is a kernel
algebra over X then .f � f /�A has a natural structure of a kernel algebra over Y
induced by the morphism

.f � f /�A BY .f � f /�A! .f � f /�.A BX A/

(see (2.1.3)). If in addition f is flat and affine, Y is flat over S , and A is pure, then
.f � f /�A is also pure. Indeed, the fact that .f � f /�A is B-flat over Y follows
from Lemma 2.1.3 (i). We call the kernel algebra .f � f /�A the push-forward of A

under f .

Lemma 2.2.6. Let f W X ! Y be a flat affine morphism, where Y is flat over
S . Then for a pure kernel algebra A over X the functor F 7! f�F induces an
equivalence of the category of A-modules with the category of .f � f /�A-modules.
If in addition f is finite and A is finite then so is .f � f /�A and we have an
equivalence A-modc ' .f � f /�A-modc.

Proof. Note that the assertion is clear in the case when Y and S are affine. In the
general case, for an A-module F the natural .f � f /�A-module structure on f�F
is given by the following composition

.f � f /�A BY f�F ��!� f�.A BX f �f�F /! f�.A BX F /! f�F;
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where the first isomorphism is derived from (2.1.2), and the second arrow is induced by
the adjunction map f �f�F ! F . Conversely, assume we are given an .f � f /�A-
module structure on a quasi-coherent sheaf G over Y . Then it induces an f�OX -
module structure on G so that G ' f�F . Furthermore, it is easy to see that the
structure morphism from .f �f /�ABY f�F ' f�.ABX f �f�F / to f�F commutes
with the f�OX -module structures on both sides, so it is induced by a morphism
A BX f �f�F ! F . We claim that this morphism factors through the canonical
morphism ˛ W A BX f �f�F ! A BX F . Indeed, since ˛ is surjective it is enough to
check this locally. But in the affine case we know this to be true. The associativity
of the obtained action A BX F ! F can also be checked locally.

In the case when f is finite the functor f� preserves coherence, which implies
the second assertion.

Remark. Let A be a pure kernel algebra on X , and let g W Y ! Y 0 be an affine
morphism of flat S -schemes. Then for an A ���OY -module F on X � Y we can
introduce a natural A���OY 0-module structure on .idX �g/�F . Namely, it is given
by the map

A BX .idX � g/�F ' .idX � g/�.A BX F /! .idX � g/�F;
where the first isomorphism follows from Lemma 2.1.2 (ii). If in addition g is flat
then by Lemma 2.2.6, we can view .idX � g/�F as a module over the pure kernel
algebra A � ��g�OY , and the above A � ��OY 0-module structure is induced by
the homomoprhism of kernel algebras A ���OY 0 ! A ���g�OY .

2.3. Čech resolutions. We are going to introduce a notion of compatibility of a
kernel algebra A with an open covering so that the Čech resolution of an A-module
with respect to this covering would inherit the A-module structure. Here is a general
framework for this construction.

Definition. Let .C ;�/ be a monoidal category with a unit object I , and let .A; � W A�
A! A; u W I ! A/ be an algebra in C , O an object of C . We say that a morphism

	 W A �O ! O � A
is compatible with the algebra structure on A if the diagram

A � A �O

��

�� A �O � A �� O � A � A

��
A �O �� O � A

is commutative, where the horizontal (resp. vertical) arrows are induced by	 (resp.�),
and in addition 	.u � idO/ D idO � u (equality of morphisms from O to O � A).
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The next lemma gives a pattern for constructing complexes similar to Čech reso-
lutions.

Lemma 2.3.1. Let .C ;�/,A, .O; 	/ be as in the above definition. Assume in addition
that the category C is additive (where the monoidal structure is given by an additive
functor), andO is equipped with a morphism 
 W I ! O such that 	.idA� 
/ D 
� idA

(equality of morphisms from A to O � A). Then there is a natural structure of a dg-
algebra (with a unit) over .C ;�/ on

T
�
.O/ � A´ A˚O � A˚O �O � A˚ � � � ;

where multiplication is induced by the product on A and 	 , the differential d is
characterized by

d.A/ D 0; d jO D .idO � 
 � 
 � idO/ � idA W O � A! O �O � A:
The morphism 
 � idA W A! O � A defines a map of complexes of A-bimodules

A! T >0.O/ � AŒ1�:
Similarly, for every left A-module M there is a natural structure of a left (unital)
dg-module over T �.O/ � A on T �.O/ �M and a map of complexes of A-modules
M ! T >0.O/ �MŒ1�.

The proof is left to the reader.
We will apply this lemma to the monoidal structure given by the convolution.

The algebra A will be a kernel algebra and the object O will be the sheaf �.U/
concentrated on the diagonal associated with an open covering U (see (2.3.1) below).
The obtained complex of A-modules T >0.O/ �MŒ1� will be the Čech resolution.

By an open covering U D .Ui / of X we always mean an open covering with
respect to the flat ( fppf ) topology. For a quasi-coherent sheaf F on X and an open
covering .Ui /i2I of X such that the maps ji W Ui ! X are affine, let us denote
by C �

U.F / the corresponding Čech resolution of F (where indices are allowed to
coincide). Namely,

C
p

U .F / D
L

J �I pC1

jJ;�j �
J F;

where for J D .i0; : : : ; ip/ we denote by jJ W Ui0 �X � � � �X Uip ,! X the natural
embedding. Note that in this case all the fibered products of ji ’s are still affine maps, so
the corresponding push-forward functors are exact. For example, we can take Čech
resolutions corresponding to affine open coverings (the corresponding morphisms
ji W Ui ! X will be automatically affine since X is semi-separated).

These Čech resolution can be viewed in the context of Lemma 2.3.1 as follows.
Consider the following sheaf on X �X :

�.U/´ ��C 0
U.OX / DL

i

��ji�OUi
: (2.3.1)
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It is equipped with the natural map 
 W ��OX ! �.U/, hence we have the corre-
sponding dg-algebra T �.�.U// with respect to the circle product. Set O�.X;U/´
T >0.�.U//Œ1�. It is easy to see that

O
�
.X;U/ D ��C

�

U.OX /:

Furthermore, for F 2 Qcoh.X � Y / (resp. G 2 Qcoh.Y � X/) we have natural
isomorphisms of resolutions of F (resp. G)

O
�
.X;U/ BX F ' C �

.Ui �Y /.F /; (2.3.2)

G BX O
�
.X;U/ ' C �

.Y �Ui /.G/: (2.3.3)

Using Lemma 2.3.1 we arrive to the following definition which specifies when Čech
resolutions for modules over a kernel algebra still carry an action of this kernel algebra.

Definition. We say that an open covering .Ui / of X (with affine maps ji W Ui ! X )
is compatible with a kernel algebra A overX if there is an isomorphism inD.X �X/

	 W A BX �.U/ ��!� �.U/ BX A (2.3.4)

compatible with the kernel algebra structure on A and with the canonical homomor-
phism ��OX ! �.U/. We say that a pure kernel algebra A over X is of affine type
if there exists an open affine covering .Ui / of X with respect to the flat topology,
compatible with A.

Examples. 1. Let � W X ! S be the projection. Then for any open covering .Si / of
S such that the maps Si ! S are affine, the induced open covering .Ui D Si �S X/

of X is compatible with any kernel algebra over X . Indeed, this follows from the
natural isomorphisms of X �S X -schemes for each i :

Ui �S X ' Si �S .X �S X/ ' .X �S X/ �S Si ' X �S Ui :

2. Let A be a pure kernel algebra over X . If .Ui / is an open affine covering of
X with respect to the Zariski topology and the support of AjUi �X (resp. AjX�Ui

) is
contained in Ui �Ui for every i , then .Ui / is compatible with A. For example, if A

is supported on the diagonal in X � X (i.e., comes from a D-algebra) then A is of
affine type.

3. Assume that A is associated with an action of a discrete group G on X (see
Example 2 in Section 2.2). Take an open affine covering .Ui /i2I of X such that G
permutes the open subsets Ui . In other words, we assume that there is an action of
G on the set of indices I and isomorphisms ag W Ui ��!� Ug.i/ defining the action of
G on

F
i Ui such that for each g 2 G the diagram

Ui

ji

��

ag �� Ug.i/

jg.i/

��
X

g �� X
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is commutative. Then it is easy to check that the covering .Ui / is compatible with A.
For a generalization, see Proposition 3.6.2.

Assume that an open affine covering U D .Ui / is compatible with a pure kernel
algebra A over X . Then by Lemma 2.3.1, we have a natural resolution of A by
A � Aopp-modules on X �X ,

A
�
.U/´ O

�
.X;U/ BX A ' A BX O

�
.X;U/; (2.3.5)

which can be identified with the Čech resolution of A with respect to either covering,
.Ui �X/ or .X � Ui /.

We will also need truncated Čech resolutions. First, for everyN > 0 consider the
complex ��NC

�

.Ui /
.OX /. Clearly it is still a resolution of OX . We are going to show

that for sufficiently large N this truncation will be a sufficiently good replacement
for the Čech complex (see Lemma 2.3.3 below).

Lemma 2.3.2. Let U D .Ui / be an open covering of X such that the morphisms
ji W Ui ! X are affine.

(i) For every N > 0 the kernel of the differential KN D ker.dN W CN
U .OX / !

CN C1
U .OX // is locally a direct summand of CN �1

U .OX /.
(ii) If F is a quasi-coherent sheaf on X then we have

��NC
�

U.F / ' .��NC
�

U.OX //˝ F ' ��N O
�
.X;U/ BX F:

Proof. (i) Localizing we can assume that one of the open subsets is X itself. In this
case we have a contracting homotopy h for the complex

OX ! C 0
U.OX /! C 1

U.OX /! � � � : (2.3.6)

Restricting h to KN we get a splitting KN ! CN �1
U .OX / of the surjection

CN �1
U .OX /!KN induced bydN �1. HenceKN is a direct summand ofCN �1

U .OX /.
(ii)As we have seen in (i), the short exact triples 0! KN �1 ! CN �1 ! KN !

0 are locally split. Therefore, tensoring them with any quasi-coherent sheaf we still
get exact triples.

From our point of view the key feature of the Čech resolution is that it transforms
flat sheaves into complexes of B-flat sheaves. Let us show that the same is true for
sufficiently big truncated Čech resolutions.

Lemma 2.3.3. Let V be a flat quasi-coherent sheaf on X , and let U D .Ui / be an
open affine covering of X (with respect to the flat topology). Let n0 be the integer
such that H i .X; F / D 0 for i > n0 for all quasi-coherent sheaves F . Then for
N > n0 all terms of the truncated Čech resolution ��NC

�

U.V / are B-flat over X .
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Proof. First, we note that by Lemma 2.1.3 (i), (ii), all the terms C n
U.V / are B-flat

over X (because V is flat over X ). Therefore, we only have to check thatKN .V / D
ker.CN

U .V /! CN C1
U .V // is B-flat over X . Recall that by Lemma 2.3.2, KN .V / is

the tensor product of V with a flat sheafKN .OX /, so it is flat over X . Therefore, for
every quasi-coherent sheaf G on X the sequence of sheaves on X

0! V ˝G ! C 0
U.V /˝G ! � � � ! CN �1

U .V /˝G ! KN .V /˝G ! 0

is exact. Since in this sequence all the sheaves C i
U.V / ˝ G are �-acyclic, where

� W X ! S is the projection, our assumption N > n0 implies that KN .V /˝ G is
also �-acyclic. Hence,

G BX KN .V / D ��.KN .V /˝G/
is concentrated in degree 0, i.e., KN .V / is B-flat over X .

2.4. Convolution for modules over kernel algebras. Let .X;A/, .Y;B/, .Z;C/
be three (flat)S -schemes equipped with pure kernel algebras. We would like to find an
analog of the convolution operation considered in Section 2.1 for modules. Namely,
for F 2 D.A � Bopp-mod/ and G 2 D.B � Copp-mod/ we would like to define
F BB Y 2 D.A � Copp-mod/ that would globalize the operation of tensor product of
bimodules. Below we will show how to do this under a technical assumption on B

(see Proposition 2.4.6). We start by defining an underived version and then will use
appropriate resolutions.

Let F be a (left) A � Bopp-module, and let G be a B � Copp-module. Assume
that either F or G is B-flat over Y . Then we define

F NBB G D coker.F BY B BY G ˛�! F BY G/;
where˛ is the difference of two natural maps, one induced by the left action BBYG !
G and the other by the right action F BY B ! F . Note that F BY G and F BY B BY G
are sheaves because of our B-flatness assumption. The left action of A on F and the
right action of C on G induce the structure of the A � Copp-module on F NBB G (see
Lemma 2.2.5).

Note that if A0 ! A (resp. C 0 ! C ) is a homomorphism of pure kernel algebras
on X (resp. Z) then the operation F BY G is compatible with the natural restriction
of scalars from A to A0 (resp. from C to C 0). Also, in the case B D ��OY we get
the usual circle operation over Y (since in this case ˛ D 0).

Lemma 2.4.1. Let .X;A/, .Y;B/, .Z;C/, .T;D/ be schemes equipped with pure
kernel algebras, and let F 2 A � Bopp-mod, G 2 B � Copp-mod and H 2 C �
Dopp-mod.

(i) One has an isomorphism of A � Bopp-modules F NBB B ' F .
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(ii) Assume that F is B-flat over Y and H is B-flat over Z. Then one has a
functorial isomorphism of A � Dopp-modules

.F NBB G/ NBC H ' F NBB .G NBC H/:

Proof. (i) This follows easily from Lemma 2.2.2.
(ii) We have

.F NBB G/ NBC H
' coker..F NBB G/ BZ C BZ H ! .F NBB G/ BZ H/
' coker.F BY G BZ C BZ H ˚ F BY B BY G BZ H ı�! F BY G BY H/;

where ı is induced by the appropriate operations between the consecutive factors in
the B-products. Similarly, we get an isomorphism F NBB .G NBC H/ ' coker.ı/.

Definition. Let F be a left A � Bopp-module onX �Y , where A (resp. B) is a pure
kernel algebra over X (resp. Y ).

(i) We say that F is B-flat over B (or simply BB-flat) if it is B-flat over Y and the
functor

B-mod! A-mod W G 7! F NBB G

is exact.
(ii) F is B-free over B if F ' F0 BY B, where F0 is a A � .��OY /-module,

B-flat over Y .
(iii) A complex F � of left A � Bopp-modules on X � Y is called q-B-flat over B

(or q-BB-flat) if it has BY -flat terms and for any exact complexG� of B-modules on Y
the complex F � NBB G� is exact (where the definition of NBB is extended to complexes
in the standard way).

For example, if B D ��OY then F is automatically B-free over B (and BB-flat)
provided it is BY -flat.

Lemma 2.4.2. (i) Assume that F 2 A � Bopp-mod is B-flat over B. Then for every
scheme Z equipped with a pure kernel algebra C the functor

B � Copp-mod! A � Copp-mod W G 7! F NBB G

is exact. Similarly, if F is a q-BB-flat complex of A � Bopp-modules then the natural
extension of the above functor to complexes sends exact complexes to exact complexes.

(ii) Assume that F 2 A � Bopp-mod is B-free over B. Then F is B-flat over B.

Proof. (i) Composing with the natural forgetful functor we can assume that C D
��OZ . Also, we can assume thatZ is affine. Then it is enough to check the exactness
of the functorG 7! p1�.F NBBG/, where p1 W X�Z ! X is the projection. Now the
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assertion follows from the isomorphism p1�.F NBB G/ ' F NBB .p1�G/, which one
can easily derive from Lemma 2.1.2 (ii) (recall that p1�G has a natural B ˝��OZ-
module structure, see Remark after Lemma 2.2.6 on p. 183). The same argument
works for the second statement.

(ii) Assume that F D F0 BY B, where F0 is a A � .��OY /-module on X � Y ,
B-flat over Y . Note that in this caseF is also BY -flat by Lemma 2.1.3 (iv). It is enough
to construct a functorial isomorphism of A-modules

.F0 BY B/ NBB G ' F0 BY G
for G 2 B-mod. Using the definition and the BY -flatness of F0 we get

.F0 BY B/ NBB G ' coker.F0 BY B BY B BY G ! F0 BY B BY G/
' F0 BY coker.B BY B BY G ! B BY G/:

By Lemma 2.2.2, this is isomorphic to F0 BY G.

The following lemma is an analogue of the well known properties of q-flatness in
the case of the usual tensor product of sheaves (cf. [35], 2.5.4).

Lemma 2.4.3. Let X and Y be schemes equipped with pure kernel algebras A and
B.

(i) Let .F �

i / be an inductive system of complexes of left A � Bopp-modules on
X �Y (connected by chain maps). Assume that F �

i is q-BB-flat for every i . Then the
same is true for the complex limi F

�

i .
(ii) If F � is a bounded above complex of A � Bopp-modules with BB-flat terms

then F � is q-BB-flat.

Proof. (i) First we note that the terms of limF �

i are still BY -flat by Lemma 2.1.5 (ii).
Furthermore, using the same lemma, one can easily see that for every complexG� of
B-modules the natural map

lim.F �

i NBB G
�
/! .limF

�

i / NBB G
� (2.4.1)

is an isomorphism. This immediately implies the result.
(ii) Such a complex is the inductive limit of bounded complexes with BB-flat terms

for which the statement is clear (cf. [35], 2.5.4).

Since we will need resolutions with terms that are B-flat over a given pure kernel
algebra, we give the following technical definition.

Definition. (i) Let A be a pure kernel algebra over X , and let F be a A � ��OY -
module on X � Y . We say that F is B-flattening over A if it is BY -flat, and for every
flat quasi-coherent sheaf V over Y the A-module F BY V is B-flat over A.
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(ii) A kernel algebra A over X is called left (resp. right) admissible if it is pure
and there exist a quasi-isomorphism (given by a chain map) A ! M�, where M�

is a bounded complex of A � Aopp-modules on X � X , such that each term Mn,
viewed as an A���OX -module (resp.��OX �Aopp-module), is B-flattening over A

(resp. Aopp). We say that a kernel algebra is admissible if it is left and right admissible.

The main point of admissibility assumption is that it allows to construct resolutions
by modules that are B-flat over our kernel algebra (see Proposition 2.4.5 below). We
will show also that every pure kernel algebra of affine type is admissible, and that the
push-forward of an admissible algebra under a flat affine morphism is admissible.

Lemma 2.4.4. Let A be a pure kernel algebra over a flat S -scheme X , and let Y
and Z be flat S -schemes. If F is a A � ��OY -module, B-flattening over A, then
for every quasi-coherent sheaf V over Y � Z, flat over Y , the A � ��OZ-module
F BY V is B-flat over A.

Proof. We have to check exactness of the functor

A-mod! Qcoh.Z/ W G 7! G NBA .F BY V /:
Without loss of generality we can assume thatZ is affine. Then it is enough to check
the exactness of the functor

G 7! ��.G NBA .F BY V // ' G NBA pX�.F BY V / ' G NBA .F BY pY �.V //;

where � W X ! S , pX W X �Z ! X and pY W Y �Z ! Y are the projections. But
this follows from the condition that F is B-flattening over A, since pY �.V / is a flat
sheaf on Y .

Proposition 2.4.5. Let .X;A/ and .Y;B/ be schemes ( flat over S ) equipped with
pure kernel algebras. Assume that A is left admissible. Then every complex in
D.A � Bopp/ is quasi-isomorphic to a q-BA-flat complex of A � Bopp-modules.

Proof. First let F be an arbitrary A � Bopp-module on X � Y . Then we can find
a functorial surjection of quasi-coherent sheaves P ! F , where P is flat over
X � Y (by Lemma 1.1.4; note that X �S Y is semi-separated). We have the induced
surjection of A � Bopp-modules A BX P BY B ! F . Note that P BY B is still flat
over X by Lemma 2.1.3 (v). This implies that for every bounded above complex of
A � Bopp-modules F � on X � Y there exists a quasi-isomorphism of the form

c1.F
�
/ D A BX V

� ! F
�
; (2.4.2)

where V � is a bounded above complex of .��OX /�Bopp-modules, flat overX . Next
let A ! M� be a quasi-isomorphism of A with a bounded complex of A � Aopp-
modules, B-flattening over A on the left. Consider the natural map of complexes of
A � Bopp-modules

˛ W c1.F
�
/! c2.F

�
/´ totŒM� NBA c1.F

�
/�
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(where tot denotes passing to the total complex of a bicomplex), induced by the map
A!M�. By Lemma 2.4.1, we have isomorphisms

M
� NBA .A BX V n/ 'M

� BX V n

of complexes of A � Bopp-modules. Since for each n the natural map A BX V n !
M� BX V n is a quasi-isomorphism, it follows that ˛ is a quasi-isomorphism. On the
other hand, applying Lemma 2.4.4 we see that the terms of c2.F

�/ are B-flat over A.
Hence, by Lemma 2.4.3 (ii), c2.F

�/ is BA-flat.
Finally, we use the standard trick to extend the above construction to the case of

an unbounded complex of A � Bopp-modules F �. First, we consider for each n � 0
the truncated complex ��nF

� and consider the quasi-isomorphisms of bounded above
complexes

��nF
�  c1.��nF

�
/! c2.��nF

�
/:

By functoriality we have chain maps ci .��nF
�/! ci .��nC1F

�/ for i D 1; 2, com-
muting with the above quasi-isomorphisms. Now setting ci .F

�/ D limn ci .��nF
�/

for i D 1; 2 gives us quasi-isomorphisms

F
�  c1.F

�
/! c2.F

�
/:

Furthermore, by Lemma 2.4.3 (i), the complex c2.F
�/ is q-BA-flat.

Returning to the situation in the beginning of this subsection, let F � (resp. G�)
be a complex of A � Bopp-modules (resp. B � Copp-modules). Then assuming
that B is right admissible, we define F � BB G� as the total complex associated with
the bicomplex zF � NBB G�, where zF � is a q-BB-flat complex quasi-isomorphic to F �.
Alternatively, if B is left admissible then we can use a q-BB-flat resolution of G�.

Proposition 2.4.6. Let .X;A/, .Y;B/, .Z;C/ be flat S -schemes equipped with pure
kernel algebras, where B is left (resp. right) admissible. Then there is a biexact
functor

D.A � Bopp-mod/ �D.B � Copp-mod/! D.A � Copp-mod/ W
.F

�
; G

�
/ 7! F

� BB G
�

defined as above using q-BB-flat resolution of G� (resp. F �). Assume now that B is
right admissible and C is left admissible, and let .T;D/ be another flat S -scheme
equipped with a pure kernel algebra. Then for F 2 D.A � Bopp-mod/, G 2
D.B � Copp-mod/ and H 2 D.C � Dopp-mod/ we have a functorial isomorphism
inD.A � Dopp-mod/:

.F BB G/ BC H ' F BB .G BC H/:
Proof. To prove associativity we choose complexes quasiisomorphic toF andH that
are q-B-flat over B and C , respectively.
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The starting point for constructing examples of admissible kernel algebras is the
following result.

Lemma 2.4.7. Let X be a flat S -scheme. Then a pure kernel algebra of affine type
over X is admissible.

Proof. Let U D .Ui / be an open affine covering compatible with a kernel algebra A.
We claim that for sufficiently large N the truncated Čech resolution ��N A�.U/ D
A BX ��N O�

X .U/ (see (2.3.5)) has terms which are B-flattening over A on the left.
Since ��N O�

X .U/ is B-flat overX (recall that it is supported on the diagonal), it follows
that ��N A�.U/ is also B-flat over X (on either side). Next, for a flat quasi-coherent
sheaf V on X , we have

��N A
�
.U/ BX V ' A BX ��N O

�

X .U/ BX V ' A BX ��NC
�

U.V /:

By Lemma 2.3.3, the terms of the complex ��NC
�

U.V / are B-flat over X . Hence,
the terms of ��N A�.U/ BX V are B-free over A, so they are B-flat over A by Lem-
ma 2.4.2 (ii). A similar argument shows that the terms of ��N A�.U/ are B-flattening
over A on the right.

Our next goal is to show that admissibility is preserved under push-forwards with
respect to affine flat morphisms.

Lemma 2.4.8. Let B0 ! B be a homomorphism of pure kernel algebras over Y ,
and let F be an A � Bopp-module. Assume that B and F are B-flat over B0 acting
on the right. Then for every G 2 B � Copp-mod there is a natural isomorphism of
A � Copp-modules

F NBB G ' coker.F NBB0
B NBB0

G ! F NBB0
G/:

Proof. This follows easily from the definitions.

Lemma 2.4.9. Let f W Y ! Y 0 be a flat affine morphism, and let Bf ´ ��.f�OY /

be the corresponding pure kernel algebra over Y 0. Then Bf is admissible, and for
F 2 Dqc.X � Y / and G 2 Dqc.Y �Z/ one has a natural isomorphism

.idX � f /�F BBf
.f � idZ/�G ��!� F BY G: (2.4.3)

If F is a BY -flat quasi-coherent sheaf on X � Y then .idX � f /�F is B-flat over Bf .

Proof. The pure kernel algebra Bf is of affine type (being supported on the diagonal),
so it is admissible. Hence, the right-hand side of (2.4.3) is well defined. We have a
natural morphism

.idX � f /�F BY 0 .f � idZ/�G ! F BY G (2.4.4)
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(see (2.1.3)). If F is a sheaf, B-flat over Y , then .idX � f /�F is B-flat over Y 0 by
Lemma 2.1.3 (i). It is easy to see that for such F and for a quasi-coherent sheaf G
on Y �Z the morphism (2.4.4) induces a morphism

.idX � f /�F NBBf
.f � idZ/�G ! F BY G: (2.4.5)

We claim that in fact this is an isomorphism. Indeed, note that the functor ofG on the
right-hand side (resp. the left-hand side) is exact (resp. right exact). Also, for every
quasi-coherent sheaf G on Y � Z the natural map .f � idZ/

�.f � idZ/�G ! G

is surjective. Thus, it is enough to check that (2.4.5) is an isomorphism for G D
.f � idZ/

�G0, where G0 is a sheaf on Y �Z0. To this end we use the isomorphism

Bf BY 0 G0 ' ..f � f /���OY / BY 0 G0 ' .f � idZ/�
�
��OY BY .f � idZ/

�G0�
' .f � idZ/�.f � idZ/

�G0

that follows from (2.1.2). Together with Lemma 2.4.1 (i) this leads to

.idX � f /�F NBBf
.f � idZ/�.f � idZ/

�G0 ' .idX � f /�F BY 0 G;

which is isomorphic to F BY .f � idZ/
�G0 by Lemma 2.1.2 (i). Note that the iso-

morphism (2.4.5) forZ D S implies that .idX �f /�F is B-flat over Bf (since every
Bf -module on Y 0 is of the form f�G, whereG is a quasi-coherent sheaf on Y ). From
the considered case we can immediately extend the isomorphism (2.4.3) to the case
when F is a bounded above complex of BY -flat sheaves on X � Y and G is arbitrary
complex inDqc.Y �Z/. Finally, if F is unbounded we can consider the BY -flat res-
olutions of the truncations ��nF and pass to the limit using the isomorphism (2.4.1).

Proposition 2.4.10. Let f W Y ! Y 0 be a flat affine morphism, B a pure kernel
algebra over Y , and let B 0 ´ .f �f /�B be the corresponding pure kernel algebra
over Y 0. Let also A (resp. C ) be a pure kernel algebra over X (resp. Z).

(i) If F is an A � Bopp-module, B-flat over Y , then .idX � f /�F is B-flat over Y 0
and for G 2 B � Copp-mod we have a natural isomorphism

.idX � f /�F NBB0 .f � idZ/�G ��!� F NBB G: (2.4.6)

In particular, if F is B-flat over B, then .idX � f /�F is B-flat over B 0.
(ii) If B is left (resp. right) admissible then so is B 0. In this case for F 2

D.A � Bopp-mod/ and G 2 D.B � Copp-mod/ we have a natural isomorphism

.idX � f /�F BB0 .f � idZ/�G ' F BB G: (2.4.7)

Proof. (i) We have already seen that .idX � f /�F is B-flat over Bf (and over Y 0) in
Lemma 2.4.9. Note also that by the same Lemma, B 0 D .idX � f /�.f � idY /�B is
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B-flat over Bf (since .f � idY /�B is B-flat over Y by Lemma 2.1.3 (i)). Therefore,
using Lemma 2.4.8 we can represent the left-hand side of (2.4.6) as the cokernel of

.idX � f /�F BBf
B 0 BBf

.f � idZ/�G ! .idX � f /�F BBf
B.f � idZ/�G:

Here the target is isomorphic to F BY G by Lemma 2.4.9. Also, using the same
Lemma, we can rewrite

.idX � f /�F BBf
.f � f /�B BBf

.f � idZ/�G
' .idX � f /�F BBf

.f � idY /�B BY G ' F BY B BY G;
so that the above map is identified with the map F BY B BY G ! F BY G used to
define F NBB G. This gives the isomorphism (2.4.6).

Since the functor .f �idZ/� W B �Copp-mod! B 0 �Copp-mod is an equivalence
(see Lemma 2.2.6), the second assertion follows.

(ii) Let B !M� be a quasi-isomorphism with a bounded complex of B � Bopp-
modules on Y � Y , such that each term Mn is B-flattening over B on the left. We
claim that B 0 ! .f �f /�M� is a B-flattening resolution for B 0. Indeed, let us check
that .f �f /�Mn is B-flattening over B 0 on the left. First, we note that .f �f /�Mn

is B-flat over Y 0 (on the right) by Lemma 2.1.3 (i). Next, given a flat quasi-coherent
sheaf V on Y 0 we have to check that .f � f /�Mn BY 0 V is B-flat over B 0. Using
(2.1.2) we obtain

.f � f /�Mn BY 0 V ' .f � idY /�.Mn BY f �V /;

which is B-flat over B 0 by part (i). Finally, the isomorphism (2.4.7) follows from
(2.4.6) by taking a q-BB-flat resolution of G (resp. F ).

2.5. Extending an equivalence of derived categories to modules over kernel alge-
bras. Recall that a pair of adjoint functors .ˆ;‰/, whereˆ W C ! C 0,‰ W C 0 ! C ,
can be characterized by two morphisms of functors ˛ W ˆ‰ ! IdC 0 and ˇ W IdC !
‰ˆ, such that the compositions ˆ ! ˆ‰ˆ ! ˆ and ‰ ! ‰ˆ‰ ! ‰ are the
identity morphisms. Furthermore,ˆ is fully faithful (resp. equivalence) if and only if
ˇ is an isomorphism (resp. ˛ and ˇ are isomorphisms). For functors given by kernels
we can consider the following version of this picture.

Definition. Let X and Y be flat S -schemes. Assume that we have objects P 2
Dqc.X � Y / and Q 2 Dqc.Y �X/ equipped with a pair of morphisms

˛ W P BY Q! ��OX ; (2.5.1)

ˇ W ��OY ! Q BX P (2.5.2)

such that the compositions

P
idP Bˇ����! P BY Q BX P

˛BidP����! P ;

Q
ˇBidQ����! Q BX P BY Q

idQB˛����! Q
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are the identity morphisms. In this situation we say that .P ;QI˛; ˇ/ is an adjoint
kernel data. Consider the corresponding functors

ˆP W Dqc.Y /! Dqc.X/ W G 7! P BY G;
ˆQ W Dqc.X/! Dqc.Y / W F 7! Q BX F:

Then Lemma 2.1.1 implies that .ˆP ; ˆQ/ is an adjoint pair of functors.

Example. Assume Y is smooth and proper over S of relative dimension n, and let P

be a perfect complex onX �Y . Then by the duality theory we have a natural adjoint
kernel data .P ;Q/ with

Q D 	�.P _ ˝ p�
Y!Y /Œn�;

where 	 W Y � X ! X � Y is the permutation of factors, pY W X � Y ! Y is the
projection.

Now let A be a kernel algebra over X . Set B D Q BX A BX P . Then we have a
natural morphism

B BY B ' Q BX A BX P BY Q BX A BX P ! Q BX .A BX A/ BX P ;

induced by (2.5.1). Therefore, the product � W A BX A! A induces an associative
operation B BY B ! B. Similarly, the unit u W ��OX ! A together with the map
(2.5.2) induce a unit morphism ��OY ! B. One can check that the unit axioms
for this morphism follow from the compatibilities between ˛ and ˇ that we assumed.
Thus, we get a structure of a kernel algebra on B.

Note also that (2.5.1) induces morphisms

P BY B ' P BY Q BX A BX P ! A BX P ;

B BY Q ' Q BX A BX P BY Q! Q BX A;
(2.5.3)

which are compatible with the products (resp. units) on B and A.
Assume in addition that A and B are pure kernel algebras, and that each of

the complexes P and Q is concentrated in single cohomological degree. Then by
Lemma 2.1.3 (ii), zP ´ A BX P and zQ ´ Q BX A are also concentrated in single
cohomological degree. Using morphisms (2.5.3) we get the commuting left A-action
and right B-action on zP (resp. left B-action and right A-action on zQ). Therefore,
using Lemma 2.2.5 we can view zP (resp. zQ) as an object of D.A � Bopp-mod/
(resp. D.B � Aopp-mod/). Note that the unit in A induces morphisms


P W P ! zP ; 
Q W Q! zQ
in Dqc.X � Y / and Dqc.Y �X/.
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Theorem 2.5.1. Assume S is semi-separated. Let X and Y be semi-separated
schemes, flat over S , and let P 2 Dqc.X � Y /, Q 2 Dqc.Y � X/ be objects, each
concentrated in single cohomological degree, equipped with a pair of morphisms
(2.5.1) and (2.5.2), such that .P ;Q; ˛; ˇ/ is an adjoint kernel data.

(i) Let A be an admissible kernel algebra overX . Assume that the corresponding
kernel algebra B D Q BX A BX P over Y is admissible (in particular, pure). Define
zP 2 D.A � Bopp-mod/ and zQ 2 D.B � Aopp-mod/ as above, and consider the
functors

ˆ zP W D.B-mod/! D.A-mod/ W G 7! zP BB G;

ˆ zQ W D.A-mod/! D.B-mod/ W F 7! zQ BA F:
Then the natural map inDqc.Y � Y / given as the composition

B D Q BX A BX P
�Q�P���! zQ BX A BX zP ! zQ BA zP (2.5.4)

lifts to an isomorphism in D.B � Bopp-mod/. Hence, we have the induced isomor-
phism of functors

ˆ zQ Bˆ zP ' Id: (2.5.5)

If in addition ˛ and ˇ are isomorphisms thenˆ zP andˆ zQ are mutually quasi-inverse
equivalences.

(ii) Let A1 ! A be a homomorphism of kernel algebras overX , and consider the
induced homomorphism of kernel algebras B1 D QBX A1BP ! B D QBX ABX P .
Suppose that A, A1, B, B1 are all admissible. Then the functors ˆ zQ (resp. ˆ zP )
constructed in (i) for the pairs .A;B/ and .A1;B1/ commute with the corresponding
restriction (resp. induction) functors between the derived categories of modules.

(iii) Assume in addition that X and Y are proper over S , P and Q are coherent
sheaves of finite Tor-dimension (up to a shift), and A is a finite admissible kernel
algebra over X such that B D Q BX A BX P is admissible. Then B is also finite
and the functor ˆ zQ restricts to a functor from Db.A-modc/ to Db.B-modc/. In
particular, when ˛ and ˇ are isomorphisms these two categories are equivalent.

Proof. (i) Using the properties of the convolution operation for modules we obtain
natural isomorphisms

zQ BA zP ' zQ BA .A BX P / ' zQ BX P ' Q BX A BX P D B (2.5.6)

in D.B ���OY -mod/ and

zQ BA zP ' .Q BX A/ BA zP ' Q BX zP ' Q BX A BX P D B (2.5.7)

inD.��OY �Bopp-mod/. In particular, zQBA zP is concentrated in degree 0. Also, it is
easy to check that both isomorphisms (2.5.6) and (2.5.7) are compatible with the map
(2.5.4). Hence, we get the required isomorphism in B�Bopp-mod. The isomorphism
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of functors (2.5.5) follows from this by the associativity of the convolution (see
Proposition 2.4.6).

If both ˛ and ˇ are isomorphisms then we can reverse the roles of .X;A/ and
.Y;B/ (resp. of P and Q). This will lead to an isomorphism of functorsˆ zP Bˆ zQ ' Id
that together with (2.5.5) proves that ˆ zP and ˆ zQ are mutually quasi-inverse.

(ii) Let zP and zQ have the same meaning as in (i), and let zP1 ´ A1 BX P

and zQ1 ´ Q BX A1 be similar objects for A1. Then we have an isomorphism
zQ ' zQ1 BA1

A in D.B � Aopp-mod/. Therefore, for F 2 D.A-mod/ we get

ˆ zQ.F / D zQ BA F ' . zQ1 BA1
A/ BA F ' zQ1 BA1

F D ˆ zQ1
.F /;

from which we obtain the compatibility of .ˆ zQ; ˆ zQ1
/ with the restriction functors

D.A-mod/ ! D.A1-mod/ and D.B-mod/ ! D.B1-mod/. On the other hand,
using the isomorphism zP ' A BA1

zP1, for G 2 D.B1-mod/ we obtain

ˆ zP .B BB1
G/ D zP BB .B BB1

G/ ' zP BB1
G ' ABA1

�P1BB1
G D ABA1

ˆ zP1
.G/;

which gives the required compatibility with the induction functors.
(iii) Our assumptions imply that B is obtained by the proper push-forward from

a bounded complex with coherent cohomologies, hence, it is a coherent sheaf it-
self. By part (ii), the functor ˆ zQ W D.A-mod/ ! D.B-mod/ commutes with the
forgetful functors to quasi-coherent sheaves, so it preserves the condition for a com-
plex to have coherent cohomology sheaves. By Lemma 2.2.3, we obtain a functor
D�.A-modc/ ! D�.B-modc/ commuting with forgetful functors. Since Q has
finite Tor-dimension, it preserves boundedness of cohomology. The last assertion
follows from (i).

3. Kernel representations and derived equivalences

In this section we develop a framework for constructing examples of the Fourier–
Mukai dual kernel algebras. More precisely, our study will focus on kernel algebras
related to categories of twisted sheaves on global quotient stacks X=G and their
generalizations involving formal groups. The main idea is that these kernel algebras
are determined by the corresponding action of G on the category Dqc.X/. More
generally we introduce the notion of a kernel representation of a groupG overX that
can be viewed as a refined version of an action of G on Dqc.X/, and associate with
each such kernel representation a kernel algebra over X . The point is that given a
kernel representation ofG overX and a derived equivalence fromX to Y , one gets a
kernel representation of G over Y . Furthermore, the associated kernel algebras will
also be related by this derived equivalence. An important example of a pair of kernel
algebras obtained in this way for the standard Fourier–Mukai transform of abelian
varieties is given by Theorem 3.7.3.
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This section contains a lot of technical definitions and constructions. For the
reader’s convenience we provide here a quick informal overview. First, the kind of
twisting we consider for sheaves on a quotient stack X=G has to do with a notion of
1-cocycle of G with values in Pic.X/. This is a very natural device for producing
gerbes on X=G, similar to gerbe data of [16] (resp. presentation of a gerbe of
[10]). Namely, an action of G on X gives rise to the so called action groupoid
�G � X � G � X over X , where �G consists of .x; g; x0/ such that x D gx0.
A 1-cocycle of G with values in Pic.X/ can be defined as a central extension of
�G by Gm. More explicitly, it is given by a line bundle L over G � X equipped
with the 1-cocycle isomorphism Lg1g2;x ' Lg1;g2x ˝ Lg2;x satisfying natural
compatibilities. One can think of a 1-cocycle as an enrichment of a homomorphism
G ! Aut.X/ Ë Pic.X/, where the projection to Aut.X/ corresponds to the given
action of G on X . Viewing Aut.X/ Ë Pic.X/ as a subgroup in Auteq.Dqc.X//

we are led to consider a similar enrichment of the notion of homomorphism G !
Auteq.Dqc.X//. This is exactly what we call a kernel representation of G over
X . When G is discrete then a kernel representation is simply a rule that associates
with every element g 2 G an object (“kernel”) Vg 2 Dqc.X � X/, compatible
with composition in G and with the convolution of kernels (in general, a kernel
representation should be given by an object in Dqc.X �G �X/).

Another useful technical notion is that of convolution algebra. Let .s; t/ W M !
X�X be a groupoid overX (in the main text we will also consider a more general case
of a monoid). Then there is a natural operation of convolution for sheaves onM . By
definition, a convolution algebra on M is an algebra object in Dqc.M/ with respect
to the monoidal structure given by the convolution. In the case when M D X � X
we recover the notion of a kernel algebra. In general, taking the push-forward of any
convolution algebra on M with respect to the anchor map M ! X �X one obtains
a kernel algebra (see (3.2.2)). On the other hand, we show that in the case when G
is a finite group scheme one can associated with every kernel representation of G
over X , a certain convolution algebra on X � G � X (see Proposition 3.2.4 and the
discussion after it). Thus, we have the following sequence of constructions:

1-cocycles
(3.4.5)���! Kernel representations

P. 3.2.4����! Convolution algebras
(3.2.2)���! Kernel algebras

The composition of the two last arrows V 7! A.V; !G=S / associates a kernel algebra
to a kernel representation V . The importance of this construction for us is its com-
patibility with derived equivalences of Fourier–Mukai type (see Proposition 3.2.5).
On the other hand, we provide a more direct construction of the convolution algebra
associated with a 1-cocycle L of G with values in Pic.X/ (see Lemma 3.4.2). This
allows us to relate the category of modules over the corresponding kernel algebra
AG

X .L/ with the corresponding category of twistedG-equivariant sheaves onX (see
Theorem 3.4.1 and Corollary 3.4.5). Sometimes we have to work with more flexible
versions of the notions of 1-cocycle and kernel representation, called quasi-1-cocycle
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and kernel quasi-representation. The first two arrows in the above sequence still
make sense for these more general notions. More importantly, we also develop a
parallel story where the group G is replaced with a formal group scheme.

Conventions. We denote by S a fixed base scheme, and as before, all products are
fibered over S . We also assume all schemes and formal schemes to be flat over S .
By a formal group scheme G over S we mean a group object in the category of
formal schemes over S (flat over S ). Sometimes, we will assume that a formal group
scheme G is of ldu-pseudofinite type (resp. ldu-pseudofinite) over S – we refer to
this as ldu-pft (resp. ldu-pf ) over S .

For a field k of characteristic zero we will call simply formal k-groups (k-groupes
formels in terminology of [33]), commutative formal groupsG over k such that (i) the
natural action of Gal. Nk=k/ on G. Nk/ factors through some quotient Gal.k0=k/ with
k0 � Nk a finite Galois extension ofk, (ii) the groupG. Nk/ D G.k0/ is finitely generated,
and (iii) the topological k-algebra OG;0 is a quotient of kŒŒt1; : : : ; tn�� for some n. The
Cartier duality (see [23], 2.2.2, or [21], Chap. II) gives an anti-equivalence between
the category of formal k-groups and the category of affine commutative algebraic
groups over k. We will also use the Cartier duality for finite flat group schemes over
an arbitrary base S .

Starting from Section 3.5, whenever formal k-groups are mentioned it is assumed
that S D Spec.k/.

3.1. Convolution of sheaves parametrized by formal schemes. We need a version
of the convolution operation considered in Section 2.1 involving formal schemes.
More precisely, formal schemes will appear only as parameter spaces so that the
actual “integration” is performed only along the direction of a usual scheme. We start
with the data consisting of three schemesX , Y ,Z and two formal schemesP andQ.
Let us denote byDP;Ec.X�P �Y / � Dqc.X�P �Y / the full subcategory of objects
F such that for some open covering .Ui / of P the restriction of F to X � Ui � Y
is in DEc.X � Ui � Y /. Assuming that Y is proper, we can define the convolution
operation

DP;Ec.X � P � Y / �DQ;Ec.Y �Q �Z/! DP �Q;Ec.X � P �Q �Z/
sending .K;L/ to

K BY L´ p1245�.p�
123K ˝ p�

345L/;

where pI denote projections from the product X � P � Y � Q � Z. Note that
K BY L is in DP �Q;Ec by Proposition 1.2.2 (vi). More generally, the above operation
is defined when Y is not necessarily proper but K is the push-forward from a closed
formal subscheme proper over X � P – we will say in this case that the support of
K is proper over X � P (alternatively, it is enough to require the support of L to be
proper over Q � Z). Using appropriate versions of the projection and base change
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formulae for formal schemes (see Theorems 1.2.3 and 1.2.4 (i)) we can easily check
the following two properties of this operation:

Associativity: if T (resp. R) is another scheme (resp. formal scheme) then for
M 2 DR;Ec.Z �R � T / one has a natural isomorphism

.K BY L/ BZ M ' K BY .L BZ M/;

provided the support of L is proper over Y �Q and over Q �Z.

Change of parameter spaces: if � W P 0 ! P and W Q0 ! Q are maps of formal
schemes then we have

..idX � � � idY /
�K/ BY ..idY �  � idZ/

�L/ ' .idX � � �  � idZ/
�.K BY L/;

provided the support of L is proper over Q � Z (or the support of K is proper over
X � P ).

3.2. Kernel representations and convolution algebras. The following definition
provides a natural framework for working with “nice” homomorphisms from a group
scheme (resp. formal group scheme) to the group of autoequivalences of the derived
category of quasi-coherent sheaves on a scheme.

Definition. LetG be a monoid in the category of S -schemes,X an S -scheme (recall
that flatness over S is always assumed).

(i) A kernel quasi-representation of G over X is an object V 2 Dqc.X �G �X/
equipped with a morphism

� W V BX V ! .idX �m � idX /
�V

over X �G �G �X , wherem W G �G ! G is the group law, satisfying the natural
associativity condition over X �G �G �G �X , and a morphism

u W ��OX ! .idX � e � idX /
�V;

where e W S ! G is the unit for G, compatible with � in a natural way. The
associativity condition amounts to the commutativity of the following diagram:

idBX �

��

V BX V BX V
�BX id �� .idX �m � idX /

�V BX V

' .idX �m � idG�X /
�.V BX V /

�0

��V BX .idX �m � idX /
�V

' .idX�G �m � idX /
�.V BX V /

�00

�� .idX �mm � idX /
�V .
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Here mm W G3 ! G sends .g1; g2; g3/ to g1g2g3, the maps �0 and �00 are induced
by �, the isomorphisms are particular cases of (2.1.1). The compatibility of the unit
morphism u with � means that the composition

V ' ��OX BX V
uBX id����! .idX � e � idX /

�V BX V ! V;

where the second arrow is induced by .idX � e � idG � idX /
�� (resp. similar com-

position with id BX u) equals the identity map.
(ii) A kernel representation is a kernel quasi-representation such that � and u are

isomorphisms.
(iii) LetG be a monoid in the category of formal schemes over S , and letX be an

S -scheme. Then the definitions (i) and (ii) still make sense withV 2 DG;Ec.X�G�X/
provided the support of V is proper over X �G and over G �X (see Section 3.1).

(iv) If � W G0 ! G is a homomorphism of monoids and V is a kernel quasi-
representation of G over X then we define the restriction of V to G0 by

��V ´ .idX � � � idX /
�V:

This is a kernel quasi-representation of G0 over X . The same construction works
when G and G0 are formal group schemes provided V 2 DEc.X � G � X/ has the
support proper over X �G and over G �X .

If G is a discrete group then to give a kernel representation of G amounts to the
data of kernels Vg 2 Dqc.X � X/ parametrized by g 2 G along with the isomor-
phisms Vg1

B Vg2
' Vg1g2

satisfying the natural axioms (in particular, the functors
corresponding to Vg and Vg�1 are quasi-inverse of each other). Thus, we have an
action of G on Dqc.X/ by the corresponding autoequivalences (in the strict sense
as defined in [51]). A kernel quasi-representation in the case of a discrete group
G can be viewed as a G-graded kernel algebra

L
g2G Vg . One can try to imitate

this construction for general G by associating with a kernel quasi-representation a
kernel algebra via some kind of “integration” over G. Below we will show that this
is possible provided one fixes an appropriate analogue of “measure” on G.

The passage from kernel representations to kernel algebras goes through an in-
termediate notion that we call a convolution algebra. We will first construct kernel
algebras associated with convolution algebras and then explain the connection with
kernel representations in Proposition 3.2.4.

To avoid confusion let us first give the following definition.

Definition. LetX be a scheme (resp. formal scheme). We say that a scheme (resp. for-
mal scheme) M is a monoid (resp. formal monoid) over X if M is a monoid in the
category of (formal) X � X -schemes, where the monoidal structure on the latter
category is given by the fibered product overX (i.e., this by the composition of corre-

spondences). Concretely, M should be equipped with a morphism M
.s;t/���! X �X ,
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as well as the product map m W M �X M ! M and the unit map e W X ! M sat-
isfying the usual axioms. Informally, we can think of M as the set of morphisms
in a category that has X as the set of objects (perhaps for this reason in [47] formal
monoids are called “formal categories”). Note that groupoids over X (considered in
the theory of algebraic stacks) are examples of monoids over X .

Lemma 3.2.1. (i) Let X be a scheme and let M
.s;t/���! X � X be a monoid over

X such that the maps s and t from M to X are flat. Let m W M �X M ! M and
e W X !M denote the product and the unit maps. Then the categoryDqc.M/ has a
monoidal structure given by the following convolution operation:

F � G ´ m�.p�
1 F ˝ p�

2 G /:

The sheaf e�OX is a unit object for this monoidal structure.

(ii) Now let X be a formal scheme, M
.s;t/���! X � X a formal monoid over X .

Assume in addition that the maps s and t are flat and of ldu-pseudofinite type, andm
is ldu-quasi-compact. Then replacing m� with m�� in the formula for F � G we get
a monoidal structure on the categoryDqct.M/ such that e�OX is still a unit object.

Proof. (i) To construct an associativity isomorphism .F � G / �H ' F � .G �H /

we first use the base change isomorphism for the cartesian diagram

M �X M �X M

m�idM

��

p12 �� M �X M

m

��
M �X M

p1 �� M

along with the projection formula for m � idX to get an isomorphism

.F � G / �H ' m�
�
p�

1 .F � G / � p�
2 H

�
' m�.m � idM /�

�
p�

1 F ˝ p�
2 G ˝ p�

3 H
�

D .mm/�
�
p�

1 F ˝ p�
2 G ˝ p�

3 H
�
;

where mm W M �X M �X M ! M is the triple composition. In a similar way we
get an isomorphism

F � .G �H / ' .mm/�
�
p�

1 F ˝ p�
2 G ˝ p�

3 H
�
:

An isomorphism .e�OX / � F ' F is obtained from the following sequence of
isomorphisms

F ' m�.e � idM /�F ' m�..e � idM /�OM ˝ p�
2 F /

' m�.p�
1 .e�OX /˝ p�

2 F / D .e�OX / � F ;
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where we use the projection formula for the map e � idM W M !M �X M and the
base change formula for the cartesian diagram

M

e�idM

��

s �� X

e

��
M �X M

p1 �� X .

(ii) The proof is similar to (i) using Theorems 1.2.3 and 1.2.4 (ii), (iii).

Remark. Note that in the case whenM is a formal groupoid overX the condition for
m to be ldu-quasi-compact in part (ii) of the above lemma follows from the assumption
that s is of ldu-pseudofinite type.

Definition. (i) LetX be a scheme and letM
.s;t/���! X �X a monoid overX such that

the maps s and t from M to X are flat. A convolution algebra on M is an algebra
object V 2 Dqc.M/ with respect to the monoidal structure given by the convolution
(see Lemma 3.2.1 (i)). Thus, V is equipped with a product morphism

� W m�.p�
1 V ˝ p�

2 V/! V

and a unit morphism

e�OX ! V

satisfying the usual axioms.

(ii) Now let X be a formal scheme, M
.s;t/���! X � X a formal monoid over X .

Assume in addition that the maps s and t are flat and of ldu-pseudofinite type, andm is
ldu-quasi-compact. A convolution algebra on M is an algebra object V 2 Dqct.M/

with respect to the monoidal structure given in Lemma 3.2.1 (ii).

It is clear that for M D X � X , where X is a scheme, we get exactly the notion
of a kernel algebra. On the other hand, for M D X we get the notion of an algebra
in Dqc.X/ with respect to the tensor product. In the case when X D S (the base
scheme) and M D G is a group scheme over S , the convolution algebra on G, is an
algebra object in Dqc.G/ with respect to the Pontryagin product. Similarly, if G is
an ldu-pft formal group scheme over S (i.e., of ldu-pseudofinite type over S ) then we
have a notion of a convolution algebra structure on an object of Dqct.G/.

Lemma 3.2.2. Let f W M ! M 0 is the morphism of monoids over X satisfying the
conditions of the above definition. Then the functor f� W Dqc.M/! Dqc.M

0/ has a
natural structure of monoidal functor for the convolution operations. In particular, if
V is a convolution algebra onM then f�V has a natural structure of a convolution
algebra on M 0. If f 0 W M 0 ! M 00 is another such morphism then the natural
isomorphismof functors .f 0f /� ' f 0�Bf� is compatiblewith themonoidal structures.
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Similar assertions hold in the case of formal monoids, where f is assumed to be ldu-
quasi-compact and f� is replaced with f�� W Dqct.M/! Dqct.M

0/.

Proof. Let F ;G 2 Dqc.M/ and set F 0 D f�F , G 0 D f�G . Let also m0 W M 0 �X

M 0 !M 0 denote the product map forM 0. First let us observe that using the adjoint
pair ..f � f /�; .f � f /�/ and the canonical maps f �F 0 ! F and f �G 0 ! G we
get a morphism

p�
1 F 0 ˝ p�

2 G 0 ! .f � f /�.p�
1 F ˝ p�

2 G / (3.2.1)

on M 0 �M 0. We claim that it is an isomorphism. Indeed, applying the base change
formula to the cartesian square

M �M 0

p1

��

f �id �� M 0 �M 0

p1

��
M

f �� M 0

we get an isomorphism p�
1 F 0 ' .f � idM 0/�p�

1 F on M 0 �M 0. Together with the
projection formula this gives

p�
1 F 0 ˝ p�

2 G 0 ' .f � idM 0/�.p�
1 F ˝ p�

2 G 0/:

Next, we apply the base change formula to the cartesian square

M �M
p2

��

id�f �� M �M 0

p2

��
M

f �� M 0

to get an isomorphism p�
2 G 0 ' .idM � f /�p�

2 G . Combining it with the previous
isomorphism and using the projection formula again we obtain an isomorphism

p�
1 F 0˝p�

2 G 0 ' .f � idM 0/�.p�
1 F ˝ .idM �f /�p�

2 G / ' .f �f /�.p�
1 F ˝p�

2 G /;

which is given by the map (3.2.1). Therefore,

m0�.p�
1 F 0 ˝ p�

2 G 0/ ' m0�.f � f /�.p�
1 F ˝ p�

2 G / ' f�m�.p�
1 F ˝ p�

2 G /

overM 0�X M
0, as required. To check compatibility with the associativity constraint

one can use the canonical isomorphism

p�
1 .f�F /˝ p�

2 .f�G /˝ p�
3 .f�H / ��!� .f � f � f /�.p�

1 F ˝ p�
2 G ˝ p�

3 H /

on M 0 �M 0 �M 0 for F ;G ;H 2 Dqc.M/, defined similarly to (3.2.1). The case of
formal monoids is very similar.
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For us the most important case of the above construction is when M 0 D X � X
and f is the structure morphism .s; t/ W M ! X �X .

Definition. LetX be a scheme,M a monoid (resp. formal monoid) overX such that
the structure maps s; t W M ! X are flat (resp. flat and of ldu-pseudofinite type; in
addition assume that m is ldu-quasi-compact). We associate with every convolution
algebra V over M a kernel algebra over X by setting

AM .V/ D .s; t/�V (3.2.2)

(resp. AM .V/ D .s; t/��V ).

The following lemma gives a sufficient condition for checking when the kernel
algebra of the form AM .V/ is pure.

Lemma 3.2.3. AssumeX andS are semi-separated. LetM
.s;t/���! X�X be a monoid

(resp. formal monoid) over X satisfying the assumptions of the above definition,
and let V be a convolution algebra over X . Assume in addition that both maps
s; t W M ! X are affine (resp. ldu-affine), and that V is a quasi-coherent sheaf
(resp. torsion quasi-coherent sheaf ), flat over X with respect to both s and t . Then
the kernel algebra AM .V/ is pure.

Proof. We only need to check that .s; t/�V (resp. .s; t/��V ) is B-flat over X with
respect to both projections. But this follows immediately from Lemma 2.1.4.

If G is a group scheme (resp. formal group scheme) over S then we can view
X � G � X as a monoid (resp. formal monoid) over X using the product on G and
the unit inG. In the following proposition we denote by pi (resp. pij ) the projection
of the product X �G �X onto its factors (resp. double products of factors).

Proposition 3.2.4. Let G be a group scheme (resp. ldu-pft formal group scheme)
over S , X an S -scheme, V a kernel quasi-representation of G over X (recall that
in the formal case we assume that V 2 DG;Ec.X � G � X/ and the support of V is
proper overX �G andG �X ), P a convolution algebra onG. Then V ˝p�

2P has
a natural structure of a convolution algebra onX �G �X . Hence, we also have the
corresponding kernel algebra

A.V; P /´ AX�G�X .V ˝ p�
2P / D p13�.V ˝ p�

2P /

over X (in the formal case we should use .p13/��).

Proof. We will only consider the case when G is a group scheme (the case of a
formal group scheme is analogous). Note that the product map for X �G �X is the
composition of the projection X � G � X � G � X ! X � G � G � X with the
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map .idX � m � idX / W X � G � G � X ! X � G � X . Applying the projection
formula for the former map we see that the convolution product on V ˝p�

2P should
correspond to a map

.idX �m � idX /�Œ.V BX V /˝ p�
2P ˝ p�

3P �! V ˝ p�
2P:

To construct such map we start with the morphism

.V BX V /˝ p�
2P ˝ p�

3P ! .idX �m � idX /
�V ˝ p�

2P ˝ p�
3P

onX�G�G�X induced by the map� W V BX V ! .idX�m� idX /
�V . Combining

the projection formula for the map idX �m � idX with the flat base change formula
for P � P 2 Dqc.G �G/ and the cartesian diagram

X �G �G �X
id�m�id

��

p23 �� G �G
m

��
X �G �X p2 �� G

we get an isomorphism

.idX �m � idX /�..idX �m � idX /
�V ˝ p�

2P ˝ p�
3P / ' V ˝ p�

2m�.P � P /:

Hence, we get the required morphism

�V;P W .idX�m�idX /�Œ.V BXV /˝p�
2P˝p�

3P �! V˝p�
2m�.P�P /! V˝p�

2P

over X � G � X , where the second arrow is induced by the convolution algebra
structure onP . The associativity is checked as follows. Let us consider the following
diagram with cartesian squares

X � G � X � G � X � G � X

��

�� X � G � X � G � G � X

��

�� X � G � X � G � X

��
X � G � G � X � G � X

��

�� X � G � G � G � X

idX �m�idG�X

��

idX�G �m�idX�� X � G � G � X

��
X � G � X � G � X �� X � G � G � X �� X � G � X ,

where all the arrows are either projections omitting one of the factors X , or maps
induced by the product in two consecutive factorsG. For each vertex v in this diagram
let X.v/ D X � Gn1 � X � Gn2 � � � � denote the corresponding scheme. We have
a natural object W.v/ 2 D.X.v// defined as follows: let m.v/ W X.v/ ! X � G �
X �G � � � �X denote the map induced by the product maps Gn1 ! G, Gn2 ! G,
etc. Then W.v/ is given by the (derived) tensor product of pull-backs of P from all
the factors of G with the pull-back by m.v/ of the object p�

123V ˝ p�
345V ˝ � � � 2

D.X�G�X�G � � ��X/. Next, for every arrow e W v ! v0 let f .e/ W X.v/! X.v0/
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be the corresponding morphism. Then we have natural map f .e/�W.v/ ! W.v0/
induced either by� (in the case when f .e/ is the projection omitting one of the factors
X ), or by the convolution product on P (when f .e/ is induced by m). Furthermore,
we claim that for each of the four small cartesian squares of our diagram

v1

e13

��

e12 �� v2

e24

��
v3

e34 �� v4

the induced morphisms

f .e24 B e12/�X.v1/! f .e24/�f .e12/�X.v1/! f .e24/�X.v2/! X.v4/

and

f .e34 B e13/�X.v1/! f .e34/�f .e13/�X.v1/! f .e34/�X.v3/! X.v4/

are the same. Indeed, for the upper left (resp. lower right) square this amounts to
the associativity of � (resp. of the convolution product on P ). For the remaining
two squares this can be deduced from the base change formula. Now the required
associativity of �P follows from the similar compatibility applied to the ambient
square in the big diagram above.

The unit for V ˝ p�
2P is given by the composition

.idX � e � idX /���OX
u�! .idX � e � idX /�.idX � e � idX /

�V
' V ˝ .idX � e � idX /�OX�X ! V ˝ p�

2P;

where the second arrow is induced by the unit for P .

Assume that G is a finite group scheme (resp. locally nicely ind-finite formal
group scheme) over S . Let us consider the dualizing sheaf !G=S ´ � ŠOS , where
� W G ! S is the projection (in the formal case we use the functor � Š from Propo-
sition 1.2.5 (ii)). It is easy to see that !G=S has a natural structure of a convolution
algebra on G (see Theorem 3.3.1 below for a more general construction). Thus, in
this case we can associate with any quasi-kernel representation V of G the kernel
algebra A.V; !G=S / over X .

For us the most useful property of kernel (quasi-)representation is that they can be
carried over under derived equivalences in a way compatible with the corresponding
operation on kernel algebras. This follows from the following more general statement.

Proposition 3.2.5. LetX and Y be S -schemes, and let .P ;Q; ˛; ˇ/ be adjoint kernel
data, where P 2 Dqc.X � Y / and Q 2 Dqc.Y � X/ (see Section 2.5). Let G be a
group scheme over S , and let V be a kernel quasi-representation of G over X . Then
Q BX V BX P has a natural structure of a kernel quasi-representation of G over Y .
This correspondence is compatible with the restriction under a homomorphism of
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group schemes G0 ! G. Furthermore, if P is a convolution algebra on G then we
have an isomorphism of kernel algebras over Y :

A..Q BX V BX P /; P / ' Q BX A.V; P / BX P : (3.2.3)

Similar assertions hold if G is a formal group scheme over S , X and Y are proper
over S , V 2 DG;Ec.X �G �X/ (in the analog of the last assertion we should require
G to be ldu-pft over S in order to consider a convolution algebra over it).

Proof. Using the associativity of the B-product, the map ˛ W P BY Q ! ��OX and
the product map � for V we obtain a morphism

.QBXV BX P /BY .QBXV BX P /! QBXV BXV BX P ! QBX .idX�m�idX /
�V BX P :

By Lemma 2.1.2 (ii), the target of this map is naturally isomorphic to .idY � m �
idY /

�.Q BX V BX P /. This gives a product map for Q BX V BX P . On the other hand,
by Lemma 2.1.2 (iii), we have

.idY � e � idY /
�.Q BX V BX P / ' Q BX .idX � e � idX /

�V BX P :

Hence, the unit for V together with the map ˇ W ��OY ! Q BX P induce a unit for
Q BX V BX P . The isomorphism (3.2.3) is obtained using the associativity of the
B-product:

A..Q BX V BX P /; P / D .Q BX V BX P / BG�X .P ���OX /

' Q BX V BG�X .��OG � P / BG�X .P ���OX /

' Q BX V BG�X .P ���OX / BG�X .��OG � P /

' Q BX .V BG�X .P ���OX // BX P : �

3.3. Equivariant sheaves as modules over kernel algebras. We are going to show
that in the situation when a finite group scheme (resp. locally nicely ind-finite formal
group scheme) acts on a schemeX there is a natural way to construct a kernel algebra
onX that captures the corresponding category of equivariant sheaves. In fact, we can
deal with a more general situation of a groupoid over X .

Theorem 3.3.1. (i) Let .s; t/ W M ! X �X be a groupoid over X . Assume that the
maps s and t are finite and flat. Then the relative dualizing sheaf !s D sŠOX has a
natural structure of a convolution algebra onM . Its push-forward toX �X is a pure
kernel algebra AM D AM .!s/ over X . The category of AM -modules is equivalent
to the category ofM -equivariant quasi-coherent sheaves on X . By definition, these
are quasi-coherent sheaves F on X equipped with an isomorphism ˛ W t�F ! s�F
such that

m�˛ D p�
1˛ B p�

2˛; e�˛ D idF ; (3.3.1)
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where m;p1; p2 W M �X M ! M are the product and the projections, e W X ! M

is the unit map.
(ii) The above statements hold also in the case when M is a formal groupoid

over X with the following changes. We assume that locally over S each connected
component ofM is affine overX with respect to both s and t and can be presented as
the inductive limit of a system of closed subschemes Mn � MnC1 � � � � � M such
that eachMn is finite and flat overX with respect to both s and t . We set !s D sŠOX

(see Proposition 1.2.5 (ii)). The definition of anM -equivariant structure onF should
be modified as follows: it is given by a map ˛ 2 bHom.t�F; s�F /, and the relations

(3.3.1) are imposed using bHom-spaces (see (1.2.1)).

Proof. Part (i) is a particular case of part (ii), so it is enough to consider the case of
a formal groupoid. Our assumptions imply that both morphisms s; t W M ! X (and
hence p1; p2 W M �X M ! M ) are nicely ind-finite. Since M is a groupoid, the
map m W M �X M ! M differs from the projection p1 by an automorphism of m.
Therefore, m is also nicely ind-finite. Thus, we can use the functor mŠ defined in
Proposition 1.2.5. In particular, we have the isomorphism

mŠ!s D mŠsŠOS ' .s Bm/ŠOS D .s B p1/
ŠOS ' pŠ

1!s (3.3.2)

on M �X M . Now we define the convolution algebra structure on !s as the map
corresponding by adjunction to the map

p�
1!s ˝ p�

2!s ! pŠ
1!s ' mŠ!s (3.3.3)

onM �XM , where the arrow is given by the isomorphism (1.2.14). The associativity
of this product reduces to the commutativity of the diagram in Corollary 1.2.6 for
M �X M �X M with F D !s , along with some easier compatibilities. The unit
e�OS ! !s D sŠOS corresponds by adjunction to the isomorphism sŠe�OS ' OS .

Using Lemma 3.2.3 we see that AM is pure. Indeed, both s and t are ldu-affine,
so we only need to check flatness of !s over X with respect to both s and t . But
this follows immediately from the construction of Proposition 1.2.5, since !s is the
inductive limit of line bundles over Mn.

By Proposition 1.2.5 (iv), an element ˛ 2 bHom.t�F; s�F / required in the defini-
tion of an M -equivariant sheaf F on X is the same as a morphism

t�F ˝ !s ! s�F ˝ !s ��!� sŠF; (3.3.4)

where the last arrow is an isomorphism by Proposition 1.2.5 (ii). By adjunction this
is the same as a morphism

sŠ.t
�F ˝ !s/! F:

By the projection formula, the source of this map is isomorphic to AM BX F . Con-
versely, given a morphism AM BX F ! F , reversing the above procedure we get a
map t�F ˝ !s ! s�F ˝ !s , or equivalently, an element ˛ 2 bHom.t�F; s�F /.
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We have to check that the module axiom for F is equivalent to the conditions
(3.3.1). Using the projection formula and the base change formula we get an isomor-
phism

AM BX AM BX F ' .sp1/Š..tp2/
�F ˝ p�

1!s ˝ p�
2!s/;

where p1; p2 W M �X M !M are the projections. Furthermore, the map

AM BX AM BX F ! AM BX F ! F

obtained from two action maps AM BX F ! F corresponds by adjunction to the
map

.tp2/
�F ˝ p�

1!s ˝ p�
2!s ! p�

2 .s
�F ˝ !s/˝ p�

1!s

! p�
1 .t

�F ˝ !s/˝ pŠ
1OM

! pŠ
1.t

�F ˝ !s/! pŠ
1s

ŠF ' .sp1/
ŠF;

(3.3.5)

where the first and the last arrows are induced by (3.3.4), the second arrow is induced
by the isomorphismp�

2!s ' pŠ
1OM (using Proposition 1.2.5 (iii)). Note that we have

.sp1/
ŠOX ' p�

1!s ˝ pŠ
1OM ' p�

1!s ˝ p�
2!s;

hence .sp1/
ŠF ' .sp1/

�F ˝ p�
1!s ˝ p�

2!s . Now the first relation in (3.3.1) is
equivalent to the condition that under this isomorphism the map (3.3.5) coincides
with the map

.tm/�F ˝ p�
1!s ˝ p�

2!s ! .sm/�F ˝ p�
1!s ˝ p�

2!s (3.3.6)

induced by ˛. Indeed, this can be deduced easily from the commutativity of the
diagram in Proposition 1.2.5 (iii) for the composition of s with p1 and from the
isomorphism of Proposition 1.2.5 (iv) for the composed map sp1. On the other hand,
the module axiom requires that (3.3.5) coincides with the map

.tm/�F ˝ p�
1!s ˝ p�

2!s ! m�t�F ˝mŠ!s

! m�.t�F ˝ !s/˝mŠOM

! mŠ.t�F ˝ !s/! mŠsŠF ' .sm/ŠF;
(3.3.7)

where the first arrow is induced by (3.3.3), the second by the isomorphism mŠ!s '
m�!s ˝mŠOM , the third by the isomorphism (1.2.7), and the last by (3.3.4). Using
the isomorphism .sm/ŠF ' .sm/�F ˝ p�

1!s ˝ p�
2!s and the commutativity of the

diagram in Proposition 1.2.5 (iii) for the composition of s with m one can check that
the maps (3.3.7) and (3.3.6) are the same, which finishes the proof.

Example. In the case when S D Spec.k/, where k is a field of characteristic zero,
and M is the infinitesimal groupoid corresponding to a Lie algebroid L over X , the
kernel algebra AM is isomorphic to the universal enveloping algebra of L viewed as
a D-algebra (see [9], 1.4.15). Thus, the above theorem reduces in this case to the
interpretation of L-modules as M -equivariant sheaves on X .
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Assume that a finite group schemeG acts onX . Then we have the corresponding
action groupoid

�G D f.gx; g; x/ j g 2 G; x 2 Xg � X �G �X;

where the maps s; t W �G ! X are induced byp1 andp3 (projections fromX�G�X ).
Hence, by the above theorem we have the corresponding pure kernel algebra overX ,

AG
X ´ A�G

D p13�.p�
2!G=S /:

Now let G be a formal group scheme, locally nicely ind-finite over S . We define
a G-equivariant structure on a quasi-coherent sheaf F on X as an isomorphism in
the sense of bHom-spaces of two pull-backs of F to G � X (via the projection and
the action map Gn � X ! X ), satisfying the usual compatibility conditions (still
in bHom-spaces). Then we can apply Theorem 3.3.1 (ii) to the formal groupoid �G

to define the pure kernel algebra AG
X by the same formula as above (but with p13�

replaced by p13Š). Theorem 3.3.1 implies the following result.

Corollary 3.3.2. Let G be finite group scheme (resp. locally nicely ind-finite formal
group scheme) acting on a scheme X . Then the category of G-equivariant quasi-
coherent sheaves on X is equivalent to the category of AG

X -modules.

Note that in the above situation the coherent sheaf O�G
onX�G�X has a natural

structure of a kernel representation of G over X . Hence, using the construction of
Proposition 3.2.4 we can associate with this kernel representation the kernel algebra
A.O�G

; !G=S /. It is easy to see that it is isomorphic to AG
X (see Lemma 3.4.4 for a

more general statement).

3.4. Twisting geometric actions by 1-cocycles. Recall that if X is an algebraic
stack then a cohomology class e 2 H 2.X;Gm/ (i.e., a Gm-gerbe over X) allows to
define a category of twisted quasi-coherent sheaves on X (see e.g. Sec. 2 of [34]).
We will show that some of the twisted categories of sheaves for the global quotient
stack X D ŒX=G� are related to kernel representations of G over X of a special
kind. It is convenient to describe Gm-gerbes over a stack using certain data over its
groupoid presentation. The relevant notion of a 1-cocycle on a groupoid general-
izes the well known description of gerbes using open coverings and line bundles on
pairwise intersections (see Sec. 1 of [16], and also [31], [10]).

Definition. Let X be a scheme, .s; t/ W M ! X � X a groupoid (resp. formal
groupoid) over X . A 1-cocycle on M is a line bundle L on M equipped with an
isomorphism

p�
1 L˝ p�

2 L! m�L (3.4.1)
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on M �X M , where m;p1; p2 W M �X M ! M are the product and the projection
maps, such that the following diagram on M �X M �X M ) is commutative:

p�
1 L˝ p�

2 L˝ p�
3 L

��

�� p�
1 L˝ p�

23m
�L

��
p�

12m
�L˝ p�

3 L �� .mm/�L,

(3.4.2)

where mm W M �X M �X M !M is the composed product map.
In the case when M D �G D G � X is the action groupoid associated with an

action of a group scheme (resp. formal group scheme) G on X we will also say that
L is a 1-cocycle of G with values in Pic.X/.

Let e W X ! M be the unit. Pulling back (3.4.1) via e � e W X ! M �X M we
obtain an isomorphism

OX ! e�L (3.4.3)

onX . Using the compatibility diagram above one can check that this isomorphism is
compatible with the restrictions of maps (3.4.1) to M via the maps e � idM W M !
M �X M and idM � e W M !M �X M .

Let zM ! M be the Gm-torsor associated with L. Then isomorphisms (3.4.1)
and (3.4.3) give rise to a groupoid structure on zM over X such that zM is a central
extension of M by the group Gm acting trivially on X . Conversely, every such an
extension arises from a 1-cocycle structure on L.

Examples. 1. In the case whenX ! Y is an fppf map of schemes (or a presentation
of an algebraic stack Y ) andM D X �Y X is the corresponding groupoid, the notion
of a 1-cocycle onM is an algebraic version of gerbe data of [16] (resp. a presentation
of a gerbe of [10]). Let us show how to construct a Gm-gerbe GL on Y corresponding
to a 1-cocycle L on M D X �Y X . For an open U ! Y (in flat topology) let us
consider E D X �Y U , and let LU denote the pull-back of L to E �U E. Then
GL.U / is the category of line bundles  over E equipped with an isomorphism

p�
1 ' p�

2 ˝LU

over E �U E, satisfying the obvious compatibility on E �U E �U E. Note that
the pull-back of this gerbe to X is trivialized, namely, the 1-cocycle L itself may
be viewed as an object of GL.X/. Conversely, a Gm-gerbe on Y equipped with a
trivialization of its pull-back to X gives rise to a 1-cocycle on X �Y X : one simply
looks at the difference of two trivializations of our gerbe to X �Y X induced by
two projections to X . It is easy to see in this way one gets an equivalence between
the category of 1-cocycles on X �Y X and the category of Gm-gerbes on Y with
trivialized pull-back to X . For differentiable stacks and S1-gerbes a similar picture
is considered in Sec. 4.2 of [6] (using the equivalent language of central extensions).
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Let us observe also that a 1-cocycle L on X �Y X gives rise to an element of the
relative Picard group Pic.X=Y / defined by Grothendieck in [26], and in the situation
considered in [27] the corresponding element of the cohomological Brauer group is
the class of the gerbe GL.

2. In the case whenG is discrete a 1-cocycle ofG with values in Pic.X/ induces
a 1-cocycle of G with values in the abelian group Pic.X/ in the usual sense, where
Pic.X/ is viewed as a G-module. The obstacle to lifting a usual 1-cocycle of G with
values in Pic.X/ to Pic.X/ is a certain cohomology class inH 3.G;H 0.X;O�// that
measures the defect for commutativity of the diagram (3.4.2). Note also that to give
a 1-cocycle of G with values in Pic.X/ is equivalent to lifting the homomorphism
G ! Aut.X/ to a group homomorphism G ! Aut.X/ Ë Pic.X/. On the other
hand, we will show below that a 1-cocycle with values in Pic.X/ gives rise to a kernel
representation ofG overX . Thus, if we think of the notion of kernel representation as
a refinement of a homomorphism G ! Auteq.Dqc.X// then 1-cocycles with values
in Pic.X/ correspond to homomorphisms that factor through Aut.X/ Ë Pic.X/.

3. The holomorphic analog of the above notion can be used to study holomorphic
gerbes on quotients by actions of discrete groups. Taking X to be a complex vector
space and G a lattice acting on X by translations, one gets a construction of gerbes
on complex tori. It is easy to see that all gerbes on complex tori appear in this
way. Furthermore, due to triviality of the relevant line bundles, these gerbes are in
fact described by 2-cocycles of G with values in the group of invertible functions
on X . An explicit cocycle representative for each equivalence class of gerbes was
constructed in [11] (these representatives are similar to Appell–Humbert 1-cocycles
describing holomorphic line bundles on complex tori).

4. In the case whenM is the completion ofX�X along the diagonal� � X�X ,
where X is a smooth scheme over k, 1-cocycles on M correspond to algebras of
twisted differential operators on X (see [7]). Indeed, as explained in [7], the latter
rings arise as universal enveloping algebras of Picard algebroids on X , i.e., central
extensions of the tangent algebroid of X by OX . On the other hand, 1-cocycles on
M can be viewed as central extensions of M by the 1-dimensional formal group
over k (acting trivially on X ). It remains to apply the correspondence between Lie
algebroids and formal groupoids over X (see [9], 1.4.14, 1.4.15).

Given the connection of 1-cocycles with gerbes outlined above we should expect
that they define twisted versions of the categories of equivariant sheaves.

Definition. Let .s; t/ W M ! X � X be a groupoid over X , L a 1-cocycle on
M . An L-twisted M -equivariant quasi-coherent sheaf on X is a quasi-coherent
sheaf F on X equipped with an isomorphism ˛ W L˝ t�F ! s�F such that equa-
tions (3.3.1) are satisfied (these equations make sense because of the isomorphism
m�L ' p�

1 L˝ p�
2 L and the trivialization of e�L). Morphisms between L-twisted

M -equivariant sheaves are defined in a natural way. Note that if we use the corre-
sponding extension zM of M by Gm then an L-twisted M -equivariant sheaf can be
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thought of as a zM -equivariant sheaf onX on which Gm acts via the natural character.
The above definition can also be applied with appropriate changes to the case

whenM is a formal groupoid overX , satisfying the conditions of Theorem 3.3.1 (ii):
the morphism ˛ and the compatibilities should be formulated using bHom-spaces (see
(1.2.1)).

If L and L0 are 1-cocycles on a groupoid .s; t/ W M ! X � X then there is a
natural structure of a 1-cocycle on the tensor product of line bundles L˝L0.

Definition. . With a line bundle L on X we associate the line bundle ıL on M by
ıL D s�L˝ t�L�1. Note that ıL has a natural structure of a 1-cocycle onM which
we call a coboundary 1-cocycle. If L and L0 are 1-cocycles on M equipped with an
isomorphism L0 ' L˝ ıL of 1-cocycles for some line bundle L on X , then we say
that the 1-cocycles L and L0 are cohomologous.

In the situation of Example 1 above cohomologous 1-cocycles lead to equivalent
gerbes. In general, corresponding categories of twisted M -equivalent sheaves on
X will be equivalent. Indeed, if F is an L-twisted M -equivariant sheaf on X then
F ˝ L has a natural structure of an L˝ ıL-twisted M -equivariant sheaf .

We have the following analog of Theorem 3.3.1 in the twisted case.

Theorem 3.4.1. Let .s; t/ W M ! X be a formal groupoid over X satisfying the
conditions of Theorem 3.3.1 (ii), and let L be a 1-cocycle on M . Then the sheaf
L˝ !s has a natural structure of a convolution algebra onM . Its push-forward to
X �X is a pure kernel algebra AM .L˝!s/ overX . The category of AM .L˝!s/-
modules is equivalent to the category of L-twisted M -equivariant quasi-coherent
sheaves on X .

The proof is similar to that of Theorem 3.3.1. Note that the convolution algebra
structure on L˝!s is induced by the maps (3.3.3) and (3.4.1) along with the natural
map m�L ˝ mŠ!s ! mŠ.L � !s/ (see Lemma 3.4.2 below for a more general
construction).

The following generalization of the notion of 1-cocycle leaves only those features
of this notion that are necessary to get a convolution algebra on M .

Definition. Let .s; t/ W M ! X � X be a formal groupoid over a scheme X . A
quasi-1-cocycle on M is an object F 2 Dqc.M/ equipped with a morphism
˛ W p�

1M ˝ p�
2M ! m�M on M �X M as in the definition of 1-cocycle (how-

ever, this morphism is not required to be an isomorphism) and subject to the same
constraint on G � G � G � X . In addition, F should be equipped with a map
OX ! e�F (which we call a unit for F ), compatible with the pull-backs of ˛ to M
via e � idM and idM � e.

In the case when M D �G D G � X is an action groupoid associated with an
action of a group scheme (resp. formal group scheme) G on X we will also say that
F is a a quasi-1-cocycle of G with values inDqc.X/.
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Lemma 3.4.2. Let .s; t/ W M ! X be a formal groupoid over X satisfying the
conditions of Theorem 3.3.1 (ii), and let F 2 Dqc.M/ be a quasi-1-cocycle. Then
F ˝ !s 2 Dqct.M/ has a natural structure of a convolution algebra overM .

Proof. As the convolution product on F ˝ !s we take the map

m�.p�
1 F ˝ p�

2 F ˝ p�
1!s ˝ p�

2!s/! m�.m�F ˝ p�
1!s ˝ p�

2!s/

! F ˝m�.p�
1!s ˝ p�

2!s/! F ˝ !s

onM , where we use consecutively the quasi-1-cocycle structure on F , the projection
formula, and the convolution product on !s constructed in Theorem 3.3.1. The
associativity axiom follows from the associativity of the convolution product on !s

and the compatibility on M �X M �X M in the definition of quasi-1-cocycle. The
unit on F ˝ !s is given by the composition

e�OX ! F ˝ e�OX ! F ˝ !s;

where the maps are induced by the units for F and for !s .

We are mostly interested in the case whenM is the action groupoid �G associated
with an action of a group scheme (resp. formal group scheme) G on X . In this case
a 1-cocycle L of G with values in Pic.X/ can be viewed as a line bundle on G �X ,
and an L-twisted G-sheaf on X is a quasi-coherent sheaf F on X equipped with an
isomorphism

Fgx ! Lg;x ˝ Fx (3.4.4)

over G � X , where Fgx denotes the pull-back of F under the map G � X !
X W .g; x/ 7! gx, etc. This morphism should reduce to the identity over e�X (recall
that Le;x is trivialized), and the natural diagram onG�G�X should be commutative.
We denote the category of L-twisted G-sheaves on X by QcohL

G.X/. In the case
when G is finite we also denote by CohL

G.X/ � QcohL
G.X/ the full subcategory

consisting of coherent sheaves equipped with the above data. Note that for a line
bundle L on X the coboundary ıL is given by ıLg;x D Lgx ˝ L�1

x .
In the case when G is a group scheme the category QcohL

G.X/ should be viewed
as a category twisted quasi-coherent sheaves on the global quotient stack ŒX=G�.
The next lemma states the corresponding invariance of this category under certain
changes of a presentation (and extends it to the case of formal group schemes).

Lemma 3.4.3. Assume that G is finite group scheme (resp. locally nicely ind-finite
formal group scheme) acting on X , and let .X 0; G0/ be another data of the same
kind. Assume that we have a surjective homomorphism of groups G0 ! G with the
kernelK which is finite group scheme ( flat over S ), and a G0-equivariant morphism
X 0 ! X . Assume also that X 0 ! X is a K-torsor. Let L be a 1-cocycle of G
with values in Pic.X/, and let L0 be its pull-back to G0 � X 0. Then QcohL

G.X/ is
equivalent to QcohL0

G0.X
0/.
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The proof is a straightforward application of the flat descent for quasi-coherent
sheaves.

With a 1-cocycle L of G with values in Pic.X/ one can associate a kernel repre-
sentation of G over X by setting

VL D �G�.L/; (3.4.5)

where �G W G �X ! X �G �X W .g; x/ 7! .gx; g; x/. It is easy to see that for the
trivial 1-cocycle we get precisely the kernel representation V G

X associated with the
action of G on X .

More generally, if F is a quasi-1-cocycle of G with values in Dqc.X/ then one
we associate with F a kernel quasi-representation of G over X by

VF ´ �G�.F / 2 Dqc.X �G �X/: (3.4.6)

This construction also works in the case when G is a locally nicely ind-finite formal
group scheme provided F 2 DG;Ec.G � X/ (i.e., locally over G the cohomology of
F are in AEc). In this case we have the corresponding kernel algebra

AG
X .F /´ A.VF ; !G=S / D .gx; x/�.p�

1!G=S ˝ F /

(see Proposition 3.2.4). One can easily check that this is the same kernel algebra as
the one obtained from the convolution algebra structure on F ˝p�

G!G=S constructed
in Lemma 3.4.2, where pG W �G D G � X ! G is the projection. More precisely,
one has the following statement (the proof is straightforward).

Lemma 3.4.4. Let G be a finite group scheme (resp. locally nicely ind-finite formal
group scheme) acting on X , and let F 2 Dqc.G � X/ (resp. F 2 DG;Ec.G � X/)
be a quasi-1-cocycle F of G with values in Dqc.X/. Then the push-forward of the
convolution algebra F ˝ p�

G!G=S with respect to the homomorphism of groupoids
�G W �G ! X �G�X can be identified with the convolution algebra VF ˝p�

2!G=S

on X �G �X associated with the quasi-representation VF (see Proposition 3.2.4).
Hence, we have an isomorphism of kernel algebras over X :

AG
X .F / ' A�G

.F ˝ p�
G!G=S /:

We have the following analog of Corollary 3.3.2 for twistedG-equivariant sheaves
that can be deduced from Theorem 3.4.1.

Corollary 3.4.5. Let G be finite group scheme (resp. locally nicely ind-finite formal
group scheme) acting on a scheme X , and let L be a 1-cocycle of G with values in
Pic.X/. Then the category QcohL

G.X/ is equivalent to AG
X .L/-mod. In the case

when G is finite, we also have CohL
G.X/ ' AG

X .L/-modc.
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The dependences between the notions introduced above can be roughly summa-
rized by the following picture:

Quasi 1-cocycles

(3.4.6)

��

Lemma 3.4.2

�������������������������

Kernel quasi-representations
Prop. 3.2.4�� Convolution algebras

(3.2.2) �� Kernel algebras

Quasi-1-cocycles appear naturally via the following construction.

Lemma 3.4.6. Let G be a finite group scheme (resp. locally nicely ind-finite formal
group scheme). Let f W X ! Y be an affine G-equivariant morphism between
S -schemes equipped with a G-action, and let F be a quasi-1-cocycle of G with
values in Dqc.X/ (in the formal case we assume that F 2 DG;Ec.G � X/). Then
.idG � f /�F has a natural structure of a quasi-1-cocycle of G with values in
Dqc.Y /. Furthermore, we have an isomorphism of kernel algebras

.f � f /�AG
X .F / ' AG

Y ..idG � f /�F /: (3.4.7)

Proof. Set G D .idG�f /�F . Note that in the formal case we have G 2 Dqc.G�Y /
by Proposition 1.2.2 (vii) since f is an affine morphism. The unit OX ! .e�idX /

�F

for F induces a unit map

OX ! .e � idY /
�G ' f�.e � idX /

�F ;

where the latter isomorphism is given by the base change formula. Also, we have a
natural morphism on G �G � Y :

Gg1;g2x ˝ Gg2;x ! .idG�G � f /�.Fg1;g2x ˝ Fg2;x/:

Hence, the quasi-1-cocycle structure on F induces a similar structure on G .
Recall that AG

X .F / comes from the convolution algebra F ˝ p�
G!G=S over the

action groupoid �G.X/ D G � X . Similarly, AG
Y .G / comes from the convolution

algebra G ˝ p�
G!G=S over �G.Y / D G � Y . The projection formula and the base

change formula give an isomorphism

G ˝ p�
G!G=S ' .idG � f /�.F ˝ p�

G!G=S /

over �G.Y / which induces the required isomorphism (3.4.7). The compatibility of
the product maps and of units is easy to check.

Proposition 3.4.7. Let G be a finite group scheme (resp. locally nicely ind-finite
formal group) acting on X , and let F be a flat quasi-coherent sheaf on G � X
equipped with a quasi-1-cocycle structure. Then the kernel algebra AG

X .F / is pure.
If G is a finite group scheme and F is a vector bundle then the pure kernel algebra
AG

X .F / is finite.
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Proof. By Lemma 3.4.4, we can realize AG
X .F / as coming from the convolution

algebra F˝p�
G!G=S on�G . Now the first assertion follows easily from Lemma 3.2.3.

The second assertion is clear since in this case AG
X .F / is the push-forward of F ˝

p�
G!G=S under a finite map.

Remark. It is easy to see that if we change a 1-cocycle L to a cohomologous cocycle
L ˝ ıL then the corresponding kernel representations of G over X are related via
the autoequivalence of Dqc.X/ given by tensoring with L (as in Proposition 3.2.5):

VL˝ıL ' ��L BX VL BX ��L�1:

Hence, the corresponding kernel algebras are also related in a similar way.

Example. Assume that the action of G on X is trivial. Then a 1-cocycle of G with
values in Pic.X/ is the same as a monoidal functor (over S ) of stacks of groupoids
G ! Pic.X/ over S , i.e., in the terminology of [20], a central extension of G by
Pic.X/). By definition, such a central extension is given by a line bundle L onG�X
equipped with an isomorphism

Lg1g2;x ' Lg1;x ˝Lg2;x (3.4.8)

satisfying the natural cocycle condition. In this case the morphism of groupoids
�G ! X � X is a composition of the natural projection p2 W �G ' G � X ! X

with the diagonal embedding � W X ! X �X . Hence,

AG
X .L/ ' ��OX ŒG�

L;

where

OX ŒG�
L ´ p2�.p�

G!G ˝L/ (3.4.9)

is an algebra inDqc.X/ associated with L. Here the product on the right-hand side is
induced by the convolution algebra structure onp�

G!G˝L, whereG�X is viewed as
a group scheme (resp. formal group scheme) over X . Note that the algebra OX ŒG�

L

is not always commutative even if G is commutative. This corresponds to the fact
that our monoidal functor G ! Pic.X/ does not have to respect the commutativity
constraints (i.e., it is not necessarily a homofunctor between the Picard categories).
For example, ifX D S (the base scheme) then a 1-cocycle ofG with values in Pic.S/
over S is the same as a central extension of group schemes

1! Gm ! zG ! G ! 1:

The corresponding algebra is the twisted group algebra corresponding to this exten-
sion.

Now assume that H is a group scheme (or a formal group scheme) acting on X
(andG acts trivially onX ). We say that anH -equivariant structure on a homofunctor
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L from G to Pic.X/ is given if L is equipped with an H -equivariant structure with
respect to the natural action ofH onG�X , and the isomorphism (3.4.8) is compatible
with the H -action. In this situation we will also write that L gives a homofunctor
G ! PicH .X/. Recall that for a commutative group scheme A we denote by
EXT.A;Gm/ the Picard stack of (commutative) extensions of A by Gm. In the case
when we have a homomorphism H ! A we denote by EXTH .A;Gm/ the Picard
stack of extensions of A by Gm equipped with a trivialization over H .

Lemma 3.4.8. (i) In the above situation the category of monoidal functors G !
PicH .X/ over S is equivalent to the category of 1-cocycles of H � G with values
in Pic.X/, trivialized overH .

(ii) Now assume that X is a commutative group scheme and the action of H on
X is given by translations (so we have a homomorphismH ! X ). Then we can re-
place Pic.X/ and PicH .X/ by the Picard stacks EXT.X;Gm/ and EXTH .X;Gm/,
respectively. Assume also that G is a commutative group scheme or a formal group
scheme. Then the following two categories are equivalent:

(a) biextensions of G �X by Gm trivialized over G �H ;
(b) homofunctors G ! EXTH .X;Gm/.

This category is also equivalent to a full subcategory in the category of 1-cocycles
ofH �G with values in EXT.X;Gm/, trivialized overH .

Proof. (i) To a monoidal functor L W G ! PicH .X/ over S we associate the line
bundle p�

23L on H � G � X . It is easy to see that it is equipped with the required
structures. The inverse functor is given by the restriction to eH � G � X , where
eH 2 H is the unit.

(ii) The equivalence of (a) and (b) follows from Proposition 1.3.3. To realize the
category in (b) in terms of 1-cocycles of H �G, trivialized over H , use (i).

3.5. 1-cocycles and Cartier duality. Henceforward, whenever formal k-groups are
mentioned it is assumed that S D Spec.k/, where k is a field of characteristic zero.

Let X be an S -scheme, G a finite commutative group scheme (flat) over S
(resp. formal k-group), and letG� denote the Cartier dual group scheme (resp. affine
commutative algebraic group over k).

Given a G�-torsor � W E ! X consider its pull-back to G �X : .idG � �/ W G �
E ! G � X . Viewing the universal bicharacter b W G � G� ! Gm as a homomor-
phism of group schemes G� ! Gm over G � X we can associate with the above
G�-torsor a line bundle LE over G � X . It is easy to see that LE has a natural
structure of a homofunctorG ! Pic.X/. Note that this construction is local overX .
Hence, the obtained homofunctor is locally trivial, i.e., there exists an open covering
U! X such that the induced homofunctor G ! Pic.U/ is trivial.

Proposition 3.5.1. (i) The above construction gives an equivalences between the
category of G�-torsors over X and the category of locally trivial homofunctors
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G ! Pic.X/. Furthermore, for a G�-torsor � W E ! X we have an isomorphism
of sheaves of OX -algebras

��OE ' OX ŒG�
LE ;

where the algebra structure on the right is defined by (3.4.9).
(ii) Assume now that X is a formal scheme over k and G is a formal k-group. As

above, we have an equivalence between the category of G-torsors over X and the
category of locally trivial homofunctorsG� ! Pic.X/. For aG-torsor W E ! X

and a torsion quasi-coherent sheaf F on X we have a natural isomorphism

 Š 
ŠF ' F ˝ p2�LE ;

of sheaves on X , where LE is a line bundle on G� �X associated with E.

Proof. (i) The quasi-inverse functor is constructed as follows. Given a locally trivial
homofunctor L W G ! Pic.X/, consider the functor of trivializations of L on the
category of X -schemes. By definition, it associates with an X -scheme S the set of
isomorphisms of the pull-back of L to G ! Pic.S/ with the trivial homofunctor. It
is easy to see that this functor is represented by a G�-torsor.

To construct an isomorphism of OX -algebras we consider their pull-backs to E.
For the left-hand side we have a G-equivariant isomorphism of algebras

����OE ' ��
E .�G�/�OG� ;

where for every S scheme Y we denote by �Y W Y ! S the projection to S . On the
other hand, the canonical trivialization of ��LE gives rise to an algebra isomorphism

��OX ŒG�
LE ' ��

E .�G/�!G ;

where .�G/�!G is equipped with the convolution product. It remains to use the
G�-equivariant isomorphism

.�G�/�OG� ' .�G/Š!G : (3.5.1)

(ii) It is enough to construct such an isomorphism for the trivial G-torsor and to
check its functoriality with respect to automorphisms of the trivial G-torsor. In this
case we have E D G � X and LE is trivial;  W G � X ! X is the projection.
Hence, we have to construct an isomorphism

 Š 
ŠF ' F ˝ ��

X .�G�/�OG� ; (3.5.2)

compatible with automorphisms of the trivial G-torsor over X . Note that the projec-
tion  W G � X ! X has a nicely ind-finite structure (since G is a union of finite
k-schemes). Hence, by Proposition 1.2.5 (iii), we have  ŠF '  �F ˝  ŠOX . By
the projection formula, this leads to an isomorphism

 Š 
ŠF ' F ˝  Š 

ŠOX :
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Using the compatibility of the formation of f ŠOX with base changes (see Proposi-
tion 1.2.5 (iii)) and the base change formula (Theorem 1.2.4 (ii), (iii)) we get

F ˝  Š 
ŠOX ' F ˝  Šp

�
G!G ' F ˝ ��

X .�G/Š!G ;

where pG W G � X ! G is the projection. It remains to use the G-equivariant
isomorphism (3.5.1). The compatibility of (3.5.2) with automorphisms of both sides
induced by automorphisms of the trivial G-torsor over X follows easily from the
compatibility of the isomorphism (3.5.1) with the natural G-action on both sides.

It follows that in the situation of Proposition 3.5.1 (ii) we have an isomorphism

����OE ' AG
X .LE / (3.5.3)

of kernel algebras over X .
Now assume thatH is a group scheme (resp. formal k-group) acting onX . Since

the equivalence of the above proposition is compatible with the pull-back functors
(with respect to morphisms X 0 ! X ), we deduce the following corollary.

Corollary 3.5.2. Let � W E ! X be a G�-torsor and let LE be the corresponding
homofunctor G ! Pic.X/. A lifting of the H -action on X to an action on E
(commuting with G�) is the same as anH -equivariant structure on LE (compatible
with the homofunctor structure).

Now let us consider a special case when X is a commutative group scheme
(resp. formal k-group). Then instead of considering all G�-torsors we can restrict
our attention to extensions E of X by G� in the category of commutative groups.
Here is the corresponding specialization of Proposition 3.5.1.

Lemma 3.5.3. (i) The construction of Proposition 3.5.1 induces an equivalence be-
tween the category of extensions of X by G� (resp. G) in the category of sheaves
of commutative groups and the category of biextensions of G � X (resp. G� � X )
by Gm.

(ii) Let H ! X be a homomorphism. Then the category of Lemma 3.4.8 (ii) is
equivalent to the category of extensions E of X by G� in the category of sheaves of
commutative groups, equipped with a splittingH ! E overH .

Proof. (i) This follows from Proposition 1.3.4 because of the vanishings

Ext1.G;Gm/ D Ext1.G�;Gm/ D 0
(see Lemma 1.3.5; in the case when G is a formal k-group we use Lemma 1.3.6 (i)).

(ii) This follows immediately from part (i) using the definition (a) of Lem-
ma 3.4.8 (ii).
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Now let us go back to the situation when X does not have a group structure.
Assume that H is a finite commutative group scheme (resp. formal k-group) acting
onX ,G is a finite commutative group scheme (resp. formal k-group), and� W E ! X

is a G�-torsor equipped with an H -action that commutes with the G�-action and is
compatible with the H -action on X . In addition, assume that we have an extension
of commutative group schemes (resp. formal k-groups)

0! G ! zH ! H ! 0:

Let B be the corresponding biextension ofH �G� by Gm (see Lemma 3.5.3 (i)). We
would like to identify the kernel algebra .� � �/�AH

E .M/, where M is a 1-cocycle
ofH with values in Pic.E/, with some kernel algebra corresponding to the action of
zH on X (and a 1-cocycle). For this we need to impose the following compatibility

of M with the biextension B.

Definition. Let M be a 1-cocycle of H with values in Pic.E/. We say that M is
equipped with .G�;B/-equivariant structure if an isomorphism

Mh;g�e ' Bh;g� ˝Mh;e

is given, and the following diagrams on H �H � G� � E and H � G� � G� � E
are commutative:

Mh1;h2g�e ˝Mh2;g�e

��

�� Bh1;g� ˝Bh2;g� ˝Mh1;h2e ˝Mh2;e

��
Mh1h2;g�e

�� Bh1h2;g� ˝Mh1h2;e ,

Mh;g�
1

g�
2

e

��

�� Bh;g�
1
˝Mh;g�

2
e

��
Bh;g�

1
g�

2
˝Mh;e �� Bh;g�

1
˝Bh;g�

2
˝Mh;e .

Since the pull-back of B to zH � G� is trivial, the pull-back of a .G�;B/-
equivariant 1-cocycle M of H with values in Pic.E/ to zH � E is equipped with a
G�-equivariant structure. Hence, it descends to a 1-cocycle zM of zH with values in
Pic.X/. It is easy to see that the restriction of zM to G is naturally isomorphic to
LE W G ! Pic.X/, the homofunctor associated with E.

Proposition 3.5.4. The above construction M 7! zM gives an equivalences between
the categories of .G�;B/-equivariant 1-cocycles M ofH with values in Pic.E/ and
1-cocycles zM of zH with values in Pic.X/ extending LE . Furthermore, we have an
isomorphism of convolution algebras

p�
1!H ˝ .idH � �/�M ' .� � idX /Š.p

�
1! zH ˝ zM/ (3.5.4)
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over H � X (viewed as a groupoid over X ), where � W zH ! H is the projection.
Here the left-hand side is the convolution algebra associated with the quasi-1-cocycle
structure on .idH � �/�M (see Lemma 3.4.6), and the right-hand side is the push-
forward of the convolution algebra associated with zM with respect to the map � �
id W zH � X ! H � X of groupoids over X (see Lemma 3.2.2). Hence, we have an
isomorphism

.� � �/�AH
E .M/ ' A

zH
X .
zM/ (3.5.5)

of kernel algebras over X

Proof. Let us show how to go back from a 1-cocycle zM of zH with values in Pic.X/
extending LE to a .G�;B/-equivariant 1-cocycle of H with values in Pic.E/. Let
M0 denote the pull-back of zM under the map id�� W zH �E ! zH �X . Then M0 is a
1-cocycle of zH with values in Pic.X/. Note that the pull-back of LE under the map
idG � � W G �E ! G �X is naturally trivialized, and the G�-equivariant structure
on it (where G� acts on E) is induced by the universal bicharacter G � G� ! Gm.
It follows that M0 restricts to the trivial 1-cocycle of G, so it descends to a 1-cocycle
M of zH=G ' H with values in Pic.E/. The .G�;B/-equivariant structure on M

comes from the G�-equivariance of M0 (recall that the pull-back of B to zH �G� is
naturally trivialized but G acts on it via the universal bicharacter G �G� ! Gm).

To construct an isomorphism (3.5.4) let us first consider the pull-backs of both
sides under the map idH � � W H � E ! H � X . By the definition, we have an
isomorphism

.� � idE /
�M ' .id zH � �/� zM

over zH � E, compatible with 1-cocycle structures (for zH ). Applying the flat base
change formula for the cartesian diagram

zH �E
��idE

��

id zH
��

�� zH �X
��idX

��
H �E idH �� �� H �X

and the projection formula for the morphism � � idE we derive an isomorphism

.idH � �/�.� � idX /Š.p
�
1! zH ˝ zM/ ' .� � idE /Š.p

�
1! zH /˝M

of convolution algebras over H �E (viewed as a groupoid over E). Another use of
the base change formula gives an isomorphism of this with p�

1 .�Š! zH / ˝M. Note
that we can view � W zH ! H as a G-torsor over H (see Lemma 1.3.6 (ii)). Hence,
using the isomorphism of Proposition 3.5.1 (ii) we get

�Š! zH ' �Š�
Š!H ' !H ˝ p�B:
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Thus, we derive an isomorphism

.idH � �/�.� � idX /Š.p
�
1! zH ˝ zM/ ' p�

1 .!H ˝ p�B/˝M (3.5.6)

On the other hand, using the .G�;B/-equivariance of M we get

.idH � �/�.idH � �/�M ' p13�.p�
12B/˝M ' p�

1 .p�B/˝M;

wherepij are projections fromH �G��E, p1 W H �E ! H andp W H �G� ! H

are also projections. Hence,

.idH � �/�.p�
1!H ˝ .idH � �/�M/ ' p�

1 .!H ˝ p�B/˝M:

Comparing this with (3.5.6) we get an isomorphism of the pull-backs of both sides
of (3.5.4) under idH � �, compatible with convolution algebra structures. It is easy
to check that it is also compatible withG�-actions, so it descends to an isomorphism
over H �X .

The isomorphism (3.5.5) follows from (3.5.4) by passing to associated kernel
algebras, taking into account the isomorphism

.� � �/�AH
E .M/ ' AH

X ..id � �/�M/

that follows from Lemma 3.4.6.

By Lemma 3.4.8 (i), an H -equivariant structure on a homofunctor L W G !
Pic.X/ gives rise to an extension of L to a 1-cocycle zL of H � G with values
in Pic.X/, trivial over H . Hence, we have the corresponding pure kernel algebra
AH�G

X . zL/ over X .
On the other hand, a lifting of the H -action on X to an action on E gives rise to

a pure kernel algebra AH
E over E. Hence, we get a pure kernel algebra .� � �/�AH

E

over X .

Corollary 3.5.5. Assume thatG andH are finite commutative group schemes (resp.
formal k-groups),X is a scheme withH -action, � W E ! X is aG�-torsor equipped
with an H -action, LE W G ! Pic.X/ is the corresponding H -equivariant homo-
functor, and zLE is the corresponding 1-cocycle of H � G with values in Pic.X/.
Then there is an isomorphism of derived kernel algebras over X :

.� � �/�AH
E ' AH�G

X . zLE /:

3.6. Compatibility with open coverings. We are going to give a criterion for a
kernel algebra coming from a convolution algebra to be of affine type (see Section 2.3).

Definition. Let X be a scheme, and let M be a formal groupoid over X . We say
that M is compatible with an open covering U D F

i Ui ! X (in flat topology) if
an isomorphism ˛ W MU�X ��!� MX�U over M is given, where for a scheme Y over
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X � X we denote by MY the fibered product M �X�X Y . We require ˛ to satisfy
the following compatibilities. First, the diagram

MU�X �X M

��

�� M �X MX�U

��
MU�X

�� MX�U

should be commutative, where the vertical arrows are obtained from the product
map m W M �X M ! M by the base change, and the upper arrow is given by the
composition

MU�X �X M ' .M �X M/U�X�X

˛1�! .M �X M/X�U�X

˛2�! .M �X M/X�X�U 'M �X MX�U;

with ˛1 and ˛2 induced by ˛. Second, the composition of ˛ with the map u1 W U!
MU�X should coincide with the map u2 W U!MX�U, where u1 and u2 obtained by
the base change from the unit map u W X !M .

Proposition 3.6.1. Let M be a groupoid over X (resp. formal groupoid over X
such that the structure maps s; t W M ! X are flat and of ldu-pseudofinite type).
Assume that M is compatible with an open covering j W U D F

i Ui ! X , where
ji W Ui ! X are affine morphisms. Then for every convolution algebra V onM the
kernel algebra AM .V/ over X is compatible with this open covering.

Proof. By definition, AM .V/ is the push-forward of V with respect to the structure
morphism� W M ! X�X . Let us denote byj1 W MU�X !M andj2 W MX�U !M

the natural morphisms. Then

AM .V/ BX �.U/ ' .id � j /�.id � j /�AM .V/

can be identified with the push-forward to X �X of j2�j �
2 V 2 Dqc.M/. Similarly,

�.U/ BX AM .V/ can be identified with the push-forward of j1�j �
1 V 2 Dqc.M/.

Since we have an isomorphism ofMX�U andMU�X overM , this leads to the required
isomorphism

AM .V/ BX �.U/ ' �.U/ BX AM .V/:

Compatibility with the product (resp. unit) on AM .V/ follows from the commutativity
of the diagram (resp. compatibility of ˛ with u1 and u2) in the above definition.

For a formal group schemeG, ldu-pf (ldu-pseudofinite) over a field k, we denote
byG0 its connected component of 1 so thatG0 is infinitesimal, andG=G0 is an étale
formal group corresponding to the Gal. Nk=k/-module G. Nk/.



226 A. Polishchuk

Proposition 3.6.2. Let G be a finite group scheme acting on X . Then for every
flat quasi-coherent sheaf F onG �X equipped with a quasi-1-cocycle structure, the
kernel algebra AG

X .F / is pure and of affine type. Similar result holds if S D Spec.k/,
where k is a field and G is a formal group scheme, ldu-pf over k, such that the
action of Gal. Nk=k/ onG. Nk/ factors through Gal.k0=k/ for some finite field extension
k � k0.

Proof. Recall that AG
X .F / is the kernel algebra associated with a convolution algebra

structure on the sheaf F ˝p�
G!G=S over the action groupoid �G (see Lemma 3.4.4).

It is pure by Proposition 3.4.7. To check that it is of affine type, by Proposition 3.6.1,
it suffices to find an open affine covering U ! X such that the action groupoid �G

is compatible with U.

Consider first the case when G is a finite group scheme over S (recall that we
assume it to be flat over S ). We can assume that S is affine and pick a finite open
affine covering zU ! X . Then setting U D G � zU we obtain a G-equivariant open
affine covering of X in flat topology, where the map U! X is the composition

U D G � zU! G �X ! X

(the last arrow is given by the G-action on X ).

Now let us consider the case when S D Spec.k/ andG is a formal group scheme,
ldu-pf over k. We start by choosing an arbitrary Zariski open affine covering zU D
. zUi / of X . Since the action of G0 preserves each open subset zUi � X , for every
g 2 G. Nk/ there is a well-defined affine open subsetg. zUi / � X Nk , whereX Nk is obtained
from X by extending scalars to Nk. If O � G. Nk/ is a Gal. Nk=k/-orbit (necessarily
finite by our assumption) then the affine scheme

F
g2O g.

zUi / comes from an étale
open UO;i ! X . These form an étale covering of X . Furthermore, it is easy to see
that there is an action of G on .UO;i / compatible with its action on X , as required.

3.7. Projective kernel representations and the Fourier–Mukai transform. The
formalism of the Fourier–Mukai transform for abelian schemes requires to introduce
a projective version of the notion of kernel representation (similar to the notion of
projective representation of a group).

Definition. (i) Let G be a group scheme (resp. formal group scheme) over S . A
2-cocycle of G with values in Pic.S/ is a line bundle L over G � G equipped with
an isomorphism

Lg1;g2
˝Lg1g2;g3

��!� Lg1;g2g3
˝Lg2;g3
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on G3 such that the following diagram on G4 is commutative:

Lg1;g2
˝Lg1g2;g3

˝Lg1g2g3;g4

��

�� Lg1;g2g3
˝Lg2;g3

˝Lg1g2g3;g4

��
Lg1;g2

˝Lg1g2;g3g4
˝Lg3;g4

���������������
Lg1;g2g3g4

˝Lg2;g3
˝Lg2g3;g4

���������������

Lg1;g2g3g4
˝Lg2;g3g4

˝Lg3;g4

In addition, we assume that the bundle .e � e/�L D Le;e on S is trivialized,
where e W S ! G is a neutral element. This induces a trivialization of the bundles
Le;g and Lg;e on G (using the cocycle isomorphism).

(ii) Given a 2-cocycle L of a group schemeG with values in Pic.S/ and a scheme
X over S , a projective kernel representation of G with the cocycle L over X is an
object V 2 Dqc.X �G �X/ equipped with an isomorphism

� W V BX V ��!� .idX �m � idX /
�V ˝ p�

23L

over X �G �G �X (where m W G �G ! G is the product), and an isomorphism

u W ��OX ��!� .idX � e � idX /
�V

subject to the following conditions. The morphism� induces the following morphism
on X �G3 �X :

.V BX V / BX V ! �
.idX �m � idX /

�V ˝ p�
23L

� BX V

' Lg1;g2
˝ .idX �m � idG � idX /

�.V BX V /:

Using � again we get a map (an isomorphism)

.V BX V / BX V ! Lg1;g2
˝Lg1g2;g3

˝ .idX �mm � idX /
�V;

where mm W G3 ! G sends .g1; g2; g3/ to g1g2g3. Similarly, we construct a map

V BX .V BX V /! Lg1;g2g3
˝Lg2;g3

˝ .idX �mm � idX /
�V;

and we require these maps to be the same. The maps u and � should be compatible
as follows: the composition

V ' ��OX BX V
uBX id! .idX � e � idX /

�V BX V ! V;

where the second arrow is induced by .idX�e�idG�idX /
�� and by the trivialization

of .e � idX /
�L (resp. similar composition starting with id BX u) should be equal to

the identity map.
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In the case whenG is a formal group scheme the above definition still make sense
provided V 2 DG;Ec.X �G �X/ and the support of V is proper overX �G and over
G �X .

(iii) Given a 2-cocycle L of G as above and an S -scheme X equipped with an
action ofG, a coboundary for L with values in Pic.X/ is a line bundle M overG�X
together with an isomorphism

˛.g1; g2I x/ W Mg1;g2x ˝Mg2;x ��!� Mg1g2;x ˝Lg1;g2

onG�G�X and a trivialization of .e�idX /
�M DMe;x compatible with ˛.e; eI x/,

such that the following diagram on G3 �X is commutative:

Mg1;g2g3xMg2;g3xMg3;x

˛.g1;g2g3Ix/

��

˛.g2;g3Ix/�� Mg1;g2g3xMg2g3;xLg2;g3

˛.g1g2;g3Ix/

�����������������������

Mg1g2;g3xMg3;xLg1;g2

˛.g1g2g3Ix/�� Mg1g2g3;xLg1g2;g3
Lg1;g2

ˇ �� Mg1g2g3;xLg1;g2g3
Lg2;g3

Here ˇ is induced by the structure of the 2-cocycle on L (we skipped the signs of
tensor product for brevity).

In the case when the 2-cocycle L is trivial the definition (ii) (resp. (iii)) above
reduces to the notion of a kernel representation (resp. a 1-cocycle with values in
Pic.X/) considered in Section 3.4.

Examples. 1. Let A be a commutative group scheme, L a biextension of A � A by
Gm. Then L has a natural structure of a 2-cocycle of A with values in Pic.S/.

2. If f W G ! G0 is a homomorphism of group schemes over S and L0 is a
2-cocycle of G0 with values in Pic.S/ then .f � f /�L0 has a natural structure of a
2-cocycle of G. In particular, by the previous example if we have a homomorphism
f from G to a commutative group scheme A and a biextension L of A � A by Gm

then .f � f /�L has the structure of a 2-cocycle of G. More generally, if A and B
are commutative group schemes and L is a biextension of A � B by Gm then for
a pair of homomorphisms f W G ! A, g W G ! B the pull-back .f � g/�L has a
natural structure of a 2-cocycle of G.

Remark. The notion of a 2-cocycle with values in Pic.X/ (and of the corresponding
coboundaries) can be generalized to an arbitrary groupoid overX . However, we will
not need this generalization.

Note that 2-cocycles of G with values in Pic.S/ form a commutative Picard
category with respect to the tensor product operation. For any line bundle M 2
Pic.G/ we can form a 2-cocycle of G

ƒ.M/g1;g2
´M�1

g1
˝M�1

g2
˝Mg1g2
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with values in Pic.S/. A coboundary with values in Pic.S/ for a 2-cocycle L is
given by a line bundle M together with an isomorphism L ' ƒ.M/�1 of 2-cocycles.

For a 2-cocycle L ofG with values in Pic.S/ and a line bundle M onG we have
an equivalence from the category of projective kernel representations of G over X
with the 2-cocycle L˝ƒ.M/ to the similar category for L sending V to V ˝p�

GM,
where pG W X �G �X ! G is the projection.

Now assume that we have an action of G on X . Generalizing the construction of
Section 3.4, given a 2-cocycle L of G with values in Pic.S/ and a coboundary M

for L with values in Pic.X/, we can define a projective kernel representation of G
over X by setting

VM D �G�.M/;

where �G.g; x/ D .gx; g; x/. For N 2 Pic.G/ the line bundle M ˝ p�
1 N 2

Pic.G � X/ acquires a natural structure of a coboundary for L ˝ ƒ.N /�1 with
values in Pic.X/. The corresponding projective kernel representation is

VM˝p�
1

N ' VM ˝ p�
GN :

Example. Let A be an abelian variety over a field k, OA the dual abelian variety.
Set XA D A � OA. There is a natural homomorphism from the group XA.k/ to
the group of autoequivalences of Db.A/ (viewed up to an isomorphism) such that
A.k/ acts by translations and OA.k/ acts by tensoring with line bundles. Let us give
a categorified version of this picture that also works in the relative setting (cf. [42],
Sec. 3). Assume now thatA is an abelian scheme overS , OA is the dual abelian scheme,
andXA D A�S

OA. Then we are going to construct a projective kernel representation
of XA over A with the 2-cocycle LA D p�

32P , where P is the Poincaré line bundle
onXA and p32 W X2

A D .A� OA/2 ! A� OA sends .x1; 1; x2; 2/ to .x2; 1/. Namely,
if we let XA act on A by translations (with OA acting trivially), then we have a natural
coboundary M for LA with values in Pic.A/ given by

M.x;	Iy/ D Py;	 ; (3.7.1)

where .x; Iy/ 2 .A � OA/ � A. Indeed, the biextension structure on P gives rise to
an isomorphism

Mx1;	1Ix2Cy ˝Mx2;	2Iy D Px2Cy;	1
˝Py;	2

' Py;	1C	2
˝Px2;	1

DMx1Cx2;	1C	2Iy ˝Px2;	1
:

Therefore, we have the corresponding projective kernel representation of XA over A
given by

V.A/´ VM D .x C y; x; ; y/�M 2 Coh.A �XA � A/; (3.7.2)

where .x; ; y/ 2 A � OA � A.
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We have the following version of Proposition 3.2.5 for projective representations.
The proof is analogous, so we skip it.

Proposition 3.7.1. Let X and Y be schemes over S , and let .P ;Q; ˛; ˇ/ be adjoint
kernel data, where P 2 Dqc.X � Y / and Q 2 Dqc.Y � X/. Let also G be a
group scheme, and let V be a kernel projective representation of G over X with a
2-cocycle L. Then Q BX V BX P has a natural structure of a kernel projective repre-
sentation of G over Y with the same 2-cocycle. This correspondence is compatible
with restriction under homomorphisms of group schemes and with the functors of the
form V 7! V ˝p�

GM for M 2 Pic.G/ (where L gets replaced by L˝ıM). Similar
assertions hold if G is a formal group scheme, X and Y are proper over S , and
V 2 DG;Ec.X �G �X/.

Recall that the Fourier–Mukai transformDqc.A/ ' Dqc. OA/ corresponds to taking
as P the Poincaré line bundle on A � OA and Q D P �1 ˝ p�

OA
! OA=S

Œg� on OA � A,

where p OA
is the projection to OA, g is the relative dimension of A=S . Using the fact

that this transform exchanges the operation of translation on A and of tensoring with
the corresponding line bundle on OA, we can easily calculate the Fourier–Mukai dual
of the projective kernel representation of XA D A � OA over A considered above.

Proposition 3.7.2. The Fourier–Mukai dual of the projective representation V.A/ of
the group XA is given by

Q BA V.A/ BA P ' p�
XP �1 ˝ .id OA

� � � id OA
/�V. OA/; (3.7.3)

where � is the isomorphism

� W XA D A � OA! X OA
D OA � A W .x; / 7! .;�x/;

and pX W OA � XA � OA ! XA is the projection. The isomorphism (3.7.3) is compat-
ible with the kernel projective representation structures on V.A/ and V. OA/ via the
isomorphism � W XA ��!� X OA

and the isomorphism

ƒ.P /˝ .� � �/�L OA
' LA

of 2-cocycles of XA.

Proof. Let us consider two simpler kernel representations related to V.A/: the one
corresponding to the action of translations, and the one corresponding to tensoring
with line bundles associated with points in OA. The first is the kernel representation
of A (viewed as a group scheme) over A given by

Vt .A/´ .x C y; x; y/�OA�A 2 Coh.A � A � A/;
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where .x; y/ 2 A�A. The second is the kernel representation of OA over A given by

V˝.A/ D .x; ; x/�P 2 Coh.A � OA � A/;
where x 2 A,  2 OA. We have natural isomorphisms

Vt .A/ BA V˝.A/ ' V.A/; (3.7.4)

V˝.A/ BA Vt .A/ ' p�
XP ˝ V.A/; (3.7.5)

which are compatible with the structures of kernel representations on Vt .A/ and
V˝.A/ and with the structure of a projective kernel representation on V.A/ in the
following sense. Combining (3.7.4) and (3.7.5) we get the following “commutation”
relation:

V˝.A/ BA Vt .A/ ' p�
23P ˝ Vt .A/ BA V˝.A/: (3.7.6)

Now the compatibility asserts that the projective kernel representation structure on
V.A/ is given by the composition

V.A/ BA V.A/ ' Vt .A/ BA V˝.A/ BA Vt .A/ BA V˝.A/
' p�

23P ˝ Vt .A/ BA Vt .A/ BA V˝.A/ BA V˝.A/
! p�

23P ˝ Vt .A/ BA V˝.A/ ' p�
23P B V.A/;

where the first and the last isomorphisms are induced by (3.7.4), the second iso-
morphism is induced by (3.7.6), and the arrow is given by the kernel representation
structures on Vt .A/ and on V˝.A/. Thus, it is enough to compute the Fourier duals
of the kernel representations Vt .A/ and V˝.A/. Using the relation Q BA P ' �� OA
and the biextension structure of P , one gets the following isomorphisms of kernel
representations:

Q BA V˝.A/ BA P ' Vt . OA/;
Q BA Vt .A/ BA P ' .id OA

� Œ�1�A � id OA
/�V˝. OA/:

One can check that this indeed leads to (3.7.3).

We are going to use the above result to calculate the Fourier–Mukai duals of some
kernel representations obtained from V.A/ by restricting to subgroups over which
the corresponding 2-cocycle becomes a coboundary.

Definition. Let G be a group scheme (resp. a formal group scheme) over S , A
an abelian scheme over S . A G-twisting data T D .f; f 0; ˛; 
/ for A consists of
homomorphisms f W G ! A, f 0 W G ! OA, and of a line bundle ˛ over G equipped
with an isomorphism


 W ƒ.˛/ ' .f � f 0/�P
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of 2-cocycles of G with values in Pic.S/, where P is the Poincaré biextension of
A � OA. If T D .f; f 0; ˛; 
/ is a G-twisting data for A then the dual G-twisting data
for OA is yT D .f 0;�f; Ǫ ; 
0/, where

Ǫ D ˛ ˝ .f; f 0/�P �1; (3.7.7)

and 
0 is induced by 
.

Note that the 2-cocycle .f �f 0/�P ofG is the pull-back under .f; f 0/ W G ! XA

of the natural 2-cocycle LA D p�
32P of XA. Hence, the coboundary (3.7.1) for LA

with values in Pic.A/ together with the isomorphism 
 induce a 1-cocycle of G with
values in Pic.A/. The underlying line bundle on G � A is

L.T /´ p�
1˛ ˝ .id � f 0/�P :

It is easy to see that a 1-cocycle L of G with values in Pic.A/ appears in this way
if and only if Ljg�As

2 Pic0.As/ for every geometric point g of G (where s is the
image of g in S ). Indeed, in this case we can write L in the form p�

1˛˝ .id�f 0/�P

for some line bundle ˛ over G and some morphism f 0 W G ! OA. Unraveling the
cocycle condition we get that f 0 should be a homomorphism and ˛ should satisfy
ƒ.˛/ ' .f � f 0/�P .

We set QcohT
G.A/ D QcohL.T /

G .A/ (resp. CohT
G.A/ D CohL.T /

G .A/). Note
that by Corollary 3.4.5, we have QcohT

G.A/ ' AG
A .L.T //-mod (resp. CohT

G.A/ '
AG

A .L.T //-modc). The following result generalizes Theorem 15.2 of [43].

Theorem 3.7.3. Assume that S is semi-separated. The kernel representations of G
overA and OA associated with L.T / and L. yT / are Fourier–Mukai dual to each other.
Hence, if G is a finite flat group scheme over S then the corresponding pure kernel
algebras AG

A .L.T // and AG
OA
.L. yT // are also Fourier–Mukai dual, and we get exact

equivalences

D.QcohT
G.A// ' D.Qcoh

yT
G.
OA//;

Db.CohT
G.A// ' Db.Coh

yT
G.
OA//:

The first of these equivalences also holds if S D Spec.k/, where k is a field and G
is a formal group scheme, ldu-pf over k, such that the action of Gal. Nk=k/ on G. Nk/
factors through Gal.k0=k/ for some finite field extension k � k0.

Proof. Let us denote byV.A/jG 2 Coh.A�G�A/ (resp.V. OA/jG 2 Coh. OA�G� OA/)
the restriction of the projective kernel representation V.A/ of XA over A, via the
homomorphism .f; f 0/ W G ! XA (resp. .f 0;�f / W G ! X OA

). Then we have
natural isomorphisms of kernel representations of G

VL.T / ' p�
G˛ ˝ V.A/jG ; V

L. yT /
' p�

G Ǫ ˝ V. OA/jG :
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Hence, by Proposition 3.7.2,

Q BA VL.T / BA P ' p�
G.˛ ˝ .f; f 0/�P �1/˝ V. OA/jG ' VL. yT /

:

By Proposition 3.2.5, this implies the isomorphism of kernel algebras

Q BA AG
A .L.T // BA P ' AG

OA
.L. yT //:

Now the first equivalence of categories follows from Theorem 2.5.1 (i). Note that we
can apply it because the kernel algebras AG

A .L.T // and AG
OA
.L. yT // are pure and of

affine type by Proposition 3.6.2. To deduce the second equivalence of categories we
use Theorem 2.5.1 (iii) (recall that ifG is finite then the kernel algebra AG

A .L.T // is
finite).

Remarks. 1. Every Gm-gerbe over an abelian varietyAover a fieldk of characteristic
zero arises from some twisting data as above. Indeed, as was observed in [13], every
element e 2 H 2.A;Gm/ has the trivial pull-back to H 2.B;Gm/ for some isogeny
� W B ! A. Therefore, e is associated with some 1-cocycle L of G D ker.�/
with values in Pic.B/. The corresponding homomorphism G. Nk/ ! NS. xB/ to the
Néron–Severi group of xB D B˝k

Nk is trivial, sinceNS. xB/ has no torsion. Therefore,
Ljg� xB 2 Pic0. xB/ for every g 2 G. Nk/. As we have seen above, this implies that
L D L.T / for some G-twisting data T .

2. Whenever we have a G-twisting data T such that both f W G ! A and
f 0 W G ! OA are injective, Theorem 3.7.3 gives a derived equivalence of categories
of twisted coherent sheaves on A=f .G/ and on OA=f 0.G/. It would be interesting to
try to describe all exact equivalences between derived categories of twisted coherent
sheaves over abelian varieties by generalizing the picture of [41].

Example. Let us explain how the equivalences between modules over algebras of
twisted differential operators (tdo’s) considered in [44] fit the above theorem. Let A
be an abelian variety over a field k of characteristic zero, and letG be a formal group
scheme over k, isomorphic as a formal scheme to Spf.kŒŒt1; : : : ; tn��/. Then the kernel
algebra A D AG

A .L.T // over A associated with a G-twisting data T D .f; f 0; ˛; 
/
for A is aD-algebra (see [7], and Example 1 of Section 2.2 on p. 180). Furthermore,
the natural filtration of!G (given by the infinitesimal neighborhoods of zero) induces
an exhaustive algebra filtration A0 � A1 � � � � such that the associated graded
algebra is isomorphic to the commutative OA-algebra S.LG/ ˝ OA, where LG is
the Lie algebra of G and S.LG/ is the symmetric algebra on LG . According to
Lemma 5.1 of [44], such a D-algebra A is the universal enveloping algebra U 0.zL/
corresponding to a structure of a Lie algebroid on LG ˝ OA and a central extension
zL of this Lie algebroid by OA. The Fourier–Mukai duality of such algebras (and
derived categories of modules over them) developed in Sec. 7 of [44] matches the
duality picture obtained from Theorem 3.7.3. Note that the algebra AG

A .L.T // is a
tdo if and only if the tangent map df W LG ! LA is an isomorphism, where LA is
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the Lie algebra of A (see Sec. 7 of [44]). In this case f gives an isomorphism of G
with the formal group obtained from A.

Here is an example of dual twisting data that will be relevant for the next section.

Corollary 3.7.4. Let A be a abelian scheme over a semi-separated scheme S , and
let G and H be finite flat commutative group schemes over S equipped with homo-
morphisms f W G ! A, f 0 W H ! OA along with a trivialization of the biextension
.f �f 0/�P ofG�H , where P is the Poincaré biextension ofA� OA. We can view the
line bundle L.f 0/ D .p3; f

0p2/
�P onG�H�A as a 1-cocycle ofG�H with values

in Pic.A/ (whereH acts trivially on A), and the line bundle L.f / D .fp1; p3/
�P

onG�H� OA as a 1-cocycle ofG�H with values in Pic. OA/ (whereG acts trivially on
OA). Then the kernel algebras AG�H

A .L.f 0// and AG�H
OA

.L.f // are Fourier–Mukai
dual to each other, so we have exact equivalences of categories

D.QcohL.f 0/
G�H .A// ' D.QcohL.f /

G�H .
OA//;

Db.CohL.f 0/
G�H .A// ' Db.CohL.f /

G�H .
OA//:

The first of these equivalences also holds if S D Spec.k/, where k is a field, and G
(resp.H ) is a formal group scheme, ldu-pf overk, such that the action of Gal. Nk=k/ on
G. Nk/ (resp.H. Nk/) factors through Gal.k0=k/ for some finite field extension k � k0.

Proof. By definition, the 1-cocycle L.f 0/ of G �H with values in Pic.A/ has the
form L.T / for the G �H -twisting data for A,

T D .fp1; f
0p2;OG�H ; 
/;

where 
 is induced by the trivialization of .f �f 0/�P onG�H . Similarly, L.f / D
L. zT /, for the G �H -twisting data for OA,

zT D .f 0p2; fp1;OG�H ; Q
/;
with Q
 induced by the above trivialization. Note that zT differs from the twisting data yT
by the automorphism id� Œ�1� ofG�H . Hence, the kernel algebras on OA associated
with zT and yT are isomorphic. It remains to use Theorem 3.7.3.

4. Fourier–Mukai duality for orbi-abelian schemes and generalized 1-motives

In this section we will apply the techniques of kernel algebras to get versions of
the Fourier–Mukai equivalences in two situations. The first situation arises when
we have a homomorphism G ! E, where G is a finite flat commutative group
scheme, E is an extension of an abelian scheme by a finite flat commutative group
scheme, and we consider the category of G-equivariant sheaves on E. It turns out
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that one can construct a dual data of this kind and an analog of the Fourier–Mukai
functor. The second situation is the generalization of the one considered by Laumon
in [33]: here we work over a field k of characteristic zero, G is a formal k-group
(see the beginning of Section 3 for our conventions on formal k-groups), and E is a
commutative algebraic group over k (i.e., a commutative group scheme of finite type
over k).

We start by studying in sections 4.1 and 4.2 the duality in the particular case of
the first situation when the base scheme is a field, since in this case a nice duality
functor exists on certain derived category containing both abelian varieties and finite
commutative group schemes. Then we will proceed to more general setups mentioned
above.

4.1. Duality functor on the derived category of commutative proper group
schemes over a field. Let k be a field. For a commutative algebraic group X
over k we denote by X0 its connected component of 1 taken with reduced scheme
structure (this is denoted as CR.X/ in [39]). Also for an integer N ¤ 0 we denote
by XN the kernel of the map ŒN �X W X ! X W x 7! Nx.

Lemma 4.1.1. The following conditions for a commutative algebraic group X over
k are equivalent:

(a) X is proper;

(b) X0 is an abelian variety;

(c) X is isomorphic to a subgroup scheme of an abelian variety.

Proof. The equivalence of (a) and (b) is well known. It is clear that (c) implies (a).
To prove (b) H) (c) we use the fact that every finite group scheme can be embedded
into an abelian variety as a subgroup scheme (this is due to Raynaud, see [36],
Thm. A.6). Let X be any commutative proper group scheme. Then there exists an
integerN > 0 such thatX=X0 is annihilated byN . Hence,X0 D NX0 � NX � X0

so that NX D X0. It follows that X=XN ' X0 is an abelian variety. Now pick an
embedding XN � A, where A is an abelian variety. Then X is a subgroup scheme
of the induced extension of X0 by A, which is an abelian variety.

Let G
pr
k

denote the category of commutative proper group schemes over k. This
is a full subcategory of the category Gk of all commutative algebraic groups over
k. It is well known that Gk is an abelian category (see [22], 5.4). In the case of an
algebraically closed field a nice exposition of the properties of this category can be
found in Chap. II of [39].

Lemma 4.1.2. The subcategory G
pr
k
� Gk is a Serre subcategory.
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Proof. It is clear that G
pr
k

is closed under quotients and subgroup schemes. Assume
that

0! X ! Y ! Z ! 0

is an exact sequence in Gk with X;Z 2 G
pr
k

. Then the morphism Y ! Z is proper
and Z is proper, hence, Y is proper.

For the theory of torsion pairs and tilting the reader can consult [30] (a concise
exposition can be found also in Sec. 5.4 of [14]).

Lemma 4.1.3. Let G f
k

and AVk be the subcategories of finite group schemes and

abelian varieties in G
pr
k

, respectively. Then .AVk;G
f
k
/ is a tilting torsion pair in G

pr
k

.

Proof. Any morphism from an abelian variety to a finite group scheme is trivial.
Also, by Lemma 4.1.1, for X 2 G

pr
k

we have X0 2 AVk and �0X ´ X=X0 2 G f
k

,
so .AVk;G

f
k
/ is a torsion pair. Applying Lemma 4.1.1 again we see that every object

of G
pr
k

can be embedded into an object of AVk , i.e., our torsion pair is tilting.

Theorem 4.1.4. There exists an exact functor D W Db.G
pr
k
/opp ! Db.G

pr
k
/ such that

(i) D B D ' Id;

(ii) D.A/ ' OA for an abelian variety A;

(iii) D.G/ ' G�Œ1� for a finite group scheme G.

Proof. The idea is to use resolutions in terms of abelian varieties. More precisely,
the fact that .AVk;G

f
k
/ is a tilting torsion pair in G

pr
k

gives an equivalenceDb.G
pr
k
/ '

Db.AVk/, where AVk is viewed as an exact category (see [14], Lemma 5.4.2; see
also [8], Ex. 1.3.23 (iii)). Since the duality for abelian varieties preserves short exact
sequences, it extends to an exact functor D W Db.AVk/ ! Db.AVk/. This proves
(i) and (ii). Embedding a finite group schemeG into an abelian variety and using the
Isogeny Theorem (see [39], III.19.1) gives (iii).

Remark. It is easy to see that D exchanges the standard t -structure onDb.G
pr
k
/with

the tilted t -structure associated with the torsion pair .AVk;G
f
k
/. More precisely, for

every X 2 G
pr
k

the duality sends the canonical exact sequence

0! X0 ! X ! �0X ! 0;

where X0 is an abelian variety, to the exact triangle

.�0X/
�Œ1�! D.X/! OX0 ! .�0X/

�Œ2�

so that .�0X/
�Œ1� ' ���1D.X/ and OX0 ' ��0D.X/. Thus, we have

H�1D.X/ ' .�0X/
�; (4.1.1)

H 0D.X/ ' OX0: (4.1.2)
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4.2. Orbi-abelian varieties. Let k be a field.

Definition. An orbi-abelian variety over k is an object K of Db.G
pr
k
/ such that

H�1K is a finite group scheme and H iK D 0 for i 62 f�1; 0g.

Lemma 4.2.1. (i) For any complex K in G
pr
k

concentrated in degrees �1 and 0 such
thatH�1K is finite, there exists a quasiisomorphic subcomplex of the form ŒG ! X�,
where G is a finite group scheme. In particular, every orbi-abelian variety can be
presented by a complex ŒG ! X� with G finite.

(ii) An object K 2 Db.G
pr
k
/ is an orbi-abelian variety if and only if D.K/ is.

Furthermore, we have natural isomorphisms

.H 0D.K//0 '3.H 0K/0; (4.2.1)

H�1D.K/ ' .�0H
0K/�: (4.2.2)

Proof. (i) Let K D Œi W Y ! X�, where ker.i/ is finite. We claim that there exists
a homomorphism p W X ! Y0 such that p B i D ŒN �Y for some N > 0 (where
ŒN �Y Y � Y0/. Indeed, since Y0 and X0 are abelian varieties the assertion is true for
the induced homomorphism i0 W Y0 ! X0, so we can find p0 W X0 ! Y0 such that
p0 B i0 D ŒN1�Y0

for some N1 > 0. If N2 D jX=X0j then the multiplication by N2

maps X to X0, so we can view Qp D N2p0 as a homomorphism X ! Y0. Finally,
the homomorphisms Qp B i and ŒN1N2�Y agree on Y0, hence

N3 Qp B i D ŒN1N2N3�Y ;

whereN3 D jY=Y0j. Thus, we can set p D N3 Qp, N D N1N2N3, and our claim fol-
lows. In this situation K is quasi-isomorphic to the subcomplex Œi 0 W YN ! ker.p/�,
where i 0 is induced by i .

(ii) Let K D ŒG ! X� be an orbi-abelian variety, where G is a finite group
scheme. Then we have an exact triangle

X ! K ! GŒ1�! XŒ1�:

The dual of this triangle is

G� ! D.K/! D.X/! G�Œ1�:

The corresponding long exact sequence of cohomology shows thatH iD.K/ D 0 for
i 62 f�1; 0g and that H�1D.K/ is a subgroup scheme in H�1D.X/ ' .�0X/

� (see
(4.1.1)). Hence, H�1D.K/ is finite, so D.K/ is an orbi-abelian variety. The same
exact sequence shows that

H�1D.K/ ' ker..�0X/
� ! G�/ ' coker.G ! �0X/

� ' .�0H
0K/�:
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On the other hand, by (4.1.2), the abelian varietyH 0D.K/0 is dual toH 0DH 0D.K/.
Dualizing the standard exact triangle

H�1D.K/Œ1�! D.K/! H 0D.K/! � � �
and passing to cohomology we get an exact sequence

0! H 0DH 0D.K/! H 0K ! .H�1D.K//� ! � � � ;
which induces an isomorphism H 0DH 0D.K/ ' .H 0K/0.

Here is a simple way to realize the dual D.K/ to an orbi-abelian variety K con-
cretely. Let K D ŒG ! X� as in Lemma 4.2.1 (i). We can pick a finite subgroup
H � X such that A D X=H is an abelian variety (e.g., one can take H D XN ,
where X=X0 is annihilated by N ). Note that the dual of L D ŒG ! A� has only one
cohomology due to an exact triangle

G� ! D.L/! OA! G�Œ1�:

On the other hand, dualizing the exact triangle

K ! L! HŒ1�! KŒ1�

we get
H� ! D.L/! D.K/! H�Œ1�:

Thus, the complex ŒH� ! D.L/� represents D.K/.

Remark. If k is algebraically closed of characteristic zero then the category G
pr
k

has
homological dimension 1 (see [46], Thm. 10.1, or [39]), Sec. II.14, so every object of
Db.G

pr
k
/ is isomorphic to the direct sum of its cohomologies. By duality, this implies

that in this case every object of G
pr
k

is a direct sum of an abelian variety and a finite
group scheme. Thus, in this case the duality for orbi-abelian varieties takes form

D.GŒ1�˚ .H ˚ A// ' H�Œ1�˚ .G� ˚ OA/;
where A is an abelian variety,H and G are finite commutative group schemes. Now
assume that k is algebraically closed of characteristic p > 0. Let G

pr
k;0
� G

pr
k

denote
the full subcategory consisting of proper groups G such that Hom. p̨; G/ D 0. We
claim that G

pr
k;0

is a Serre subcategory in G
pr
k

. Indeed, it is clear that G
pr
k;0

is closed
under extensions and passing to subobjects. To check that it is closed under quotients
it suffices to consider quotients by elementary groups. But for such a group G one
has Hom. p̨; G/ D 0 if and only if Ext1. p̨; G/ D 0 (see [39], Sec. II.14), and our
claim follows. Note that the category G

pr
k;0

also has homological dimension 1 (see
[39], Sec. II.14), so the above remarks about the characteristic zero case apply as well
to orbi-abelian varieties in Db.G

pr
k;0
/.
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4.3. Abstract duality setup. Let � be a site. We denote by �h� the category of
sheaves of abelian groups on � . We assume that we have fixed a certain sheaf of
abelian groups G. We consider the associated duality functor

D W Db.�h� /! DC.�h� / W K 7! RHom.K;G/Œ1�:

Assume also that we have three full subcategories stable under extensions For, Aff ,
Ab � �h� with the following properties:

(i) D.Ab/ � Ab, D.For/Œ�1� � Aff , D.Aff /Œ�1� � For;

(ii) for K in one of the subcategories For, Aff or Ab, the natural morphism K !
DD.K/ is an isomorphism.

In this situation for A 2 Ab we set OA´ D.A/, while for G either in For or in
Aff we set G� D D.G/Œ�1�. Note that (i) and (ii) imply that for A 2 Ab and for
G either in For or in Aff one has Hom.A;G/ D 0. Indeed, we have D.A/ 2 �h�

and D.G/ 2 �h� Œ1�. Hence, Hom.D.G/;D.A// D 0, and the required vanishing
follows from (ii).

Definition. Given the data � D .G;For;Aff ;Ab/ as above, we define a gener-
alized 1-motive of type � as a complex ŒG ! E� of sheaves of abelian groups on
� concentrated in degrees �1 and 0 such that G 2 For, and E fits into an exact
sequence

0! L! E ! A! 0;

with L 2 Aff and A 2 Ab. Morphisms between generalized 1-motives as above are
simply morphisms in the derived category Db.�h� /.

We will consider the following two examples of this situation. The first is when
� is the fppf site of schemes over a given scheme S , G D Gm is the multiplicative
group, Ab consists of abelian schemes over S , while For D Aff are finite flat
commutative group schemes over S . We denote the corresponding duality type �fin

S

and call generalized 1-motives of type �fin
S orbi-abelian schemes over S .

In the second example � is the fppf site of affine schemes over a field k of
characteristic zero, G D Gm, Ab consists of abelian varieties over k, For are formal
k-groups (see our conventions in the beginning of Section 3), and Aff are affine
commutative algebraic groups over k. We denote the corresponding duality type�for

k
.

To get the usual generalized 1-motives of Laumon [33] one would have to modify
this type by taking For to be formal k-groups without torsion and considering only
connected groups in Aff .

Sometimes it is convenient to view generalized 1-motives as a full subcategory
in the category of Picard stacks by associating with K D ŒG ! E� the Picard stack
ch.K/ (see Section 1.3 and [18], 1.4).

Proposition 4.3.1. If K is a generalized 1-motive of type � then D.K/ is also a
generalized 1-motive of type� and the natural mapK ! DD.K/ is an isomorphism.
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Proof. Let K D ŒG ! E�, where G 2 For and E is an extension of A 2 Ab

by L 2 Aff . Set xK D ŒG ! A�. Then D. xK/ is an extension of OA D D.A/ by
G� D D.G/Œ�1�, and D.K/ is represented by the complex ŒL� ! D. xK/�. The
second assertion now follows from the assumption (ii) on the data �.

The duality of generalized 1-motives has a convenient interpretation in terms
of biextensions. Recall that if ŒY ! X� and ŒY 0 ! X 0� are complexes over �h�

concentrated in degrees�1 and 0 then a biextension of ŒY ! X� and ŒY 0 ! X 0� by G
is a biextension ofX�X 0 by G equipped with trivialization of its pull-backs to Y �X 0
andX�Y 0 such that the induced trivialization of the pull-back to Y �Y 0 are the same
(see [19], 10.2). Such biextensions form a (commutative) Picard category and we
denote by Biext1.ŒY ! X�; ŒY 0 ! X 0�IG/ (resp. Biext0.ŒY ! X�; ŒY 0 ! X 0�;G/)
the group of isomorphism classes in this category (resp. automorphism group of an
object). These groups are isomorphic to Exti .ŒY ! X�˝ ŒY 0 ! X 0�;G/, i D 0; 1,
so they depend only on isomorphism classes of ŒY ! X� and ŒY 0 ! X 0� in the
derived category Db.�h� / (see [19], 10.2.1).

Proposition 4.3.2. Let K and K 0 be generalized 1-motives of type �.
(i) One has a functorial isomorphism

HomDb.�h� /.K
0;D.K// ' Biext1.K;K 0IG/:

(ii) For a presentation K D ŒG ! E� let EXT.ŒG ! E�;G/ denote the Picard
stack of extensions of ŒG ! E� by G in the category of complexes over �h� . Equiv-
alently, EXT.ŒG ! E�;G/ classifies extensions of E by G with trivialized pull-back
to G. Then we have an isomorphism of Picard stacks

ch D.K/ ' EXT.K;G/: (4.3.1)

(iii) Let K D ŒG ! E�, where E is an extension of A 2 Ab by L 2 Aff , so that
D.K/ is represented by ŒL� ! D. xK/� with xK D ŒG ! A�. Then the biextension of
K � D.K/ corresponding to the identity map idD.K/ under the isomorphism of (i)
(the Poincaré biextension) is represented by the pull-back toE �D. xK/ of the similar
biextension of A � OA, where OA D D.A/. This pull-back is equipped with natural
trivializations along G � D. xK/ and E � L� that are compatible over G � L�.

Proof. (i) We have

Hom.K 0;D.K// D Hom.K 0; RHom.K;GŒ1�//

' Hom.K 0 ˝K;GŒ1�/ D Ext1.K 0 ˝K;G/;
which is isomorphic to Biext1.K;K 0IG/ (see [19], 10.2.1).

(ii) By Lemma 1.3.1, we have

EXT.K;G/ ' HOM.ch.K/; ch.GŒ1�// ' ch.��0RHom.K;GŒ1�//;
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so the assertion follows from RHom.K;GŒ1�/ D D.K/ 2 D�0.�h� /.
(iii) Note that the Poincaré biextension of K � D.K/ corresponds to the canon-

ical morphism K ˝ D.K/ ! GŒ1� via the isomorphism Biext1.K;D.K/IGŒ1�/ '
Ext1.K ˝ D.K/;G/. Applying this to xK and using the commutative diagram

A˝ D. xK/

��

�� A˝ OA

��xK ˝ D. xK/ �� GŒ1�

we see that the Poincaré biextension of xK �D. xK/ is represented by the pull-back to
A � D. xK/ of the Poincaré biextension of A � OA (this pull-back is equipped with a
trivialization over G � D. xK/). Now the assertion follows in a similar way from the
commutative diagram

K ˝ D. xK/

��

�� xK ˝ D. xK/

��
K ˝ D.K/ �� GŒ1�.

4.4. Fourier–Mukai transform. In this section we work with generalized1-motives
of type � D .Gm;For;Aff ;Ab/, where � is either �fin

S (orbi-abelian schemes) or
�for

k
. Thus, our generalized 1-motives are of the form K D ŒG ! E�, where either

(i) E is an extension of an abelian scheme by a finite flat commutative group scheme
over S ,G is a finite flat commutative group scheme over S , or (ii)E is a commutative
algebraic group over a field k of characteristic zero,G is a formal k-group. Note that
in case (ii)E is an extension of an abelian variety by an affine commutative algebraic
group. In both cases by a quasi-coherent sheaf onK we mean aG-equivariant quasi-
coherent sheaf on E (where G acts on E by translations). We denote the category of
quasi-coherent sheaves by QcohK. In case (i) we can also consider the subcategory
CohK of coherent sheaves. It is easy to check that up to equivalence the category
QcohK does not depend on a presentationK D ŒG ! E�. Indeed, this is clear in the
case when we have surjective morphism of complexes f W ŒG0 ! E 0� ! ŒG ! E�

(i.e., both maps f�1 W G0 ! G and f0 W E 0 ! E are surjective) such that ker.f�1/

maps isomorphically to ker.f0/ (cf. Lemma 3.4.3 – note that ker.f�1/ ' ker.f0/

is a finite group scheme). The general case follows because of the following simple
result.

Lemma 4.4.1. Let ŒG ! E� and ŒG0 ! E 0� be two presentations of the same
generalized 1-motive K. Then there exists a third presentation ŒG0 ! E0� of K
equipped with surjective maps (quasi-isomorphisms) to ŒG ! E� and ŒG0 ! E 0�.
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Proof. Let us define E0 in the derived category of sheaves from the exact triangle

E0 ! E ˚E 0 ! K ! E0Œ1�:

Using the octahedron axiom one can easily see that E0 is an extension of E by G0
(resp. of E 0 by G), and that ŒG ˚ G0 ! E0� will be the required third presentation
of K.

Let K D ŒG f! E� be a generalized 1-motive of one of the two types above. By
definition,E is an extension ofA 2 Ab byL 2 Aff . Note thatA is an abelian scheme
over S (where S D Spec.k/ in case (ii)). Let � W E ! A denote the projection. Then
we associate with the presentation K D ŒG ! E� the kernel algebra

A.G ! E/ D .� � �/�AG
E

over A. By Corollary 3.3.2 and Lemma 2.2.6, the category QcohK is equivalent to
the category of A.G ! E/-modules on A. In the case � D �fin

S the kernel algebra
A.G ! E/ is finite and we have an equivalence CohK ' A.K/-modc.

As we have seen before, the dual 1-motive is represented as D.K/ D ŒL� ! E 0�,
where E 0 D DŒG ! A� is an extension of OA by G�. Thus, denoting by � W E 0 ! OA
the natural map we also have the corresponding kernel algebra

A.L� ! E 0/ D .� � �/�AL�

E 0

over OA such that Qcoh D.K/ is equivalent to the category of modules over A.L� !
E 0/.

Theorem 4.4.2. The kernel algebras A.G ! E/ and A.L� ! E 0/ are Fourier–
Mukai dual to each other. Hence, we get an exact equivalence

D.QcohK/ ' D.Qcoh D.K//;

which also induces an equivalence between the bounded derived categories of coher-
ent sheaves in the case � D �fin

S .

Proof. Set H D L�. By construction, the extension E ! A by L is dual to the
homomorphism f 0 W H ! OA (in the sense of Lemma 3.5.3), while the extension
E 0 ! OA by G� is dual to the homomorphism f W G ! A. Applying Corollary 3.5.5
to the G-equivariant L-torsor E ! A (resp. H -equivariant G�-torsor E 0 ! OA), we
get isomorphisms of kernel algebras on A and on OA:

A.G ! E/ ' AG�H
A .L.f 0//;

A.H ! E 0/ ' AG�H
OA

.L.f //;

Here we use the notation of Corollary 3.7.4. It remains to apply this corollary.
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4.5. Fourier–Mukai duality for twisted sheaves. As in the previous section we
work with generalized 1-motives of type � 2 f�fin

S ; �
for
k
g. Let K be such a general-

ized 1-motive. Let alsoG be an object of For, soG is a finite flat commutative group
scheme over S if � D �fin

S , and G is a k-formal group if � D �for
k

. The definition
of twisting data from Section 3.7 has an obvious extension to this situation.

Definition. A G-twisting data T D .f; f 0; ˛; 
/ for K consists of homomorphisms
f W G ! K, f 0 W G ! D.K/, and of a line bundle ˛ over G equipped with
an isomorphism of 2-cocycles 
 W ƒ.˛/ ' .f � f 0/�P , where P is the Poincaré
biextension. If T D .f; f 0; ˛; 
/ is a G-twisting data for K then the dual G-twisting
data for D.K/ is D.T / D .f 0;�f; Ǫ ; 
0/, where Ǫ is given by (3.7.7) and 
0 is induced
by 
.

We will useG-twisting data as above to define twisted versions of the category of
G-equivariant sheaves onK. By Proposition 4.3.2 (i), twisting data T D .f; f 0; ˛; 
/
can be equivalently described by the data .f;B; ˛; 
/, where f W G ! K is a ho-
momorphism, B is a biextension of G and K by Gm, ˛ is a line bundle over G and

 W ƒ.˛/ ' .f � id/�B is an isomorphism of 2-cocycles.

Given a representationK D ŒH ! E� let us consider the composition off W G !
K with the corresponding morphism K ! HŒ1�. This will give an extension

0! H ! zH.f /! G ! 0

such that the composition zH.f / ! G ! K ! HŒ1� is zero. We claim that to a
morphism f one can canonically (up to an automorphism of zH.f /, compatible with
the extension structure) associate a morphism of exact triangles

H

id

��

�� zH.f /
Qf

��

�� G

f

��

�� HŒ1�

id
��

H �� E �� K �� HŒ1�.

Indeed, a morphism in the derived category f W G ! K can be represented by a
map ŒG1 ! G0� ! ŒH ! E� in the homotopy category of complexes, where
G1 � G0 and G0=G1 ' G. To such a map of complexes we associate the natural
homomorphism .G0˚H/=G1 ! E, identical onH . It remains to observe that one
has a natural isomorphism .G0˚H/=G1 ' zH.f / of extensions ofG byH , and that
our construction is compatible with the homotopy and with changing the complex
ŒG1 ! G0�. Mimicking the definition for the abelian varieties, let us consider the
line bundle

L.T / D p�
1˛ ˝B (4.5.1)

on G �E (where B is the biextension coming from our twisting data). Its pull-back
zL.T / to zH.f / � E has the natural structure of a 1-cocycle of zH.f / with values in
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Pic.E/, where the action of zH.f / on E is induced by the homomorphism Qf . Now
we define the twisted category of sheaves on ŒK=G� associated with T to be

QcohT
G.K/ D A

zH.f /
E . zL.T //-mod: (4.5.2)

If we have another representation K D ŒH 0 ! E 0� such that f W G ! K factors
throughE 0 ! K, then we can construct another presentationK D ŒH0 ! E0� using
Lemma 4.4.1 so that we have an exact triangle

E0 ! E ˚E 0 ! K ! E0Œ1�:

This easily implies that f W G ! K factors also through E0 ! K. Also, we have
morphisms from ŒH0 ! E0� to the original two presentations ofK. In this situation
the corresponding 1-cocycle zL.T0/ of zH0.f / with values in Pic.E0/ is isomorphic
to the pull-back of zL.T /with respect to the natural morphisms zH0.f /! zH.f / and
E0 ! E. Hence, we get an equivalence

A
zH0.f /

E0
. zL.T0//-mod ' A

zH.f /
E . zL.T //-mod

(see Lemma 3.4.3), which shows that the right-hand side of (4.5.2) does not depend
on the choice of a representation K D ŒH ! E�.

Now we will prove a generalization of Theorem 3.7.3 in this situation by con-
structing an equivalence of the derived categories of twisted sheaves on ŒK=G� and
ŒD.K/=G� associated with T and D.T /, respectively.

Theorem 4.5.1. In the above situation one has an exact equivalence

D.QcohT
G.K// ' D.QcohD.T /

G .D.K//:

In the situation of orbi-abelian schemes (i.e.,� D �fin
S ), this equivalence induces an

equivalence between the bounded derived categories of coherent sheaves.

Proof. We start by choosing dual representations for K and D.K/. Namely, let
K D ŒH1 ! E� be a representation of K, where H1 2 For and E is an extension

0! L1 ! E ! A! 0;

where A 2 Ab and L1 2 Aff . Consider the corresponding representation for the
dual 1-motive D.K/ D ŒH2 ! E 0�, where E 0 D DŒH1 ! A� and H2 D L�

1 , so that
we have an exact sequence

0! L2 ! E 0 ! OA! 0

with L2 D H�
1 .
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We want to express everything in terms of kernel algebras over A and OA so that
the dual sides enter into the picture in a symmetric way (as in Theorem 3.7.3). Recall
that the two categories we want to compare are

QcohT
G.K/ D A

zH1.f /
E . zL.T //-mod;

QcohD.T /
G .D.K// D A

zH2.f 0/
E 0 . zL.D.T //-mod/;

where zH1.f / and zH2.f
0/ are extensions of G corresponding to the composed mor-

phisms G
f�! K ! H1Œ1� and G

f 0

�! D.K/ ! H2Œ1�, respectively. Recall that
to define the relevant 1-cocycles we also use the morphisms Qf W zH1.f / ! E and
zf 0 W zH2.f

0/! E 0 lifting f W G ! K andf 0 W G ! D.K/, respectively.
Let zG.f; f 0/ denote the extension of G by H1 ˚H2 such that the correspond-

ing class in Ext1.G;H1 ˚ H2/ ' Ext1.G;H1/ ˚ Ext1.G;H2/ has components
represented by the extensions zH1.f / and zH2.f

0/. Then we have an exact sequence

0! H2 ! zG.f; f 0/! zH1.f /! 0:

Recall that H2 is Cartier dual to L1, so this extension is dual (in the sense of
Lemma 3.5.3 (i)) to some biextension B1 of zH1.f / � L1 by Gm. It is easy to
check that B1 is isomorphic to the pull-back of the biextension B of G � E (corre-
sponding to the homomorphism f 0 W G ! D.K/) under the natural homomorphism
zH1.f / � L1 ! G � E. It follows from the definition that zL.T / is .L1;B1/-

equivariant. Hence, we are in the situation of Proposition 3.5.4, where we view E as
an L1-torsor over A. Using this Proposition we obtain an isomorphism

.� � �/�A
zH1.f /

E . zL.T // ' A
zG.f;f 0/

A . zL1/; (4.5.3)

of kernel algebras over A, where � W E ! A is the projection and zL1 is the 1-
cocycle of zG.f; f 0/ with values in Pic.A/ associated with zL.T / by the construction
of Proposition 3.5.4. Thus, by Lemma 2.2.6, we get an equivalence

QcohT
G.K/ ' A

zG.f;f 0/
A . zL1/-mod:

It is not hard to check that in fact zL1 comes from a natural zG.f; f 0/-twisting data zT1

for A. More precisely, this twisting data consists of homomorphisms

f W zG.f; f 0/! zH1.f /
Qf�! E ! A; f 0 W zG.f; f 0/! zH2.f

0/
zf 0

�! E 0 ! OA;
and of the line bundle ��˛ on zG.f; f 0/, where � W zG.f; f 0/! G is the projection,
equipped with the isomorphism ƒ.��˛/ ' .f � f 0/�P induced by 
. To see that
the corresponding 1-cocycle of zG.f; f 0/ is isomorphic to zL1 one should look at their
pull-backs to zG.f; f 0/�E and observe that these pull-backs are both isomorphic to
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the pull-back of the line bundle L.T / onG�E given by (4.5.1). Indeed, this follows
from the fact that the pull-back of B to zG.f; f 0/ � E coincides with the pull-back
under the homomorphism zG.f; f 0/ � E ! E 0 � A of the natural biextension of
E 0�A. It is easy to check that the above isomorphism on zG.f; f 0/�E is compatible
with the L1-action and with the 1-cocycle structures.

Next, we should repeat the above procedure for the dual data .D.K/;D.T //. Note
that the extension zG.f; f 0/ will get replaced by zG.f 0;�f / (an extension of G by
H2 ˚ H1) which maps to zH2.f

0/ (an extension of G by H2) and to zH1.�f / (an
extension of G by H1). The result will be an isomorphism similar to (4.5.3),

.�0 � �0/�A
zH2.f 0/

E . zL.T // ' A
zG.f 0;�f /

OA
. zL2/;

of kernel algebras over OA, where �0 W E 0 ! OA is the projection, and zL2 is the
1-cocycle of zG.f 0;�f / with values in Pic. OA/ coming from a zG.f 0;�f /-twisting
data zT2 for OA that is defined similarly to zT1. Again, by Lemma 2.2.6, this gives an
equivalence

QcohD.T /
G .D.K// ' A

zG.f 0;�f /

OA
. zL2/-mod:

We have a natural isomorphism 	 W zH1.f /! zH1.�f / inducing Œ�1� onH1 and
identity on G. Since zG.f 0;�f / is built from the extensions zH2.f

0/ and zH1.�f /,
we get the induced isomorphism

� W zG.f; f 0/! zG.f 0;�f /
compatible with the projections to zH2.f

0/ and fitting into the commutative square

zG.f; f 0/

��


 �� zG.f 0;�f /

��
zH1.f /

� �� zH1.�f /

The map zG.f 0;�f / ! A forming a part of the twisting data zT2 is given by the
composition

zG.f 0;�f /! zH1.�f / h! E ! A; (4.5.4)

where h fits into the morphism of exact triangles

H1

id

��

�� zH1.�f /
h

��

�� G

�f

��

�� H1Œ1�

id
��

H1
�� E �� K �� H1Œ1�.

It follows that the composition h B 	 W zH1.f / ! E differs from � Qf by an auto-
morphism of zH1.f /, inducing identity on H1 and G. Adjusting 	 (and hence � )
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by this automorphism we can assume that h B 	 D � Qf . This implies that under
the isomorphism � W zG.f; f 0/ ! zG.f 0;�f / the map (4.5.4) gets identified with
�f . On the other hand, since � is compatible with the projections to zH2.f

0/, the
map zG.f 0;�f /! OA forming a part of the twisting data zT2 gets identified under �
with f 0. It is easy to see from this that under the isomorphism � the data zT2 gets
identified with the dual twisting data to zT1. Now the required equivalence follows
from Theorem 3.7.3.

Remark. One can generalize the notion of a G-twisting data to allow G to be non-
commutative (as we did in Section 3.7). Namely, let G be a finite flat group scheme
over S (resp. a formal group scheme, ldu-pf over k such that the action of Gal. Nk=k/
on G. Nk/ factors through Gal.k0=k/ for some finite field extension k � k0) equipped
with a homomorphism � W G ! G0 with G0 2 For. Then we can consider twisting
data consisting of morphisms f W G0 ! K, f 0 W G0 ! D.K/, and of a line bundle ˛
overG equipped with an isomorphism of 2-cocycles 
 W ƒ.˛/ ' .f��f 0�/�P over
G�G. One can still define the dual twists of the categories ofG-equivariant sheaves
on K and on D.K/ and prove the corresponding equivalence of derived categories.

Example. Let k be a field of characteristic zero. Let us denote by Ga the additive
group over k and by F the formal group obtained as the formal completion of Ga at
zero. Let us say that an extension of an abelian variety A over k by Gn

a is universal
if the corresponding homomorphism F n ! OA induces an isomorphism of formal
completions at zero (all such extensions are canonically isomorphic). Now let us

consider a generalized 1-motive of the form K D ŒF n ı! E�, where � W E ! A

is a universal extension of an abelian variety A of dimension n by Gn
a, and the

morphism ı B � W F n ! A induces an isomorphism of formal completions at zero.
It is easy to see that the dual generalized 1-motive D.K/ is of the same type. Let

D.K/ D ŒF n ı0

�! E 0�, where � 0 W E 0 ! OA is an extension of OA by Gn
a. Now let G be

a formal group scheme over k, isomorphic as a formal scheme to Spf.kŒŒt1; : : : ; tn��/,
and consider G-twisting data T for K with f and f 0 factoring as

G
��! E ! K; G

�0

�! E 0 ! D.K/:

Recall that, by Proposition 4.3.2 (iii)), the Poincaré biextension of K � D.K/ is
represented by the biextension .� � � 0/�P , where P is the Poincaré biextension
of A � OA. Therefore, the above G-twisting data for K induces G-twisting data
xT D . Nf ; xf 0; ˛; 
/ for A with Nf D � B � W G ! A and xf 0 D � 0 B �0. Conversely,
given G-twisting data xT for A, we can consider arbitrary liftings � and �0 of Nf
and xf 0, respectively (provided they exist), to obtain a G-twisting data for K as
above. Note that the category QcohT

G.K/ (resp. QcohD.T /
G .D.K//) is equivalent to

the category of modules over a D-algebra A on E (resp. D-algebra A0 on E 0).
Furthermore, if .ı; �/ W F n � G ! E (resp. .ı0; �0/ W F n � G ! E 0) induces an
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isomorphism of formal completions at zero then A (resp. A0) is a tdo. If in addition
�0 factors through ı0 W F n ! E 0 then A is isomorphic to the algebra of differential
operators onE. Thus, we get a lifting of the picture described in section 7 of [44] (see
Example after Theorem 3.7.3 on p. 233) to D-algebras on E and E 0. For example,
if Nf D xf 0 D 0 and � (resp. �0) is given by a homomorphism G ! ker.�/ D Gn

a

(resp. G ! ker.� 0/ D Gn
a/ inducing an isomorphism of formal completions at zero

then we get a derived equivalence for the corresponding pair of tdo’s on E and E 0.
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