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Abstract. For every compact Kähler manifold we give a canonical extension of Griffith’s
period map to generalized deformations, intended as solutions of Maurer–Cartan equation in
the algebra of polyvector fields. Our construction involves the notion of Cartan homotopy and
a canonicalL1-structure on mapping cones of morphisms of differential graded Lie algebras.
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Introduction

Let X be a compact Kähler manifold and denote by H�.X;C/ the graded vector
space of its de Rham cohomology. The goal of this article is to define a natural
transformation

ˆ W DefX ! AutH�.X;C/

from infinitesimal deformations of X to automorphisms of H�.X;C/. More pre-
cisely, for every localArtinian C-algebraA and every deformation ofX over Spec.A/
we define in a functorial way a canonical morphism of schemes

Spec.A/! GL.H�.X;C// DQ

n

GL.Hn.X;C//:

Our construction will be carried out by using the interplay of Cartan homotopies
and L1-morphisms and is compatible with classical constructions of the theory of
infinitesimal variations of Hodge structures [11], [21]. In particular:

(1) Via the natural isomorphism HX ' L
p;qH

q.�
p
X / induced by Dolbeault’s

theorem and the @N@-lemma, the differential of ˆ,

dˆ W H 1.TX /! Hom0.H�.X;C/;H�.X;C//;

is identified with the contraction operator: dˆ.�/ D i� where i�.!/ D � ³ !.
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(2) The contraction

i W H 2.TX /! Hom1.H�.X;C/;H�.X;C//

is a morphism of obstruction theories. In particular, since AutH�.X;C/ is smooth,
every obstruction to deformation of X is contained in the kernel of i .

(3) For every m let H�.Fm/ � H�.X;C/ be the subspace of cohomology classes
of closed .p; q/-forms, withp � m. Then the composition ofˆwith the natural
projection

GL.H�.X;C//! Grass.H�.X;C// DQ

n

Grass.Hn.X;C//;

f 7! f .H�.Fm//;

is the classical period map.

We will define and study the morphism ˆ using the framework of L1-algebras.
It is however useful to give also a more geometric definition in the following way.

Denote by AX D L
i A

i
X the space of complex valued differential forms on

X , by d D @ C N@ W AiX ! AiC1X the de Rham differential and by @AX � AX the
subspace of @-exact forms. A small variation of the almost complex structure is
determined by a form � 2 A0;1X .TX /: according to Newlander–Niremberg theorem,
the integrability condition of � is equivalent to .dC l�/

2 D 0, where l� W AiX ! AiC1X

is the holomorphic Lie derivative, defined by the formula

l�.!/ D @.� ³ !/C � ³ @!:
Notice that l�.ker @/ � @AX .

Assume therefore .d C l�/
2 D 0. According to @N@-lemma, the complex .@AX ; d /

is acyclic so that if � is sufficiently small, the complex .@AX ; d C l�/ is still acyclic.
In order to define the automorphism ˆ� W H�.X;C/ ! H�.X;C/, let Œ!� 2

H�.X;C/ and choose a d -closed form !0 2 AX representing Œ!� and such that
@!0 D 0. Since

.d C l�/!0 D @.� ³ !0/ 2 @AX and .d C l�/
2!0 D 0;

there exists ˇ 2 AX such that .d C l�/!0 D .d C l�/@ˇ. If i� is the contraction, then
it is not difficult to prove that d.ei� .!0 � @ˇ// D 0, and the cohomology class of
ei� .!0 � @ˇ/ does not depend on the choice of ˇ and !0, allowing to defineˆ�.Œ!�/
as the cohomology class of ei� .!0 � @ˇ/.

Equivalently, for every d -closed form ! 2 AX and every small variation of the
complex structure � we have

ˆ�.Œ!�/ D Œei� .! � d� � @ˇ/�; where @! D @d�; l�.! � d�/ D .d C l�/@ˇ:

Moreover, as direct consequence of the L1-approach, we will see that ˆ� is
invariant under the gauge action, where two integrable small variation of the almost
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complex structure �1, �2 are gauge equivalent if and only if they give isomorphic
deformations of X .

Our construction generalizes in a completely straightforward way to generalized
deformations ofX , defined as the solutions, up to gauge equivalence, of the Maurer–
Cartan equation in the differential graded Lie algebra

PolyX D
L

i

PolyiX ; PolyiX D
L

b�aDi�1
A
0;b
X .

Va
TX /;

endowed with the opposite of Dolbeault differential and the Schouthen–Nijenhuys
bracket.

Putting together all these facts, at the end we get for every m a commutative
diagram of morphism of functors of Artin rings

eDefX
ˆ �� AutH�.X;C/

�

��
DefX

i

��

p �� GrassH�.Fm/;H�.X;C/ ,

where eDefX is the functor of generalized deformations ofX , i is the natural inclusion,
GrassH�.Fm/;H�.X;C/ is the Grassmann functor with base point H�.Fm/, � is the
smooth morphism defined as �.f / D f .H�.Fm// and p is the classical mth period
map.

In view of this result is natural to candidate the composition �ˆ as period map
for generalized deformations.

Example. Our definition is compatible with yet existing notion of period map for
generalized deformations of Calabi–Yau manifolds used in some mirror symmetry
constructions [3].

In fact, if X is a Calabi–Yau manifold with volume element�, then by the Tian–
Todorov Lemma , every generalized deformation over Spec.A/ is represented by an
element � 2 Poly1X ˝mA such that

D� C 1
2
Œ�; �� D 0; @.� ³�/ D 0:

Under these assumptions our recipe gives

ˆ�.Œ��/ D Œei� .�/�

and therefore we recover the construction of [2].

Keywords and general notation. We assume that the reader is familiar with the
notion and main properties of differential graded Lie algebras and L1-algebras (we
refer to [8], [14], [15], [16], [19] as introduction to such structures); however the basic
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definitions are recalled in this article in order to fix notation and terminology. For the
whole article, K is a field of characteristic 0; every vector space is intended over K.
Art is the category of local Artinian K-algebras with residue field K. For A 2 Art we
denote by mA the maximal ideal of A. By abuse of notation, if F W Art ! Set is a
functor, we write � 2 F to mean � 2 F.A/ for some fixed A 2 Art.

Acknowledgments. We thank the referee for useful comments and for suggesting a
possible extension of the constructions presented in this article to generalized Kähler
manifolds [12].

1. Deformation functors associated with DGLA morphisms

We recall from [20] that to any morphism � W L ! M of differential graded Lie
algebras over a field K of characteristic 0 are naturally associated two functors
MC�;Def� W Art! Set of Artin rings in the following way:

MC�.A/ D f.x; ea/ 2 .L1 ˝mA/ � exp.M 0 ˝mA/ j dx C 1
2
Œx; x� D 0;

ea � �.x/ D 0g;
Def�.A/ D MC�.A/

gauge equivalence
;

where two solutions of the Maurer–Cartan equation are gauge equivalent if they
belong to the same orbit of the gauge action

.exp.L0 ˝mA/ � exp.dM�1 ˝mA// �MC�.A/
��!MC�.A/

given by the formula

.el ; edm/ � .x; ea/ D .el � x; edmeae��.l// D .el � x; edm�a�.��.l///:

The � in the rightmost term in the above formula is the Baker–Campbell–Hausdorff
multiplication; namely exey D ex�y . Note that if L D 0 and the differential on M
is trivial, then

Def�.A/ D exp.M 0 ˝mA/:

It has been shown in [6] that the suspended cone of �, i.e., the differential complex
.C�; �1/ given by the graded vector space

C� DL

i

C i�; C i� D Li ˚M i�1;

endowed with the differential

�1.l;m/ D .d l; �.l/ � dm/; l 2 L; m 2M;
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carries a natural compatible L1-algebra structure, which we shall denote zC.�/,
such that the associated deformation functor Def zC.�/ is naturally isomorphic to
Def�. More precisely, the map .l;m/ 7! .l; em/ induces a natural isomorphism
MC zC.�/ �!� MC�, and homotopy equivalence on MC zC.�/ is identified with gauge
equivalence on MC�.

The higher brackets

�n W
nV
C� ! C�Œ2 � n�; n � 2;

defining theL1-algebra structure zC.�/have been explicitly described in [6]. Namely,
one has

�2..l1; m1/ ^ .l2; m2// D .Œl1; l2�; 12 Œm1; �.l2/�C .�1/deg.l1/

2
Œ�.l1/;m2�/

and for n � 3
�n..l1; m1/ ^ � � � ^ .ln; mn//
D ˙ Bn�1

.n�1/Š
P

�2Sn

".	/Œm�.1/; Œ: : : ; Œm�.n�1/; �.l�.n//� : : : ��:

Here theBn’s are the Bernoulli numbers, " is the Koszul sign, and we refer to [6] for the
exact determination of the overall˙ sign in the above formulas (it will not be needed
in the present article). Note that the projection on the first factor �1 W zC.�/ ! L is
a linear L1-morphism.

By the functoriality of � 7! zC.�/, if

L1
fL ��

�1

��

L2

�2

��
M1

fM �� M2

is a commutative diagram of morphisms of differential graded Lie algebras, then
.x; ea/ 7! .fL.x/; e

fM .a// is a natural transformation of Maurer–Cartan functors
inducing a natural transformation

Def�1
! Def�2

:

Moreover, if fL and fM are quasi-isomorphisms, then Def�1
�!� Def�2

is an
isomorphism.

2. An example from Kähler geometry

LetX be a compact Kähler manifold. Consider the DGLA Hom�.AX ; AX / of graded
endomorphisms of the de Rham complex and their subDGLAs

L D ff 2 Hom�.AX ; AX / j f .ker @/ � @AXg;
M D ff 2 Hom�.AX ; AX / j f .ker @/ � ker @ and f .@AX / � @AXg:
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Then we have a commutative diagram of morphisms of DGLAs, where the vertical
arrows are the inclusions

0

�

��

L

�

��

�� L

�

��
Hom� �

ker @
@AX

; ker @
@AX

�
M ���� Hom�.AX ; AX /.

By the @N@-lemma, we have quasi-isomorphisms

.AX ; d / .ker @; d/! �
ker @
@AX

; 0
� Š .H�.X;C/; 0/:

Hence the horizontal arrows in the above commutative diagram are quasi-isomor-
phisms and we get isomorphisms of deformation functors

Def� ' Def� ' Def� D AutH�.X;C/ :

The isomorphism  W Def� ' AutH�.X;C/ is explicitly described as follows: Given
a Maurer–Cartan element .˛; ea/ 2 MC� and a cohomology class Œ!� 2 H�.X;C/,

 a.Œ!�/ D Œe Qa!0 � @ˇ0�;
where . Q̨ ; e Qa/ 2 MC� � MC� is gauge-equivalent to .˛; ea/, the differential form
!0 is a @-closed representative for the cohomology class Œ!�, and ˇ0 2 AX is such
that d.e Qa!0 � @ˇ0/ D 0. The cohomology class Œe Qa!0 � @ˇ0� is independent of the
choices of . Q̨ ; e Qa/, !0 and ˇ0. Since e Qa is an automorphism of @AX , we can write

 a.Œ!�/ D Œe Qa.!0 � @ˇ0/�
for any . Q̨ ; e Qa/ and !0 as above and any ˇ 2 AX such that de Qa.!0 � @ˇ/ D 0.

Remark 2.1. As � W L ,! Hom�.AX ; AX / is injective, the projection on the second
factorC� ! Hom��1.AX ; AX / induces an identificationH�.C�/ ' H��1.coker �/
and so in particular

H 1.C�/ �!� H 0.Hom�.ker @;AX=@AX // D Hom0.H�.ker @/;H�.AX=@AX //:

Hence the differential of  is naturally identified with the linear isomorphism

Hom0.H�.ker @/;H�.AX=@AX // ' Hom0.H�.X;C/IH�.X;C//;

induced by the @N@-lemma and the de Rham isomorphism.

For later use, we give a more explicit description of the map  by writing a map
z W MC� ! AutH�.X;C/ inducing it. To define the map z we need a few preliminary
remarks.
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Lemma 2.2. If .˛; ea/ 2 MC�, then in the associative algebra Hom�.AX ; AX / we
have the equality

e�adea D d C ˛:

Proof. By the definition of the gauge action in the DGLA Hom�.AX ; AX /, one has
for every x 2 Hom0.AX ; AX /, y 2 Hom1.AX ; AX / the formula

ex � y D ex.d C y/e�x � d:

In particular, e�adea D d C e�a � 0.

Corollary 2.3. If .˛; ea/ 2 MC�, then the graded subspaces

ea.ker @/; ea.@AX /

are subcomplexes of .AX ; d /. Moreover, the map

ea W � ker @
@AX

; 0
�! �

ea.ker @/
ea.@AX /

; 0
�

is an isomorphism of complexes and the natural maps

.AX ; d / .ea.ker @/; d/! �
ea.ker @/
ea.@AX /

; 0
�

are quasi-isomorphisms.

Proof. Both .@AX ; d / and .ker @; d/ are subcomplexes of .AX ; d /. Because
dea.v/ D ea.dv C ˛.v// with ˛.ker @/ � @AX , we have dea.@AX / � ea.@AX /

and dea.ker @/ � ea.ker @/. The induced differential on the quotient space ea.ker @/
ea.@AX /

is trivial since d.ker @/ � @AX by the @N@-lemma. Again by the @N@-lemma the complex
.@AX ; d / is acyclic and therefore the morphisms of complexes

.AX ; d / .ker @; d/! �
ker @
@AX

; 0
�

are quasi-isomorphisms. Since every infinitesimal perturbation of an acyclic com-
plex is still acyclic, the complex .ea.@AX /; d/ is acyclic and so the morphisms of
complexes

.AX ; d / .ea.ker @/; d/! �
ea.ker @/
ea.@AX /

; 0
�

are quasi-isomorphisms.

Definition 2.4. The isomorphism

z a W H�.X;C/! H�.X;C/
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associated to a Maurer–Cartan element .˛; ea/ via the natural map MC� ! Def� '
Aut0.H�.X IC/ is obtained by the de Rham isomorphismH�.X;C/ D H�.AX ; d /
and the chain of quasi-isomorphisms

AX ker @�� �� ker @
@AX

��

AX ea.ker @/�� �� ea.ker @/
ea.@AX /

.

More explicitly,
z a.Œ!�/ D Œea.!0 � @ˇ/�

for any @-closed representative !0 of the cohomology class Œ!� and any ˇ 2 AX such
that dea.!0 � @ˇ/ D 0.

Proposition 2.5. The natural transformation z W MC� ! AutH�.X;C/ is gauge
invariant and therefore factors to  W Def� ! AutH�.X;C/.

Proof. To show that z a�.�l/ D z a, note that, since l.ker @/ � @AX , we have
e�l.ker @/ D ker @, e�l.@AX / D @AX , and

e�l W � ker @
@AX

; 0
�! �

ker @
@AX

; 0
�

is the identity. To prove that z dm�a D z a, notice that we have a commutative diagram
of morphisms of complexes

AX

edm

��

ker @�� ��

edm

��

ker @
@AX

edm

��

AX edm.ker @/�� �� edm.ker @/
edm.@AX /

which, since dm is homotopy equivalent to zero, induces the commutative diagram
of isomorphisms

H�.X IC/
id

��

ker @
@AX

����

edm

��

H�.X IC/ edm.ker @/
edm.@AX /

.����

Finally, gauge invariance of z , together with the explicit formulae for z .Œ!�/ and
 .Œ!�/ written above immediately imply that z induces  .
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3. Morphisms of deformation functors associated to Cartan homotopies

In this section we formalize, under the notion of Cartan homotopy, a set of standard
identities that often arise in algebra and geometry [4], Appendix B, and show how
to any Cartan homotopy can be canonically associated a natural transformation of
deformation functors.

Let L and M be two differential graded Lie algebras. For a given linear map
i 2 Hom�1.L;M/, let l W L!M be the map defined as

a 7! la D d ia C ida:

Definition 3.1. The map i is called a Cartan homotopy for l if

iŒa;b� D Œia; lb�; Œia; ib� D 0:
for every a; b 2 L.

It is straightforward to show that the condition iŒa;b� D Œia; lb� implies that l is a
morphism of differential graded Lie algebras.

Example 3.2. The name Cartan homotopy has a clear origin in differential geometry.
Namely, let M be a differential manifold, X.M/ be the Lie algebra of vector fields
on M , and End�.��.M// be the Lie algebra of endomorphisms of the de Rham
algebra ofM . The Lie algebra X.M/ can be seen as a DGLA concentrated in degree
zero, and the graded Lie algebra End�.��.M// has a degree one differential given
by ŒddR;��, where ddR is the de Rham differential. Then the contraction

i W X.M/! End�.��.M//Œ�1�
is a Cartan homotopy and its differential is the Lie derivative

Œd; i � D L W X.M/! End�.��.M//:

In fact, by classical Cartan’s homotopy formulas [1], Section 2.4, for any two vector
fields X and Y on M , we have

(1) LX D ddRiX C iXddR D ŒddR; iX �,

(2) iŒX;Y � D LX iY � iYLX D ŒLX ; iY � D ŒiX ;LY �,

(3) ŒiX ; iY � D 0.

Note that the first Cartan formula above actually states that Œd; i � D L. Indeed X.M/

is concentrated in degree zero and then its differential is trivial.

Remark 3.3. The composition of a Cartan homotopy with a morphism of DGLAs is
a Cartan homotopy. If i W L! MŒ�1� is a Cartan homotopy and � is a differential
graded-commutative algebra, then its natural extension

i ˝ id W L˝�! .M ˝�/Œ�1�; a˝ ! 7! ia ˝ !;
is a Cartan homotopy.
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Remark 3.4. By definition, l is the differential of i in the complex Hom�.L;M/

and so i is a homotopy between l and the trivial map. Then the map l W L!M is a
null-homotopic morphism of DGLAs and

i W L! .coker l/Œ�1�; i W ker l !MŒ�1�
are morphisms of differential graded vector spaces.

Proposition 3.5. Let l W L! M be a DGLA morphism, and let i W L! MŒ�1� be
a Cartan homotopy for l . Then the linear map Qi W L! zC.l/ given by Qi .a/ D .a; ia/
is an L1-morphism. In particular, the map a 7! .a; eia/ induces a natural trans-
formation of Maurer–Cartan functors MCL ! MCl , and consequently a natural
transformation of deformation functors DefL ! Defl .

Proof. By the explicit expression for the higher brackets

�n W
nV
C� ! C�Œ2 � n�; n � 2;

defining the L1-algebra structure zC.�/, it is straightforward to check that Qi is a
morphism of complexes commuting with every bracket. Indeed, Qi .da/ D �1.Qi .a//
is the identity ida D .�d/ia C la; the identity Qi .Œa; b�/ D �2.Qi .a/ ^ Qi .b// is

iŒa;b� D 1
2
Œia; lb�C .�1/deg.a/

2
Œla; ib� D Œia; lb�;

and �n.Qi .x1/ ^ � � � ^ Qi .xn// D 0 for any x1; x2; : : : ; xn and any n � 3, since

Œia; Œib; lc� D Œia; iŒb;c�� D 0
for any a, b, c.

Since theL1-morphism Qi is linear, the map l 7! .l; il/ is a morphism of Maurer–
Cartan functors MCL ! MC zC.l/. To conclude the proof, compose this morphism

with the isomorphism MC zC.l/
��! MCl given by .l;m/ 7! .l; em/.

Corollary 3.6. Let i W N !MŒ�1� be a Cartan homotopy for l W N !M , let L be
a subDGLA of M such that l.N / � L, and let � W L ,! M be the inclusion. Then
the linear map

ˆ W N ! zC.�/; ˆ.a/ D .la; ia/;
is a linear L1-morphism. In particular, the map a 7! .la; e

ia/ induces a natu-
ral transformation of Maurer–Cartan functors MCN ! MC�, and consequently a
natural transformation of deformation functors DefN ! Def�.

Proof. We have a commutative diagram of differential graded Lie algebras

N
l ��

l

��

L

�

��
M M
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inducing an L1-morphism zC.l/! zC.�/. Composing this morphism with the L1-
morphism Qi W N ! zC.l/ given by Proposition 3.5, one gets the L1-morphism ˆ.

4. Polyvector fields and generalized periods

The notion of Cartan homotopy generalizes immediately to sheaves of DGLAs. In
this section we give another example of Cartan homotopy, which will be used later.

Let X be a complex manifold and denote by

� TX;C D T 1;0X ˚ T 0;1X the complexified differential tangent bundle,

� TX ' T 1;0X the holomorphic tangent bundle,

� A
p;q
X the sheaf of differentiable .p; q/-forms and by A

p;q
X .E/ the sheaf of .p; q/-

forms with values in a holomorphic vector bundle E,

� A
p;q
X and Ap;qX .E/ the vector spaces of global sections of A

p;q
X and A

p;q
X .E/,

respectively.

The direct sum

AX DL

i

Ai
X ; where Ai

X D
L

pCqDi
A
p;q
X ;

endowed with the wedge product ^, is a sheaf of graded algebras; we denote by
Homa;b.AX ;AX / the sheaf of its C-linear endomorphisms of AX of bidegree .a; b/.
Notice that @ and N@ are global sections of Hom1;0.AX ;AX / and Hom0;1.AX ;AX /,
respectively. The direct sum Hom�.AX ;AX / D L

k

L
aCbDk Homa;b.AX ;AX /

is a sheaf of graded associative algebras, and so a sheaf of differential graded Lie
algebras with the natural bracket

Œf; g� D fg � .�1/deg.f / deg.g/gf

and differential Œd;�� D Œ@C N@;��.
For any integer .a; b/ with a � 0 and b � 0, let Gersta;bX be the sheaf

Gersta;bX D A
0;b
X .^�aTX /:

The direct sum Gerst�
X D

L
k

L
aCbDk Gersta;bX is a sheaf of differential Gersten-

haber algebras, with the wedge product

^W Gersta1;b1

X ˝ Gersta2;b2

X ! Gersta1Ca2;b1Cb2

X

as graded commutative product, the degree 1 differential

N@ W Gersta;bX ! Gersta;bC1
X
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defined in local coordinates by the formula

N@�
 @
@zI

� D N@.
/ @
@zI
; 
 2 A

0;�
X ;

and the degree 1 bracket

Œ � ; � �G W Gersta1;b1

X ˝ Gersta2;b2

X ! Gersta1Ca2C1;b1Cb2

X

defined in local coordinates by the formula
�
fd NzI @

@zH
; gd NzJ @

@zK

�
G D d NzI ^ d NzJ

�
f @
@zH

; g @
@zK

�
SN:

Here Œ � ; � �SN denotes the Schouten–Nijenhuis bracket on A0
X .^�TX /, i.e., the odd

graded Lie bracket obtained by extending the usual Lie bracket on A0
X .TX / by im-

posing
Œ�; f �SN D �.f /; � 2 A0.TX /; f 2 A0

X

and the odd graded Poisson identity

Œ�; �1 ^ �2�SN D Œ�; �1�SN ^ �2 C .�1/deg.�/.deg.�1/�1/�1 ^ Œ�; �2�SN:

The contraction of differential forms with vector fields is used to define an injective
morphisms of sheaves of bigraded vector spaces: the contraction map

i W Gersta;bX ! Homa;b.AX ;AX /; � 7! i� ; i�.!/ D � ³ !:
The contraction map is actually a morphism of sheaves of bigraded associative alge-
bras:

i�^� D i�i�:

In particular, since .Gerst�
X ;^/ is a graded commutative algebra, we obtain that

Œi� ; i�� D 0; for all �; � 2 Gerst�
X :

Note that iterated contractions give a symmetric map

i .n/ W
nJ

Gerst�
X ! Hom�.AX ;AX /; �1 ˇ �2 ˇ � � � ˇ �n 7! i�1

i�2
: : : i�n

:

Since Gerst�
X is a sheaf of differential graded Gerstenhaber algebras, its desuspension

Poly�
X D GerstŒ�1��X

is a sheaf of differential graded Lie algebras. Note that, due to the shift, the differential
D in Poly�

X is �N@, i.e., in local coordinates

D W PolykX ! PolykC1
X
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is given by the formula

D
�

 @
@zI

� D �N@.
/ @
@zI
; 
 2 A

0;�
X :

The contraction map i W Gerst�
X ! Hom�.AX ;AX / can be seen as a linear map

i W Poly�
X ! Hom�.AX ;AX /Œ�1�:

More general, via the decalage isomorphism, the iterated contraction is a graded
antisymmetric map

i .n/ W
nV

Poly�
X ! Hom�.AX ;AX /Œ�n�:

Lemma 4.1. In the notation above, for every �; � 2 Poly�
X we have

iD� D �ŒN@; i� �; iŒ�;�� D Œi� ; Œ@; i���; Œi� ; i�� D 0:

Proof. The third equation has been proved above, and the first equation is completely
straightforward: it just expresses the Leibniz rule for N@. To prove the second equation,
let

ˆ.�; �/ D iŒ�;�� � Œi� ; Œ@; i���:
Then, using i�^� D i�i� , the (shifted) odd Poisson identity Œ�; �1 ^ �2� D Œ�; �1� ^
�2 C .�1/.deg.�/�1/ deg.�1/�1 ^ Œ�; �2� and the third equation Œi� ; i�� D 0, one finds

ˆ.�; �1 ^ �2/ D ˆ.�; �1/i�2
C .�1/.deg.�/�1/ deg.�1/i�1

ˆ.�; �2/

and

ˆ.�1 ^ �2; �/ D i�1
ˆ.�2; �/C .�1/.deg.�2/.deg.�/�1/ˆ.�1; �/i�2

:

Therefore, to prove ˆ.�; �/ D 0 for any �, � one just needs to prove ˆ.�; �/ D 0

for �; � 2 A0
X [ fd Nzig [ f@=@zj g, where z1; : : : ; zn are local holomorphic coordi-

nates. This is straightforward and is left to the reader; see also Lemma 7 of [18] and
Lemma 7.21 of [19].

Corollary 4.2. The contraction map i W Poly�
X ! Hom�.AX ;AX /Œ�1� is a Cartan

homotopy and the induced morphism l of sheaves of differential graded Lie algebras
is the holomorphic Lie derivative

l W Poly�
X ! Hom�.AX ;AX /;
� 7! l� D Œ@; i� �; l�.!/ D @.� ³ !/C .�1/deg.�/� ³ @!:

Moreover, l is an injective morphism of sheaves.
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Proof. As in Section 3, let l� D Œd; i� � C iD� . Since iD� D �ŒN@; i� �, we find
l� D Œ@; i� �. The identity iŒ�;�� D Œi� ; Œ@; i��� then reads iŒ�;�� D Œi� ; l�� and this
together with Œi� ; i�� D 0 tells us that the contraction map i is a Cartan homotopy.
Consequently, the holomorphic Lie derivative l� D Œ@; i� � is the induced morphism
of sheaves of differential graded Lie algebras. Injectivity of l is easily checked in
local coordinates.

Corollary 4.2, applied to global sections, shows that the contraction map

i W PolyX D
L

i;j

A0;i .
�jV
TX /! Hom�.AX ;AX /Œ�1�

is a Cartan homotopy, as well as its restriction to the Kodaira–Spencer DGLA
KSX DL

i A
0;i .TX /.

Remark 4.3. The composition of the inclusion KSX ,! PolyX with the iterated con-
traction i .n/ W Vn PolyX ! Hom�.AX ;AX /Œ�n� induces in cohomology a graded
antisymmetric map

Vn
H�.KSX /! Hom�.H�.X;C/;H�.X;C//Œ�n�. In partic-

ular, from the isomorphism of graded vector spaces H 1.KS�
X / ' H 1.TX /Œ�1� and

the decalage isomorphism, the iterated contraction gives a symmetric morphism

i .n/ W
nJ
H 1.TX /! Hom0.H�.X;C/;H�.X;C//:

It is well known [10] and easy to prove that the image of i .n/ consists of self-adjoint
operators with respect the cup product on H�.X;C/.

Under the identification H�.X;C/ D L
p;qH

q.X;�
p
X /, when dimX D n the

morphism i .n/ reduces to the Yukawa coupling

i .n/ W
nJ
H 1.TX /!

2J
Hn.X;OX /:

Now, as in Section 2, consider the DGLA

L D ff 2 Hom�.AX ; AX / j f .ker @/ � @AXg;
and let � W L ,! Hom�.AX ; AX / be the inclusion. Since l.PolyX / � L by Corol-
lary 3.6, we have a natural transformation of deformation functors DefPolyX

! Def�
induced, at the Maurer–Cartan level, by the map � 7! .l� ; e

i� /.
The functor DefPolyX

, which we denote by eDefX , is called the functor of gener-
alized deformations of X ; see [2]. We have shown in Section 2 that there exists a
natural isomorphism  W Def� ! AutH�.X;C/. By these considerations, we obtain:

Theorem 4.4. The linear map

PolyX ! zC.�/; � 7! .l� ; i�/;
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is a linear L1-morphism and induces a natural transformation of functors

ˆ W eDefX ! AutH�.X;C/;

given at the level of Maurer–Cartan functors by the map � 7!  i�
.

Proposition 4.5. Via the natural identificationsH 1.PolyX / D
L
i�0H i .^iTX / and

H�.X;C/ DL
p;qH

q.X;�
p
X / given by the Dolbeault’s theorem and the @N@-lemma,

the differential of ˆ,

dˆ W H 1.PolyX /! Hom0.H�.X;C/;H�.X;C//;

is identified with the contraction

.
L

i�0
H i .^iTX //˝ .L

p;q

H q.X;�
p
X //!

L

i;p;q

H qCi .X;�p�i
X /:

Proof. By Lemma 4.1 we have a commutative diagram of differential complexes

.Hom��1.AX ; AX /;�ad N@/ �� .Hom��1.ker @;AX=@AX /;�add /

.PolyX ;D/

i

��

i

�����������������������

where we have used the fact that on ker @ and onAX=@AX the differentials add and ad N@
coincide. Using the identification H�N@ .AX / D H�.X;C/ coming from Dolbeault’s

theorem and the @N@-lemma, and by Remark 2.1, the above commutative diagram
induces the commutative diagram in cohomology

Hom0.H�.X;C/;H�.X;C// Hom0.H�.ker @/;H�.AX=@AX //.
d ��

H 1.PolyX /

i

��

i

������������������������

Since, by Theorem 4.4, the differential of ˆ is dˆ D d B i , which completes the
proof.

As a corollary of Theorem 4.4, the linear map � 7! .l� ; i�/ induces a morphism
of obstruction spaces H 2.Poly/ ! Hom1.H�.X;C/;H�.X;C// commuting with
ˆ and obstruction maps [5], [17]. The same argument of Proposition 4.5 shows that
this morphism is naturally identified with the contraction

.
L

i�0
H iC1.

iV
TX //˝ .L

p;q

H q.X;�
p
X //!

L

i;p;q

H qCiC1.X;�p�i
X /:

Since the deformation functor AutH�.X;C/ is smooth, we obtain the following version
of the so-called Kodaira principle (ambient cohomology annihilates obstruction):
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Proposition 4.6. The obstructions to extended deformations of a compact Kähler
manifold X are contained in the subspace

L

i�0
T

p;q

ker.H iC1.
iV
TX /

i�! Hom.H q.X;�
p
X /;H

qCiC1.X;�p�i
X //

of H 2.PolyX /.

As an immediate corollary we recover the fact that extended deformations of
compact Calabi–Yau manifolds are unobstructed [2]. Indeed, ifX is ann-dimensional
compact Calabi–Yau manifold, then the contraction pairing

H iC1.
iV
TX /˝H 0.X;�nX /! H iC1.X;�n�i

X /

is nondegenerate for any i � 0 .

5. Restriction to classical deformations

Let .X;OX / be a complex manifold. It is well known that the infinitesimal deforma-
tions of the complex structure of X are governed by the Kodaira–Spencer DGLA of
X . More precisely, there is a natural isomorphism of deformation functors

DefKSX
�!� DefX ;

which map a Maurer–Cartan element � 2 A0;1X .TX / to the complex manifold .X;O�/,
where the structure sheaf O� is defined by

O� D kerfN@� j A0;0
X ! A

0;1
X g D ff 2 A0

X j .N@C l�/f D 0gI
see [4], [9], [14], Ex. 3.4.1, or [13]. The above equations must be interpreted as
identities among functors of Artin rings; namely, they mean that for any local Artin
algebra .B;mB/ the Kuranishi data � 2 MCKSX

.B/ � A0;1X .TX /˝mB are mapped
to the family .X;O�/ of complex manifolds over Spec.B/, whose structure sheaf O�
is defined by

O� D kerfN@� W A0;0
X ˝ B ! A

0;1
X ˝ Bg D ff 2 A0

X ˝ B j .N@C l�/f D 0g:
Let now

AX D F 0� 	 F 1� 	 � � �
be the Hodge filtration of differential forms on the complex manifold .X;O�/, i.e.,
for every m � 0, Fm

�
is the complex of global sections of the differential ideal sheaf

F m
�
� AX generated by .dO�/

m. Again, here we write AX for the functor of Artin
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rings defined by B 7! AX ˝B . IfX is a compact Kähler manifold, the cohomology
of .Fm

�
; d / naturally embeds into the cohomology of .AX ; d /. Since the dimension

of H�.Fm
�
; d / is independent of �, one can look at H�.Fm

�
; d / as a different linear

embedding of H�.Fm; d / into H�.X IC/. Hence � 7! H�.Fm
�
; d / is a map

DefX ! GrassH�.Fm/;H�.X IC/;

called the m-th period map.
The inclusion of DGLAs KSX ,! PolyX induces an embedding of deformation

functors DefX !eDefX . Hence, the restriction ofˆ to DefX is a natural transforma-
tion

ˆ W DefX ! AutH�.X;C/ :

Theorem 5.1. For any m � 0, the map ˆ W DefX ! AutH�.X;C/ lifts the m-th
period map DefX ! GrassH�.Fm/;H�.X IC/.

Proof. Let � be a Maurer–Cartan element in KSX . Then .l� ; ei� / 2 MC� is a Maurer–
Cartan element with l� of bidegree .0; 1/. Let Œ!� be an element in H�.Fm/. To
compute  � Œ!� we pick a @-closed representative for the class Œ!�, which we can
assume to be !, and then we take the cohomology class of a d -closed representative
of ei�! in ei� .ker @/=ei� .@AX /, i.e., we have � Œ!� D Œei� .!�@ˇ/� for any ˇ 2 AX
such that dei� .! � @ˇ/ D 0. For such a ˇ we have

0 D e�i�dei� .! � @ˇ/ D �N@@ˇ C l�.!/ � l�.@ˇ/

and so

.N@C l�/@ˇ D l�.!/:

Write �<m and ��m for the components of a differential form � in
L
i<mA

i;�
X and in

L
i�mA

i;�
X , respectively. Since both l� and .N@ C l�/ are homogeneous of bidegree

.0; 1/, we have

l�.!/ D .l�.!//�m D ..N@C l�/@ˇ/�m D .N@C l�/@.ˇ�m�1/:

Hence  i�
Œ!� D Œei� .! � @.ˇ�m�1//� 2 H�.ei�Fm/, and so

ˆ�.H
�.Fm// D H�.ei�Fm/:

On the other hand, the period of the infinitesimal deformation O� D ker.N@C l�/ is
H�.Fm

�
/ � H�.AX /, where Fm

�
is the complex of global sections of the differential

ideal sheaf F m
�
� AX generated by .dO�/

m. Since ei� is the identity on A
0;0
X , by

Lemma 2.2 we can write

e�i� .dO�/ D e�i�dei� O� D .@C N@C l�/O� D @O� � @A0;0
X � A

1;0
X :
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Since ei� W AX ! AX is a morphism of sheaves of differential graded commutative
algebras, we get e�i� .F m

�
/ � F m and then, by rank considerations, ei� .F m/ D F m

�
.

Hence
ˆ�.H

�.Fm// D H�.F m
� /:

Remark 5.2. That the m-th period map DefX ! GrassH�.Fm/;H�.X IC/ is induced
by an L1-morphism was shown in [7]. Namely, let �m W Lm ,! Hom�.AX ; AX /
the inclusion of the subalgebra

Lm D ff 2 Hom�.AX ; AX / jf .Fm/ � Fmg
in the DGLA of endomorphisms of AX . Then Def�m

' GrassH�.Fm/;H�.X/, and
the map � 7! .l� ; i�/ is an L1-morphism between KSX and C�m

inducing the m-th
period map.
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