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Abstract. In this paper we study finite generation of the Ext algebra of a Brauer graph algebra by
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algebras that are Koszul and those that are K2.
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1. Introduction

This paper studies finite generation, and the corresponding degrees of the generators,
of the Ext algebra of a Brauer graph algebra. We show that if the Brauer graph has
no truncated edges then the Ext algebra of the associated Brauer graph algebra is
finitely generated in degrees 0, 1 and 2. As a result we characterize those Brauer
graph algebras that are K2 in the sense of Cassidy and Shelton [7]. Moreover, we
determine the Koszul and the d -Koszul Brauer graph algebras.

Let K be a field, Q a finite quiver and I an admissible ideal of KQ. Assume
that the algebra ƒ D KQ=I is finite dimensional and indecomposable. Koszul
algebras play an important role in representation theory, and it is well-known that
if ƒ D KQ=I is a Koszul algebra then the Ext algebra E.ƒ/ is finitely generated
in degrees 0 and 1. Moreover the ideal I is quadratic, that is, I is generated by
homogeneous elements of length 2. This work was motivated by the study of the
Koszul Brauer graph algebras, and we determine these algebras in Theorem 3.4,
before investigating several generalizations of this concept among Brauer graph
algebras.

One such generalization is the class of d -Koszul algebras, where d > 2; these
algebras were introduced by Berger in [3], in order to include some cubic Artin–
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Schelter regular algebras and anti-symmetrizer algebras. Berger, Dubois-Violette
and Wambst [4], and Green, Marcos, Martínez-Villa and Zhang [11] both continued
the study of d -Koszul algebras, extending known properties of Koszul algebras. It has
since been shown that some quantum groups and Yang–Mills algebras are included
in this framework.

A graded algebraƒ D KQ=I is a d -Koszul algebra if the nth projective module
in a minimal graded projective ƒ-resolution of ƒ0 (the K-space spanned by the
vertices ofQ) can be generated in degree ı.n/, where the map ı W N! N is defined
by

ı.n/ D

(
n
2
d if n is even;
n�1
2
d C 1 if n is odd:

In particular, the ideal I of a d -Koszul algebraKQ=I is generated by homogeneous
elements of length d . Note that if d D 2, we recover the usual (quadratic) Koszul
algebras. The d -Koszul Brauer graph algebras are fully determined in Theorem 3.4.

It was shown in [11] that the Ext algebra of a d -Koszul algebra is finitely generated
in degrees 0, 1 and 2; thus d -Koszul algebras are K2 algebras in the sense of
Cassidy and Shelton [7]. They define a graded algebra A to be K2 if its Ext algebra
E.A/ is generated as an algebra in degrees 0, 1 and 2. In Theorem 9.1, we give
a sufficient condition for the Ext algebra of a Brauer graph algebra to be finitely
generated in degrees 0; 1 and 2. We then characterize the K2 Brauer graph algebras
in Theorem 10.4.

Many other generalizations of Koszul algebras have been introduced more
recently, such as almost Koszul algebras [5], piecewise Koszul algebras [17],
.p; �/-Koszul algebras [18], and multi-Koszul algebras [14]. In this paper, we
study a generalization of the Koszul property by Green and Marcos [10], where
they considered algebras KQ=I in which the ideal I is generated by homogeneous
elements of more than one length. The algebra KQ=I is 2-d -homogeneous if I can
be generated by homogeneous elements of lengths 2 and d . Green and Marcos
then introduced 2-d -determined and 2-d -Koszul algebras in [10]. We discuss
these algebras in Section 10, but note here simply that a 2-d -Koszul algebra is
2-d -determined, which in turn is 2-d -homogeneous; moreover a 2-d -determined
algebra is 2-d -Koszul if its Ext algebra is finitely generated. Having determined the
2-d -homogeneous Brauer graph algebras in Section 3, we return to these algebras
in Section 10, where we give a positive answer for Brauer graph algebras to all
three questions posed in [10]. As a consequence we are also able to give new
classes of 2-d -Koszul algebras, which was one of our motivations for this paper.
In particular, the second question in [10] asks whether it is the case that the Ext
algebra of a 2-d -Koszul algebra of infinite global dimension is necessarily generated
in degrees 0, 1 and 2. This is indeed the case for Brauer graph algebras. Moreover,
for a 2-d -homogeneous Brauer graph algebra A� with Brauer graph � , we show
in Theorem 10.6, that the following four conditions are equivalent: (1) � has no
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truncated edges, (2) A� is 2-d -determined, (3) A� is 2-d -Koszul, and (4) the Ext
algebra ofA� is generated in degrees 0, 1 and 2 (that is,A� isK2). It should be noted
that these properties are not, in general, equivalent, as is demonstrated by Cassidy
and Phan in [6].

This paper extends the work of Antipov and Generalov, who showed in [1] that
the Ext algebra of a symmetric Brauer graph algebra is finitely generated. We remark
that [1] used different methods, and gave no details of the degrees of the generators.

The body of the paper proves the necessary structural results to describe the
uniserial modules, string modules, syzygies and projective resolutions of the simple
modules. The paper uses the covering theory for Brauer graphs and Brauer graph
algebras developed in [12]. We see at the start of Section 4, that [12] enables us to
reduce to the case where the Brauer graph has no loops or multiple edges and where
the multiplicity function is identically one; this vastly reduces the computations
required to determine the Ext algebra. The definition of a Brauer graph algebra
also requires a quantizing function q in order to define some of the relations (see
Section 2). If the field is algebraically closed and if either the Brauer graph is a tree
or the Brauer graph algebra is symmetric, then we may choose q � 1. At the end
of Section 4, we discuss the quantizing function q when the Brauer graph algebra is
graded (but not necessarily symmetric or a Brauer tree algebra), and we show that
we can assume, given some mild assumptions on the fieldK, that q � 1 in the study
of the Ext algebra.

We would like to thank the referee for their helpful comments.

2. Background and notation

We now introduce Brauer graph algebras, giving the definitions and notation which
we use throughout the paper.

Let � be a finite connected graph with at least one edge. We denote by �0 the
set of vertices of � and by �1 the set of edges of � . We equip � with a multiplicity
function mW�0 ! N n f0g and, for each vertex in � , we fix a cyclic ordering o of the
edges incident with this vertex. We call the triple .�; o;m/ a Brauer graph. We may
denote a Brauer graph by � , where the choice of cyclic ordering and multiplicity
function are suppressed. In all examples a planar embedding of � is given and we
choose the cyclic ordering to be the clockwise ordering of the edges around each
vertex.

For each ˛ 2 �0, let val.˛/ denote the valency of ˛, that is, the number of edges
incident with ˛ where we count each loop as two edges. We let �.˛/1 denote the set of
edges of� which are incidentwith the vertex˛. LetDmDf˛2�0 j m.˛/ val.˛/D1g.
If s is an edge in � such that s 2 �.˛/1 for some ˛ 2 Dm then we say that s is a
truncated edge at the vertex˛. Thus an edge s is truncated at˛ if and only ifm.˛/ D 1
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and val.˛/ D 1. If s 2 �.˛/1 for some ˛ 2 �0 nDm then we say that an edge t in �
is the immediate successor of the edge s at the vertex ˛ if t 2 �.˛/1 and t directly
follows s in the cyclic ordering around ˛. We denote the immediate successor of s at
the vertex ˛ by s>. In particular, if s 2 �.˛/1 where val.˛/ D 1 andm.˛/ > 1, then s
is its own immediate successor so s> D s. An edge s which is a truncated edge at
the vertex ˛ has no immediate successor at the vertex ˛. For ease of notation, from
now on we will simply write successor instead of immediate successor. We remark
that truncated edges are of fundamental importance in determining the behaviour of
the Ext algebra of a Brauer graph algebra.

Following [2] and [15], we letK be a field and introduce the Brauer graph algebra
of a Brauer graph � . We associate to � a quiver Q� and a set of relations �� in the
path algebra KQ� , which we call the Brauer graph relations, defined below. Let I�
be the ideal of KQ� which is generated by the set �� . We define the Brauer graph
algebra A� of � to be the quotient A� D KQ�=I� . We keep the notation of [12]
throughout this paper, and now defineQ� and �� .

If the Brauer graph � is ˛ ˇ with m.˛/ D m.ˇ/ D 1 thenQ� is � x
{{

and �� D fx2g so the Brauer graph algebra is KŒx�=.x2/.
In the general case, for a Brauer graph .�; o;m/, which is distinct from ˛ ˇ

with m.˛/ D m.ˇ/ D 1, we define the associated quiverQ� by

.Q�/0 D fvs j s 2 �1g

.Q�/1 D
[

˛2�0nDm

˚
vs ! vs> j s 2 �

.˛/
1

	
:

Now let ˛ 2 �0 n Dm and let s 2 �.˛/1 . In the case where val.˛/ D 1 and
m.˛/ > 1, we define the successor sequence of s at the vertex ˛ as the sequence of
one element s D s0. When val.˛/ > 1, we define the successor sequence of s at ˛
as the sequence s0; s1; : : : ; sval.˛/�1 which has the following properties:

� s D s0

� si D s
>
i�1 for i D 1; : : : ; val.˛/ � 1.

Note that the loops incident with ˛ are listed twice and the other edges precisely
once. Observe also that if s D s0; s1; s2; : : : ; sn�1 is the successor sequence for s
at vertex ˛, then s1; s2; : : : ; sn�1; s0 is the successor sequence for s1 at ˛. We set
sval.˛/ D s, noting that s is the successor of sval.˛/�1 in this case.

In case � has at least one loop, care must be taken. In such circumstances,
for each vertex ˛, we choose a distinguished edge, s˛ , incident with ˛. If ` is a
loop at ˛, ` occurs twice in the successor sequence of s˛ . We distinguish the first
and second occurrences of ` in this sequence and view the two occurrences as two
edges in �1. Thus, �1 is the set of all edges with the proviso that loops are listed
twice and have different successors. For example, suppose that the Brauer graph is
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� D ˛s

t

u
ˇ with m.ˇ/ D 1 so that u is truncated at ˇ. Then both s and t

occur twice in the successor sequence of u at ˛; the successor sequence of u at ˛
is u; s; t; s; t , and there is no successor sequence of u at ˇ. In this case the quiverQ�

is vs
'' ++ vtkk

ww
vu

XX . Note that there are two arrows inQ� from vs to vt .

In order to define the Brauer graph relations �� we need a quantizing function q.
Let X� be the set of pairs .s; ˛/ such that ˛ 2 �0, s 2 �.˛/1 and s is not truncated
at either of its endpoints, and let qWX� ! K n f0g be a set function. We denote
q..s; ˛// by qs;˛ . With this additional data we call .�; o;m; q/ a quantized Brauer
graph. We remark that if the Brauer graph � is ˛ ˇ thenX� D ;. If the field
is algebraically closed and if either the Brauer graph is a tree or the Brauer graph
algebra is symmetric, then q � 1 (see [2]).

There are three types of relations for .�; o;m; q/. Note that we write our paths
from left to right. For ˛ 2 �0 nDm and s 2 �.˛/1 , let s D s0; s1; : : : ; sval.˛/�1 be the
successor sequence of s at ˛ and let Cs;˛ be the cycle inQ� given by

Cs;˛ D a0a1 � � � aval.˛/�1

where ai is the arrow ofQ� given by vsi
ai // vsiC1 for i D 0; : : : ; val.˛/ � 1.

Relations of type one. Let ˛; ˇ 2 �0 n Dm and let s 2 �.˛/1 \ �
.ˇ/
1 . Thus s is

not truncated at either ˛ or ˇ. Then �� contains either qs;˛Cm.˛/
s;˛ � qs;ˇC

m.ˇ/
s;ˇ

or
qs;ˇC

m.ˇ/
s;ˇ
�qs;˛C

m.˛/
s;˛ . We call this a type one relation. Note that since one of these

relations is the negative of the other, the ideal I� does not depend on this choice.
Relations of type two. Let ˛ 2 Dm; ˇ 2 �0 n Dm, and let s 2 �

.˛/
1 \ �

.ˇ/
1 .

Thus s is truncated at ˛ but not at ˇ. Then �� contains Cm.ˇ/
s;ˇ

b0 where Cs;ˇ D
b0b1 � � � bval.ˇ/�1.
Relations of type three. These relations are quadratic monomial relations of the
form ab in KQ� where ab is not a subpath of any Cm.˛/

s;˛ .
We note that it is well-known that a Brauer graph algebra is special biserial and

weakly symmetric.

Throughout this paper, all modules are right modules. We denote the Jacobson
radical rA� of the Brauer graph algebra A� by r when no confusion can arise. We
will use lower case letters such as s and t to denote edges in � , capital letters S
and T to denote the corresponding simple A� -modules, and vs and vt to denote
the corresponding vertices in Q� . If S is a simple A� -module, then we denote the
projective A� -cover of S by �S WPS ! S .
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We recall the structure of the indecomposable projective modules from [2,
Section 4.18]. Let P be an indecomposable projectiveA� -module corresponding to
the vertex vs in Q� and edge s in � . If the edge s is not truncated, then P has both
top and socle isomorphic to S , and radP=SocP is a direct sum of two uniserial
modules. Let the vertices of s be ˛ and ˇ and let s; s1; : : : ; sval.˛/�1 be the successor
sequence for s at ˛, and s; t1; : : : ; tval.ˇ/�1 be the successor sequence for s at ˇ. Then
radP=SocP Š U ˚ V , where U and V have composition series

S1; : : : ; Sval.˛/�1; S; S1; : : : ; Sval.˛/�1; : : : ; S; S1; : : : ; Sval.˛/�1

and
T1; : : : ; Tval.ˇ/�1; S; T1; : : : ; Tval.ˇ/�1; : : : ; S; T1; : : : ; Tval.ˇ/�1

respectively, such that, for i D 1; : : : ; val.˛/ � 1, the simple module Si occurs
preciselym.˛/ times and is associated to the edge si in� , and, for jD1; : : : ; val.ˇ/�1,
the simple module Tj occurs precisely m.ˇ/ times and is associated to the edge tj
in � .

In the case where s is truncated, then P is itself uniserial. Suppose that s is not
truncated at vertex ˛ and let s; s1; : : : ; sval.˛/�1 be the successor sequence for s at ˛.
Then P has composition series

S; S1; : : : ; Sval.˛/�1; S; S1; : : : ; Sval.˛/�1; : : : ; S; S1; : : : ; Sval.˛/�1; S

where, for i D 1; : : : ; val.˛/� 1, the simple module Si occurs precisely m.˛/ times
and is associated to the edge si in � .

3. d-homogeneous and 2-d-homogeneous Brauer graph algebras

Suppose that ƒ D KQ=I where I is a homogeneous ideal with respect to the
length grading. Let � be a minimal set of generators for I ; the elements in � are
necessarily homogeneous. Let d > 2 and d 0 > 2 be distinct integers. We say that ƒ
is d -homogeneous (or quadratic when d D 2) if � contains homogeneous elements
of length d only. We say thatƒ is d -d 0-homogeneous ifƒ is not d -homogeneous or
d 0-homogeneous and � consists of homogeneous elements of length d or d 0. Note
that this does not depend on the choice of minimal generating set � for I .

In this section we investigate the d -homogeneous and 2-d -homogeneous Brauer
graph algebras. Therefore we need to know a minimal generating set for I� . Recall
that, for an integer n > 1, An is the graph � � � � � � � � with n
vertices and eAn is the circular graph with nC 1 vertices.
Lemma 3.1. Let .�; o;m; q/ be a quantized Brauer graph such that � is not A2,
and let A� D KQ�=I� be the associated Brauer graph algebra. Let � � �� be
a minimal generating set for I� . Then � contains all the relations of types one and
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three, and it contains the relation of type two associated to the edge s truncated at ˛
if and only if the successor of s at its other endpoint ˇ is also truncated.

Proof. It is clear that relations of type one and three must be in �, so we must prove
the condition on relations of type two. Since � ¤ A2 and s is truncated at ˛, the
edge s has a successor s1 distinct from s at ˇ. Let s D s0; s1; : : : ; sval.ˇ/�1 be the
successor sequence of s at ˇ, and let R2 be the relation of type two associated to s,
so that R2 D Cm.ˇ/

s;ˇ
b0 where Cs;ˇ D b0b1 � � � bval.ˇ/�1.

First assume that s1 is not truncated at its other endpoint  . We want to prove that
the relationR2 is not in �. Since s1 is not truncated at either of its endpoints, there is a
relation of type one associated to s1, of the formR1 WD qs1;ˇC

m.ˇ/
s1;ˇ
�qs1;C

m./
s1; 2 �.

We have Cs1;ˇ D b1 � � � bval.ˇ/�1b0, and we let Cs1; D a0a1 � � � aval./�1. Therefore
R2 D C

m.ˇ/
s;ˇ

b0 D b0C
m.ˇ/
s1;ˇ

D q�1
s1;ˇ

b0R1 C q�1
s1;ˇ

qs1;R3a1 � � � aval./�1C
m./�1
s1; ,

where R3 WD b0a0 2 � is a relation of type three. Therefore R2 62 �.
Conversely, assume that s1 is truncated at  . Suppose that R2 62 �, so that we

can write R2 D
Pp
iD1 �iR

.i/
1 �i C

Pq
jD1 �

0
jR

.j /
2 �0j C

Pr
kD1 �

00
k
R
.k/
3 �00

k
for some

�i ; �
0
j ; �
00
k
; �i ; �

0
j ; �

00
k
in KQ� and relations R.i/1 ; R

.j /
2 ; R

.k/
3 of type one, two and

three in �. We work in KQ� , which is graded by length.
The relation R2 is monomial, hence must occur in one of the summands. By

definition, the R.k/3 are not subpaths of R2 (since the proper subpaths of R2 are all
subpaths of some Csi ;ˇ and R2 has length at least 3). Moreover, if �0jR

.j /
2 �0j D R2,

thenR.j /2 is a product of (some of) the arrows b` for 0 6 ` 6 val.ˇ/�1, so thatR.j /2
must be a cyclic permutation of R2 and hence equal to R2, a contradiction. Finally,
if R2 is in the term �iR

.i/
1 �i , then R

.i/
1 is a K-linear combination of Cm.ˇ/

st ;ˇ
for

some t , and another cycle that does not contain a b`, and, for length reasons, we must
have t D 0 or t D 1. But s0 D s and s1 are truncated at ˛ and  respectively, so there
are no relations of type one associated to these edges. We have again a contradiction,
and therefore conclude that R2 is in �.

We start by describing all d -homogeneous Brauer graph algebras for d > 2.

Proposition 3.2. Let .�; o;m; q/ be a quantized Brauer graph and let A� be the
associated Brauer graph algebra. Then A� is quadratic if and only if .�; o;m/ is
one of the following Brauer graphs.

(1) � D A2 with m � 1 and q � 1.

(2) � D An with n > 2, all multiplicities equal to 1 except at the first and last
vertices which are equal to 2.

(3) � D An with n > 3, all multiplicities equal to 1 except at one end vertex which
is equal to 2.

(4) � D An with n > 4, m � 1 and q � 1.
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(5) � D eAn with n > 1 and m � 1.

(6) � D � with m � 1.

Proof. Suppose thatA� is quadratic. Let � � �� be a minimal generating set for I� .
If ˛ is a vertex in � such that val.˛/ > 2, then there is a relation of type one or type
two of length at least 3 in �. This contradicts the fact thatA� is quadratic. Therefore
val.˛/ 6 2 for all vertices ˛ in � . There are two cases to consider.

(i) We assume that there is a vertex ˛ in � with val.˛/ D 1.
Then there is a unique edge s in � with endpoint ˛. Let ˇ denote the other

endpoint of s. There are two subcases to consider here.
First suppose that edge s is truncated at ˛, that is, m.˛/ D 1. If val.ˇ/ D 1,

then, since � is connected, A� D KŒx�=.xm.ˇ/C1/ which is quadratic if and only
if m.ˇ/ D 1. Thus � D A2 and m � 1; this is (1). Note that we can assume that
q � 1 since there are no relations of type one. On the other hand, if val.ˇ/ D 2,
then we have a relation of type two of length val.ˇ/m.ˇ/C 1 > 3 in I� associated
to the edge s incident with vertex ˇ. This relation cannot be in �, so the successor
s1 of s at ˇ is not truncated at its other endpoint  , by Lemma 3.1. Hence we
have a relation of type one associated to s1, of length m.ˇ/ val.ˇ/ D m./ val./,
in �. Therefore m.ˇ/ val.ˇ/ D m./ val./ D 2. If val./ D 1 then m./ D 2 so
that � D A3 and the multiplicities are .1; 1; 2/; this is part of (3). If val./ D 2,
then m./ D 1 and we continue, to get An with n > 4 and multiplicities either
.1; 1; : : : ; 1; 1/ or .1; 1; : : : ; 1; 2/ (the last edge can be truncated if n > 4). We have
thus obtained (3) and (4).

We may now assume that there are no truncated edges. Since the edge s is not
truncated at either of its endpoints ˛ and ˇ, we have a relation of type one associated
to s in � so that val.ˇ/m.ˇ/ D 2 D val.˛/m.˛/. Since val.˛/ D 1, we have that
m.˛/ D 2. Moreover, either val.ˇ/ D 1 in which case � is the graphA2 withm � 2,
or val.ˇ/ D 2, m.ˇ/ D 1 and we continue to get the graph An with multiplicities
.2; 1; 1; : : : ; 1; 2/. This gives (2).

(ii) We assume that all vertices have valency 2.
Let ˛ be a vertex in � . Since val.˛/ D 2, there is either a loop, a double edge or

two single edges at ˛.
If there is a loop s at ˛, then, since � is connected, � is equal to ˛ s . Then

there is a relation of type one associated to s so that val.˛/m.˛/ D 2 and therefore
m.˛/ D 1. This is the graph of (6). If there is a double edge at ˛, then a similar
argument shows that m.˛/ D 1. If ˇ is the other vertex of this double edge, then
we have val.ˇ/ > 2. However, all vertices in � have valency at most 2, so that
val.ˇ/ D 2. So � is ˛ ˇ with m � 1, and we have the graph eA1 of (5).
Finally, suppose there are two edges s and t which are incidentwith˛. By assumption,
neither s nor t is truncated, so that there is a relation of type one associated to both s
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and t , and therefore val.˛/m.˛/ D 2 and m.˛/ D 1. Continuing this argument,
shows that � D eAn with n > 2 and m � 1, which is (5).

This gives all possible Brauer graphs .�; o;m; q/. We now give the associated
Brauer graph algebras, which are all quadratic.

(1) A� D KŒx�=.x2/.
(2) A� D KQ�=I� whereQ� is the quiver

1

a1
''

b0 :: 2

a2
''

Na1

gg 3

Na2

gg ��� n�2

an�2 **
n�1

Nan�2

jj bn�1ff

and the ideal I� is generated by ai Nai� Nai�1ai�1, ai�1ai and Nai Nai�1 for 2 6 i 6 n�2,
a1 Na1�b

2
0 , Nan�2an�2�qb2n�1, b0a1, Na1b0, an�2bn�1 and bn�1 Nan�2 for some nonzero

q 2 K. Note that we have scaled the arrows in the quiver so that the quantizing
function q is 1 except for one value which we have denoted by q; moreover, if q has
a square root in K, then we can replace q by 1 (see [9]).

(3) A� D KQ�=I� whereQ� is the quiver

1

a1
''
2

a2
''

Na1

gg 3

Na2

gg ��� n�2

an�2 **
n�1

Nan�2

jj bn�1ff

and the ideal I� is generated by ai Nai� Nai�1ai�1, ai�1ai and Nai Nai�1 for 2 6 i 6 n�2,
Nan�2an�2 � qb

2
n�1, an�2bn�1 and bn�1 Nan�2 for some nonzero q 2 K, which can be

replaced by 1 if q has a square root in K.
(4) A� D KQ�=I� whereQ� is the quiver

1

a1
''
2

a2
''

Na1

gg 3

Na2

gg ��� n�2

an�2 **
n�1

Nan�2

jj

and the ideal I� is generated by ai Nai� Nai�1ai�1, ai�1ai and Nai Nai�1 for 2 6 i 6 n�2.
Note that we have scaled the arrows in the quiver so that q � 1.

(5) A� D KQ�=I� whereQ� is the quiver with n vertices and 2n arrows

�

a

��
Na

gg�

a
&&

Na
kk

�
a

��Na

[[

�

a **

�
Na

RR

�
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and the ideal I� is generated by aiaiC1, Nai�1 Nai�2 and ai Nai � qi Nai�1ai�1, for
i D 0; : : : ; m� 1, with qi 2 K, qi ¤ 0, where the subscripts are taken modulo n and
where ai denotes the arrow that goes from vertex i to vertex i C 1 and Nai denotes
the arrow that goes from vertex i C 1 to vertex i . Again we can rescale the arrows so
that q is 1 at all but one place (see [8]).

(6) A� D K
�

� ˛ccˇ ;;
�
=.˛ˇ�qˇ˛; ˛2; ˇ2/ for some nonzero q 2 K.

We now turn to d -homogeneous algebras with d > 3.
Proposition 3.3. Let .�; o;m; q/ be a quantized Brauer graph and let A� be the
associated Brauer graph algebra. Then A� is d -homogeneous with d > 3 if and
only if � is a star with n edges, for some n > 1, such that n divides d � 1, the
multiplicity of the central vertex is d�1

n
and the other multiplicities are equal to 1.

The algebra A� is uniquely determined by .�; o;m/; it is the symmetric Nakayama
algebra whose quiver is a cycle of length n and its ideal I� is generated by all paths
of length d .

Proof. If A� is d -homogeneous, then there are no relations of type three, so the
quiverQ� cannot contain distinct cycles at the same vertex. In terms of the graph � ,
this means that all edges in � are truncated at exactly one vertex. Therefore � is a
star in which all the outer vertices have multiplicity 1. Let n be the number of edges
in � andm the multiplicity of the central vertex. The only relations in the algebraA�
are of type two and are of length nmC 1. Hence nm D d � 1. Finally, since A� is
monomial, we may assume that q � 1.

It is well known that all the Brauer graph algebras in Proposition 3.2(1), (2), (5),
(6) and in Proposition 3.3 are d -Koszul (see for instance [8,9,21] and the references
therein). However, it is easy to verify that the algebras of Proposition 3.2(3) and (4)
are not Koszul, since the resolution of the simple module at the vertex 1 is not linear
in either of these cases. This gives the following result.
Theorem 3.4. Let .�; o;m; q/ be a quantized Brauer graph and let A� be the
associated Brauer graph algebra. Then A� is Koszul if and only if it is quadratic
and either � D A2 or � has no truncated edges. For d > 3, the Brauer graph
algebra A� is d -Koszul if and only if it is d -homogeneous.

Now, fix an integer d > 2. We describe the 2-d -homogeneous Brauer graph
algebras.
Proposition 3.5. Let .�; o;m; q/ be a quantized Brauer graph and let A� be the
associated Brauer graph algebra. Then A� is 2-d -homogeneous if and only if
.�; o;m; q/ satisfies one of the following conditions.
(1) For all vertices ˛ in � , we have m.˛/ val.˛/ D d .
(2) � has a truncated edge, � ¤ A2, no two successors are truncated, and for every

vertex ˛ in � we have m.˛/ val.˛/ 2 f1; dg.
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Proof. Note that theremust be at least one edge in� that is not truncated at either of its
endpoints, otherwisewe are in the situation of Proposition 3.2(1) or of Proposition 3.3,
and the algebra A� is quadratic or d -homogeneous. Let � � �� be a minimal set of
generators for I� . The proof has two cases.

(i) First assume that there is an edge s in � that is truncated at the vertex ˛ in � .
Let ˇ be the other endpoint of s. If val.ˇ/ D 1, then we only have relations of
type two in �, all of the same length, so that A� is homogeneous, which gives a
contradiction.

We may therefore assume that there is an edge t in � , incident with ˇ and
such that t ¤ s. There is a relation of type two associated to s at ˇ of length
val.ˇ/m.ˇ/ C 1 > 3. If t is the successor of s at ˇ and if t is truncated at
its other endpoint, then, by Lemma 3.1, this relation of type two is in �, so that
val.ˇ/m.ˇ/ C 1 D d . However, A� is not d -homogeneous so there must be a
nontruncated edge u incident with ˇ so that val.ˇ/ > 3. Thus there is a relation of
type one associated to u of length val.ˇ/m.ˇ/ D d � 1 so that we have d � 1 D 2,
sinceA� is 2-d -homogeneous. But val.ˇ/ > 3 so that we have a contradiction. This
shows that no two successors are truncated and none of the relations of type two are
in �.

Therefore the successor t of s at ˇ is not truncated, and there is a relation of type
one associated to t of length val.ˇ/m.ˇ/ D val./m./, where  is the other endpoint
of t . Since A� is not quadratic, we must have val.ˇ/m.ˇ/ D val./m./ D d .
Continuing in this way, we see that every relation of type one must have length d and
we get (2). Moreover, if (2) is satisfied, then there are (quadratic) relations of type
three since there are at least two adjacent cycles Ct;ˇ and Ct; inQ� . Since there are
no relations of type two in � and all relations of type one are of length d , it follows
that A� is indeed 2-d -homogeneous.

(ii) Now assume that there are no truncated edges in � . Therefore there are no
relations of type two.

We suppose first that all vertices have valency at least 2. Then the relations of
type one have length 2 or d . More precisely, for any edge s with endpoints ˛ and ˇ,
we must have val.˛/m.˛/ D val.ˇ/m.ˇ/ 2 f2; dg. Since � is connected and A�
is not quadratic, we must have val.˛/m.˛/ D d for all vertices ˛, and we are in
case (1). Moreover, if all vertices ˛ have valency at least 2 and val.˛/m.˛/ D d ,
then there are relations of type three so that A� is 2-d -homogeneous.

Finally, we consider the case where there is a vertex ˛ with val.˛/ D 1. Let s
be the edge incident with ˛ and let ˇ be the other endpoint of s. Since s is not
truncated at either endpoint, we have m.˛/ > 1 and val.ˇ/m.ˇ/ > 1. If val.ˇ/ D 1,
then there are quadratic relations of type three, and a relation of type one associated
to s of length m.˛/ D m.ˇ/, and so m.˛/ D m.ˇ/ must equal d . Thus � D A2
with multiplicity d at each vertex. It is easy to see that the corresponding algebra is
2-d -homogeneous. On the other hand, if val.ˇ/ > 1, let t be another edge incident
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with ˇ. By assumption, the edge t is not truncated at its other endpoint  . Then
there are quadratic relations of type three, a relation of type one associated to s
of length m.˛/ D val.ˇ/m.ˇ/ and a relation of type one associated to t of length
val.ˇ/m.ˇ/ D val./m./. Therefore m.˛/ D val.ˇ/m.ˇ/ D val./m./ D d .
Continuing in this way, we have val."/m."/ D d at every vertex " in � , which
completes (1). The corresponding algebra is 2-d -homogeneous.

We end this section with two corollaries which describe in more detail the
2-d -homogeneous Brauer graph algebras A� in the cases where � is a star and
where � is An.
Corollary 3.6. Suppose � is a star whose central vertex is ˛0 and the other vertices
are ordered cyclically ˛1; : : : ; ˛n; set ˛nC1 D ˛1. Then the associated Brauer
graph algebra is 2-d -homogeneous if and only if n divides d; the vertex ˛0 has
multiplicity d

n
, and for every i with 1 6 i 6 n we have m.˛i / 2 f1; dg and

m.˛i /m.˛iC1/ 2
˚
d; d2

	
.

Corollary 3.7. Suppose � D An. Then the associated generalized Brauer tree
algebra is 2-d -homogeneous if and only if n > 3, d is even, the multiplicities of the
first and last vertex are in f1; dg with at least one of them equal to d if n D 3, and
the multiplicities of the other vertices are all equal to d

2
.

We now look more generally at the Ext algebra of a Brauer graph algebra. We
will return in Section 10 to 2-d -homogeneous Brauer graph algebras and the degrees
in which the Ext algebra is generated.

4. The Ext algebra and coverings

In this section, we use the covering theory for Brauer graphs which was developed
in [12] to simplify the calculation of the Ext algebra. We show that we may assume,
without any loss of generality, that our quantized Brauer graph .�; o;m; q/ hasm � 1
and contains no loops or multiple edges. We then discuss the quantizing function q,
proving in Proposition 4.2, that if the field K is algebraically closed and if the
associated Brauer graph algebra A� is length graded, then the number of generators
of the Ext algebra E.A�/ and their degrees do not depend on q.

For a finite dimensional indecomposable algebra ƒ D KQ=I defined by a finite
quiver Q and an admissible ideal I , let J be the ideal in KQ which is generated by
the arrows of Q and let r denote the Jacobson radical J=I of ƒ. The Ext algebra
(or cohomology ring) of ƒ is given by

E.ƒ/ D Ext�ƒ.ƒ=r; ƒ=r/ D ˚n>0 Extnƒ.ƒ=r; ƒ=r/

with the Yoneda product. If the ideal I is generated by length homogeneous elements,
then the length grading ofKQ induces a gradingƒ D ƒ0˚ƒ1˚ƒ2˚� � � , whereƒ0
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is the K-space spanned by the vertices of Q. The graded Jacobson radical of ƒ is
r D ƒ1 ˚ƒ2 ˚ � � � , and ƒ0 Š ƒ=r.

Let .�; o;m; q/ be a quantized Brauer graph and let A� denote the associated
Brauer graph algebra. We recall the following definitions from [12]. For each
˛ 2 �0, we define Z˛ to be the set

Z˛ D f.s; t/ j s; t 2 �1; t is the successor of s at vertex ˛g:

Let Z� be the disjoint union

Z� D
�[

˛2�0

Z˛:

Let G be a finite abelian group. A set function W WZ� ! G is called a successor
weighting of the Brauer graph .�; o;m; q/. For ˛ 2 �0 we define the order of ˛,
denoted ord.˛/, to be the order in G of the element !˛ D

Q
.s;t/2Z˛ W.s; t/. A

successor weightingW WZ� ! G of the Brauer graph .�; o;m; q/ is called a Brauer
weighting if ord.˛/ j m.˛/ for all ˛ 2 �0.

Let W WZ� ! G be a Brauer weighting, and let A�W be the Brauer graph
algebra associated to the quantized Brauer covering graph .�W ; oW ;mW ; qW /.
Let rA� (respectively, rA�W / be the Jacobson radical of A� (respectively, A�W ).
By [12, Theorem 5.3], A�W is the covering algebra associated to a weight function
W �W .Q�/1 ! G. Hence the Ext algebra Ext�A� .A�=rA� ;A�=rA� / is generated in
degrees d1; : : : ; ds if and only if the Ext algebra Ext�A�W .A�W =rA�W ;A�W =rA�W /
is generated in degrees d1; : : : ; ds . In fact, we have the following well-known result.
Proposition 4.1. Keeping the notation above, the ring structure of

Ext�A� .A�=rA� ;A�=rA� /

can be completely determined from the ring structure of

Ext�A�W .A�W =rA�W ;A�W =rA�W /:

Proof. The G-grading on A� induced by the weight function W �W .Q�/1 ! G

induces aG-grading on Ext�A� .A�=rA� ;A�=rA� / such that, if g 2 G, and S and T
are simple A� -modules then

ExtnA� .S; T /g D ExtnGr.S; �.g/T /;

where the right hand side is the graded Ext-group, S and T are viewed as graded
modules with support in degree 1G , and � is the shift functor. The graded Yoneda
product ExtnGr.T; �.g/U /�Ext

n
Gr.S; �.h/T / is defined in the usual way after noting

that ExtnGr.T; �.g/U / Š ExtnGr.�.h/T; �.h/�.g/U /. Finally, using that the category
of G-graded A� -modules is equivalent to the category of A�W -modules we obtain
the desired result.
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Now, in [12, Theorem 7.7], it was shown, for any quantized Brauer graph
.�0; o0;m0; q0/, that there is a tower of quantized Brauer covering graphs
.�0; o0;m0; q0/; .�1; o1;m1; q1/, .�2; o2;m2; q2/; .�3; o3;m3; q3/ such that the top-
most quantized Brauer covering graph .�3; o3;m3; q3/ has multiplicity function m3
identically one, and the graph �3 has no loops or multiple edges.

Hence, with Proposition 4.1, wemay assume that .�; o;m; q/ is a quantizedBrauer
graph with m � 1 and with no loops or multiple edges.

We now consider the quantizing function q in the case whereA� is length graded.
It is known that if the field is algebraically closed and if either the Brauer graph is a
tree or the Brauer graph algebra is symmetric, then we can always rescale the arrows
so that q � 1. The next result shows that we may also assume that q � 1 in the case
whereA� is length graded, since the number of generators of the Ext algebraE.A�/
and their degrees do not depend on q.

We begin by introducing some additional notation. If edge t is the successor of
edge s in � at vertex ˛, we denote the corresponding arrow in Q� from vertex vs
to vertex vt by a.s; t; ˛/. In fact, this arrow is uniquely determined by s and t . For,
suppose there are vertices ˛ and ˇ in � such that a.s; t; ˛/ and a.s; t; ˇ/ are arrows.
Since there are no loops in � , we have s ¤ t . If ˛ ¤ ˇ, then s and t are distinct edges
with endpoints ˛ and ˇ, contradicting the assumption that there are no multiple edges
in � . Hence ˛ D ˇ. So if edge t is the successor of edge s at vertex ˛ in � , then
the vertex ˛ is unique. Thus we denote the arrow in Q� from vertex vs to vertex vt
simply by a.s; t/.

Proposition 4.2. Let K be an algebraically closed field and let .�; o;m; q/ be a
quantized Brauer graph with m � 1 and with no loops or multiple edges. LetA� be
the associated Brauer graph algebra. Suppose that A� is length graded. Then the
number of generators of ExtA� .A�=rA� ;A�=rA� / and their degrees do not depend
on q.

Proof. Let .�; o;m/ be a Brauer graph with m � 1 and with no loops or multiple
edges. We may assume that � is not a star (A2 included) since the associated Brauer
graph algebras are all monomial and hence do not depend on a quantizing function q.
Therefore there exists an edge s with endpoints ˛ and ˇ such that v WD val.˛/ > 1

and val.ˇ/ > 1.
LetA be the Brauer graph algebra associated to .�; o;m/with quantizing function

identically 1. We shall twist A by a graded algebra automorphism � of A so that A�
is the Brauer graph algebra associated to the quantized Brauer graph .�; o;m; q/
with q equal to 1 except at .s; ˛/ and .s; ˇ/, then use [7] to see that the Ext algebras
of A and A� have the same number of generators in the same degrees. This means
that we will have changed precisely one relation in the generating set for I� , namely
Cs;˛ � Cs;ˇ will become qs;˛Cs;˛ � qs;ˇCs;ˇ or, to simplify notation, rCs;˛ � Cs;ˇ
where r D qs;˛q

�1
s;ˇ

. None of the other relations will change.
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Recall that the product in A� is given by x � y D x�`.x/.y/ where x and y are
length homogeneous elements in A and `.x/ is the length of x.

Let s D s0; s1; s2; : : : ; sv�1 be the successor sequence of s at ˛, and let ai D
a.si ; siC1/ be the corresponding arrows in the quiver Q� , for i D 0; 1; : : : ; v � 1

(where sv D s). In this notation, Cs;˛ D a0a1 � � � av�1. We shall define a graded
algebra automorphism � of A by setting, for i D 0; 1; : : : ; v � 1, �.ai / D riai for
some ri 2 Kn f0g to be determined, and fixing all other arrows and vertices in Q� .
Suppose we have such an automorphism � . Then, in A� , the cycle Cs;˛ becomes
r1r

2
2 � � � r

v�1
v�1a0a1 � � � av�1. The arrows a0; : : : ; av�1 occur in at most v relations of

type one, involving the cyclic permutations of Cs;˛ . Therefore we want

r1r
2
2 � � � r

v�2
v�2 r

v�1
v�1a0a1 � � � av�2av�1 D ra0a1 � � � av�2av�1

r2r
2
3 � � � r

v�2
v�1 r

v�1
0 a1a2 � � � av�1a0 D a1a2 � � � av�1a0

:::

r0r
2
1 � � � r

v�2
v�3 r

v�1
v�2av�1a0a1 � � � av�2 D av�1a0a1 � � � av�2;

so we must solve the system

r1r
2
2 � � � r

v�2
v�2 r

v�1
v�1 D r

r2r
2
3 � � � r

v�2
v�1 r

v�1
0 D 1

:::

r0r
2
1 � � � r

v�2
v�3 r

v�1
v�2 D 1:

If v D 2, the system is immediately solved: r1 D r and r0 D 1. If v D 3, it
is easy to see that r0 D r�21 , r2 D r41 and r91 D r so that choosing a 9th root of r
for r1 defines � . Now suppose that v > 3. Starting with the last equation, we can
express r0 in terms of r1; : : : ; rv�2 and then rv�1 also in terms of r1; : : : ; rv�2. At the
next stage, rv�2 may be written in terms of r1; : : : ; rv�3, so that r0 and rv�1 may also
be written in terms of r1; : : : ; rv�3. Continuing in this way, we see that r1; : : : ; rv�2
must be equal up to vth roots of unity so that

r2 D �2r1; r3 D �3r1; : : : ; rv�2 D �v�2r1

for somevth roots of unity �2; : : : ; �v�2. We then have r0 D ��32 � � � �
�.v�1/
v�2 r

�
.vC1/.v�2/

2

1

and rv�1 D �22 � � � �
.v�2/
v�2 r

.vC1/.v�2/� .vC2/.v�3/2

1 . Therefore

r D r1r
2
2 � � � r

v�1
v�1 D �

2
2 � � � �

.v�2/
v�2 .�22 � � � �

.v�2/
v�2 /v�1r

'.v/
1 D r

'.v/
1

where '.v/ D v2.v�1/
2

. Choosing a '.v/th root of r for r1 and �2 D � � � D �v�2 D 1
defines an automorphism � as required. Note that '.3/ D 9, so that we have defined
the same automorphism � in the case v D 3.
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We now use [7], where the authors show that the Ext algebra of A� is obtained
from the Ext algebra of A by twisting (they consider a connected graded algebra, but
the proof and result are easily adapted to a quotient of a path algebra by a length
homogeneous ideal). Twisting does not change the number of generators of the Ext
algebra or their degrees.

Proceeding in this way for each relation of type one, we see that the number of
generators of the Ext algebra and their degrees do not depend on q.

As a corollary of the proof, we may relax the condition that K is algebraically
closed.

Corollary 4.3. LetK be a field and let .�; o;m; q/ be a quantized Brauer graph with
m � 1 and with no loops or multiple edges. Let A� be the associated Brauer graph
algebra. We assume that one of the following conditions holds:

(i) the valency of every vertex in � is at most two, or

(ii) there is an integer k such that the valency of every vertex in � is either 1 or k
and the fieldK contains a root of the polynomialXk2.k�1/=2�r for any r 2 K.

Then the number of generators of ExtA� .A�=rA� ;A�=rA� / and their degrees do
not depend on q.

Proof. In both cases, the ideal I� is length homogeneous, and hence A� is length
graded. It then follows from the proof of Proposition 4.2 that the result holds.

From now on, we assume that q � 1, and write .�; o;m/ for a Brauer graph with
q � 1. We assume that .�; o;m/ is a Brauer graph with no loops or multiple edges
and m � 1. The next sections describe the structure of certain classes of modules of
a Brauer graph algebra.

5. Structure of indecomposable modules

Let .�; o;m/ be a Brauer graph with no loops or multiple edges and m � 1. Let A�
denote the associated Brauer graph algebra. We assume q � 1. The following result
is used in Sections 6 and 7 where we determine the structure of uniserial and string
A� -modules.

Proposition 5.1. Let .�; o;m/ with m � 1 be a Brauer graph with no loops or
multiple edges and letA� denote the associated Brauer graph algebra. Let S and T
be simple A� -modules associated to the edges s and t in � .

(1) If S 6Š T , then dimK.HomA� .PS ; PT // 6 1.

(2) If S Š T , then dimK.HomA� .PS ; PT // D 2.
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(3) We have that dimK.HomA� .PS ; PT // D 1 if, and only if, S 6Š T and there is
a uniserial module with top S and socle T . In this case, the uniserial module is
unique up to isomorphism.

Proof. (1) Suppose that S 6Š T and assume for contradiction that

dimK.HomA� .PS ; PT // > 2:

Denote the endpoints of edge t in � by ˛ and ˇ. By our no loops assumption,
˛ ¤ ˇ. Since A� is a special biserial selfinjective algebra, rad.PT /=Soc.PT / is
either a uniserial module U or a direct sum of two uniserial modulesL1˚L2. Since
dimK.HomA� .PS ; PT // > 2 and Soc.PT / D T , the simple S occurs at least twice
as a composition factor of rad.PT /=Soc.PT /. If S occurs as a composition factor
of either U or one of the Li ’s at least two times, then either m.˛/ > 2, m.ˇ/ > 2

or s is a loop, which all contradict our hypothesis. On the other hand, suppose that S
occurs as a composition factor of both L1 and L2. Then s occurs in the successor
sequences of t at both vertices ˛ and ˇ. Hence, s also has endpoints ˛ and ˇ. But
then s and t are distinct edges between ˛ and ˇ, which contradicts the hypothesis
that there are no multiple edges. Thus dimK.HomA� .PS ; PT // 6 1.

(2) This is proved by a similar argument to that in (1).
(3) First assume that S 6Š T and there is a uniserial module V having top S

and socle T . Then V embeds in the injective module PT . Hence S must be a
composition factor of PT . Then dimK.HomA� .PS ; PT // D 1 by (1). Next suppose
that dimK.HomA� .PS ; PT // D 1. By (2), S 6Š T . If PT is uniserial, then it
follows that there is a uniserial submodule of PT with top S and socle T since S is
a composition factor of PT . Otherwise, we may suppose that rad.PT /=Soc.PT / D
L1 ˚ L2, and, by assumption, S is a composition factor of exactly one of L1
or L2. So suppose that S is a composition factor of L1 and g is the composition
of the canonical surjections rad.PT / ! rad.PT /=T and rad.PT /=T ! L1. Let
V D g�1.L1/. Then V is a uniserial submodule of PT having S as a composition
factor. Hence, there is a uniserial module with top S and socle T .

It remains to show that if V1 and V2 are uniserial modules with top S and socle T ,
then V1 Š V2. Note that V1 and V2 both embed in PT . If V1 6Š V2 then S would
occur at least twice as a composition factor of PT , contradicting (1). This completes
the proof.

Corollary 5.2. Let .�; o;m/ withm � 1 be a Brauer graph with no loops or multiple
edges and letA� denote the associated Brauer graph algebra. Let S and T be simple
A� -modules associated to the edges s and t in � . Then we have the following.
(1) If f; gWPS ! rad.PT / are nonzero morphisms, then Im.f / D Im.g/.
(2) There are only a finite number of submodules of an indecomposable projective

A� -module.
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(3) A submodule M of an indecomposable projective A� -module is determined by
the simple A� -modules occurring in the top ofM .

(4) There are only a finite number of quotient modules of an indecomposable
projective A� -module.

Proof. We see that (1) follows from Proposition 5.1(1) and (2).
To show (2) and (3), let PT be an indecomposable projective A� -module and

letM be a nonprojective, nonsimple submodule of PT . Then we have an inclusion
f WM ! PT . If PS is an indecomposable projectiveA� -module and gWPS !M is
a module homomorphism such that the induced map NgWPS !M= radM is nonzero,
then there is a nonzero map h D f ı gWPS ! rad.PT /. By (1), Im.h/ is unique.
Now PT is either uniserial or biserial. If PT is uniserial, thenM D Im.h/ and, by
Proposition 5.1, both (2) and (3) follow.

Now suppose that PT is biserial with rad.PT /=Soc.PT / D L1 ˚ L2. By
Proposition 5.1(1), we see Im.h/=Soc.PT /�L1 or Im.h/=Soc.PT /�L2. Assume,
without loss of generality, that Im.h/=Soc.PT / � L1. If M=Soc.PT / �L1 then
M D Im.h/ and there are only a finite number of such submodulesM . So suppose
that M=Soc.PT / 6� L1 so that M ¤ Im.h/. Note that M=Soc.PT / 6� L2. Then,
since rad.PT /=Soc.PT / D L1˚L2, we haveM= radM Š S˚S 0, for some simple
A� -module S 0. By Proposition 5.1(1) and (2), S 6Š S 0. Defining h0WPS 0 ! PT
in a similar fashion to the definition of h, we see that Im.h0/=Soc.PT / � L2 and
M=Soc.PT / D Im.h/=Soc.PT /˚ Im.h0/=Soc.PT /. Parts (2) and (3) now follow.

The proof of (4) follows from (2).

Let S be the simple A� -module associated to the edge s in � . We remarked
at the end of Section 2 that PS is uniserial if and only if s is a truncated edge.
The next result is more specific on the structure of the indecomposable projective
A� -modules, in the case where m � 1 and � has no loops or multiple edges; its
proof is straightforward and we leave it to the reader.
Lemma 5.3. Let .�; o;m/ with m � 1 be a Brauer graph with no loops or multiple
edges and letA� denote the associated Brauer graph algebra. Assume S is a simple
A� -module such that PS is biserial and U is a simple A� -module such that PU is
uniserial. If s is the edge in � associated to S and s has endpoints ˛ and ˇ, then
let s D s0; s1; s2; : : : ; sm�1 and s D t0; t1; t2; : : : ; tn�1 be the successor sequences
for s at vertices ˛ and ˇ respectively. Let Si (resp. Ti ) be the simple A� -module
associated to the edge si (resp. ti ). If u is the edge in � associated to U and u has
endpoints ˛0 and ˇ0 with u truncated at ˇ0, then let u D u0; u1; u2; : : : ; up�1 be the
successor sequence for u at ˛0. Let Ui be the simple A� -module associated to the
edge ui .

(1) The composition factors of PS are fS; S1; : : : ; Sm�1; T1; : : : ; Tn�1; Sg.

(2) The composition factors of PU are fU;U1; : : : ; Up�1; U g.
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(3) For i D 1; : : : ; m � 1 and j D 1; : : : ; n � 1, Si 6Š Tj .
(4) For 0 6 i < j 6 m � 1, Si 6Š Sj .
(5) For 0 6 i < j 6 n � 1, Ti 6Š Tj .
(6) For 0 6 i < j 6 p � 1, Ui 6Š Uj .

6. Structure of uniserial modules

In this section we describe the structure of the uniserial modules of a Brauer graph
algebra.
Proposition 6.1. Let .�; o;m/withm � 1 be aBrauer graphwith no loops ormultiple
edges and letA� denote the associated Brauer graph algebra. Assume S is a simple
A� -module such that PS is biserial and U is a simple A� -module such that PU is
uniserial. If s is the edge in � associated to S and s has endpoints ˛ and ˇ, then let
s D s0; s1; s2; : : : ; sm�1 and s D t0; t1; t2; : : : ; tn�1 be the successor sequences for s
at vertices ˛ andˇ respectively. LetSi (resp. Ti ) be the simpleA� -module associated
to the edge si (resp. ti ) and Sm D Tn D S . If u is the edge in � associated toU and u
has endpoints ˛0 and ˇ0 with u truncated at ˇ0, then let u D u0; u1; u2; : : : ; up�1
be the successor sequence for u at ˛0. Let Ui be the simple A� -module associated
to the edge ui and Up D U0 D U . Let L be a nonzero uniserial A� -module with
composition series for L, .0/ D LkC1 � Lk � � � � � L1 � L0 D L.

(1) If the socle of L is isomorphic to S , then either 0 6 k 6 m � 1 and, for
j D 0; : : : ; k, Lj =LjC1 Š Sm�kCj or 0 6 k 6 n � 1 and, for j D 0; : : : ; k,
Lj =LjC1 Š Tn�kCj .

(2) If the socle of L is isomorphic to U , then 0 6 k 6 p and j D 0; : : : ; k,
Lj =LjC1 Š Up�kCj .

Proof. We prove (1) and leave (2) to the reader. If L is a simple module, then
L Š S D Sm, and taking k D 0 we see that (1) follows. Now assume that L is
a nonsimple uniserial module with socle S . It follows that L is isomorphic to a
submodule of PS since PS is the injective envelope of S . Sincem � 1 and � has no
loops or multiple edges, rad.PS / is the sum of two uniserial modules X and Y such
that

(i) X \ Y D Soc.PS /,
(ii) if 0 D Xm � Xm�1 � � � � � X0 D X is the composition series for X , then,

for j D 0; : : : ; m � 1, Xj =XjC1 Š SjC1,
(iii) if 0 D Yn � Yn�1 � � � � � Y0 D Y is the composition series for Y , then, for

j D 0; : : : ; n � 1, Yj =YjC1 Š TjC1.
By Corollary 5.2(3) and Lemma 5.3(5), the uniserial module L must be isomorphic
to a submodule of either X or Y and the result follows.
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An immediate consequence of the above result is the following.
Corollary 6.2. Let .�; o;m/ withm � 1 be a Brauer graph with no loops or multiple
edges and let A� denote the associated Brauer graph algebra. If L and L0 are two
nonsimple, nonprojective uniserial A� -modules such that Soc.L/ Š Soc.L0/ and
Top.L/ Š Top.L0/, then L Š L0.

7. Structure of string modules

Let .�; o;m/ with m � 1 be a Brauer graph with no loops or multiple edges and
let A� denote the associated Brauer graph algebra. We now classify the string
modules for A� and begin with uniserial modules. Let L be a (nonzero) uniserial
A� -module. There are 3 cases to consider. The first case is that L is a projective-
injective module. There is no special notation for this case. The second case is thatL
is isomorphic to a simple A� -module, S . Let s be the edge in � associated to S . In
this case, we denote L (up to isomorphism) by str.sC/, where str.sC/ Š S . The
final case is that L is a nonsimple nonprojective uniserial module with top T and
socle S . Let s and t be the edges in � associated to the simple modules S and T
respectively. By Corollary 6.2, T and S completely determineL up to isomorphism.
We denote L by either str.tC; s�/ or str.s�; tC/.

If s and t are edges in � , and the successor sequence for s at vertex ˛ is s D
s0; s1; : : : ; sm�1, then we say t occurs in the successor sequence for s at vertex ˛
if ˛ is a nontruncated endpoint of s and t D si , for some 1 6 i 6 m � 1. Clearly t
occurs in the successor sequence for s at vertex ˛ if and only if s occurs in the
successor sequence for t at vertex ˛. Note also that t cannot occur in the successor
sequence for s at both endpoints ˛ and ˇ, for otherwise ˛ D ˇ which contradicts the
assumption that there are no loops in � . Let S and T be the simple A� -modules
associated to s and t respectively. By Proposition 6.1 and its proof, we see that there
is a uniserial module L, unique up to isomorphism, with top T and socle S , if and
only if s D t or t occurs in the successor sequence for s at some vertex ˛.

Thus, summarizing the description of uniserial string modules, we have the
projective-injective uniserial modules, the simple modules str.sC/, and the modules
of the form str.tC; s�/ where t occurs in the successor sequence for s at some
vertex ˛.

We now describe the nonuniserial string modules for A� in terms of sequences
of weighted edges in the Brauer graph � .
Definition 7.1. For n > 2, let Os1; : : : ; Osn be edges in � . We assign either C or � to
each edge Osi and denote this assignment by either OsCi or Os�i . Consider the sequence
� D Os

e1
1 ; Os

e2
2 ; : : : ; Os

en
n , where ei 2 fC;�g for i D 1; : : : ; n. We say � is an acceptable

sequence of weighted edges if the following hold.
(ST1) For i D 1; : : : ; n � 1, ei ¤ eiC1.
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(ST2) For i D 1; : : : ; n � 1, there is ˛i 2 �0 such that Osi and OsiC1 belong to �.˛i /1 .

(ST3) For i D 1; : : : ; n � 1, Osi ¤ OsiC1.

(ST4) For i D 1; : : : ; n � 2, ˛i ¤ ˛iC1.

Conditions (ST2) and (ST3) combined mean that for i D 1; : : : ; n � 1, there are
vertices ˛i in � , such that OsiC1 occurs in the successor sequence for Osi at vertex ˛i .

We note that, for i D 1; : : : ; n � 1, the vertex ˛i is uniquely determined by Osi
and OsiC1 by our assumption that � has no loops or multiple edges. We use the
notation Os in order to distinguish acceptable sequences and successor sequences, but
it may happen that OsiC1 is in fact the successor of Osi at one of its vertices.

The following result is straightforward and the proof is left to the reader.

Lemma 7.2. Let .�; o;m/ with m � 1 be a Brauer graph with no loops or multiple
edges and suppose that � D Ose11 ; Os

e2
2 ; : : : ; Os

en
n is an acceptable sequence of weighted

edges in � with n > 2. Then

(1) Osenn ; Osen�1n�1 ; : : : ; Os
e1
1 is an acceptable sequence of weighted edges in � ,

(2) Ose11 ; Os
e2
2 ; : : : ; Os

ei
i is an acceptable sequence of weighted edges in � ,

for i D 2; : : : ; n, and,

(3) for i D 1; : : : ; n, if e�i D C when ei D �, and e�i D � when ei D C,
then Ose

�
1

1 ; Os
e�
2

2 ; : : : ; Os
e�n
n is an acceptable sequence of weighted edges in � .

Suppose that � D Ose11 ; Os
e2
2 ; � � � ; Os

en
n is an acceptable sequence of weighted edges

in � . For i D 1; : : : ; n, let OSi be the simple A� -module associated to the edge Osi .
We define str.�/ inductively such that the top of str.�/ is˚fi j eiDCg OSi and the socle
of str.�/ is˚fi j eiD�g OSi . We say str.�/ satisfies the top and socle condition.

Definition 7.3. Let � D Ose11 ; Os
e2
2 ; : : : ; Os

en
n be an acceptable sequence of weighted

edges in � , and let n > 2. For n D 2, str.Ose11 ; Os
e2
2 / was defined above, and clearly

satisfies the top and socle condition.
Assume n > 3 and suppose we have defined str.Ose11 ; Os

e2
2 ; : : : ; Os

en�1
n�1 / satisfying

the top and socle condition. There are two cases: en�1 D � and en�1 D C.

(i) Suppose en�1 D �, so that en D C. We set

str.�/ D coker.�W OSn�1 ! str.Ose11 ; : : : ; Os
en�2
n�2 ; Os

�
n�1/˚ str.Os�n�1; OsCn //;

where � is induced from the map on socles given by
‚
OSn�1 ! . OS2 ˚ OS4 ˚ � � � ˚ OSn�1/˚ OSn�1

with x 7! ..0; : : : ; 0; x/; x/ if n is odd;
OSn�1 ! . OS1 ˚ OS3 ˚ � � � ˚ OSn�1/˚ OSn�1

with x 7! ..0; : : : ; 0; x/; x/ if n is even:
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(ii) Now suppose that en�1 D C. Then en D �. We define str.�/ to be the kernel
of the composition

str.Ose11 ; : : : ; Os
en�2
n�2 ; Os

C
n�1/˚ str.OsCn�1; Os

�
n /

! .˚fi j eiDC;16i6n�1g
OSi /˚ OSn�1

�
! OSn�1;

where the first map is given by canonical surjection onto the tops of
str.Ose11 ; : : : ; Os

en�1
n�1 / and str.Os

en�1
n�1 ; Os

en
n / and � is given by(

..y2; y4; : : : ; yn�1/; y
0
n�1/ 7! yn�1 � y

0
n�1 if n is odd

..y1; y3; : : : ; yn�1/; y
0
n�1/ 7! yn�1 � y

0
n�1 if n is even;

where yi 2 OSi and y0n�1 2 OSn�1.
The reader may check that the top and socle condition is satisfied by str.�/ in all

cases. The next proposition gives an alternative definition for str.�/.
Proposition 7.4. Let .�; o;m/ with m � 1 be a Brauer graph with no loops or
multiple edges and letA� denote the associated Brauer graph algebra. Suppose that
� D Os

e1
1 ; Os

e2
2 ; : : : ; Os

en
n is an acceptable sequence of weighted edges in � with n > 3

and let OSi be the simple A� -module associated to Osi . Let 2 6 k 6 n � 1.
(1) If ek D �, then we set

X D coker.�W OSk ! str.Ose11 ; : : : ; Os
ek
k
/˚ str.Osek

k
; : : : ; Osenn //;

where � is induced from the map on socles given by
‚
OSk ! . OS2 ˚ OS4 ˚ � � � ˚ OSk/˚ . OSk ˚ OSkC2 ˚ � � � /

with x 7! ..0; : : : ; 0; x/; .x; 0; : : : ; 0// if k is even;
OSk ! . OS1 ˚ OS3 ˚ � � � ˚ OSk/˚ . OSk ˚ OSkC2 ˚ � � � /

with x 7! ..0; : : : ; 0; x/; .x; 0; : : : ; 0// if k is odd:

(2) If ek D C, then we set X to be the kernel of the composition of canonical
surjections onto tops

str.Ose11 ; : : : ; Os
ek
k
/˚ str.Osek

k
; : : : ; Osenn /

! .˚feiDC;16i6kg
OSi /˚ .˚feiDC;k6i6ng

OSi /

with
�W .˚feiDC;16i6kg

OSi /˚ .˚feiDC;k6i6ng
OSi /! OSk;

where � is given by(
..y2; y4; : : : ; yk/; .y

0
k
; ykC2; : : : // 7! yk � y

0
k

if k is even;
..y1; y3; : : : ; yk/; .y

0
k
; ykC2; : : : // 7! yk � y

0
k

if k is odd;

with yi 2 OSi and y0k 2 OSk .
Then str.�/ Š X .
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Proof. We proceed by induction on n. For n D 3, k must be 2 D n � 1 and the
result follows from the definition of str.�/. Now assume the result is true for all m,
3 6 m 6 n � 1. Fix 2 6 k 6 n � 1. If k D n � 1, then the result again follows
from the definition of str.�/. Assume k < n� 1. There are many cases to consider:
ek equal to C or �, k even or odd, and n even or odd. The cases all have similar
proofs. We prove one case and leave the others to the reader.

The case we prove is for n even, k even, and ek D C. Note that we then have,
for i odd, ei D � and, for i even, ei D C. For ease of notation, we set

Z1 D str.Os�1 ; : : : ; Os�n�1/; Z2 D str.Os�n�1; OsCn /;
U1 D str.Os�1 ; : : : ; OsCk /; U2 D str.OsC

k
; : : : ; OsCn /;

and V1 D str.OsC
k
; : : : ; Os�n�1/:

From the definition of str.�/, we have a short exact sequence of A� -modules

0! OSn�1
�
! Z1 ˚Z2 ! str.�/! 0:

By induction, we have a short exact sequence

0! Z1
g
! U1 ˚ V1

h
! OSk ! 0:

From this short exact sequence we obtain

0! Z1 ˚Z2

�
g 0
0 IdZ2

�
�! .U1 ˚ V1/˚Z2 ! OSk ˚ 0! 0:

Also by induction, we have a short exact sequence

0! OSn�1 ! V1 ˚Z2
�
! U2 ! 0:

From this short exact sequence we obtain

0! 0˚ OSn�1 ! U1 ˚ .V1 ˚Z2/

�
IdU1 0
0 �

�
�! U1 ˚ U2 ! 0:
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Using the above sequences and that U1 ˚ V1 ˚ Z2 D .U1 ˚ V1/ ˚ Z2 D

U1 ˚ .V1 ˚Z2/, we obtain an exact commutative diagram:

0

��

0

��
0 // OSn�1

� //

Š

��

Z1 ˚Z2 //0@ g 0

0 IdZ2

1A
��

str.�/ //

��

0

0 // 0˚ OSn�1 // U1 ˚ V1 ˚Z2

0@ IdU1 0

0 �

1A
//0@ h

0

1A
��

U1 ˚ U2 //

��

0

OSk ˚ 0
Š //

��

OSk

��
0 0

The reader may check that the exact sequence that appears as the last column in the
diagram above proves that X Š str.�/ in this case.

Corollary 7.5. Let .�; o;m/ with m � 1 be a Brauer graph with no loops or
multiple edges and letA� denote the associated Brauer graph algebra. Suppose that
� D Os

e1
1 ; Os

e2
2 ; : : : ; Os

en
n is an acceptable sequence of weighted edges in � with n > 2.

Then � D Osenn ; Osen�1n�1 ; : : : ; Os
e1
1 is also an acceptable sequence of weighted edges in �

and
str.�/ Š str.�/:

Proof. By Lemma 7.2(1), � is an acceptable sequence of weighted edges in � .
For n D 2, the result follows from the definitions. If n > 3, taking k D 2 in
Proposition 7.4, and induction yields the result.

By Corollary 7.5, we see that there are 3 types of string modules over A� .
Suppose � D Ose11 ; : : : ; Os

en
n is an acceptable sequence of weighted edges in � . We say

that str.�/ is a positive string module if e1 D C D en, a negative string module if
e1 D � D en, and a mixed string module if e1 ¤ en. We will see that the positive
string modules play an important role in the cohomology theory of A� .

8. Syzygies and resolutions in a Brauer graph algebra with no truncated edges

In this section we assume that .�; o;m/ with m � 1 is a Brauer graph with no loops
or multiple edges, and letA� denote the associated Brauer graph algebra. The main
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result here is Theorem 8.4, where we give a minimal projective resolution of a simple
A� -module, in the case where � has no truncated edges.

We begin by fixing a nontruncated edge s in � with endpoints ˛ and ˇ. Since
m � 1, both ˛ and ˇ have valency at least 2. Let edge s0 be in the successor sequence
of s at vertex ˛. We say edge s00 follows .s0; s/ if s00 is the successor of s at vertex ˇ.
The following diagram illustrates this definition:

ı ı

s00

ı

ı
˛
ı

s ˇ
ı

ı

s0

ı ı

As in Section 7, if e D C, we let e� D �, and if e D �, we let e� D C. We are
now in a position to describe the first syzygy of a positive string module. For this, we
introduce the following notational conventions. The string module str.sC; t�; uC/
will be schematically represented by

S U

T

For a nontruncated edge s, the indecomposable projective A� -module with top S
will be schematically represented by

S

T U

S

where the edge t in � is in the successor sequence for s at one endpoint of s, and the
edge u is in the successor sequence for s at the other endpoint of s. If a solid line

S

T

appears, then that signifies that not only is t in the successor sequence of s at some
vertex of � , but t is the successor of s at that vertex.
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Proposition 8.1. Let .�; o;m/ with m � 1 be a Brauer graph with no loops or
multiple edges, and let A� denote the associated Brauer graph algebra. Suppose
thatM D str.�/ is a positive string module, where � D Ose11 ; : : : ; Os

en
n is an acceptable

sequence of weighted edges in � , and n > 3. Suppose also, for each i with ei D C,
that Osi is a nontruncated edge. Then the first syzygy ofM is isomorphic to the positive
string module str.�/, where

� D Os
e1
0 ; Os

e�
1

1 ; : : : ; Os
e�n
n ; Os

en
nC1;

and where Os0 follows .Os2; Os1/ and OsnC1 follows .Osn�1; Osn/.

Proof. Since str.�/ is a positive string module, n is an odd integer, say n D 2mC 1.
By assumption, m > 1. The projective cover of M is P OS1 ˚ P OS3 ˚ � � � ˚ P OS2mC1
and the socle ofM is given by OS2˚ OS4˚� � �˚ OS2m. ThusM structurally looks like:

OS1 OS3 � � � OSn

OS2 OS4 OSn�1

Since Os1; Os3; : : : ; Os2mC1 are all nontruncated edges, the corresponding indecompos-
able projectives P OS1 ; P OS3 ; : : : ; P OS2mC1 are biserial. Thus, from the definition of
“follows”, P OS1 ˚ P OS3 ˚ � � � ˚ P OS2mC1 looks like:

OS1 OS3 OSn

OS0 OS2 ˚ OS2 OS4˚ � � � ˚ OSn�1 OSnC1

OS1 OS3 OSn

From these diagrams, the reader can easily provide the remaining details of the
proof.

We assume for the rest of this section that � contains no truncated edges.

To describe projective resolutions of simple A� -modules, we will need further
notation. For s an edge in � , we represent the simple A� -module S by vs.A�=r/,
where vs is the vertex in Q� associated to the edge s. Here we are viewing vs as
the idempotent in A� corresponding to the edge s in � . We also set the projective
A� -module PS to be vs.A�/.
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Let Os0 be an edge in � . We now present a minimal projective A� -resolution of
the simple module vOs0.A�=r/,

.Q�; f �/ W � � � ! Q2 f
2

! Q1 f
1

! Q0 f
0

! vOs0.A�=r/! 0:

We see that Q0 D vOs0.A�/ with f 0 being the canonical surjection and the first
syzygy is str.OsC�1; Os�0 ; Os

C
1 /, where Os�1 and Os1 are the successors of Os0 at its endpoints.

Applying Proposition 8.1 repeatedly, we see that, if n is odd, then the nth syzygy
of vOs0.A�=r/ is

�nA� .vOs0.A�=r// D str.OsC�n; Os��nC1; OsC�nC2; : : : ; Os
C
�1; Os

�
0 ; Os
C
1 ; : : : ; Os

�
n�1; Os

C
n /;

and, if n is even, then the nth syzygy of vOs0.A�=r/ is

�nA� .vOs0.A�=r// D str.OsC�n; Os��nC1; OsC�nC2; : : : ; Os
�
�1; Os

C
0 ; Os

�
1 ; : : : ; Os

�
n�1; Os

C
n /;

where, for i D 2; : : : ; n, Os�i follows .Os�iC2; Os�iC1/, and Osi follows .Osi�2; Osi�1/.
From this we obtain the next result.
Proposition 8.2. Keeping the above notation, let Qn be the nth projective in a
minimal projective A� -resolution of the simple module vOs0.A�=r/, and let n > 0.
If n is odd,

Qn
D P OS�n ˚ P OS�nC2

˚ � � � ˚ P OS�1
˚ P OS1

˚ � � � ˚ P OSn�2
˚ P OSn ;

and, if n is even,

Qn
D P OS�n ˚ P OS�nC2

˚ � � � ˚ P OS�2
˚ P OS0

˚ P OS2
˚ � � � ˚ P OSn�2

˚ P OSn ;

where, Os�1 and Os1 are the successors of Os0 at its endpoints, and, for i D 2; : : : ; n, Os�i
follows .Os�iC2; Os�iC1/, and Osi follows .Osi�2; Osi�1/.

It remains to describe the maps f n in the projective resolution. We recall from
Section 4 that, if edge t is the successor of edge s in � at vertex ˛, then we denote the
corresponding arrow in Q� from vertex vs to vertex vt by a.s; t/, since there are no
loops or multiple edges in � . Suppose that s D s0; s1; s2; : : : ; sn�1 is the successor
sequence for s at the vertex ˛ in � , and set sn D s0. If 1 6 k 6 n � 1, we denote
the path a.s0; s1/a.s1; s2/ � � � a.sk�1; sk/, from vs0 to vsk in Q� , by p.s0; sk/. Note
that our assumptions on � show that p.s0; sk/ is well-defined.
Lemma 8.3. Suppose that s is an edge in � with endpoints ˛ and ˇ and that
s D s0; s1; : : : ; sn�1 is the successor sequence for s at ˛. Let sn D s0 since s0 is the
successor of sn�1. Assume that t is in the successor sequence of s at ˇ.
(1) If 0 6 i < j < k 6 n, then p.si ; sj /p.sj ; sk/ D p.si ; sk/ ¤ 0.
(2) If 1 6 i 6 n, then p.t; s0/p.s0; si / D 0.
(3) If 0 6 i 6 n � 1, then p.si ; sn/p.s0; t / D 0.
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Proof. To prove (1), we note that

p.si ; sj / D a.si ; siC1/ � � � a.sj�1; sj /

and p.sj ; sk/ D a.sj ; sjC1/ � � � a.sk�1; sk/:

Hence p.si ; sj /p.sj ; sk/ D p.si ; sk/. That p.si ; sk/ ¤ 0 follows from the relations
defining I� and the fact that p.si ; sk/ is a factor of Cs;˛ .

The other parts follow from the relations defining I� , and the fact that p.s0; si /
and p.si ; sn/ are associated to the successor sequence for s at vertex ˛, whereas
the paths p.t; s0/ and p.s0; t / are associated to the successor sequence for s at
vertex ˇ.

We are now in a position to define the maps f nWQn ! Qn�1, for n > 0.
The map f 0W vOs0.A�/ ! vOs0.A�=r/ is the canonical surjection. Recall that, for
each edge s 2 � , we are setting PS D vs.A�/. Using our description of the
projective module Qn in Proposition 8.2, for n > 1, we write Qn as an .nC 1/ � 1
column vector. Then f n will be given as an n� .nC1/matrix with the .i; j /th entry
in vOs�nC2i�1.A�/vOs�nC2j�2 , representing a map fromP OS�nC2j�2 D vOs�nC2j�2.A�/
to P OS�nC2i�1 D vOs�nC2i�1.A�/.

The map f 1WQ1 ! Q0 is given by the 1 � 2 matrix�
p.Os0; Os�1/ p.Os0; Os1/

�
;

where Os�1 and Os1 are the successors of Os0 at its endpoints, so that p.Os0; Os�1/ D
a.Os0; Os�1/ and p.Os0; Os1/ D a.Os0; Os1/.

For n > 2, f n is given by the matrix
�
.�1/n�1p.Os�nC1; Os�n/ p.Os�nC1; Os�nC2/ 0 � � � 0 0

0 .�1/n�1p.Os�nC3; Os�nC2/ p.Os�nC3; Os�nC4/ 0 0

0 0 .�1/n�1p.Os�nC5; Os�nC4/ � � � 0 0

0 0 0 0 0
:::

:::
:::

:::
:::

p.Osn�3; Osn�2/ 0

0 0 0 � � � .�1/n�1p.Osn�1; Osn�2/ p.Osn�1; Osn/

˘

We now come to the main result of this section, which shows that we have indeed
described a minimal projective A� -resolution of the simple module vOs0.A�=r/.
Theorem 8.4. Let .�; o;m/ withm � 1 be a Brauer graph with no loops or multiple
edges and no truncated edges, and letA� denote the associated Brauer graph algebra.
Let Os0 be an edge in � and

.Q�; f �/ W � � � ! Q2 f
2

! Q1 f
1

! Q0 f
0

! vOs0.A�=r/! 0

be as given above. Then .Q�; f �/ is aminimal projectiveA� -resolution ofvOs0.A�=r/.
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Proof. We begin by showing that f n�1 ı f n D 0, for n > 1. For n D 1 this
is clear since, from the definitions of f 0 and f 1, we see that Im.f 1/ D vOs0r D
str.OsC�1; Os�0 ; Os

C
1 / D Ker.f 0/. That f 1 ı f 2 D 0 can be proved directly from the

matrices. So assume n > 3.
Let A be the matrix representing f n

�
.�1/n�1p.Os�nC1; Os�n/ p.Os�nC1; Os�nC2/ 0 � � � 0 0

0 .�1/n�1p.Os�nC3; Os�nC2/ p.Os�nC3; Os�nC4/ 0 0

0 0 .�1/n�1p.Os�nC5; Os�nC4/ � � � 0 0

0 0 0 0 0
:::

:::
:::

:::
:::

p.Osn�3; Osn�2/ 0

0 0 0 � � � .�1/n�1p.Osn�1; Osn�2/ p.Osn�1; Osn/

˘

and B be the matrix representing f n�1
�
.�1/n�2p.Os�nC2; Os�nC1/ p.Os�nC2; Os�nC3/ 0 � � � 0 0

0 .�1/n�2p.Os�nC4; Os�nC3/ p.Os�nC4; Os�nC5/ 0 0

0 0 .�1/n�2p.Os�nC6; Os�nC5/ � � � 0 0

0 0 0 0 0
:::

:::
:::

:::
:::

p.Osn�4; Osn�3/ 0

0 0 0 � � � .�1/n�2p.Osn�2; Osn�3/ p.Osn�2; Osn�1/

˘

We show BA is the zero matrix. The .1; 1/-entry of BA is

�p.Os�nC2; Os�nC1/p.Os�nC1; Os�n/:

But Os�nC2 and Os�n are in the successor sequences for Os�nC1 at different vertices.
Hence p.Os�nC2; Os�nC1/p.Os�nC1; Os�n/ D 0 by Lemma 8.3(3). The remaining entries
of the first column in BA are all 0.

The .1; 2/-entry of BA is

.�1/n�2p.Os�nC2; Os�nC1/p.Os�nC1; Os�nC2/

C .�1/n�1p.Os�nC2; Os�nC3/p.Os�nC3; Os�nC2/:

Suppose the endpoints of Os�nC2 are˛ andˇ in� . If Os�nC1 is in the successor sequence
of Os�nC2 at the vertex ˛, then p.Os�nC2; Os�nC1/p.Os�nC1; Os�nC2/ D COs�nC2;˛ . We
must also have that Os�nC3 is in the successor sequence of Os�nC2 at the vertex ˇ, and
p.Os�nC2; Os�nC3/p.Os�nC3; Os�nC2/ D COs�nC2;ˇ . Hence we see that the .1; 2/-entry
of BA is .�1/n�2.COs�nC2;˛ � COs�nC2;ˇ / which is a scalar multiple of a relation of
type one in I� and hence 0.

The .2; 2/-entry of BA is .�1/n�2p.Os�nC4; Os�nC3/.�1/n�1p.Os�nC3; Os�nC2/.
But Os�nC4 and Os�nC2 are in the successor sequences for Os�nC3 at different vertices.
Hence p.Os�nC4; Os�nC3/p.Os�nC3; Os�nC2/ D 0 by Lemma 8.3. The remaining entries
of the second column in BA are all 0.

This alternating pattern continues for the remaining columns and we have shown
BA is the zero matrix. Thus Im.f n/ � Ker.f n�1/.
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To show equality, we note that the top ofQn maps into Ker.f n�1/. Inductively,
we may assume that Ker.f n�1/ is isomorphic to�nA� .vOs0.A�=r//. The uniqueness
of the simple composition factors of indecomposable projective A� -modules given
in Lemma 5.3(3), together with the structure of the syzygies given in Proposition 8.1,
show that the top of Qn maps isomorphically to the top of Ker.f n�1/. Hence
Im.f n/ D Ker.f n�1/.

Since, for n > 1, the image of f n is contained inQn�1r, the resolution is minimal
and the proof is complete.

9. The Ext algebra of a Brauer graph algebra with no truncated edges

In this section, we assume that .�; o;m/ is a Brauer graph with no truncated edges.
We prove one of the main results of this paper, showing that the Ext algebra of the
associated Brauer graph algebra A� is finitely generated in degrees 0, 1 and 2.

Let G be a finite abelian group and let W WZ� ! G be a Brauer weighting
such that the Brauer covering graph .�W ; oW ;mW / has mW � 1 and no loops
or multiple edges (see Section 4). Suppose that s is an edge in � incident with
vertex ˛ in � , and sg is an edge in �W incident with vertex ˛g in �W , such that sg
lies over s and ˛g lies over ˛ for some g 2 G. Then, by [12, Proposition 4.4 and
Definition 4.5],m.˛/ val�.˛/ D mW .˛g/ val�W .˛g/, where val�.˛/ and val�W .˛g/
denote the valencies of ˛ and ˛g respectively. It follows that edge s in � is truncated
at vertex ˛ in � if and only if edge sg in �W is truncated at vertex ˛g in �W . Thus, to
study the Ext algebra of a Brauer graph algebra associated to a Brauer graph .�; o;m/
with no truncated edges, it follows from the above discussion and Proposition 4.1 that
we may assume .�; o;m/ is a Brauer graph with m � 1, with no loops or multiple
edges and no truncated edges.

LetA� denote the associated Brauer graph algebra and let r denote the Jacobson
radical ofA� . The Ext algebra ofA� is E.A�/ D ˚n>0 ExtnA� .A�=r;A�=r/ with
the Yoneda product. Let Os0 be an edge in � and OS0 D vOs0.A�=r/ the associated
simple A� -module, where vOs0 is the idempotent in A� associated to Os0. Let

.Q�; f �/ W � � � ! Q2 f
2

! Q1 f
1

! Q0 f
0

! vOs0.A�=r/! 0

be the minimal projective A� -resolution of OS0 given in Theorem 8.4, with

Qn
D

(
P OS�n ˚ P OS�nC2

˚ � � � ˚ P OS�2
˚ P OS0

˚ P OS2
˚ � � � ˚ P OSn ; for n even;

P OS�n ˚ P OS�nC2
˚ � � � ˚ P OS�1

˚ P OS1
˚ � � � ˚ P OSn ; for n odd:

Since each P OS is an indecomposable projective A� -module, we choose a K-basis
Gni .
OS0/, where i 2 f�n;�nC2; : : : ; n�2; ng, for ExtnA� . OS0;A�=r/, whereG

n
i .
OS0/
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represents the element in ExtnA� . OS0;A�=r/ given by the composition

Qn
! P OSi

! OSi ! A�=r;
where the first map is the projection map, the second map is the canonical surjection,
and the third map is inclusion. We call fGni . OS0/gi2f�n;�nC2;:::;n�2;ng the canonical
basis of ExtnA� . OS0;A�=r/. Since A�=r D ˚Os02�1 OS0, so that

ExtnA� .A�=r;A�=r/ D
M
Os02�1

ExtnA� . OS0;A�=r/;

we abuse notation and view

Gn D
[
Os02�1

fGni .
OS0/gi2f�n;�nC2;:::;n�2;ng

as a K-basis of ExtnA� .A�=r;A�=r/.
We now present the main result of this section.

Theorem 9.1. Let .�; o;m/ be a Brauer graph with no truncated edges, and let A�
denote the associated Brauer graph algebra. Then the Ext algebra,E.A�/, is finitely
generated in degrees 0; 1 and 2.

Proof. From the above discussion, we may assume .�; o;m/ is a Brauer graph with
m � 1, with no loops or multiple edges and no truncated edges. Fix an edge Os0
in � with associated simple A� -module OS0. We keep the previous notation. Since
A�=r D ˚t2�1T , we have ExtnA� . OS0;A�=r/ D ˚t2�1 Ext

n
A� .
OS0; T /, and hence,

for i 2 f�n;�nC2; : : : ; n�2; ng, wemay viewGni . OS0/ as amapGni . OS0/WQ
n ! OSi .

First we suppose that n > 2 is an even integer. Let i 2 f2; 4; : : : ; n � 2; ng, and
let

.R�; g�/ W � � � ! R2
g2

! R1
g1

! R0
g0

! vOsi�1.A�=r/! 0

be the minimal projective A� -resolution of OSi�1 given in Theorem 8.4. We show
that

Gni .
OS0/ D G

n�1
i�1 .

OS0/ �G
1
i .
OSi�1/;

where the right hand side is viewed in the Yoneda product Ext1A� . OSi�1; OSi / �
Extn�1A� .

OS0; OSi�1/. For ease of notation and consistency, we set Ot0 D Osi�1 (noting
that i ¤ 0). Let Ot1 and Ot�1 be the edges in � that are the successors of Ot0 at the
endpoints of Ot0. Define the sequence Ot�n; Ot�nC1; : : : ; Otn�1; Otn recursively:

for i > 1, Oti follows .Oti�2; Oti�1/ and Ot�i follows .Ot�iC2; Ot�iC1/:

With this notation,

Rm D

(
P OT�m ˚ P OT�mC2

˚ � � � ˚ P OT�2
˚ P OT0

˚ P OT2
˚ � � � ˚ P OTm ; for m even;

P OT�m ˚ P OT�mC2
˚ � � � ˚ P OT�1

˚ P OT1
˚ � � � ˚ P OTm ; for m odd;

and the maps gmWRm ! Rm�1 are given in a similar fashion to the maps f n in the
resolution of OS0.
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We begin by finding maps  0 and  1 such that the following diagram commutes.

Qn f n //

 1
��

Qn�1

 0
��

Gn�1
i�1

. OS0/

""
R1

g1 // R0
g0 // OSi�1

(�)

Since Ot0 D Osi�1 and since Osi follows .Osi�2; Osi�1/, we see that Osi is the successor
of Osi�1 at one of its endpoints. Furthermore, Osi�2 is in the successor sequence of Osi�1
at the other endpoint ˇ of Osi�1. Thus, after reordering, we may assume that Ot1 D Osi
and that both Osi�2 and Ot�1 are in the successor sequence of Osi�1 at the vertex ˇ,
with Ot�1 being the successor of Osi�1 at ˇ. The following diagram illustrates this.

ı ı

OsiDOt1

ı
Osi�2 ˇ

ı
Osi�1DOt0

ı ı

ı

Ot�1

ı

From this we see that R0 D P OT0
D P OSi�1

and R1 D P OT�1
˚ P OT1

D P OT�1
˚ P OSi

.
Define  0WQn�1 ! R0 by  0.x�nC1; x�nC3; : : : ; xn�3; xn�1/ D xi�1 and define
 1WQ

n ! R1 by the 2 � n matrix�
0 � � � 0 �p.Ot�1; Osi�2/ 0 0 � � � 0

0 � � � 0 0 vOsi 0 � � � 0

�
where the first nonzero column represents the map from P OSi�2

to P OT�1 ˚ P OSi and
the next nonzero column represents the map from P OSi

to P OT�1 ˚ P OSi . The reader
may now check the commutativity of (�).

Next we see from the diagram

Qn f n //

 1
��

Qn�1

 0
��

Gn�1
i�1

. OS0/

""
R1

G1
i
. OSi�1/ ""

g1 // R0
g0 // OSi�1

OSi

that G1i . OSi�1/ ı  1 D G
n�1
i�1 .

OS0/ �G
1
i .
OSi�1/ D G

n
i .
OS0/.
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Next suppose i 2 f�n;�nC2; : : : ;�2g. The proof thatGn�1iC1 .
OS0/�G

1
i .
OSiC1/ D

Gni .
OS0/ is similar and is left to the reader. In fact, interchanging Osi with Os�i for

i 2 f2; : : : ; n � 2; ng in the above proof, gives the result.
For n even, it remains to consider the case when i D 0. Here we show that

Gn�20 . OS0/ �G
2
0.
OS0/ D G

n
0 .
OS0/:

This is clear if n D 2 so assume n > 4. We find explicit maps �0, �1, and �2 such
that the following diagram commutes.

Qn f n //

�2
��

Qn�1

�1
��

f n�1 // Qn�2

�0
��

Gn�2
0

. OS0/

!!
Q2 f 2 // Q1 f 1 // Q0 f 0 // OS0

(��)

We have that Qi D P OS�i
˚ P OS�iC2

˚ � � � ˚ P OSi�2
˚ P OSi

. Thus, for i > 3, and
j D i � 2k, with k > 0,

Qi
D P OS�i

˚ P OS�iC2
˚ � � � ˚ P OS�j�2

˚Qj
˚ P OSjC2

˚ � � � ˚ P OSi
:

We then take �0, �1, and �2 to be the projections Qi ! Qj , for the appropriate i ’s
and j ’s. The reader may check that (��) commutes. Noting that the composition
G20.
OS0/ ı �2 is just Gn0 . OS0/, we have that Gn�20 . OS0/ � G

2
0.
OS0/ D Gn0 .

OS0/. This
completes the study of the case when n is even.

Now suppose that n is odd, n > 3. We claim that, for i 2 f1; 3; : : : ; n � 2; ng,

Gn�1i�1 .
OS0/ �G

1
i .
OSi�1/ D G

n
i .
OS0/;

and for i 2 f�1;�3; : : : ;�nC 2;�ng,

Gn�1iC1 .
OS0/ �G

1
i .
OSiC1/ D G

n
i .
OS0/:

For i ¤ �1; 1, the proof is analogous to the n even case. For i D �1 or i D C1,
keeping �0 and �1 as above, we get a commutative diagram

Qn f n //

�1
��

Qn�1

�0
��

Gn�1
0

. OS0/

!!
Q1 f 1 // Q0 f 0 // OS0

and it is now immediate that

Gn�10 . OS0/ �G
1
i .
OS0/ D G

n
i .
OS0/:



570 E. L. Green, S. Schroll, N. Snashall and R. Taillefer

Thus we have shown that every basis element in ExtnA� . OS0; T / is the product
of an element in some Extn�1A� .

OSi ; T / with an element in Ext1A� . OS0; OSi /, or is the
product of an element in some Extn�2A� .

OSi ; T /with an element in Ext2A� . OS0; OSi /. This
completes the proof.

We end this section with an immediate application to K2 algebras. The concept
of a K2 algebra was introduced by Cassidy and Shelton in [7, Definition 1.1], where
they defined a graded algebra A to beK2 if the Ext algebra, E.A/, is generated as an
algebra in degrees 0, 1 and 2. This class of algebras is a natural generalization of the
class of Koszul algebras.

Corollary 9.2. Let K be an algebraically closed field and let .�; o;m; q/ be a
quantized Brauer graph with no truncated edges. Let A� denote the associated
Brauer graph algebra. Suppose A� is length graded. Then A� is a K2 algebra.

Proof. From the discussion at the beginning of this section, we may assume that
.�; o;m; q/ is a quantized Brauer graph with m � 1, with no loops or multiple edges
and no truncated edges. From Proposition 4.2, we may assume further that q � 1

since the number of generators of the Ext algebra, E.A�/, and their degrees do not
depend on q. The result now follows from Theorem 9.1 and the fact that A� is a
graded algebra.

We consider K2 algebras and other generalizations of Koszul algebras further in
the next section.

10. Length graded Brauer graph algebras

In this section, .�; o;m/ is a Brauer graph and A� denotes the associated Brauer
graph algebra.

Our first results lead to Theorem 10.4, where we characterise the Brauer graph
algebras A� where the Ext algebra, E.A�/, is finitely generated in degrees 0, 1
and 2. This provides a converse to Theorem 9.1. In the remainder of the section we
consider length graded Brauer graph algebrasA� . We recall the definition from [10]
of a 2-d -Koszul algebra. We then complete our study of generalizations of Koszul
algebras with Theorem 10.6, where we classify the Brauer graph algebras that are
2-d -Koszul. Indeed, Theorem 10.6 shows that a Brauer graph algebra is a 2-d -Koszul
algebra if and only if it is 2-d -homogeneous and a K2 algebra.

We begin with a result on syzygies of string modules where the Brauer graph �
may have both truncated and nontruncated edges.
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Proposition 10.1. Let .�; o;m/ with m � 1 be a Brauer graph with no loops
or multiple edges, and let A� denote the associated Brauer graph algebra. Let
� D Os

e1
1 ; : : : ; Os

en
n be an acceptable sequence of weighted edges in � , and n > 2. Let

M D str.�/.
(1) Suppose that n D 2. Then without loss of generality,M is the uniserial module

str.OsC1 ; Os�2 /. Let ˛ be the vertex at which Os1 and Os2 are both incident and let Ou be
the successor of Os2 at ˛.
� If Os1 is a nontruncated edge, then the first syzygy of M is isomorphic to the
string module str. OuC; Os�1 ; OtC/ if Ou ¤ Os1, and to the string module str.Os�1 ; OtC/
if Ou D Os1, where Ot follows .Os2; Os1/.

� If Os1 is a truncated edge, then the first syzygy ofM is isomorphic to the string
module str. OuC; Os�1 / if Ou ¤ Os1, and to the simple module str.OsC1 / if Ou D Os1.

(2) Suppose that n > 3 and e1 D C.
� If Os1 is a nontruncated edge, then the first syzygy of M is isomorphic to the
string module str.�/, where � begins as in Proposition 8.1.

� If Os1 is a truncated edge, then the first syzygy ofM is isomorphic to the string
module str.�/, where � begins � D Ose

�
1

1 ; Os
e�
2

2 ; : : :

(3) Suppose that n > 3 and e1 D �.
� If Os1 and Os2 are incident at the vertex ˛ and if Os2 is the successor of Os1 at ˛,
then the first syzygy ofM is isomorphic to the string module str.�/, where �
begins � D Ose

�
2

2 ; Os
e�
3

3 ; : : :

� If Os1 and Os2 are incident at the vertex ˛ and if Os2 is not the successor of Os1 at ˛,
then the first syzygy ofM is isomorphic to the string module str.�/, where �
begins � D OtC; Ose

�
2

2 ; Os
e�
3

3 ; : : : , and where Ot is the successor of Os1 at ˛.

(4) The first syzygy ofM may be fully determined using (1), (2), (3) andCorollary 7.5.
The proof is similar to that of Proposition 8.1; note that these syzygies also appear

in [1] where they consider the Ext algebra of a symmetric Brauer graph algebra.
For a string module str.�/, where � D Ose11 ; : : : ; Os

en
n is an acceptable sequence of

weighted edges in � , we see that the only Osi that can be truncated edges are Os1 and Osn.
We may use Proposition 10.1 to find all syzygies of the simple A� -modules. In the
case where S is the simpleA� -module corresponding to a truncated edge s in � , we
can simplify Proposition 10.1, and have the following corollary.
Corollary 10.2. Let .�; o;m/withm � 1 be a Brauer graphwith no loops ormultiple
edges, and assume that� ¤ A2. LetA� denote the associated Brauer graph algebra.
Suppose that edge s in � is truncated at vertex ˛. Define edges Osi recursively, so that
Os0 D s, Os1 is the successor of s at the endpoint ˇ ¤ ˛, and, for m > 1, if Osm is not
truncated at the vertex which is not incident with Osm�1, then OsmC1 follows .Osm�1; Osm/.
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Then,
(1) there is some n > 1 so that Osn is a truncated edge in �;
(2) for 1 6 m 6 n, the mth syzygy of S is str.OsCm ; Os�m�1/;
(3) the .nC 1/-st syzygy of S is str.OsCn /.
Moreover, S is a periodic A� -module.

The sequence .Os0; Os1; : : : ; Osn/ of Corollary 10.2 is precisely the Green walk for
s D Os0; see [16] and [13]. We note that it is also known from [19, Corollary 2.7]
that S is a periodic A� -module when s is a truncated edge in � .

For the next result, we recall that HomA� .�;�/ denotes the A� -module
homomorphisms modulo those homomorphisms which factor through a projective
A� -module.
Theorem 10.3. Let .�; o;m/withm � 1 be a Brauer graph with no loops or multiple
edges. Let A� denote the associated Brauer graph algebra. If � has both truncated
and nontruncated edges, then the Ext algebra, E.A�/, is not generated in degrees 0,
1 and 2 alone.

In particular, if we have a sequence of edges Os0; Os1; : : : ; Osn with n > 2, where
(i) Os0 and Osn are truncated edges,
(ii) Os1; Os2; : : : ; Osn�1 are nontruncated edges,
(iii) Os1 is the successor of Os0,
(iv) OsiC1 follows .Osi�1; Osi / for 1 6 i 6 n � 1,

then there is an element of ExtnC1A� .
OS0; OSn/ which is not in the subalgebra of E.A�/

generated by the elements of degree at most n.

Proof. Note that we continue to assume that the Brauer graph � is connected. We
shall use Corollary 10.2 repeatedly without comment. Recall that

ExtkA� . OS0; T / Š HomA� .�
k. OS0/; T / Š HomA� .�

kC`. OS0/;�
`.T //

for any simple module T , and that for simple modules S , T and U , and integers k
and `; the Yoneda product Ext`A� .T; U / � ExtkA� .S; T / ! ExtkC`A� .S; U / can be
identified with the composition of maps

HomA� .�
kC`.S/;�`.T // � HomA� .�

`.T /; U /! HomA� .�
kC`.S/; U /:

Since Os0 is a truncated edge, we know that

ExtnC1A� .
OS0; OSn/ Š HomA� .�

nC1. OS0/; OSn/ Š HomA� .
OSn; OSn/ Š K:

We must prove that homomorphisms from OSn to itself cannot be written as sums of
Yoneda products of elements of ExtiA� . OS0; T / and ExtjA� .T; OSn/ with T a simple
A� -module, i C j D nC 1 and i and j nonzero.
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First note that

ExtiA� . OS0; T / Š HomA� .�
i . OS0/; T / Š HomA� .Top.�

i . OS0//; T /;

and we have Top.�i . OS0// D OSi for some i with 1 6 i 6 n. Therefore T D OSi .
Moreover,

ExtiA� . OS0; OSi / Š HomA� .�
iCj . OS0/;�

j . OSi //

D HomA� .�
nC1. OS0/;�

j . OSi // Š HomA� .
OSn; �

j . OSi //

and ExtjA� . OSi ; OSn/ Š HomA� .�
j . OSi /; OSn/. These two spaces must be nonzero;

therefore OSn must be in the socle and in the top of �j . OSi /. Since Osn is truncated,
this means that �j . OSi / is a mixed string module, of the form str.Os�n ; : : : ; OsCn /, by
Proposition 10.1. But then the composition OSn ! �j . OSi / ! OSn must be zero,
unless �j . OSi / D OSn, since the first map must go into the socle and the second map
comes from the top. Hence assume that �j . OSi / D OSn. Since OSn D �nC1. OS0/

and A� is selfinjective, this implies that OSi D �nC1�j . OS0/ D �i . OS0/ so that
�i . OS0/ is simple. However, �i . OS0/ is the nonsimple uniserial module with top OSi
and socle OSi�1, so that we have a contradiction. Therefore any Yoneda product
ExtnC1�iA� .T; OSn/ � ExtiA� . OS0; T /! ExtnC1A� .

OS0; OSn/ with 1 6 i 6 n and T simple
is zero, and we have the required result.

The next theorem characterizes the Brauer graph algebras A� where the Ext
algebra, E.A�/, is finitely generated in degrees 0, 1 and 2, providing a converse to
Theorem 9.1.

Theorem 10.4. Let .�; o;m/ be a Brauer graph and let A� denote the associated
Brauer graph algebra. Then the Ext algebra, E.A�/, is finitely generated in degrees
0, 1 and 2 if and only if � does not have both truncated and nontruncated edges.

Proof. If � has no truncated edges, then it follows from Theorem 9.1 that E.A�/ is
finitely generated in degrees 0,1 and 2. So suppose that � has at least one truncated
edge. If all the edges are truncated then � is a star (including the case � D A2) and
the associated Brauer graph algebra A� is a Nakayama algebra. It is well-known
that such an algebra is d -Koszul (for d > 2) and hence, by [11], its Ext algebra is
generated in degrees (at most) 0, 1 and 2. (Indeed, a d -Koszul algebra is also length
graded and so is K2.)

Thus we may assume that � has both truncated and nontruncated edges. From the
discussion at the start of Section 9 and Proposition 4.1, we may assume that .�; o;m/
is a Brauer graph with m � 1, with no loops or multiple edges and which also has
both truncated and nontruncated edges. It is now immediate from Theorem 10.3, that
E.A�/ cannot be generated only in degrees 0, 1 and 2.
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Corollary 10.5. Let .�; o;m/ be a Brauer graph and let A� denote the associated
Brauer graph algebra. SupposeA� is length graded. ThenA� isK2 if and only if �
does not have both truncated and nontruncated edges.

We now introduce 2-d -Koszul algebras, a class of graded algebras which includes
the Koszul algebras. Recall from Section 3 that an algebra ƒ D KQ=I is
a 2-d -homogeneous algebra if I can be generated by homogeneous elements of
lengths 2 and d .

Let ƒ D KQ=I where I is generated by homogeneous elements, so that ƒ is
length graded withƒ D ƒ0˚ƒ1˚ƒ2˚� � � . Following Green and Marcos in [10],
and for a function F WN! N, the algebraƒ is said to be F -determined (respectively,
weakly F -determined) if the nth projective module in a minimal graded projective
resolution of ƒ0 (viewed as a graded ƒ-module in degree 0) can be generated in
degree F.n/ (respectively, 6 F.n/), for all n 2 N. Let ıWN! N be the map given
by

ı.n/ D

(
n
2
d if n is even;
n�1
2
d C 1 if n is odd:

An algebra ƒ D KQ=I is then said to be a 2-d -determined algebra if I can
be generated by homogeneous elements of degrees 2 and d , and if ƒ is weakly
ı-determined. Thus a 2-d -determined algebra is a 2-d -homogeneous algebra.
Furthermore, a 2-d -determined algebra is said to be 2-d -Koszul if its Ext algebra is
finitely generated.

Assume that .�; o;m; q/ is a quantized Brauer graph and let A� denote the
associated Brauer graph algebra. Suppose thatA� is graded with the length grading.
Then the conclusions of Theorems 9.1 and 10.4 are still true for A� , provided the
field K satisfies one of the two conditions in Corollary 4.3. This is the case if K is
algebraically closed, for which see Proposition 4.2 and also Corollary 9.2. This allows
us to classify the 2-d -homogeneous Brauer graph algebraswhich are 2-d -determined.
Theorem 10.6. Let .�; o;m; q/ be a quantized Brauer graph, let A� denote the
associated Brauer graph algebra, and assume that either q � 1 or the field K
satisfies the conditions in Corollary 4.3. Let d > 3 and suppose that A� is 2-d -
homogeneous. Then the following are equivalent:
(1) � has no truncated edges,
(2) A� is 2-d -determined,
(3) A� is 2-d -Koszul,
(4) A� is K2.

Proof. The equivalence between (1) and (4) follows from Corollary 10.5, since
a 2-d -homogeneous Brauer graph algebra cannot have only truncated edges. By
definition, (3) implies (2). We prove that (1) and (2) are equivalent, and then that (2)
implies (3). Suppose throughout that A� is 2-d -homogeneous.
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(2)) (1). Suppose that � has at least one truncated edge s. By Proposition 3.5,
we know that no two successors are truncated and that for any vertex ˛ in � we
have m.˛/ val.˛/ 2 f1; dg. There are edges Os0 D s; Os1; : : : ; Osn�1; Osn such that Osn
is truncated, n > 2, Os1; : : : ; Osn�1 are not truncated, Os1 is the successor of Os0 at the
vertex ˛1 and for each integer m with 1 6 m < n the edge OsmC1 follows .Osm�1; Osm/
at the vertex ˛mC1, as in Corollary 10.2. Note that when Osm is a loop, it occurs
twice in the successor sequence of Osm�1; when we say that OsmC1 follows .Osm�1; Osm/
in this case, we have considered one instance of the loop being in the successor
sequence of Osm�1, and OsmC1 is the successor of Osm�1 at the other instance of this
loop in the successor sequence of Osm�1. We shall now prove that the third projective
in a minimal projective resolution of the simpleA� -module OSn�1 has a generator in
degree d C 2 > ı.3/ so that A� cannot be 2-d -determined.

Let t be the successor of Osn�1 at ˛n�1 and, if t is not truncated, let u follow
.Osn�1; t /. Then the indecomposable projective module P OSn is the uniserial module

of length d whose top and socle are OSn, which we represent by P OSn D
OSn
Y
OSn�1
OSn

.

The indecomposable projective module P OSn�1
is biserial, we represent it by

P OSn�1
D

OSn�1

T OSn

X Y
OSn�1

, where
T
X
OSn�1

is the uniserial module of length d � 1 with top T

and socle OSn�1 (defined from the successor sequence of t at ˛n�1). We shall also
need PT and PU which we represent as follows:

PT D

˚
T
X
OSn�1
T

if t is truncated;

T
U X

Z OSn�1
T

if t is not truncated;

and PU D

†
U
Z
T
U

if u is truncated

U
Z L
T
U

if u is not truncated,

where U , Z and L are uniserial modules defined as before from the appropriate
successor sequences.

Let .Q�; f �/ be a minimal projective resolution of OSn�1. Then Q1 is
generated in degree 1 (by arrows in the quiver). If the edge t is truncated, then
�2. OSn�1/ D

OSn�1

T OSn
, the module Q2 is generated in degree d , the next syzygy

is �3. OSn�1/ D
X Y
OSn�1

and Q3 is generated in degree d C 2 > ı.3/. If the

edge t not is truncated, then �2. OSn�1/ D
U
Z OSn�1

T OSn

, and the module Q2

is generated in degrees 2 and d . If the edge u is truncated, the next syzygy

is�3. OSn�1/ D
T

U X Y

OSn�1

andQ3 is generated in degrees dC1 and dC2 > ı.3/.
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Finally, if the edge u is not truncated, the next syzygy is�3. OSn�1/ D
L T

U X Y

OSn�1

andQ3 is generated in degrees 3, d C 1 and d C 2 > ı.3/.
Therefore, if � has a truncated edge, then A� is not 2-d -determined. Hence (2)

implies (1).
(1) ) (2). Now assume that � does not have any truncated edges. Then by

Proposition 3.5, we know that for any vertex ˛ in � we have m.˛/ val.˛/ D d . To
prove that A� is 2-d -determined, we shall follow the lines of Proposition 8.2 and
give a projective resolution of the simple module OS0, in which the projectives will
be generated in appropriate degrees. We need to be more precise in our notation,
since we are no longer assuming that there are no multiple edges; in particular, in the
notation a.s; t; ˛/ defined in Section 4, the vertex ˛ must be specified.

Let Os0 be an edge in � , and let ˛0 and ˇ0 be its endpoints. Let Os1 be the successor
of Os0 at ˛0 and let ˛1 be the other endpoint of Os1. Let Os�1 be the successor of Os0 at ˇ0
and let ˇ1 be the other endpoint of Os�1. For an integer n > 2 and for any integer i
with 2 6 i 6 n, let Osi be the the edge that follows .Osi�2; Osi�1/ at ˛i�1, let ˛i be
the other endpoint of Osi , let Os�i be the the edge that follows .Os�iC2; Os�iC1/ at ˇi�1,
let ˇi be the other endpoint of Os�i . Then the projectivesQn in a minimal projective
resolution of OS0 are as in Proposition 8.2. The map f 1 W Q1 ! Q0 is given by the
matrix �

a.Os0; Os�1; ˇ0/ a.Os0; Os1; ˛0/:
�

In order to define the maps f n W Qn ! Qn�1 for n > 2, we need to define, for
0 6 j 6 bn�1

2
c, the following paths of length d � 1 W

Qp.Osn�2j�1; Osn�2j�2; ˛n�2j�2/ WD p.Osn�2j�1; Osn�2j�2; ˛n�2j�2/C
m.˛n�2j�2/�1

Osn�2j�2;˛n�2j�2

and

Qp.Os�nC2jC1; Os�nC2jC2; ˇn�2j�2/

WD p.Os�nC2jC1; Os�nC2jC2; ˇ�nC2jC2/C
m.ˇn�2j�2/�1

Os�nC2jC2;ˇn�2j�2
:

If n > 2 is even and 0 6 j 6 n
2
� 1, the matrix of f n W Qn ! Qn�1 is described as

follows,
‚
its .j; j /-entry is � a.Os�nC2jC1; Os�nC2j ; ˇn�2j�1/
its .j; j C 1/-entry is Qp.Os�nC2jC1; Os�nC2jC2; ˇn�2j�2/
its .n � 1 � j; n � 1 � j /-entry is � Qp.Osn�2j�1; Osn�2j�2; ˛n�2j�2/
its .n � 1 � j; n � j /-entry is a.Osn�2j�1; Osn�2j ; ˛n�2j�1/:



The Ext algebra of a Brauer graph algebra 577

If n > 3 is odd and 0 6 j 6 n�3
2

, the matrix of f n W Qn ! Qn�1 is described as
follows,

˚
its .j; j /-entry is a.Os�nC2jC1; Os�nC2j ; ˇn�2j�1/
its .j; j C 1/-entry is Qp.Os�nC2jC1; Os�nC2jC2; ˇn�2j�2/
its .n � 1 � j; n � 1 � j /-entry is Qp.Osn�2j�1; Osn�2j�2; ˛n�2j�2/
its .n � 1 � j; n � j /-entry is a.Osn�2j�1; Osn�2j ; ˛n�2j�1/
its .n�1

2
; n�1
2
/-entry is a.Os0; Os�1; ˇ0/

its .n�1
2
; nC1
2
/-entry is a.Os0; Os1; ˛0/:

The projective Q1 is generated in degree 1 (by arrows in the quiver Q� ), the
projective Q2 is generated in degrees 2 and d (by some elements in the set of
minimal generators of the ideal I� , but this can also be seen directly). It can then be
seen inductively, using the resolution given above, that Qn is generated in degrees
at most ı.n/; more precisely, the modules P OSn�2j and P OS�nC2j are generated in
degrees nC j.d � 2/ with 0 6 j 6 bn

2
c. This is true of the resolution of any simple

A� -module, and thereforeA� is 2-d -determined. Thus (1) implies (2), and we have
that (1), (2) and (4) are equivalent.

(2) ) (3). Suppose A� is 2-d -determined. Then, by the equivalence of (2)
and (4), we know that A� is K2. Hence the Ext algebra, E.A�/, is generated in
degrees 0, 1 and 2 and so is finitely generated. ThusA� is 2-d -Koszul and hence (3)
holds. This completes the proof.

This theorem gives a positive answer for Brauer graph algebras to all three
questions asked by Green and Marcos in [10, Section 5]. Specifically, we have
shown, for a Brauer graph algebra A� which is 2-d -homogeneous, that
(1) if A� is a 2-d -determined algebra, then E.A�/ is finitely generated;

(2) ifA� is a 2-d -determined algebra and ifE.A�/ is finitely generated, thenE.A�/
is generated in degrees 0, 1 and 2;

(3) ifE.A�/ is generated in degrees 0, 1 and 2, thenA� is a 2-d -determined algebra.
In addition, note that algebras ƒN of [20], where N > 1, are all Brauer graph

algebras, where � is the oriented cycle with every vertex having multiplicity N .
Moreover, these algebras are 2-2N -homogeneous and, using Theorem 10.6, we see
that they are also 2-2N -Koszul. This example gives a new class of 2-d -Koszul
algebras.

In contrast to Theorem 10.6, a negative answer was given by Cassidy and Phan to
the first two questions posed by Green and Marcos in [10]. In [6], Cassidy and Phan
give specific infinite-dimensional algebras A and B such that A is 2-4-determined
but E.A/ is not finitely generated, and B is 2-4-determined of infinite global
dimension,E.B/ is finitely generated, butE.B/ is not generated in degrees 0, 1 and 2.
Another generalization of Koszul is given by Herscovich and Rey in [14], where they



578 E. L. Green, S. Schroll, N. Snashall and R. Taillefer

studymulti-Koszul algebras. In particular, they remark that a left f2; dg-multi-Koszul
algebra is a 2-d -Koszul algebra in the sense of [10], though the converse does not
hold. However, they showed that the Ext algebra of a multi-Koszul algebra A is
generated in degrees 0, 1 and 2, so that the algebra A itself is K2.

References

[1] M. A. Antipov and A. I. Generalov, The Yoneda algebras of symmetric special biserial
algebras are finitely generated, St. Petersburg Math. J., 17 (2006), 377–392. MR 2167841

[2] D. J. Benson, Representations and cohomology. I. Basic representation theory of
finite groups and associative algebras, second edition, Cambridge Studies in Advanced
Mathematics, 30, Cambridge University Press, Cambridge, 1998. Zbl 0908.20001
MR 1634407

[3] R. Berger, Koszulity for nonquadratic algebras, J. Algebra, 239 (2001), 705–734.
Zbl 1035.16023 MR 1832913

[4] R. Berger, M. Dubois-Violette, and M. Wambst, Homogeneous algebras, J. Algebra, 261
(2003), 172–185. Zbl 1061.16034 MR 1967160

[5] S. Brenner, M. C. R. Butler, and A. D. King, Periodic algebras which are almost Koszul,
Algebr. Represent. Theory, 5 (2002), 331–367. Zbl 1056.16003 MR 1930968

[6] T. Cassidy and C. Phan, Quotients of Koszul algebras and 2-D-determined algebras,
Comm. Algebra, 42 (2014), 3742–3752. Zbl 1309.16017 MR 3200055

[7] T. Cassidy andB. Shelton, Generalizing the notion of Koszul algebra,Math. Z., 260 (2008),
93–114. Zbl 1149.16026 MR 2413345

[8] K. Erdmann, E. L. Green, N. Snashall, and R. Taillefer, Representation theory of the
Drinfeld doubles of a family of Hopf algebras, J. Pure Appl. Algebra, 204 (2006), 413–
454. Zbl 1090.16015 MR 2184820

[9] K. Erdmann and Ø. Solberg, Radical cube zero weakly symmetric algebras and support
varieties, J. Pure Appl. Algebra, 215 (2011), 185–200. Zbl 1250.16010 MR 2720683

[10] E. L.Green andE.N.Marcos,d -Koszul algebras, 2-d -determined algebras and 2-d -Koszul
algebras, J. Pure Appl. Algebra, 215 (2011), 439–449. Zbl 1270.16021 MR 2738362

[11] E. L. Green, E. N. Marcos, R. Martínez-Villa, and P. Zhang, D-Koszul algebras, J. Pure
Appl. Algebra, 193 (2004), 141–162. Zbl 1075.16013 MR 2076383

[12] E. L. Green, S. Schroll, and N. Snashall, Group actions and coverings of Brauer graph
algebras, Glasgow Math. J., 56 (2014), 439–464. Zbl 1290.05161 MR 3187910

[13] J. A. Green, Walking around the Brauer tree, J. Austral. Math. Soc., 17 (1974), 197–213.
Zbl 0299.20006 MR 349830

[14] E. Herscovich andA. Rey, On a definition ofmulti-Koszul algebras, J. Algebra, 376 (2013),
196–227. Zbl 1282.16033 MR 3003724

[15] M. Kauer, Derived equivalence of graph algebras, in Trends in the representation
theory of finite-dimensional algebras, 201–213, Contemp. Math., 229, Amer. Math. Soc.,
Providence, RI, 1998. Zbl 0921.16006 MR 1676221

http://www.ams.org/mathscinet-getitem?mr=2167841
https://zbmath.org/?q=an:0908.20001
http://www.ams.org/mathscinet-getitem?mr=1634407
https://zbmath.org/?q=an:1035.16023
http://www.ams.org/mathscinet-getitem?mr=1832913
https://zbmath.org/?q=an:1061.16034
http://www.ams.org/mathscinet-getitem?mr=1967160
https://zbmath.org/?q=an:1056.16003
http://www.ams.org/mathscinet-getitem?mr=1930968
https://zbmath.org/?q=an:1309.16017
http://www.ams.org/mathscinet-getitem?mr=3200055
https://zbmath.org/?q=an:1149.16026
http://www.ams.org/mathscinet-getitem?mr=2413345
https://zbmath.org/?q=an:1090.16015
http://www.ams.org/mathscinet-getitem?mr=2184820
https://zbmath.org/?q=an:1250.16010
http://www.ams.org/mathscinet-getitem?mr=2720683
https://zbmath.org/?q=an:1270.16021
http://www.ams.org/mathscinet-getitem?mr=2738362
https://zbmath.org/?q=an:1075.16013
http://www.ams.org/mathscinet-getitem?mr=2076383
https://zbmath.org/?q=an:1290.05161
http://www.ams.org/mathscinet-getitem?mr=3187910
https://zbmath.org/?q=an:0299.20006
http://www.ams.org/mathscinet-getitem?mr=349830
https://zbmath.org/?q=an:1282.16033
http://www.ams.org/mathscinet-getitem?mr=3003724
https://zbmath.org/?q=an:0921.16006
http://www.ams.org/mathscinet-getitem?mr=1676221


The Ext algebra of a Brauer graph algebra 579

[16] M. Kauer and K. W. Roggenkamp, Higher-dimensional orders, graph-orders, and derived
equivalences, J. Pure Appl. Algebra, 155 (2001), 181–202. Zbl 0973.16013 MR 1801414

[17] J.-F. Lü, J.-W. He, and D.-M. Lu, Piecewise-Koszul algebras, Sci. China Ser. A, 50 (2007),
1795–1804. Zbl 1137.16032 MR 2390489

[18] J.-F. Lü, and Z.-B. Zhao, .p; �/-Koszul algebras and modules, Indian J. Pure Appl. Math.,
41 (2010), 443–473. Zbl 1235.16024 MR 2672696

[19] K. W. Roggenkamp, Biserial algebras and graphs, in Algebras and modules. II, 481–
496, CMS Conf. Proc., 24, Amer. Math. Soc., Providence, RI, 1998. Zbl 0955.16019
MR 1648648

[20] N. Snashall and R. Taillefer, The Hochschild cohomology ring of a class of special biserial
algebras, J. Algebra Appl., 9 (2010), 73–122. Zbl 1266.16006 MR 2642814

[21] N. Snashall and R. Taillefer, Hochschild cohomology of socle deformations of a class
of Koszul self-injective algebras, Colloq. Math., 119 (2010), 79–93. Zbl 1236.16011
MR 2602057

Received 08 June, 2014; revised 09 July, 2015

E. L. Green, Department of Mathematics, Virginia Tech,
Blacksburg, VA 24061, USA
E-mail: green@math.vt.edu
S. Schroll, Department of Mathematics, University of Leicester,
University Road, Leicester LE1 7RH, UK
E-mail: ss489@leicester.ac.uk
N. Snashall, Department of Mathematics, University of Leicester,
University Road, Leicester LE1 7RH, UK
E-mail: njs5@leicester.ac.uk
R. Taillefer, Clermont Université, Université Blaise Pascal, Laboratoire de Mathématiques,
BP 10448, F-63000Clermont-Ferrand –CNRS,UMR6620, Laboratoire deMathématiques,
F-63177 Aubière, France
E-mail: rachel.taillefer@math.univ-bpclermont.fr

https://zbmath.org/?q=an:0973.16013
http://www.ams.org/mathscinet-getitem?mr=1801414
https://zbmath.org/?q=an:1137.16032
http://www.ams.org/mathscinet-getitem?mr=2390489
https://zbmath.org/?q=an:1235.16024
http://www.ams.org/mathscinet-getitem?mr=2672696
https://zbmath.org/?q=an:0955.16019
http://www.ams.org/mathscinet-getitem?mr=1648648
https://zbmath.org/?q=an:1266.16006
http://www.ams.org/mathscinet-getitem?mr=2642814
https://zbmath.org/?q=an:1236.16011
http://www.ams.org/mathscinet-getitem?mr=2602057
mailto:green@math.vt.edu
mailto:ss489@leicester.ac.uk
mailto:njs5@leicester.ac.uk
mailto:rachel.taillefer@math.univ-bpclermont.fr

	Introduction
	Background and notation
	d-homogeneous and 2-d-homogeneous Brauer graph algebras
	The Ext algebra and coverings
	Structure of indecomposable modules
	Structure of uniserial modules
	Structure of string modules
	Syzygies and resolutions in a Brauer graph algebra with no truncated edges
	The Ext algebra of a Brauer graph algebra with no truncated edges
	Length graded Brauer graph algebras

