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Moduli stacks of algebraic structures and deformation theory

Sinan Yalin

Abstract.We connect the homotopy type of simplicial moduli spaces of algebraic structures to
the cohomology of their deformation complexes. Then we prove that under several assumptions,
mapping spaces of algebras over a monad in an appropriate diagram category form affine
stacks in the sense of Toen–Vezzosi’s homotopical algebraic geometry. This includes simplicial
moduli spaces of algebraic structures over a given object (for instance a cochain complex).
When these algebraic structures are parametrised by properads, the tangent complexes give the
known cohomology theory for such structures and there is an associated obstruction theory
for infinitesimal, higher order and formal deformations. The methods are general enough to be
adapted for more general kinds of algebraic structures.
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1. Introduction

Motivations and background. Algebraic structures occurred in a fundamental way
in many branches of mathematics during the last decades. For instance, associative
algebras, commutative algebras, Lie algebras, and Poisson algebras play a key role
in algebra, topology (cohomology operations on topological spaces), geometry (Lie
groups, polyvector fields) and mathematical physics (quantization). They all share
the common feature of being defined by operations with several inputs and one single
output (the associative product, the Lie bracket, the Poisson bracket). A powerful
device to handle such kind of algebraic structures is the notion of operad, which
appeared initially in a topological setting to encompass the structure of iterated loop
spaces. Since then, operads shifted to the algebraic world and have proven to be a
fundamental tool to study algebras such as the aforementioned examples (and many
others), feeding back important outcomes in various fields of mathematics: algebra,
topology, deformation theory, category theory, differential, algebraic and enumerative
geometry, mathematical physics. . . We refer the reader to the books [46] and [40] for
a thorough study of the various aspects of this theory.
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However, the work of Drinfeld in quantum group theory [12, 13] shed a light on
the importance of another sort of algebraic structures generalizing the previous ones,
namely Lie bialgebras and non (co)commutative Hopf algebras. In such a situation,
one deals not only with products but also with coproducts, as well as composition
of products with coproducts. That is, one considers operations with several inputs
and several outputs. A convenient way to handle such kind of structures is to use
the formalism of props, which actually goes back to [43] (operads appeared a few
years later as a special case of props fully determined by the operations with one
single output). The formalism of props plays a crucial role in the deformation
quantization process for Lie bialgebras, as shown by Etingof–Kazdhan [17, 18], and
more generally in the theory of quantization functors [16]. Merkulov developped
a propic formulation of deformation quantization of Poisson structures on graded
manifolds, using the more general notion of wheeled prop [53,56]. Props also appear
naturally in topology. Two leading examples are the Frobenius bialgebra structure
on the cohomology of compact oriented manifolds, reflecting the Poincaré duality
phenomenon, and the involutive Lie bialgebra structure on the equivariant homology
of loop spaces on manifolds, which lies at the heart of string topology [10, 11]. In
geometry, some local geometric structures on formal manifolds (e.g. local Poisson
structures) carry a structure of algebra over a prop [51]. Props also provide a concise
way to encode various field theories such as topological quantum field theories
(symmetric Frobenius bialgebras) and conformal field theories (algebras over the
chains of the Segal prop).

A meaningful idea to understand the behavior of such structures and, accordingly,
to get more information about the underlying objects, is to determine how one
structure can be deformed (or not) into another, and organize them into equivalence
classes. That is, onewants to build a deformation theory and an associated obstruction
theory to study a given moduli problem. Such ideas where first organized and
written in a systematic way in the pioneering work of Kodaira–Spencer, who set
up a theory of deformations of complex manifolds. Algebraic deformation theory
began a few years later with the work of Gerstenhaber on associative algebras and
the Gerstenhaber algebra structure on Hochschild cohomology. In the eighties, a
convergence of ideas coming from Grothendieck, Schlessinger, Deligne and Drinfeld
among others, led to the principle that any moduli problem can be interpreted as the
deformation functor of a certain dg Lie algebra. Equivalence classes of structures
are then determined by equivalences classes of Maurer–Cartan elements under the
action of a gauge group. This approach became particularly successful in the
work of Goldman–Millson on representations of fundamental groups of compact
Kähler manifolds, and later in Kontsevich’s deformation quantization of Poisson
manifolds. In algebraic deformation theory, the notion of deformation complex of
a given associative algebra (its Hochschild complex) was extended to algebras over
operads [40] and properads [54, 55].

A geometric approach to moduli problems is to build a “space” (algebraic variety,
scheme, stack) parameterizing a given type of structures or objects (famous examples
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being moduli spaces of algebraic curves of fixed genus with marked points, or
moduli stacks of vector bundles of fixed rank on an algebraic variety). Infinitesimal
deformations of a point are then read on the tangent complex. However, the usual
stacks theory shows its limits when one wants to study families of objects related by
an equivalence notion weaker than isomorphisms (for example, quasi-isomorphisms
between complexes of vector bundles), to gather all higher and derived data in a single
object or to read the full deformation theory on the tangent spaces. Derived algebraic
geometry, andmore generally homotopical algebraic geometry, is a conceptual setting
in which one can solve such problems [68–70].

A topological approach is to organize the structures we are interested in as points
of a topological space or a simplicial set. This idea was first shaped for algebras
over operads in Rezk’s thesis [62]. The main ingredients are the following: first, the
objects encoding algebraic structures of a certain sort (operads, properads, props. . . )
form a model category. Second, given an operad/properad/prop. . .P , a P -algebra
structure on an object X (a chain complex, a topological space. . . ) can be defined
as a morphism in this model category, from P to an “endomorphism object” EndX
built from X . Third, one defines the moduli space of P -algebra structures on X
as a simplicial mapping space of maps P ! EndX . Such a construction exists
abstractly in any model category. The points are the algebraic structures, the paths
or 1-simplices are homotopies between these structures, defining an equivalence
relation, and the higher simplices encode the higher homotopical data. As we can
see, such a method can be carried out in various contexts.

We end up with two deformation theories of algebraic structures: an algebraic
deformation theory through deformation complexes and their deformation functors,
and a homotopical deformation theory through homotopies between maps. The main
purpose of this article is to connect these deformation theories and gather them in a
derived geometry interpretation of moduli spaces of algebraic structures.

Presentation of the results. We work with a ground field K of characteristic zero.
We denote by ChK the category of Z-graded cochain complexes over a field K. In
particular, all differentials are of degree 1.

Cohomology of deformation complexes and higher homotopy groups of mapping
spaces. Properadswere introduced in [71] as an intermediate object between operads
and props, parameterizing a large class of bialgebra structures, and in the same
time behaving well enough to extend several well-known constructions available for
operads. To any cochain complex X one associates a properad EndX called the
endomorphism properad of X and defined by EndX .m; n/ D HomK.X

˝m; X˝n/,
where HomK is the differential graded hom of cochain complexes. A P -algebra
structure on X is then a properad morphism P ! EndX . Dg properads form
a cofibrantly generated model category [55, Appendix]. Cofibrant resolutions of
a properad P can always be obtained as a cobar construction �.C/ on some
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coproperad C (the bar construction or the Koszul dual). Given a cofibrant resolution
�.C/

�
! P of P and another properad Q, one considers the convolution dg Lie

algebra Hom†.C ;Q/ consisting inmorphisms of†-biobjects from the augmentation
ideal of C to Q. The Lie bracket is the antisymmetrization of the convolution
product. This convolution product is defined similarly to the convolution product of
morphisms from a coalgebra to an algebra, using the infinitesimal coproduct of C
and the infinitesimal product ofQ. This Lie algebra enjoys the following properties:

Theorem 1.1. Let P be a properad with cofibrant resolution P1 WD �.C/
�
! P

andQ be any properad. Suppose that the augmentation idealC is of finite dimension
in each arity. The total complex Hom†.C ;Q/ is a complete dg Lie algebra whose
simplicial Maurer–Cartan setMC�.Hom†.C ;Q// is isomorphic toMapP.P1;Q/.

The fact that Maurer–Cartan elements of Hom†.C ;Q/ are properad morphisms
P1 ! Q was already proved in [55], but the identification between the simplicial
mapping space of such maps and the simplicial Maurer–Cartan set is a new and non
trivial extension of this result.

An important construction for complete dg Lie algebras is the twisting by a
Maurer–Cartan element. The twisting of Hom†.C ;Q/ by a properad morphism
' W P1 ! Q gives a new dg Lie algebra Hom†.C ;Q/' with the same underlying
graded vector space, the same Lie bracket, but a new differential obtained from the
former by adding the bracket Œ';��. This dg Lie algebra is the deformation complex
of ', and we have an isomorphism

Hom†.C ;Q/' Š Der'.�.C /;Q/

where the right-hand term is the complex of derivations with respect to '.
Corollary 1.2. Let � W P1 ! Q be a Maurer–Cartan element of Hom†.C ;Q/ and
Hom†.C ;Q/� the corresponding twisted Lie algebra. For every integer n � 0, we
have a bijection

H�n.Hom†.C ;Q/�/ Š �nC1.MapP.P1;Q/; �/

which is an isomorphism of abelian groups for n � 1, and an isomorphism of groups
for n D 0 where H 0.Hom†.C ;Q/�/ is equipped with the group structure given by
the Hausdorff–Campbell formula.

It turns out that the same results hold more generally if P is a properad with
minimal model .F.s�1C/; @/ �! P for a certain homotopy coproperad C , andQ is
any properad. In this case, the complex Hom†.C ;Q/ is a complete dg L1 algebra.

Moreover, there is also a version of Theorem 0.1 for algebras over operads whose
proof proceeds similarly. For any operad P with cofibrant resolution�.C/, and any
P -algebraA, there is a quasi-freeP -algebraA1 D ..P ıC/.A/; @/ over a quasi-free
C -coalgebra C.A/ which gives a cofibrant resolution of A (see [21] for a detailed
construction).
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Theorem 1.3. Let P be an operad and C be a cooperad such that �.C/ is
a cofibrant resolution of P . Let A;B be any P -algebras. The total complex
Homdg.C.A/; B/ is a complete dg Lie algebra whose simplicial Maurer–Cartan
setMC�.Homdg.C.A/; B// is isomorphic to Map.A1; B/.
Corollary 1.4. Let � W A1 ! B be a Maurer–Cartan element of Homdg.C.A/; B/

and Homdg.C.A/; B/
� the corresponding twisted Lie algebra. For every integer

n � 0, we have a bijection

H�n.Homdg.C.A/; B/
�/ Š �nC1.Map.A1; B/; �/

which is an isomorphism of abelian groups for n � 1, and an isomorphism of groups
for n D 0 where H 0.Homdg.C.A/; B/

�/ is equipped with the group structure given
by the Hausdorff–Campbell formula.

The twisted complex Homdg.A1; B/
� actually gives the André–Quillen coho-

mology of A1 with coefficients in B . For instance, we obtain

Hn
AQ.A1; A1/ Š �nC1.haut.A1/; �/

where Hn
AQ is the André–Quillen cohomology and A1 is seen as an A1-module

via �.

Deformation functors from properad morphisms and geometric interpretation.
Let ArtK be the category of local commutative artinianK-algebras. To any complete
dg Lie algebra g one associates its deformation functor defined by

Defg W ArtK ! Set
A 7!MC.g ˝ A/;

whereMC.g˝A/ is the moduli set of Maurer–Cartan elements of the dg Lie algebra
g˝A (which is still complete, see Corollary 2.4 of [76]). Our main observation here
is that we can replace DefHom†.C ;Q/ by a more convenient and naturally isomorphic
functor

�0P1fQg.�/ W ArtK ! Set

defined by
�0P1fQg.R/ D �0P1fQ˝e Rg

where˝e is the external tensor product defined by .Q˝eR/.m; n/ D Q.m; n/˝R.
We prove that the homotopical R-deformations of ' correspond to its algebraic
R-deformations:
Theorem 1.5. For every artinian algebra R and any morphism ' W P1 ! Q, there
are group isomorphisms

��C1.MapProp.R�Mod/.P1˝eR;Q˝eR/; '˝e idR/ Š H��.Hom†.C ;Q/'˝R/:
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These moduli spaces also admit, consequently, an algebraic geometry interpreta-
tion. Indeed, the deformation functor

DefHom†.C ;Q/ W ArtK ! Set

extends to a pseudo-functor of groupoids

DefHom†.C ;Q/ W AlgK ! Grpd

where AlgK is the category of commutative K-algebras and Grpd the 2-category of
groupoids. This pseudo-functor is defined by sending any algebra A to the Deligne
groupoid of Hom†.C;Q/˝A, that is, the groupoidwhose objects areMaurer–Cartan
elements of Hom†.C;Q/˝ A and morphisms are given by the action of the gauge
group exp.Hom†.C;Q/0 ˝ A/. Such a pseudo-functor forms actually a prestack,
whose stackification gives the quotient stack

ŒMC.Hom†.C;Q//= exp.Hom†.C;Q/0/�

of the Maurer–Cartan scheme MC.Hom†.C;Q// by the action of the prounipotent
algebraic group exp.Hom†.C;Q/0/�. It turns out that the 0th cohomology group of
the tangent complex of such a stack, encoding equivalences classes of infinitesimal
deformations of a K-point of this stack, is exactly

tDefHom†.C;Q/�
D H�1.Hom†.C;Q/�/:

We refer the reader to [76] for a proof of these results. However, this geometric
structure does not capture the whole deformation theory of the points. For this,
the next part develops such a geometric interpretation in the context of homotopical
algebraic geometry.

Higher stacks from mapping spaces of algebras over monads. Now we give a
geometric interpretation of our moduli spaces of algebraic structures. Homotopical
algebraic geometry is a wide subject for which we refer the reader to [68] and [69].
In this paper, we just outline in 4.1 the key ideas in the construction of higher
stacks. We fix two Grothendieck universes U 2 V such that N 2 V, as well
as a HAG context .C; C0;A; �; P / (see [69] for a definition). In particular, the
category C is a V-small U-combinatorial symmetric monoidal model category. We
fix also a regular cardinal � so that (acyclic) cofibrations of C are generated by
�-filtered colimits of generating (acyclic) cofibrations. For technical reasons, we
also need to suppose that the tensor product preserves fibrations. This assumption
is satisfied in particular by topological spaces, simplicial sets, simplicial modules
over a ring, cochain complexes over a ring. We consider a U-small category I
and the associated category of diagrams CI , as well as a monad T W CI ! CI
preserving �-filtered colimits. We also assume some technical assumptions about
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the compatibility between T and modules over commutative monoids in C. Any
homotopy mapping space Map.X1; Y / between a cofibrant T -algebra X1 and a
fibrant T -algebra Y (here these are diagrams with values in fibrant objects of C)
gives rise to the functor

Map.X1; Y / W Comm.C/! sSet

which sends any A 2 Comm.C/ to MorT�Alg.X1; .Y ˝ Acf/�
�

/, where .�/cf is
a functorial fibrant-cofibrant replacement in C and .�/�� a simplicial resolution in
T -algebras.
Theorem 1.6. LetX1 be a cofibrant T -algebra and Y be a T -algebra with values in
fibrations of fibrant perfect objects of C. ThenMap.X1; Y / is a representable stack.

Theorem 1.6 admits the following variation, whose proof is completely similar:
Theorem 1.7. Suppose that all the objects of C are cofibrant. Let X1 be a cofibrant
T -algebrawith values in fibrant objects andY be aT -algebrawith values in fibrations
between fibrant dualizable objects of C. ThenMap.X1; Y / is a representable stack.

This holds for instance when C D sSet is the category of simplicial sets. When
C D ChK, all the objects are fibrant and cofibrant so we just have to suppose that Y
take its values in dualizable cochain complexes, which are the bounded cochain
complexes of finite dimension in each degree.

Corollary 1.8. (1) LetP1 D �.C/
�
! P be a cofibrant resolution of a dg properad

P and Q be any dg properad such that each Q.m; n/ is a bounded complex of
finite dimension in each degree. The functor

Map.P1;Q/ W A 2 CDGAK 7! MapProp.P1;Q˝ A/

is an affine stack in the setting of complicial algebraic geometry of [69].

(2) Let P1 D �.C/
�
! P be a cofibrant resolution of a dg properad P in non

positively graded cochain complexes, and Q be any properad such that each
Q.m; n/ is a finite dimensional vector space. The functor

Map.P1;Q/ W A 2 CDGAK 7! MapProp.P1;Q˝ A/

is an affine stack in the setting of derived algebraic geometry of [69], that is, an
affine derived scheme.

Remark 1.9. In the derived algebraic geometry context, the derived stack
Map.P1;Q/ is not affine anymore wether the Q.m; n/ are not finite dimensional
vector spaces. However, we expect these stacks to be derived n-Artin stacks for
the Q.m; n/ being perfect complexes with a given finite amplitude. We refer the
reader to Section 5.4 for an idea of why such a result seems reasonable, based on the
characterization of derived n-Artin stacks via resolutions by Artin n-hypergroupoids
given in [61].
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We obtain in this way moduli stacks arising from mapping spaces of operads,
cyclic operads, modular operads, 1=2-props, dioperads, properads, props, their
colored versions and their wheeled versions. An exhaustive list of examples is
impossible to write down here, but we decided in Section 6 to focus on several
examples which are of great interest in topology, geometry andmathematical physics:

� the moduli stack of realizations of Poincaré duality on the cochains of a
compact oriented manifold;

� the moduli stack of chain-level string topology operations on the S1-
equivariant chains on the loop space of a smooth manifold;

� the moduli stack of Poisson structures on formal graded manifolds (in
particular, formal Poisson structures on Rd );

� the moduli stack of complex structures on formal manifolds;
� the moduli stack of deformation quantizations of graded Poisson manifolds;
� the moduli stack of quantization functors (in particular for Lie bialgebras);
� the moduli stack of homotopy operad structures on a given dg operad.

Tangent complexes, higher automorphisms and obstruction theory. We denote
by TMap.P1;Q/;x' the tangent complex of Map.P1;Q/ at an A-point x' associated
to a properad morphism ' W P1 ! Q˝e A.

Theorem 1.10. Let P1 D �.C/
�
! P be a cofibrant resolution of a dg properad

P andQ be any dg properad such that eachQ.m; n/ is a bounded complex of finite
dimension in each degree. Let A be a perfect cdga. We have isomorphisms

H��.TMap.P1;Q/;x' / Š H
��C1.Hom†.C ;Q/' ˝ A/

for any � � 1.
To put it in words, non-positive cohomology groups of the deformation complex

correspond to negative groups of the tangent complex, which computes the higher
automorphisms of the given point (homotopy groups of its homotopy automorphisms.
Theorem 1.11. (1) If H 2.TMap.X1;Y /;x' Œ�1�/ D H 1.TMap.X1;Y /;x' / D 0 then

for every integer n, every deformation of order n lifts to a deformation of order
n C 1. Thus any infinitesimal deformation of ' can be extended to a formal
deformation.

(2) Suppose that a given deformation of order n lifts to a deformation of order nC1.
Then the set of such lifts forms a torsor under the action of the cohomology
group H 1.TMap.X1;Y /;x' Œ�1�/ D H 0.TMap.X1;Y /;x' /. In particular, if
H 0.TMap.X1;Y /;x' / D 0 then such a lift is unique up to equivalence.

Remark 1.12. These results work as well for A-deformations, where A is a cdga
which is perfect as a cochain complex.
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Under the assumptions of Theorem 1.11 we have

Map
T -Alg

.X1; Y / � RSpec
C.X1;Y /

;

and for a given A-point x' W RSpecA ! Map
T -Alg

.X1; Y / corresponding to a
morphism ' ˝ A W X1 ˝e A! Y ˝e A, the tangent complex is

TMap.X1;Y /;x' Š DerA.C.X1; Y /; A/

where RHomA�Mod is the derived hom of the internal hom in the category of dg
A-modules. The complex TMap.X1;Y /;x' is a dg Lie algebra, hence the following
definition:
Definition 1.13. TheA-deformation complex of the T -algebras morphismX1 ! Y

is TMap.X1;Y /;x' .
In the particular case where I D S, we consider T -algebras in the category

of †-biobjects of C. When all the objects of C are fibrant, all the assumptions
of Theorem 1.7 are satisfied. Consequently, we have a well-defined and
meaningful notion of deformation complex of any morphism of T -algebras with
cofibrant source, with the associated obstruction theory. This gives a deformation
complex, for instance, for morphisms of cyclic operads, modular operads, wheeled
properads. . . more generally, morphisms of polynomial monads as defined in [2]. In
the situation where it makes sense to define an algebraic structure via a morphism
towards an “endomorphism object” (operads, properads, props, cyclic and modular
operads, wheeled prop. . . ) this gives a deformation complex of algebraic structures
and its obstruction theory.

Another description. When the resolution P1 satisfies some finiteness assump-
tions, the function ring of the moduli stackMap.P1;Q/ can be made explicit in both
complicial and derived algebraic geometry contexts: it is the Chevalley–Eilenberg
complex of the convolution Lie algebra Hom†.C ;Q/. Moreover, we can then prove
that the whole cohomology of the tangent complex at a K-point ' is isomorphic to
the cohomology of Hom†.C ;Q/' up to degree shift, giving an explicit description
of the obstruction groups of this moduli stack (not only the groups computing higher
automorphisms):
Theorem 1.14. Let P be a dg properad equipped with a cofibrant resolution P1 WD
�.C/

�
! P , where C admits a presentation C D F.E/=.R/, and Q be a dg

properad such that each Q.m; n/ is a bounded complex of finite dimension in each
degree. Let us suppose that each E.m; n/ is of finite dimension, and that there exists
an integer N such that E.m; n/ D 0 for mC n > N . Then

(1) The moduli stack Map.P1;Q/ is isomorphic to RSpecC�.Hom†.C ;Q//, where
C �.Hom†.C ;Q// is the Chevalley–Eilenberg algebra of Hom†.C ;Q/.
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(2) The cohomology of the tangent dg Lie algebra at a K-point ' W P1 ! Q is
explicitely determined by

H�.TMap.P1;Q/;x' Œ�1�/ Š H
�.Hom†.C ;Q/'/:

Remark 1.15. The proof relies actually on amore general characterization of derived
Maurer–Cartan stacks for profinite complete dg Lie algebras and their cotangent
complexes, which is of independent interest to study more general formal moduli
problems.

This theorem applies in particular to the case of a Koszul properad, which includes
for instance Frobenius algebras, Lie bialgebras and their variants such as involutive
Lie bialgebras in string topology or shifted Lie bialgebras defining Poisson structures
on formal manifolds.

Perspectives. Shifted symplectic structures on derived Artin stacks have been
introduced in [60]. The main result of the paper asserts the existence of shifted
symplectic structures on a wide class of derived mapping stacks, including the
derived moduli stack of perfect complexes on Calabi–Yau varieties and the derived
moduli stack of perfect complexes of local systems on a compact oriented topological
manifold for instance. There is also a notion of shifted Poisson structure, and it is
strongly conjectured that a shifted symplectic structure gives rise to a shifted Poisson
structure. The final goal is to set up a general framework for n-quantization of
n-shifted symplectic structures, hence a deformation quantization of these various
derived moduli stacks. Here the word n-quantization means a deformation of the
derived category of quasi-coherent sheaves as an En-monoidal dg category. This
process covers for instance usual representations of quantum groups, the skein
algebras quantizing character varieties of surfaces, and is related to Donaldson–
Thomas invariants. It also gives rise to a bunch of unknown quantizations of moduli
stacks.

An interesting perspective for a future work is to go further in the derived
geometric study of moduli spaces of algebraic structures, by determining under
which conditions moduli stacks of algebraic structures can be equipped with shifted
symplectic structures. An ultimate goal is to set up a general theory of deformation
quantization of such moduli stacks and analyze the outcomes of such quantizations
in the various topics where such structures occur (for instance, formal Poisson and
formal complex structures).

Organization of the paper. Section 2 is devoted to recollections about algebras over
operads, props, properads, and the key notion of homotopy algebra. Section 3 relates
higher homotopy groups of mapping spaces to cohomology groups of deformation
complexes. After explaining how to use simplicial mapping spaces to define a
meaningful notion of moduli space of algebraic structures, we prove this result in 3.2
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and 3.3. Sections 3.4, 3.5 and 3.6 point out links with André–Quillen cohomology,
rational homotopy groups of these moduli spaces and long exact sequences between
cohomology theories of algebraic structures on a given complex. Section 4 details
the deformation functors viewpoint. We explain that the usual Maurer–Cartan
deformation functor can be replaced by the connected components of our moduli
spaces and that homotopical deformations over an artinian algebra encodes algebraic
deformations. Moreover, such connected components can be enhanced with the
structure of an algebraic stack encoding infinitesimal algebraic deformations in its
tangent complexes. In Section 5, we go further in the geometrical intepretation, by
proving in 5.2 that any mapping space of algebras over a monad in diagrams over a
suitable symmetric monoidal model category carries the structure of a representable
higher stack in the complicial algebraic geometry setting. This applies to all the
known objects encoding algebraic structures, that is, not only operads, properads
and props but also algebras over polynomial monads (hence modular operads and
wheeled props for instance). We detail in Section 6 several motivating examples
coming from topology, geometry and mathematical physics. In Section 7 we prove
that in the case of operads, properads and props, the tangent complexes of such stacks
are the well known deformation complexes studied for instance in [55]. We also
provide the obstruction theory associated to these stacks for infinitesimal, finite order
and formal deformations. Section 8 briefly shows how to get explicitely the function
ring of our moduli stacks and the associated obstruction groups under some mild
finiteness assumtions. In Section 9, we emphasize that the methods used could be
general enough to be explicitely transposed to more general algebras over monads
(polynomial monads for instance). We conclude by some perspectives of future work
about the existence of shifted symplectic structures on such moduli stacks.

2. Algebras over operads and prop(erad)s

Wework with a ground fieldK of characteristic zero. We denote by ChK the category
of Z-graded cochain complexes over a field K. In particular, all differentials are of
degree 1.

2.1. On †-bimodules, props and algebras over a prop. Let S be the category
having the pairs .m; n/ 2 N2 as objects together with morphisms sets such that:

MorS..m; n/; .p; q// D

(
†

op
m �†n; if .p; q/ D .m; n/;
; otherwise:

The (differential graded) †-biobjects in ChK are the S-diagrams in ChK. So a
†-biobject is a double sequence fM.m; n/ 2 ChKg.m;n/2N2 where eachM.m; n/ is
equipped with a right action of †m and a left action of †n commuting with each
other.
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Definition 2.1. A dg prop is a †-biobject endowed with associative horizontal
products

ıh W P.m1; n1/˝ P.m2; n2/! P.m1 Cm2; n1 C n2/;

vertical associative composition products

ıv W P.k; n/˝ P.m; k/! P.m; n/

and units 1! P.n; n/ neutral for both composition products. These products satisfy
the exchange law

.f1 ıh f2/ ıv .g1 ıh g2/ D .f1 ıv g1/ ıh .f2 ıv g2/

and are compatible with the actions of symmetric groups. Morphisms of props are
equivariant morphisms of collections compatible with the composition products. We
denote by P the category of props.

Let us note that Appendix A of [21] provides a construction of the free prop on a
†-biobject. The free prop functor is left adjoint to the forgetful functor:

F W ChSK � P W U:

The following definition shows how a given prop encodes algebraic operations on
the tensor powers of a complex:
Definition 2.2. (1) The endomorphismprop of a complexX is given byEndX .m; n/ D

Homdg.X
˝m; X˝n/ where Homdg.�;�/ is the internal hom bifunctor of ChK.

(2) LetP be a dg prop. AP -algebra is a complexX equipped with a prop morphism
P ! EndX .
Hence any “abstract” operation of P is send to an operation on X , and the way

abstract operations compose under the composition products ofP tells us the relations
satisfied by the corresponding algebraic operations on X .

One can perform similar constructions in the category of colored †-biobjects in
order to define colored props and their algebras:
Definition 2.3. Let C be a non-empty set, called the set of colors.

(1) AC -colored†-biobjectM is a double sequence of complexes fM.m; n/g.m;n/2N2
where each M.m; n/ admits commuting left †m action and right †n action as
well as a decomposition

M.m; n/ D colimci ;di2C M.c1; : : : ; cmI d1; : : : ; dn/

compatible with these actions. The objectsM.c1; : : : ; cmI d1; : : : ; dn/ should be
thought as spaces of operations with colors c1; : : : ; cm indexing them inputs and
colors d1; : : : ; dn indexing the n outputs.



Moduli stacks of algebraic structures and deformation theory 591

(2) A C -colored prop P is a C -colored †-biobject endowed with a horizontal
composition

ıh W P.c11; : : : ; c1m1 I d11; : : : ; d1n1/˝� � �˝P.ck1; : : : ; ckmk I dk1; : : : ; dkn1/

! P.c11; : : : ; ckmk I dk1; : : : ; dknk / � P.m1 C � � � Cmk; n1 C � � � C nk/

and a vertical composition

ıv W P.c1; : : : ; ckI d1; : : : ; dn/˝ P.a1; : : : ; amI b1; : : : ; bk/

! P.a1; : : : ; amI d1; : : : ; dn/ � P.m; n/

which is equal to zero unless bi D ci for 1 � i � k. These two compositions
satisfy associativity axioms (we refer the reader to [32] for details).

Definition 2.4. (1) Let fXcgC be a collection of complexes. The C -colored
endomorphism prop EndfXcgC is defined by

EndfXcgC .c1; : : : ; cmI d1; : : : ; dn/ D Homdg.Xc1˝� � �˝Xcm ; Xd1˝� � �˝Xdn/

with a horizontal composition given by the tensor product of homomorphisms
and a vertical composition given by the composition of homomorphisms with
matching colors.

(2) Let P be a C -colored prop. A P -algebra is the data of a collection of complexes
fXcgC and a C -colored prop morphism P ! EndfXcgC .

Example 2.5. Let I be a small category andP a prop. We can build an ob.I /-colored
prop PI such that the PI -algebras are the I -diagrams of P -algebras in the same way
as that of [47].

The category of †-biobjects ChSK is a diagram category over ChK, so it inherits
a cofibrantly generated model category structure in which weak equivalences and
fibrations are defined componentwise. The adjunction F W ChSK � P W U transfer
this model category structure to the props:

Theorem 2.6. (1) (cf. [21, Theorem 4.9]) The category of dg propsP equipped with
the classes of componentwise weak equivalences and componentwise fibrations
forms a cofibrantly generated model category.

(2) (cf. [32, Theorem 1.1]) Let C be a non-empty set. Then the category PC of dg
C -colored props forms a cofibrantly generated model category with fibrations
and weak equivalences defined componentwise.
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2.2. Properads. Composing operations of two †-biobjects M and N amounts to
consider 2-levelled directed graphs (with no loops) with the first level indexed by
operations of M and the second level by operations of N . Vertical composition by
grafting and horizontal composition by concatenation allows one to define props
as before. The idea of properads is to mimick operads (for operations with
several outputs), which are defined as monoids in †-objects, by restricting the
vertical composition product to connected graphs. We denote by �c this connected
composition product of †-biobjects, whose explicit formula is given in [71]. The
unit for this product is the †-biobject I given by I.1; 1/ D K and I.m; n/ D 0

otherwise. The category of †-biobjects then forms a symmetric monoidal category
.ChSK;�c ; I /.
Definition 2.7. Adg properad .P; �; �/ is a monoid in .ChSK �c ; I /, where� denotes
the product and � the unit. It is augmented if there exists a morphism of properads
� W P ! I . In this case, there is a canonical isomorphism P Š I ˚ P where
P D ker.�/ is called the augmentation ideal of P .

Properads form a category noted P . Morphisms of properads are collections
of equivariant cochain maps compatible with respect to the monoid structures.
Properads have also their dual notion, namely coproperads:
Definition 2.8. A dg coproperad .C;�; �/ is a comonoid in .ChSK;�c ; I /.
Remark 2.9. When constructing deformations complexes of algebras over properads
we will need a weaker notion of “homotopy coproperad” for which we refer the reader
to [54].

As in the prop case, there exists a free properad functor F forming an adjunction

F W ChSK � P W U

with the forgetful functor U . There is an explicit construction of the free properad
in terms of direct sums of labelled graphs for which we refer the reader to [71]. The
free properad F.M/ on a †-biobjectM admits a filtration

F.M/ D
M
n

F .n/.M/

by the number of vertices. Precisely, each component F .n/.M/ is formed by graphs
with n vertices decorated by M . Let us note that, according to [7], properads (as
well as props and operads) can alternatively be defined as algebras over the monad
U ı F induced by the adjunction above. Dually, there exists a cofree coproperad
functor denotedFc.�/ having the same underlying†-biobject. Moreover, according
to [55], this adjunction equips dg properads with a cofibrantly generated model
category structure with componentwise fibrations and weak equivalences. There is
a whole theory of explicit resolutions in this model category, based on the bar-cobar
construction and the Koszul duality [71].
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Finally, let us note that we have a notion of algebra over a properad analogous to
an algebra over a prop, since the endomorphism prop restricts to an endomorphism
properad.

2.3. Algebras over operads. Operads are used to parametrize various kind of
algebraic structures consisting of operations with one single output. Fundamental
examples of operads include the operad As encoding associative algebras, the
operad Com of commutative algebras, the operad Lie of Lie algebras and the
operad Pois of Poisson algebras. Dg operads form a model category with bar-cobar
resolutions and Koszul duality [40]. There exists several equivalent approaches for
the definition of an algebra over an operad. We will use the following one which we
recall for convenience:

Definition 2.10. Let .P; ; �/ be a dg operad, where  is the composition product and �
the unit. A P -algebra is a complex A endowed with a morphism A W P.A/ ! A

such that the following diagrams commute

.P ı P /.A/
P.A/ //

.A/

��

P.A/

A

��
P.A/

A
// A

A
�.A/ //

D
""

P.A/

A

��
A

:

For every complex V , we can equip P.V / with a P -algebra structure by setting
P.V / D .V / W P.P.V // ! P.V /. The P -algebra .P.V /; .V // equipped
with the map �.V / W I.V / D V ! P.V / is the free P -algebra on V (see [40,
Proposition 5.2.6]).

The category of P -algebras satisfies good homotopical properties:

Theorem 2.11 (see [22]). The category of dg P -algebras inherits a cofibrantly
generated model category structure such that a morphism f of P -algebras is:

(i) a weak equivalence if U.f / is a quasi-isomorphism, where U is the forgetful
functor;

(ii) a fibration if U.f / is a fibration of cochain complexes, thus a surjection;

(iii) a cofibration if it has the left lifting property with respect to acyclic fibrations.

We can also say that cofibrations are relative cell complexes with respect to the
generating cofibrations, where the generating cofibrations and generating acyclic
cofibrations are, as expected, the images of the generating (acyclic) cofibrations of
ChK under the free P -algebra functor P .

Remark 2.12. In general, algebras over properads and props do not inherit such a
model category structure, since there is no free algebra functor.
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2.4. Homotopy (bi)algebras. Given a prop, properad or operad P , a homotopy
P -algebra, or P -algebra up to homotopy, is an algebra for which the relations are
relaxed up to a coherent system of higher homotopies. More precisely:
Definition 2.13. A homotopy P -algebra is an algebra over a cofibrant resolution P1
of P .

In the properadic setting, the bar-cobar resolution gives a functorial cofibrant
resolution, and Koszul duality is used to built smaller resolutions. These resolutions
are of the form P1 D .F.V /; @/ where @ is a differential obtained by summing
the differential induced by V with a certain derivation. When P is concentrated in
degree zero, all the higher homology groups of P1 vanish. The system of higher
homotopies defining a homotopy P -algebra then consists in the generators of V , and
the coboundary conditions give the relations between these higher operations.

Such a notion depends a priori on the choice of a resolution, so one naturally
wants the categories of algebras over two resolutions of the same prop to be homotopy
equivalent. This is a well known result in the operadic case, using the model structure
on algebras over operads and the machinery of Quillen equivalences. The problem
is more subtle in the general propic case, which requires different methods, and has
been solved in [74] and [75].

Homotopy algebras are of crucial interest in deformation theory and appear in
various contexts. In particular, they appear each time one wants to transfer an
algebraic structure along a quasi-isomorphism, or when one realizes an algebraic
structure on the homology of a complex into a finer homotopy algebra structure on
this complex.
Remark 2.14. The resolution P1 is usually considered as a non-negatively graded
properad with a differential @ of degree �1. This is equivalent to consider a non-
positively graded resolution with a differential of degree 1.

3. Mapping spaces, moduli spaces and cohomology of (bi)algebras

Recall that in a model category M , one can define homotopy mapping spaces
Map.�;�/, which are simplicial sets equipped with a composition law defined up to
homotopy. There are two possible definitions: the expression

Map.X; Y / D Mor.X ˝��; Y /

where .�/˝�� is a cosimplicial resolution, and

Map.X; Y / D Mor.X; Y ��/

where .�/�� is a simplicial resolution. For the sake of brevity and clarity, we
refer the reader to the Chapter 16 in [30] for a complete treatment of the notions of
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simplicial resolutions, cosimplicial resolutions andReedymodel categories. WhenX
is cofibrant and Y is fibrant, these two definitions give the same homotopy type
of mapping space and have also the homotopy type of Dwyer–Kan’s hammock
localizationLH .M;wM/.X; Y /wherewM is the subcategory of weak equivalences
of M (see [15]). Moreover, the set of connected components �0Map.X; Y / is the
set of homotopy classes ŒX; Y � in Ho.M/.

The space of homotopy automorphisms of an object X is the simplicial sub-
monoid haut.X cf/ � Map.X cf; X cf/ of invertible connected components, whereX cf

is a cofibrant-fibrant resolution of X , i.e.

haut.X cf/ D
a

�2ŒX;X��Ho.M/

Map.X cf; X cf/�

where the � 2 ŒX;X��Ho.M/
are the automorphisms in the homotopy category

ofM and Map.X cf; X cf/� the connected component of � in the standard homotopy
mapping space.

Similarly, the space of homotopy isomorphisms from X to Y is the simplicial
sub-monoid hiso.X cf; Y cf/ of Map.X cf; Y cf/ of invertible connected components,
i.e.

hiso.X cf; Y cf/ D
a

�2ŒX;Y ��Ho.M/

Map.X cf; Y cf/�

where the � 2 ŒX; Y ��Ho.M/
are the isomorphisms in the homotopy category of M

and Map.X cf; Y cf/� the connected component of �.
Before going to the heart of the matter, let us provide the following adjunction

result, which will be used at several places in the remaining part of this paper:
Proposition 3.1. Let F W C � D W G be a Quillen adjunction. It induces natural
isomorphisms

MapD.F.X/; Y / Š MapC.X;G.Y //

where X is a cofibrant object of C and Y a fibrant object of D.

Proof. We will use the definition of mapping spaces via cosimplicial frames. The
proof works as well with simplicial frames. The adjunction .F;G/ induces an
adjunction at the level of diagram categories

F W C� � D� W G:

Now let � W A� � B� be a Reedy cofibration between Reedy cofibrant objects
of C�. This is equivalent, by definition, to say that for every integer r the map

.�; �/r W L
rB

a
LrA

Ar � Br
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induced by � and the latching object construction L�A is a cofibration in C. Let us
consider the pushout

LrA //

Lr�

��

Ar

��
LrB // LrB

`
LrAA

r .

The fact that � is a Reedy cofibration implies that for every r , the map
Lr� is a cofibration. Since cofibrations are stable under pushouts, the map
Ar ! LrB

`
LrAA

r is also a cofibration. By assumption, the cosimplicial objectA�
is Reedy cofibrant, so it is in particular pointwise cofibrant. We deduce that
LrB

`
LrAA

r is cofibrant. Similarly, each Br is cofibrant since B� is Reedy
cofibrant. The map .�; �/r is a cofibration between cofibrant objects and F is a left
Quillen functor, so F..�; �/r/ is a cofibration ofD between cofibrant objects. Recall
that the r th latching object construction is defined by a colimit. As a left adjoint, the
functor F commutes with colimits so we get a cofibration

LrF.B�/
a

LrF.A�/

F.Ar/ � F.Br/:

This means that F.�/ is a Reedy cofibration in D�. Now, given that Reedy weak
equivalences are the pointwise equivalences, if � is a Reedy weak equivalence
between Reedy cofibrant objects then it is in particular a pointwise weak equivalence
between pointwise cofibrant objects, henceF.�/ is a Reedy weak equivalence inD�.
We conclude thatF induces a left Quillen functor between cosimplicial objects for the
Reedy model structures. In particular, it sends any cosimplicial frame of a cofibrant
object X of C to a cosimplicial frame of F.X/.

Remark 3.2. The isomorphism above holds if the cosimplicial frame for the left-
hand mapping space is chosen to be the image under F of the cosimplicial frame of
the right-hand mapping space. But recall that cosimplicial frames on a given object
are all weakly equivalent, so that for any choice of cosimplicial frame we get at least
weakly equivalent mapping spaces.

3.1. Moduli spaces of algebra structures over a prop. A moduli space of algebra
structures over a prop P , on a given complex X , is a simplicial set whose points are
the prop morphismsP ! EndX . Such a moduli space can be more generally defined
on diagrams of cochain complexes.

Definition 3.3. Let P a cofibrant prop and X be a cochain complex. The moduli
space of P -algebra structures on X is the simplicial set alternatively defined by

P fXg D MorP.P ˝��;EndX /
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where P ˝�� is a cosimplicial resolution of P , or

P fXg D MorP.P;End�
�

X /:

where End��X is a simplicial resolution of EndX . Since every cochain complex over
a field is fibrant and cofibrant, every dg prop is fibrant: the fact that P is cofibrant
and EndX is fibrant implies that these two formulae give the same moduli space up
to homotopy.

We can already get two interesting properties of these moduli spaces:
Proposition 3.4. (1) The simplicial set P fXg is a Kan complex and its connected

components give the equivalences classes of P -algebra structures on X , i.e.

�0P fXg Š ŒP;EndX �Ho.P/:

(2) Every weak equivalence of cofibrant props P
�
! Q gives rise to a weak

equivalence of fibrant simplicial setsQfXg
�
! P fXg.

These properties directly follows from the properties of simplicial mapping spaces
in model categories [30]. The higher simplices of these moduli spaces encode higher
simplicial homotopies between homotopies.

For dg props we can actually get explicit simplicial resolutions:
Proposition 3.5. Let P be a prop in ChK. Let us define P�

� by

P�
�

.m; n/ D P.m; n/˝ APL.�
�/;

whereAPL denotes Sullivan’s functor of piecewise linear forms (see [66]). ThenP�
�

is a simplicial resolution of P in the category of dg props.
Remark 3.6. Since every dg prop is fibrant, according to [30], any simplicial frame
on a dg prop is thus a simplicial resolution. We just have to prove that .�/�� is a
simplicial frame.

Proof. Let us first show thatP�� is a simplicial object in props. We equip eachP�k ,
k 2 N, with the following vertical composition products

ı
P�

k

v W P�
k

.l; n/˝ P�
k

.m; l/ Š P.l; n/˝ P.m; l/˝ APL.�
k/˝ APL.�

k/

ıPv ˝�k
! P.m; n/˝ APL.�

k/ D P�
k

.m; n/

where ıPv is the vertical composition product of P and �k the product of the dg
commutative algebra APL.�

k/, and the following horizontal composition products

ı
P�

k

h W P�
k

.m1; n1/˝P
�k .m2; n2/

Š P.m1; n1/˝ P.m2; n2/˝ APL.�
k/˝ APL.�

k/

ıP
h
˝�k
! P.m1 Cm2; n1 C n2/˝ APL.�

k/ D P�
k

.m; n/
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where ıP
h

is the horizontal composition product of P . The associativity of these
products follows from the associativity of ıPv , ıPh and�k . The right and left actions of
symmetric groups onP�k .m; n/ are induced by those onP.m; n/. The compatibility
between these actions and the composition products comes directly from this
compatibility in the prop structure of P , since the product �k is commutative.
The interchange law of props is obviously still satisfied. The units K! P.n; n/ are
defined by

K Š K˝K
�P˝�k
! P.m; n/˝ APL.�

k/

where �P is the unit of P and �k the unit of APL.�
k/. The faces and degeneracies

are induced by those of �k via the functoriality of APL, and form props morphisms
by definition of the prop structure on the P�k (recall that APL maps simplicial
applications to morphisms of commutative dg algebras, which commute with
products).

Now we have to check the necessary conditions to obtain a simplicial frame onP .
Recall that in a model category M, a simplicial frame on an object X of M is a
simplicial object X�� satisfying the following properties:

(1) The identity X�0 D X ;

(2) The morphisms X�n ! X�
0 induced by the embeddings i ,! 0 < � � � < n of

the category � form a Reedy fibration

X�
� � r�X;

where r�X is a simplicial object such that rnX D
Qn
iD0X ;

(3) The morphism X�
n
! X�

0 induced by the constant map 0 < � � � < n! 0 is a
weak equivalence ofM.

The condition (1) is obvious by definition. The condition (3) follows from the
acyclicity ofAPL.�

k/ and theKunneth formula. To check the condition (2) we have to
prove that the associatedmatchingmap (see [30]) is a fibration of props. By definition
of such fibrations, we have to show that we get a fibration of cochain complexes (i.e.
a surjection) in each biarity. The forgetful functor from the category of props P
to the category of collections of cochain complexes ChN�NK is a right adjoint and
thus preserves limits. Given that the matching object construction is defined by a
limit, it commutes with the forgetful functor. Moreover, the collections of cochain
complexes ChN�NK form a diagram category, and limits in diagram categories are
defined pointwise. Finally, it remains to prove that the matching map associated
to P.m; n/˝ APL.�

�/ ! r�P.m; n/ is a fibration in cochain complexes for every
.m; n/ 2 N � N. This follows from the well known fact that .�/ ˝ APL.�

�/ is a
simplicial frame in ChK (see [8]).
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The same arguments prove that such a formula defines also a functorial simplicial
resolution for operads and properads.

Now let us see how to study homotopy structures with respect to a fixed one. Let
O ! P be a morphism of props inducing a morphism of cofibrant propsO1 ! P1
between the corresponding cofibrant resolutions. We can form the homotopy cofiber

O1 ! P1 ! .P;O/1

in the model category of dg props and thus consider the moduli space .P;O/1fXg.
This moduli space encodes the homotopy classes (and higher simplicial homotopies)
of the P1-structures on X “up to O1”, i.e. for a fixed O1-structure on X . A
rigorous way to justify this idea is the following.

Proposition 3.7. Let M be a model category, endowed with a functorial simplicial
mapping space

Map.�;�/ D MorM.�; .�/�
�

/

(which always exists, by existence of functorial simplicial resolutions [30]). Let Y be
a fibrant object ofM. Then the functorMap.�; Y / sends cofiber sequences induced
by cofibrations between cofibrant objects to fiber sequences of Kan complexes.

It follows from general properties of simplicial mapping spaces for which we refer
the reader to [30]. We apply this result to obtain the particular homotopy fiber

.P;O/1fXg //

��

P1fXg

����
fXg
� � // O1fXg .

Example 3.8. We know that the E1-algebra structures on the singular cochains
classify the rational homotopy type of the considered topological space. For a
Poincaré duality space, whose cochains form a unitary and counitary Frobenius
bialgebra, a structure corresponding to the notion of Frobenius algebra and encoded
by a prop ucFrob, a way to understand the homotopy Frobenius structures up to the
rational homotopy type of this space is to analyze ��.ucFrob; E/1fC�.X IQ/g.

3.2. Higher homotopy groups of mapping spaces of properads. We first need
some preliminary results about complete L1-algebras. There are two equivalent
definitions of a L1 algebra:

Definition 3.9. (1) A L1 algebra is a graded vector space g D fgngn2Z equipped
with maps lk W g˝k ! g of degree 2 � k, for k � 1, satisfying the following
properties:

� Œ: : : ; xi ; xiC1; : : :� D �.�1/
jxi jjxiC1jŒ: : : ; xiC1; xi ; : : :�
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� for every k � 1, the generalized Jacobi identities

kX
iD1

X
�2Sh.i;k�i/

.�1/�.i/ŒŒx�.1/; : : : ; x�.i/�; x�.iC1/; : : : ; x�.k/� D 0

where � ranges over the .i; k � i/-shuffles and

�.i/ D i C
X
j1<j2;

�.j1/>�.j2/

.jxj1 jjxj2 j C 1/:

(2) A L1 algebra structure on a graded vector space g D fgngn2Z is a coderivation
of cofree coalgebrasQ W ƒ��1sg! ƒ��1sg of degree 1 such thatQ2 D 0.
The bracket l1 is actually the differential of g as a cochain complex. When the

brackets lk vanish for k � 3, then one gets a dg Lie algebra. The dg algebra C �.g/
obtained by dualizing the dg coalgebra of (2) is called the Chevalley–Eilenberg
algebra of g.

A L1 algebra g is filtered if it admits a decreasing filtration

g D F1g � F2g � � � � � Frg � � � �

compatible with the brackets: for every l � 1,

ŒFrg; g; : : : ; g� 2 Frg:

We suppose moreover that for every r , there exists an integer N.r/ such that
Œg^l � � Frg for every l > N.r/. A filtered L1 algebra g is complete if the
canonical map g! limr g=Frg is an isomorphism.

The completeness of aL1 algebra allows to define properly the notion ofMaurer–
Cartan element:
Definition 3.10. (1) Let g be a dg L1-algebra and � 2 g1, we say that � is a

Maurer–Cartan element of g ifX
k�1

1

kŠ
Œ�^k� D 0:

The set of Maurer–Cartan elements of g is noted MC.g/.
(2) The simplicial Maurer–Cartan set is then defined by

MC�.g/ D MC.g Ő ��/;

where �� is the Sullivan cdga of de Rham polynomial forms on the standard
simplex �� (see [66]) and Ő is the completed tensor product with respect to the
filtration induced by g.
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The simplicial Maurer–Cartan set is a Kan complex, functorial in g and preserves
quasi-isomorphisms of complete L1-algebras. The Maurer–Cartan moduli set of g
is MC.g/ D �0MC�.g/: it is the quotient of the set of Maurer–Cartan elements
of g by the homotopy relation defined by the 1-simplices. When g is a complete
dg Lie algebra, it turns out that this homotopy relation is equivalent to the action of
the gauge group exp.g0/ (a prounipotent algebraic group acting on Maurer–Cartan
elements), so in this case this moduli set coincides with the one usually known for
Lie algebras. We refer the reader to [76] for more details about all these results.

We also recall briefly the notion of twisting by a Maurer–Cartan element.
The twisting of a complete L1 algebra g by a Maurer–Cartan element � is the
complete L1 algebra g� with the same underlying graded vector space and new
brackets l�

k
defined by

l�k .x1; : : : ; xk/ D
X
i�0

1

iŠ
lkCi .�

^i ; x1; : : : ; xk/

where the lk are the brackets of g. Thereafter we will need the following theorem:
Theorem 3.11 (Berglund [5]). Let g be a complete L1-algebra and � be a Maurer–
Cartan element of g. There is an isomorphism of abelian groups

H�n.g� / Š �nC1.MC�.g/; �/

for n � 1, and an isomorphism of groups

exp.H 0.g� // Š �1.MC�.g/; �/

for n D 0 where exp.H 0.g� // is equipped with the group structure given by the
Hausdorff–Campbell formula (it is the prounipotent algebraic group associated to
the pronilpotent Lie algebraH 0.g� /).

Recall that we use a cohomological grading convention instead of the homological
grading convention [5]. This is the reason why homotopy groups of Maurer–Cartan
simplicial sets are related here to non-positive cohomology groups.

Let P be a properad and C a coproperad equipped with a twisting morphism
C ! P , such that �.C/

�
! P is a cofibrant resolution of P , where �.�/ is the

properadic cobar construction (see [71]). One can always produce such a resolution
by taking for C the bar contruction on P , or the Koszul dual of P if P is Koszul.

We consider a Z-graded cochain complex Hom†.C ;Q/, where Q is any dg
properad, with the degree defined by

f 2 Hom†.C ;Q/k , 8n; f .C n/ � QnCk

and the differential defined by

ı.f / D dQ ı f � .�1/
jf jf ı .dC /
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where dQ is the differential of Q, jf j the degree of f , and dC the differential of C
restricted to the augmentation idealC . This is actually the external differential graded
hom of †-biobjects, given by the infinite product

Hom†.C ;Q/ D
Y
m;n

Homdg.C .m; n/;Q.m; n//
†m�†n :

Let us note that according to Theorem 12 of [55], for every properad morphism
' W P1 ! Q we have an isomorphism

Hom†.C ;Q/' Š Der'.P1;Q/;

where Der'.P1;Q/ is the complex of properadic derivations from P1 toQ withQ
equipped with the P1-module structure induced by '.

The principal theorem of this section is the following:

Theorem 3.12. Let P be a properad with cofibrant resolution P1 D �.C/
�
! P

andQ be any properad. Suppose that the augmentation idealC is of finite dimension
in each arity.

(i) The total complex Hom†.C ;Q/ is a complete dg Lie algebra.
(ii) The Maurer–Cartan elements of Hom†.C ;Q/ are exactly the properad

morphisms P1 ! Q.
(iii) The simplicial setsMC�.Hom†.C ;Q// and MapP.P1;Q/ are isomorphic.

Corollary 3.13. Let � W P1 ! Q be a Maurer–Cartan element of Hom†.C ;Q/
and Hom†.C ;Q/� the corresponding twisted Lie algebra.

(1) For every integer n � 0, we have a bijection

H�n.Hom†.C ;Q/�/ Š �nC1.MapP.P1;Q/; �/

which is an isomorphism of abelian groups for n � 1, and an isomorphism of
groups for n D 0whereH 0.Hom†.C ;Q/�/ is equippedwith the group structure
given by the Hausdorff–Campbell formula.

(2) When � is a weak equivalence we obtain

H�n.Hom†.C ;Q/�/ Š �nC1.hiso.P1;Q/; �/:

(3) When � is a weak equivalence andQ D P1 we obtain

H�n.Hom†.C ; P1/�/ Š �nC1.haut.P1/; �/:

Proof. This corollary follows directly from Theorems 3.11 and 3.12. Concerning
the homotopy automorphisms, we just note that

�nC1.Map.A1; A1/; �/ D �nC1.Map.A1; A1/� ; �/
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and Map.A1; A1/� D haut.A1/� when � is a weak equivalence because of the
two-out-of-three property (just draw the diagram of a homotopy between a weak
equivalence and a map).

Let us prove Theorem 3.12. We first need the following preliminary lemma:
Lemma 3.14. Let

'� W g�
�
! h�

be an isomorphism of simplicial dg Lie algebras. Suppose these Lie algebras are
filtered and that for every integer r , the map '� induces an isomorphism of simplicial
dg Lie algebras

Fr'� W Frg�
�
! Frh�:

Then its completion
O'� W Og�

�
! Oh�

is an isomorphism of simplicial complete dg Lie algebras.

Proof. The faces and the degeneracies of g� are compatible with its filtration and the
same holds for h�. Moreover, by assumption '� and Fr'� are isomorphisms, so for
every integer r the induced map

g�=Frg�
Š
! h�=Frh�

is also an isomorphism of simplicial algebras. Simplicial objects in a category
form a diagram category, so the limits are determined pointwise. This implies that
Og� D limr g�=Frg� as a simplicial dg Lie algebra and the same holds for h�, so
finally O'� is an isomorphism.

Proof of Theorem 3.12. Let us recall that for every properad Q, the complex
Hom†.C ;Q/ forms a dg Lie algebra. The bracket is defined by

Œf; g� D f � g � .�1/jf jjgjg � f

where g �f is the convolution product of g and f obtained by using the infinitesimal
coproduct of the coproperad structure of C and the infinitesimal product of the
properad structure of Q. The idea is the following : an element of C is represented
by a directed graph with one vertex. The infinitesimal coproduct expands it into
a sum of graphs with two vertices, i.e. 2-levelled directed graphs with one vertex
on each level indexed by a certain element of C . One then applies, for each such
graph, f to the element of the first level and g to the element of the second level,
thus obtaining a sum of 2-levelled directed graphs of operations of Q. One finally
applies the composition product ofQ. We refer the reader to [14] and [55] for more
details. Its explicit formula is given by

C
�.1/
! C �.1/ C

f�.1/g
! Q�.1/ Q

�.1/
! Q
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where �.1/ is the infinitesimal coproduct of the coproperad C restricted to the
augmentation ideal C and �.1/ the infinitesimal product of the properad Q. This
convolution product equips Hom†.C ;Q/ with a pre-Lie algebra structure. There is
an associated Lie structure given by

Œf; g� D f � g � .�1/jf jjgjg � f:

One can then show that this dg Lie algebra is filtered. There are several possible
filtrations compatible with the Lie bracket, in particular one given by the arity in [14]
and one given by the differential of P1 in [55]. Moreover, Hom†.C ;Q/ is complete
for both of these filtrations (for the filtration given in [55], the reader can check that
this filtration becomes 0 from r D 3).

Now let us consider the cochain complex isomorphism

'� W Hom†.C ;Q/˝��
Š
! Hom†.C ;Q˝e ��/

defined by '�.f ˝ !/ D Œc 2 C 7! f .c/ ˝e !� for every f 2 Hom†.C ;Q/
and ! 2 ��. We claim that this is actually an isomorphism of simplicial pre-Lie
algebras, that is, the map '� commutes with the convolution product � and preserves
the simplicial structure. This implies that '� is an isomorphism of simplicial dg Lie
algebras for the Lie structure induced by the convolution product. To see this, let
f ˝!1; g˝!2 2 Hom†.C ;Q/˝�� and c 2 C . By definition of the convolution �,
the map '.f ˝ !1/ � '.f ˝ !2/ is evaluated on c as follows. First, we apply the
infinitesimal coproduct �.1/ of the coproperad C (restricted to the augmentation
ideal C ) to get

�.1/.c/ D
X
˙Gr.c0; c00/ 2 F.C /.2/

which is a sum of connected 2-levelled graphs Gr.c0; c00/ with one vertex on each
level. The upper one is indexed by c0 and the lower one by c00. Then we apply
'.f ˝ !1/ to the upper vertex and '.f ˝ !1/ to the lower vertex to getX

˙Gr.f .c0/˝e !1; g.c00/˝e !2/:

Finally we apply the infinitesimal composition product �Q˝e��
.1/

to get

�
Q˝e��
.1/

�X
˙Gr.f .c0/˝e !1;g.c00/˝e !2/

�
D

X
˙�

Q

.1/
.Gr.f .c0/; f .c00///˝ !1!2

D .f � g/.c/˝ !1!2

D '.f ˝ !1 � g ˝ !2/.c/

by definition of the properad structure onQ˝e ��.
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The simplicial structure induced by�� is obviously compatiblewith the filtrations,
since it is defined by the simplicial structure of �� and the filtration does not
act on ��. Moreover, the map '� induces an isomorphism at each stage of the
filtrations. Since Fr.Hom†.C ;Q/ ˝ ��/ D Fr Hom†.C ;Q/ ˝ ��, for any
f ˝ ! 2 Fr Hom†.C ;Q/˝��, if c 2 Fr�1C then f .c/ D 0 so

'.f ˝ !/.x/ D f .x/˝e !

D 0:

By Lemma 3.14 we get an isomorphism between the completions

O'� W Hom†.C ;Q/ Ő ��
Š
!

OHom†.C ;Q˝e ��/:

The dg Lie algebra Hom†.C ;Q ˝e ��/ is complete, so there is a canonical
isomorphism Hom†.C ;Q˝e ��/ Š OHom†.C ;Q˝e ��/. Given that

MC.Hom†.C ;Q˝��// D MorP.P1;Q˝��/
D Map.P1;Q/

we finally have an isomorphism of simplicial sets

MC�.Hom†.C ;Q// D MC.Hom†.C ;Q/ Ő ��/
Š Map.P1;Q/:

Remark 3.15. This gives alternatively a way to study the higher homotopy groups of
moduli spaces via the derivations bicomplex, for instance via homological spectral
sequences arguments, or a way to study the homology groups of the deformation
complex via Bousfield–Kan spectral sequences arguments.
Example 3.16. ForQ D EndX we get

�nC1.P1fXg; �/ Š H
�nHom†.C;EndX /�

Š H�nDer�.P1;EndX /:

3.3. A more general case. The reader may have noticed that one can always
provide a cofibrant resolution of P formed by the cobar construction of a certain
coproperad (either the Koszul dual or the bar construction of P ), hence getting a dg
Lie deformation complex. But in general, for properads which are not Koszul, the
bar-cobar resolution is huge and one could be interested in a smaller deformation
complex. The price to pay for this size reduction is an increased complexity of the
L1-structure, encoded by the differential of P1. For this, we now consider the more
general situation when P1 D .F.s�1C/; @/ is a quasi-free properad generated by
the desuspension of a homotopy coproperad C . A homotopy coproperad is exactly
a †-biobject C such that F.s�1C/ is equipped with a derivation @ of degree �1
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such that @2 D 0. Moreover, we suppose that C is equipped with an increasing
filtration fCrg compatible with the differential, that is, for every r we have

@.Cr/ � F.s�1Cr/:

This condition holds for minimal models in the sense of [48]. A leading example
is the properad of non unitary and non-counitary associative and coassociative
bialgebras BiAss, which is not Koszul but only homotopy Koszul in the sense of [55].
Explicit computations of certain terms of the differential of the minimal model
BiAss1 have been done in [48]. This non-quadratic and highly non trivial differential
induces a fully-fledged filtered L1-algebra structure on the deformation complex.
This deformation complex has been, in turn, be proven to be quasi-isomorphic to
the well known Gerstenhaber–Schack complex [28] used in deformation theory of
bialgebras (see [55] for a proof), proving that the Gerstenhaber–Schack complex
possesses a L1-structure controlling the deformation theory of bialgebras up to
homotopy.

In [55], theL1 algebras are supposed to be only filtered and one have to consider
Maurer–Cartan elements in their completion for this filtration. We explain here why
these algebras are actually complete for the appropriate filtration, so that we do not
need to complete them.

Theorem 3.17. LetP be a properad with minimal modelP1 D .F.s�1C/; @/
�
! P

for a certain homotopy coproperad C , andQ be any properad.

(i) The total complex Hom†.C ;Q/ is a complete dg L1 algebra.
(ii) The Maurer–Cartan elements of Hom†.C ;Q/ are exactly the properad

morphisms P1 ! Q.
(iii) The simplicial setsMC�.Hom†.C ;Q// and MapP.P1;Q/ are isomorphic.

Corollary 3.18. Let � W P1 ! Q be a Maurer–Cartan element of Hom†.C ;Q/
and Hom†.C ;Q/� the corresponding twisted Lie algebra.

(1) For every integer n � 0, we have a bijection

H�n.Hom†.C ;Q/�/ Š �nC1.MapP.P1;Q/; �/

which is an isomorphism of abelian groups for n � 1, and an isomorphism of
groups for n D 0whereH 0.Hom†.C ;Q/�/ is equippedwith the group structure
given by the Hausdorff–Campbell formula.

(2) When � is a weak equivalence we obtain

H�n.Hom†.C ;Q/�/ Š �nC1.hiso.P1;Q/; �/:

(3) When � is a weak equivalence andQ D P1 we obtain

H�n.Hom†.C ; P1/�/ Š �nC1.haut.P1/; �/:
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To prove Theorem 3.17, let us first check that Hom†.C ;Q/ is a complete
L1-algebra. We use the decomposition proposed in the proof of Proposition 15
in [49]

Hom†.C ;Q/ D
Y
l�1

Hom†.C ;Q/l

which satisfies
ŒHom†.C ;Q/k�l D 0

for k > l . With such a decomposition we define a decreasing filtration

Fr Hom†.C ;Q/ D
Y
l�r

Hom†.C ;Q/l :

For every integer k we have

ŒHom†.C ;Q/k� 2
Y
l�k

Hom†.C ;Q/l D Fk Hom†.C ;Q/

because ŒHom†.C ;Q/k�l D 0 for k > l . Moreover, the isomorphisms

Hom†.C ;Q/=Fr Hom†.C ;Q/ Š
r�1Y
lD1

Hom†.C ;Q/l

imply that

limr Hom†.C ;Q/=Fr Hom†.C ;Q/ Š
Y
l�1

Hom†.C ;Q/l

D Hom†.C ;Q/:

We know check that this filtration is compatible with theL1 structure defined in [55].
We can actually rewrite our filtration as

Fr Hom†.C ;Q/ D
Y
l�r

Hom†.C ;Q/l

Š

Y
l�1

Hom†.C ;Q/l=
Y
l�r�1

Hom†.C ;Q/l

Š Hom†.C ;Q/=˚l�r�1 Hom†.C ;Q/l
Š Hom†.C ;Q/=Hom†.C r�1;Q/
Š ff 2 Hom†.C ;Q/jf .C r�1/ D 0g

where fC rg is an exhaustive filtration of C defined by

C r D f� 2 C j@P1.�/ 2 F.C /.�r/g:
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Now, given that for any integer r we have @P1.C r�1/ 2 F.C r�1/, for any integer n
the inclusion

@
.n/
P1
.C r�1/ 2 F.C r�1/.n/

and the formula definingQ.n/ imply thatQ.n/.f1^� � �^fn/.�/ D 0 for f1^� � �^fn 2
ƒnHom†.C ;Q/ such that f1 2 Fr Hom†.C ;Q/, � 2 C r�1 and n > r � 1. This
means that

Q.n/.f1 ^ � � � ^ fn/ 2 Fr Hom†.C ;Q/

for n > r � 1.
The remaining part of the proof relies on

Proposition 3.19. The cochain complex isomorphism

' W Hom†.C ;Q/˝��
Š
! Hom†.C ;Q˝e ��/

is an isomorphism of simplicial dg L1-algebras.

Proof. We prove a cdga isomorphism between the associated Chevalley–Eilenberg
algebras. This is equivalent to a strict isomorphism of L1-algebras. Let us consider

C �.'/ W .ƒ sHom†.C ;Q/˝��; QQ/! .ƒ sHom†.C ;Q˝e ��/;Q�/

whereQ� is the coderivation defined in the proof of Theorem 5 (ii) in [55]:

Q
.1/
� .f / D @Q˝e�� ı f � .�1/

jf jf ı @
.1/
P1

and

Q
.n/
� .f1 ^ � � � ^ fn/ D �.�1/

jf1^���^fnj�Q˝e��.f1 ^ � � � ^ fn ı
0 @
.n/
P1
/

for n > 1, where @.n/P1 is the part of the differential of P1 consisting of graphs with
n vertices, that is

@
.n/
P1
W s�1C

@P1
! F.s�1C/ � F.s�1C/.n/:

In the notation�Q˝e��.f1^� � �^fn ı0 @
.n/
P1
/, the ı0 stands for a composition defined

by applying, for each graph with n vertices appearing in @.n/P1 , the map fi to the
operation of s�1C indexing the i th vertex. Then one applies the composition product
�Q˝e�� of the properadQ˝e��. The coderivation QQ is obtained by extending the
L1-algebra structure of Hom†.C ;Q/ by the cdga ��, that is

QQ.1/.f ˝e !/ D Q
.1/.f /˝e ! C .�1/

jf jf ˝e d.!/

and

QQ.n/.f1 ˝e !1 ^ � � � ^ fn ˝e !n/ D Q
.n/.f1 ^ � � � ^ fn/˝ !1 � � �!n
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for n > 1. For c 2 C and f ˝ ! 2 Hom†.C ;Q/˝��, we have

Q.1/.'.f ˝ !//.c/

D @Q˝e�� ı '.f ˝ !/.c/ � .�1/
jf j'.f ˝ !/ ı @

.1/
P1
.c/

D @Q˝e��.f .c/˝e !/ � .�1/
jf jf .@

.1/
P1
.c//˝e !

D @Q.f .c//˝e ! C .�1/
jf jf .c/˝e d.!/ � .�1/

jf jf .@
.1/
P1
.c//˝e !

D ..@Q ı f /.c/ � .�1/
jf j.f ı @

.1/
P1
/.c//˝e ! C .�1/

jf jf .c/˝e d.!/

D '. QQ.1/.f ˝ !//.c/:

For n > 1, c 2 C and f1˝!1 ^ � � � ^ fn˝!n 2 ƒn sHom†.C ;Q/˝��, we have

Q.n/.C �.'/.f1 ˝ !1 ^ � � � ^ fn ˝ !n//.c/

D � .�1/jf1˝!1^���^fn˝!nj�Q˝e��.Gr.C �.'/.f1 ˝ !1 ^ � � � ^ fn ˝ !n//
ı
0 @
.n/
P1
.c//

D � .�1/jf1˝!1^���^fn˝!nj�Q˝e��.Gr.f1.�/˝ !1; : : : ; fn.�/˝ !n/
ı
0 @
.n/
P1
.c//

D �.�1/jf1˝!1^���^fn˝!nj�Q.Gr.f1; : : : ; fn/ ı0 @.n/P1.c//˝e !1 � � �!n
D Q.n/.f1; : : : ; fn/.c/˝e !1 � � �!n

D C �.'/. QQ.n/.f1 ˝ !1; : : : ; fn ˝ !n//.c/:

Moreover, for every integer r the induced map Fr' is also an isomorphism. By
Lemma 3.14 we get an isomorphism between the completions and we conclude the
proof.

3.4. Higher homotopy groups of mapping spaces of algebras over operads.
Let P be an operad and C a cooperad equipped with a twisting morphism C ! P ,
such that �.C/

�
! P is a cofibrant resolution of P , where �.�/ is the operadic

cobar construction (see [40] for instance). One can always produce such a resolution
by taking for C the bar contruction on P , or the Koszul dual of P if P is Koszul.
Let A be a P -algebra. There is a quasi-free P -algebra A1 D ..P ı C/.A/; @/ over
a quasi-free C -coalgebra C.A/ which gives a cofibrant resolution of A. We refer
the reader to [21] for a detailed construction of such C -coalgebras and cofibrant
resolutions.

We consider aZ-graded cochain complex Hom.C.A/; B/with the degree defined
by

f 2 Hom.C.A/; B/k , 8n; f .C.A/n/ � BnCk
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and the differential defined by

ı.f / D dB ı f � .�1/
jf jf ı .dC C dA/

where dB is the differential of B , jf j the degree of f , and dC C dA the differential
of the total complex of C , where dA comes from the differential of A and dC is the
only derivation extending the infinitesimal coproduct of the cooperad C . This is a
complete dg Lie algebra whose Maurer–Cartan elements consist in the set of twisting
morphisms Tw.C.A/; B/. Recall that we have bijections

MorP - Alg.A1; B/ Š Tw.C.A/; B/ Š MorC - Coalg.C.A/; C.B//:

The principal theorem of this section is the following:
Theorem 3.20. Let P be an operad and A;B be any P -algebras.

(i) The total complex Homdg.C.A/; B/ is a complete dg Lie algebra.
(ii) The Maurer–Cartan elements of Homdg.C.A/; B/ are exactly the morphisms

of P -algebras A1 ! B .
(iii) There exists an isomorphismbetweenMC�.Homdg.C.A/; B//andMap.A1; B/.
Corollary 3.21. Let � W A1 ! B be a Maurer–Cartan element ofHomdg.C.A/; B/

and Homdg.C.A/; B/
� the corresponding twisted Lie algebra.

(1) For every integer n � 0, we have a bijection

H�n.Homdg.C.A/; B/
�/ Š �nC1.Map.A1; B/; �/

which is an isomorphism of abelian groups for n � 1, and an isomorphism of
groups for n D 0 where H 0.Homdg.C.A/; B/

�/ is equipped with the group
structure given by the Hausdorff–Campbell formula.

(2) When � is a weak equivalence we obtain

H�n.Homdg.C.A/; B/
�/ Š �nC1.hiso.A1; B/; �/:

(3) When � is a weak equivalence and B D A1 we obtain

H�n.Homdg.C.A/; A1/
�/ Š �nC1.haut.A1/; �/:

Proof. This corollary follows directly from Theorems 3.11 and 3.20. Concerning
the homotopy automorphisms, we just note that

�nC1.Map.A1; A1/; �/ D �nC1.Map.A1; A1/� ; �/

and Map.A1; A1/� D haut.A1/� when � is a weak equivalence because of the
two-out-of-three property (just draw the diagram of a homotopy between a weak
equivalence and a map).

The proof is completely equivalent to the properadic case, once we have checked
that the tensor product .�/ ˝ �� defines a functorial simplicial resolution in the
category of P -algebras.
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3.5. Link with André–Quillen homology. When the operad P is Koszul, we
choose C D P ¡ the Koszul dual of P , and the Lie bracket of the complete dg Lie
algebra Homdg.C.A/; B/ is given by Theorem 4.1.1 of [57]. In this case there is an
isomorphism of cochain complexes

Homdg.C.A/; B/
�
Š Der�.A1; B/ D DerA1.A1; B/

for any morphism of P -algebras A1 ! B , where the derivations are defined for
A1-modules with the A1-module structure on B induced by �. This implies that
for every n 2 N,

H�nHomdg.A1; B/
�
Š H�nHomdg.A1; B/

�

D H�nDerA1.A1; B/
D Hn

AQ.A1; B/

whereHn
AQ is the André–Quillen cohomology. For instance, we obtain

Hn
AQ.A1; A1/ Š �nC1.haut.A1/; �/

where the right hand A1 is seen as an A1-module via �.
Remark 3.22. According to Theorem 8.3.1 of [57], we know that this cohomology
can be expressed as an Ext functor:

Hn
AQ.A1; A1/ Š Extn

A1˝P1K.�P1A1; A1/:

3.6. Rational homotopy groups. Let us suppose here thatK D Q. ByCorollary 1.2
of [5], for any complete L1-algebra g of finite type, the cdga C �.g��0/ is a Sullivan
model of MC�.g/� (the connected component of � in MC�.g/). This implies that
C �.g��0/ � APL.MC�.g/� / in CDGAQ, hence a rational equivalence

MC�.g/� 'Q hAPL.MC�.g/� /i �Q hC
�.g��0/i

and finally
MC�.g/ 'Q

a
Œ��2MC.g/

MorCDGAQ.C
�.g��0/;��/

Applying this to g D Hom†.C;Q/ when it is of finite type and ' W P1 ! Q, we
get in particular a group isomorphism

H�CE .g
'
�0/ Š ��.Map.P1;Q/; '/˝Q

for every � > 0. In the setting of algebras over an operad, for g D Homdg.C.A/; B/

and ' W A1 ! B we get

H�CE .g
'
�0/ Š ��.Map.A1; B/; '/˝Q

for every � > 0.
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3.7. Long exact sequences for cohomology theories of bialgebras. An interesting
feature of this relationship between homotopical and algebraic sides of deformation
theory is that one can use properties on one side to get new properties on the other
side. An example is the following: any fiber sequence of properads induces a long
exact sequence of homotopy groups of moduli spaces for a given complex X , which
in turn gives a long exact sequence of cohomology groups relating the corresponding
cohomology theories on X .

3.7.1. Quasi-free properads. The reference we use is [21], to which we refer the
reader for a more detailed study. Though it is written for dg operads, all the notions
and results we need here have their equivalent in the properadic setting. LetM be a
†-biobject in cochain complexes. The free properad .F.M/; dM / endowed with the
differential induced by the one ofM is the free dg properad onM . Let ˛ WM ! Q

be a morphism of †-biobjects, where the targetQ is a properad. It can be extended
uniquely into a derivation

@˛ W F.M/! Q

by the derivation rules. Conversely, any derivation is obtained by this way. Now
let us consider a free properad .F.M/; dM /. The quasi-free properads are obtained
by twisting the differential of free properads. It means that we endow F.M/ with a
new differential .F.M/; @/ of the form @ D dM C @˛ , where @˛ W F.M/! F.M/

is a special derivation of degree 1 called a twisting morphism. It has to satisfy the
equation of twisting morphisms

.dM C @˛/
2
D 0 D d2M C dM ı @˛ C @˛ ı dM C @

2
˛

D @2˛ C dM .@˛/:

where we use the notation

dM .f / D dM ı f � .�1/
deg.f /f ı dM :

The proof of Proposition 1.4.7 of [21] can be adapted readily to give this reformulation
in the properadic context:
Proposition 3.23. There is a bijective correspondence between the properad
morphisms

'f W .F.M/; @/! Q

with a quasi-free source and the degree 0 homomorphisms of †-biobjects

f 2 .Hom†.M;Q/; ı/

such that ı.f / D 'f ı ˛. Here ı is the usual differential on the external hom of
†-biobjects, given by

ı.f / D dQ ı f � .�1/
deg.f /f ı dM :
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Cofibrations of quasi-free properads induced by morphisms of †-biobjects at
the level of generators satisfies the following characterization, which is a properadic
analogue of proposition 1.4.13 in [22]:
Proposition 3.24. Suppose we have amorphism of reduced†-biobjects f WM ! N

which determines a morphism of quasi-free properads

F.f / W .F.M/; @� /! .F.M/; @ /;

where the differentials come from derivations � and satisfying �.M/ � F .�2/.M/

and  .N/ � F .�2/.N / (i.e. the differentials are decomposable). The morphism
F.f / is a (acyclic) cofibration of P whenever f is a (acyclic) cofibration of .ChSK/.

3.7.2. Cofiber sequences. Let i W O1 ! P1 be any fixed prop morphism of
cofibrant properads (for the projective model structure). The map i admits a

factorization O1
Qi

� QP1
�

�p P1 into a cofibration Qi followed by an acyclic
fibration p. The pushout of Qi along the final morphism of O1 gives the cofiber of Qi ,
which is a model for the homotopy cofiber of i . Let us note .P;O/1 the homotopy
cofiber of i , which represents the operations of P1 which are not in O1. We know
that i induces a map of simplicial sets i� W P1fXg ! O1fXgwhich factors through

P1fXg
�
!p�

QP1fXg
Qi�

� O1fXg. One has the chain of homotopy equivalences

hofib.i�/ ' fib.Qi�/ ' cofib.Qi/fXg ' hocofib.i/fXg D .P;O/1fXg

relating the homotopy fiber of i�with themoduli space of .P;O/1-algebra structures
on X . We get a long exact sequence of homotopy groups inducing a long exact
sequence of cohomology groups.

4. Deformation functors and quotient stacks

4.1. Deformation functors as connected components of moduli spaces. LetP be
a properad admitting a cofibrant resolution of the form P1 D �.C/

�
! P where C

is a dg coproperad. We have seen before that Hom†.C;Q/ is a complete dg Lie
algebra with Maurer–Cartan elements the properad morphisms P1 ! Q. Hence
there is an associated deformation functor

DefHom†.C;Q/ W ArtK ! Set

which associates to any local artinian commutativeK-algebra R with residue fieldK
the set MC.Hom†.C;Q/ ˝ mR/ of equivalences classes of R-extended properad
morphisms P1 ˝ R ! Q ˝ R. If we fix a morphism ' W P1 ! Q, then the
deformation functor

DefHom†.C;Q/� W ArtK ! Set
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associates to any R the equivalence classes of R-deformations of '. The global
tangent space of this deformation functor, in the sense of [64], is

tDefHom†.C;Q/�
D H�1.Hom†.C;Q/�/

(see [44]).
Our main observation here is that we can replace DefHom†.C;Q/ by a more

convenient and naturally isomorphic functor

P1fQg.�/ W ArtK ! Set

defined by
P1fQg.R/ D �0P1fQ˝Rg:

To prove this, let us just point out that P1 ˝ R is still a properad because of the
commutative algebra structure on R, and that P1˝R D �.C ˝R/, which implies
that P1 ˝R is still cofibrant and that

�0P1 ˝RfQ˝Rg ŠMC.Hom†.C ˝R;Q˝R//
ŠMC.Hom†.C;Q/˝R/:

Note that in the first line of this computation, the external hom Hom† is taken in the
category of †-biobjects in dg R-modules, and in the second line it is the external
hom of †-biobjects in cochain complexes. The fact that the tensor product with R
commutes with this external hom follows from the two following arguments. First,
the fact that R is finitely generated (since it is artinian) implies that it commutes
with the dg hom of cochain complexes. Second, the external hom of †-biobjects is
by definition a product of invariants in such dg homs under the action of symmetric
groups, and the action of symmetric groups on R is trivial in the external tensor
product of a †-biobject with R, so this commutation holds for the external hom
of †-biobjects as well. Then we just apply Theorem 3.12. In the special case of
Q D EndX , we have

EndX ˝R.m; n/ D Homdg.X
˝m; X˝n/˝R

Š Homdg.X
˝m
˝R;X˝n ˝R/

Š Homdg..X ˝K R/
˝Rm; .X ˝K R/

˝Rn/

D EndX˝R.m; n/

where the last line is the endomorphism prop of X ˝ R as a dg R-module.
Consequently, we get

�0P1 ˝RfX ˝Rg Š DefHom†.C ;EndX /.R/

(the connected components of a mapping space of properads in dg R-modules).
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Theorem 4.1. For every artinian algebra R and any morphism ' W P1 ! Q, there
are group isomorphisms

��C1.MapProp.R-Mod/.P1˝eR;Q˝eR/; '˝e idR/ Š H��.Hom†.C ;Q/'˝R/:

This means that the homotopicalR-deformations of ' correspond to its algebraic
R-deformations.

This theorem is a corollary of Theorem 3.12 once we have checked the following
lemmas:
Lemma 4.2. Let A be a cdga and g be a dg Lie algebra. Let ' be a Maurer–
Cartan element of g, then ' ˝ 1A is a Maurer–Cartan element of g ˝ A and
.g ˝ A/'˝1A D g' ˝ A as a dg Lie algebra.

Proof. A tensor x ˝ a 2 g ˝ A is a Maurer–Cartan element if and only if

dg˝A.x ˝ a/C
1

2
Œx ˝ a; x ˝ a� D 0;

that is,
dg.x/˝ aC .�1/

jxjx ˝ dA.a/C
1

2
Œx; x�˝ a:a D 0:

For a D 1A we get

dg˝A.x ˝ 1A/C
1

2
Œx ˝ 1A; x ˝ 1A�

D dg.x/˝ 1A C .�1/
jxjx ˝ 0C

1

2
Œx; x�˝ 1A

D .dg.x/C
1

2
Œx; x�/˝ 1A

since 1A:1A D 1A and dA.1A/ D 0. Hence x 2 MC.g/ if and only if x ˝ 1A 2
MC.g ˝ A/.

Let ' be a Maurer–Cartan element of g. There is, by definition, an equality

g' ˝ A D .g ˝ A/'˝1A

as graded Lie algebras. It remains to check that the differentials are the same: for
every x ˝ a 2 g ˝ A,

d.g˝A/'˝1A .x ˝ a/ D dg˝A.x ˝ a/C Œ' ˝ 1A; x ˝ a�

D dg.x/˝ aC .�1/
jxjx ˝ dA.a/C Œ'; x�˝ 1A:a

D .dg.x/˝ aC Œ'; x�˝ a/C .�1/
jxjx ˝ dA.a/

D dg' .x/˝ aC .�1/
jxjx ˝ dA.a/

D dg'˝A.x ˝ a/:
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Lemma 4.3. LetX andY be two cochain complexes andA be a cdga. The adjunction
isomorphism

MorA-Mod.X ˝ A; Y ˝ A/
Š
! MorChK.X; Y ˝ A/

sends every map of the form f ˝ idA to the map x 7! f .x/˝ 1A.

Proof. The left adjoint is the tensor product � ˝ A and the right adjoint is the
forgetful functor U . By definition of the adjonction isomorphism, the morphism
f ˝ idA is sent to U.f ˝ idA/ ı �.X/ where � is the unit of this adjunction, defined
by �.X/.x/ D x ˝ 1A for every X 2 ChK and x 2 X .

We deduce that for any artinian cdga A, the composed isomorphism

HomA-Mod.X ˝ A; Y ˝ A/
Š
! HomChK.X; Y /˝ A;

where Hom stands for the differential graded hom bifunctors, respectively for
A-modules and cochain complexes, sends any morphism of the form f ˝ idA 2
MorA-Mod.X ˝ A; Y ˝ A/ to f ˝ 1A. As a corollary, for ' W P1 ! Q, we get the
following isomorphisms of dg Lie algebras:

HomA-ModS.C ˝e A;Q˝e A/
'˝idA Š Hom†.C ;Q˝e A/Œx 7!'.x/˝e1A�

Š .Hom†.C ;Q//'˝1A

Š Hom†.C ;Q/' ˝ A:

Let A be an artinian cdga. The category of A-modules is a symmetric monoidal
category for the tensor product defined by the coequalizer

A˝M ˝N � M ˝N !M ˝A N

for any A-modules M and N , where the two arrows correspond to the A-module
structures ofM andN . There is also a Quillen adjunction defining a model category
structure on A-modules:

�˝ A W ChK � A-Mod W U

where U is the forgetful functor. Weak equivalences and fibrations of A-modules are
quasi-isomorphisms and surjections of cochain complexes. The model and tensor
structures are compatible so that A-Mod forms a cofibrantly generated monoidal
model category [65, Theorem 4.1].

The left adjoint � ˝ A obviously respects the monoidal structure, but this is
not the case for U . The forgetful functor is only lax monoidal, with natural maps
U.M/˝ U.N/! U.M ˝A N/ provided by the mapM ˝ N ! M ˝A N in the
coequalizer defining the tensor product of A-modules. However, an adjunction with
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a strong symmetric monoidal left adjoint and a lax monoidal right adjoint is sufficient
to induce an adjunction at the level of props

�˝ A W Prop.ChK/ � Prop.A-Mod/ W U:

Both categories of props possess a cofibrantly generated model category structure
with fibrations and weak equivalences defined by forgetting the prop structure, i.e.
componentwise. In particular, the forgetful functorU W Prop.A-Mod/! Prop.ChK/
preserves fibrations and weak equivalences, so finally:
Lemma 4.4. The componentwise tensor product withA defines a Quillen adjunction

�˝e A W Prop.ChK/ � Prop.A-Mod/ W U

where ˝e stands for the external tensor product (the componentwise tensor product
with a cochain complex).

This Quillen adjunction gives an adjunction relation at the level of homotopy
mapping spaces. For any cofibrant dg prop P1 and any dg prop Q, we get an
isomorphism of simplicial sets

MapProp.A-Mod/.P1 ˝e A;Q˝e A/ Š MapProp.ChK/.P1;Q˝e A/:

In particular, for every '˝e idA 2 MorProp.A-Mod/.P1˝e A;Q˝e A/, we get group
isomorphisms

��.MapProp.A-Mod/.P1 ˝e A;Q˝e A/; ' ˝e idA/
Š ��.MapProp.ChK/.P1;Q˝e A/; Œx 7! '.x/˝ 1A�/:

we also have a bijection between the connected components, so we can replace the
deformation functor

DefHom†.C ;EndX /
by the naturally isomorphic deformation functor

P1fXg.R/ D �0P1fX ˝Rg:

Wecando the same constructions as abovewith the dgLie algebraHomdg.C.A/; B/

with A;B being algebras over a dg operad P with cofibrant resolution �.C/.

4.2. Quotient stacks. These moduli spaces also admit, consequently, an algebraic
geometry interpretation. Indeed, the deformation functor

DefHom†.C;Q/ W ArtK ! Set

extends to a pseudo-functor of groupoids

DefHom†.C;Q/ W AlgK ! Grpd
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where AlgK is the category of commutative K-algebras and Grpd the 2-category of
groupoids. This pseudo-functor is defined by sending any algebra A to the Deligne
groupoid of Hom†.C;Q/˝A, that is, the groupoidwhose objects areMaurer–Cartan
elements of Hom†.C;Q/˝ A and morphisms are given by the action of the gauge
group exp.Hom†.C;Q/0 ˝ A/. Such a pseudo-functor forms actually a prestack,
whose stackification gives the quotient stack

ŒMC.Hom†.C;Q//= exp.Hom†.C;Q/0/�

of the Maurer–Cartan scheme MC.Hom†.C;Q// by the action of the prounipotent
algebraic group exp.Hom†.C;Q/0/�. It turns out that the 0th cohomology group of
the tangent complex of such a stack, encoding equivalences classes of infinitesimal
deformations of a K-point of this stack, is exactly

tDefHom†.C;Q/�
D H�1.Hom†.C;Q/�/:

We refer the reader to [76] for a proof of these results. However, this geometric
structure does not capture the whole deformation theory of the points. For this, the
next sectionwill develop such a geometric interpretation in the context of homotopical
algebraic geometry.

5. Moduli spaces as higher stacks

In order to get a geometrical interpretation of the whole deformation theory of
algebras over properads, we work in the setting of homotopical algebraic geometry
as constructed by Toen–Vezzosi in [68] and [69]. Our purpose is two-fold: firstly,
to construct higher stacks out of moduli spaces. Secondly, to prove that the tangent
spaces of this stack give precisely the cohomology theory of these algebras. These
two goals lead us to:
Theorem 5.1. (1) LetP1 D �.C/

�
! P be a cofibrant resolution of a dg properad

P and Q be any dg properad such that each Q.m; n/ is a bounded complex of
finite dimension in each degree. The functor

Map.P1;Q/ W A 2 CDGAK 7! MapProp.P1;Q˝ A/

is a representable stack in the setting of complicial algebraic geometry of [69].

(2) Let P1 D �.C/
�
! P be a cofibrant resolution of a dg properad P in non

positively graded cochain complexes, and Q be any properad such that each
Q.m; n/ is a finite dimensional vector space. The functor

Map.P1;Q/ W A 2 CDGAK 7! MapProp.P1;Q˝ A/

is a representable stack in the setting of derived algebraic geometry of [69], that
is, an affine derived scheme.
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(3) The homology groups of the tangent complex of Map.P1;Q/ at the point
' W P1 ! Q are isomorphic to the cohomology groups of the deformation
complex Der'.P1;Q/.

Corollary 5.2. (1) Let X be a bounded complex of finite dimension in each degree.
The moduli space functor

P1fXg W A 2 CDGAK 7! MapProp.P1;EndX˝A/

is a representable stack in complicial algebraic geometry, whose tangent
complexes encode the cohomology theory of P1-algebra structures on X .

(2) The same statement holds in derived algebraic geometry if X is a finite
dimensional vector space.

The second part of Corollary 5.2 follows from the second part of Theorem 5.1
because if X is a finite dimensional vector space, then so is EndX .m; n/ for any
integers m; n.

5.1. Hotomopical algebraic geometry. Homotopical algebraic geometry has been
introduced in [68] and [69] as a unified way of doing algebraic geometry in various
homotopical contexts, including in particular usual algebraic geometry, derived
algebraic geometry, complicial algebraic geometry and algebraic geometry over ring
spectra. Derived algebraic geometry over ring spectra has been developed in parallel
by Lurie in his series of papers [42].

For any model site .M; �/, that is, a model category M equipped with a
pretopology � , there is a notion of stacks over M [68]. We briefly describe this
general construction. Let SPr.M/ be the category of simplicial presheaves overM ,
that is, of functors from M op to the category of simplicial sets sSet. We assume
that SPr.M/ is endowed with the projective model category structure (i.e. pointwise
weak equivalences and fibrations). The category of prestacksM^ is a left Bousfield
localization of this projective structure along the weak equivalences of M , that is,
the natural transformations hu; u 2 wM where

h WM ! Pr.M/ ,! SPr.M/

is the constant Yoneda embedding. The model category of stacks M�;� is then
obtained as a left Bousfield localization of the model category of prestacks M^
along the homotopy � -hypercovers [68]. These are exactly the equivalences of
homotopy sheaves �0.�/ over .M; �/ and �i .�/; i > 0 over the comma model sites
.M=x; �/ (where x ranges over the fibrant objects of M ), see [68, Theorem 4.6.1].
This Bousfield localization ofM^ comes with a Quillen adjunction

Id WM^ � M�;� W Id
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inducing an adjunction between the homotopy categories

L Id W Ho.M^/ � Ho.M�;� / W R Id :

Stacks are then defined as simplicial presheaves whose image in Ho.M^/ belongs
to the essential image of R Id (see [69, Definition 1.3.1.2]). This means that they
are simplicial presheaves preserving weak equivalences and satisfying a descent
condition in terms of hypercovers.
Remark 5.3. Morphisms of stacks are just morphisms in the homotopy category of
simplicial presheaves. Consequently, if there is a natural transformation � W F ! G

of simplicial presheaves such that �.A/ is a weak equivalence for every commutative
algebra A, and if F and G represent stacks, then they represent the same stack in
Ho.M^/.

A first step to do homotopical algebraic geometry is to define a homotopical
algebraic context .C; C0;A/ [69, Definition 1.1.0.11]. The category C is a
combinatorial symmetric monoidal model category, and the categories C0 and A
are full subcategories of C stable under weak equivalences. These categories satisfy
several assumptions, required firstly to transpose usual constructions of linear and
commutative algebra, and secondly to define analogues of derivations, cotangent
complexes, etale maps, smooth and infinitesimally smooth maps, etc. In particular,
the category of monoids Comm.C/ forms a model category with fibrations and weak
equivalences defined in C. The opposite model category Comm.C/op is denoted by
AffC . A pretopology � onAffC in the sense of [68] (inducing aGrothendieck topology
on its homotopy category) enhances this category into a model site .AffC; �/ [69,
Definition 1.3.1.1].

In this setting, one can express more concretely the descent condition char-
acterizing stacks among simplicial presheaves. A stack is a simplicial presheaf
F W Comm.C/! sSet such that

� F preserves weak equivalences;
� Let us denote by

Qh the finite homotopy products. Given a finite family of
commutative algebras fAig, the map

F
� hY

i

Ai

�
!

Y
i

F.Ai /

is an isomorphism inHo.sSet/.
� F satisfies the descent condition: for any B� 2 .A=Comm.C//� such that
A ! B� defines a � -hypercover RSpec

B�
! RSpec

A
(that is, satisfies the

descent condition of [69, Definition 1.2.12.4]), the map

F.A/! holim� F.Bn/

is an isomorphism in Ho.sSet/.
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Remark 5.4. A way to tackle the problem of checking the descent condition is
to use Corollary B.0.8 of [69]. An interesting example for which one applies this
result is to build stacks of algebras. In [59], Muro builds a stack of algebras over a
nonsymmetric operad AlgC.O/, whose evaluation at an algebraA is the classification
space of cofibrant O-algebras in A-modules (that is, the nerve of the subcategory
of weak equivalences between cofibrant objects). For every algebra A, there is a
forgetful functor fromO-algebras inA-modules toA-modules, inducing a morphism
of simplicial sets N wAlgMod.A/.O/ ! N wMod.A/, hence a morphism of stacks
AlgC.O/! QCoh (where QCoh is the stack of quasi-coherent modules). The stack
ofO-algebra structures on anA-moduleM is then defined as the homotopy pullback
of this morphism along the morphism RSpec.A/ ! QCoh representing M . This
gives a stack version of Rezk’s homotopy pullback theorem [62]. In our context, such
a description is not possible because of the absence of model category structure on
algebras over properads.

In order to define a notion of geometric stacks, which are a certain kind of gluing
of representable stacks, one has to introduce a class of morphisms P satisfying the
adequate properties with respect to the model pretopology. One obtains the notion
of a homotopical algebraic geometry context .C; C0;A; �;P/, HAG for short, for
which we refer the reader to Definition 1.3.2.13 of [69]. This gluing of representable
stacks can be realized by the action of a Segal groupoid (see Definition 1.3.1.6 and
Proposition 1.3.4.2 of [69]). HAG contexts include in particular:

� C D Z-Mod, giving a theory of geometric stacks in classical algebraic
geometry;

� C D sModK, the category of simplicial modules over a commutative ring K,
giving a theory of derived or D�-geometric stacks, that is derived algebraic
geometry;

� C D ChK, the category of unbounded cochain complexes of modules over K
with car.K/ D 0, giving a theory of geometric stacks in complicial algebraic
geometry, or geometricD-stacks;

� C D Sp†, the category of symmetric spectra, giving a theory of geometric
stacks in brave new algebraic geometry.

5.2. Mapping spaces as higher stacks. We give here a general representability
result for higher stacks arising from mapping spaces in algebras over monads in
diagram categories. This result applies, as special cases, to mapping spaces of
operads, 1

2
-props, dioperads, properads, props, their colored and wheeled variants,

as well as to algebras over operads.
For this, we fix two Grothendieck universes U 2 V such that N 2 V, as well

as a HAG context .C; C0;A; �; P /. In particular, the category C is a V-small
U-combinatorial symmetric monoidal model category. We fix also a regular
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cardinal � so that (acyclic) cofibrations of C are generated by �-filtered colimits
of generating (acyclic) cofibrations. For technical reasons, we also need to suppose
that the tensor product preserves fibrations. This assumption is satisfied in particular
by simplicial sets, simplicial modules over a ring, and cochain complexes over a ring.
This implies that we can take for instance as HAG contexts the derived algebraic
geometry context and the complicial algebraic geometry context (see [69]). We now
consider a U-small category I and the associated category of diagrams CI , as well
as a monad T W CI ! CI satisfying the assumptions of Lemma 2.3 of [65] (in
particular T preserves �-filtered colimits).

5.2.1. Combinatoriality of T -algebras. We refer the reader to [1] for a detailed
study of presentable and accessible categories. We just recall here some definitions
we need.
Definition 5.5. Let � be a regular cardinal.

(1) An objectX in a categoryC is �-compact inC if the functorMorC.X;�/ preserves
�-directed colimits. An object is small if it is �-compact for a certain �.

(2) A locally small category is said to be �-accessible if it admits �-directed colimits
and if there exists a set of �-compact objects generating the category under these
colimits.

(3) A functor F W C ! D is �-accessible if C and D are �-accessible categories
and F preserves �-directed colimits.

(4) A category is locally presentable if it is an accessible category having all small
colimits.

Definition 5.6. A combinatorial model category is a cofibrantly generated model
category which is also locally presentable.

Such a model category structure can be transfered at the level of diagrams in two
Quillent equivalent ways:
Proposition 5.7 (Lurie [41, Prop. A.2.8.2]). Let C be a combinatorial model category
and I a small category. There exists two Quillen equivalent combinatorial model
structures on the category of I -diagrams Func.I; C/:

(i) the projective model structure with weak equivalences and fibrations deter-
mined componentwise;

(ii) the injective model structure with weak equivalences and cofibrations
determined componentwise.

We thus use:
Theorem 5.8 (see [6, Theorem 5.5.9]). Let C be a locally presentable category and T
be a monad over C. If T is an accessible functor, then the category CT of T -algebras
is locally presentable.
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We deduce:
Corollary 5.9. Let C be a U-combinatorial model category and T a monad over C
satisfying the assumptions of Lemma 2.3 of [65]. Then CT is a U-combinatorial
model category.

Here we will use the projective model structure for diagrams. Finally, we will
also need the following characterization of cofibrant T -algebras:
Lemma 5.10. Every cofibrant T -algebra is a U-small homotopy colimit of free
T -algebras which are images of cofibrant I -diagrams under the functor T .

5.2.2. Stability of T -algebras under the external tensor product. The diagram
category CI is a monoidal model category over C. We refer the reader to [22] or
Section 1 of [74] for the notion of symmetric monoidal category E over a base
symmetric monoidal category C. The internal tensor product is the pointwise tensor
product of functors, and the external tensor product between a I -diagram F and an
object C of C is defined by .F ˝e C/.i/ D F.i/ ˝ C for every i 2 ob.I /. The
external hom HomCI .�;�/ W CI � CI ! C is given by

HomCI .X; Y / D

Z
i2I

HomC.X.i/; Y.i//:

We deal here with a symmetric monoidal category equipped with a model category
structure. The notion of symmetric monoidal model category consists of axioms
formalizing the interplay between the tensor and the model structure, for which we
refer to Hirschhorn [30] and Hovey [31] for a comprehensive treatment. We refer
to [22] for the notion of symmetric monoidal model category over a base category.

We need the following compatibility assumptions between the monad T and the
external tensor product ˝e . To any commutative algebra A of C one can associate a
category ModA of A-modules in CI defined obviously like usual modules but with
the external tensor product. We suppose that for any commutative algebra A, there
exists a monad TA W ModA ! ModA such that for any A-moduleM

(i) TA.M ˝e A/ D T .M/˝e A

(ii) �TA.M ˝e A/ D �T ˝e A
(iii) �TA.M ˝e A/ D �T ˝e A

(i.e. the monad structure of TA is determined on free A-modules by the monad
structure of T ).
Lemma 5.11. For any T -algebra X and any commutative algebra A of C, the free
A-module X ˝e A is a TA-algebra inModA.

Proof. The TA-algebra structure is defined by

TA.X ˝e A/ D T .X/˝e A
X˝eA
! X ˝e A:
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Lemma 5.12. For any commutative algebra A, the functor T .�/˝e A is a monad
on CI and and for any T -algebra X , the free A-module X ˝e A is a T .�/ ˝e A-
algebra in CI .

Proof. By the equality T .�/˝eA D TA.�˝eA/, the monad structure of T .�/˝eA
comes from the monad structure of TA and the commutative algebra structure of A.
The T .�/˝e A-algebra structure on X ˝e A is given by

T .X ˝e A/˝e A D TA..X ˝e A/˝e A/ D TA.X ˝e .A˝ A//

TA.X˝e.�A//
! TA.X ˝e A/ D T .X/˝e A

X˝eA
! X ˝e A

where �A is the product of A and X the T -algebra structure of X .

Lemma 5.13. For any commutative algebra A, there exists a monad morphism
T ! T .�/˝e A. Consequently, every free A-module X ˝e A over a T -algebra A
is a T -algebra.

Proof. This is just the composite of natural transformations given by

T .X/
Š
! T .X/˝e 1C

T.X/˝e�A
! T .X/˝e A

where 1C is the unit of C and �A is the unit of A.

5.2.3. Representability of higher stacks obtained from mapping spaces. Now
we can state the main result. For this, let us first note that any homotopy mapping
space Map.X1; Y / between a cofibrant T -algebra X1 and a fibrant T -algebra Y
(here these are diagrams with values in fibrant objects of C) gives rise to the functor

Map.X1; Y / W Comm.C/! sSet
A 7! MorT - Alg.X1; .Y ˝e A

cf/�
�

/

where .�/cf is a functorial fibrant-cofibrant replacement in C and .�/�� a simplicial
resolution in T -algebras.
Theorem 5.14. Let X1 be a cofibrant T -algebra such that X1 � hocolimi T .Xi /,
and Y be a T -algebra with values in fibrations of fibrant perfect objects of C. Then

Map.X1; Y / ' holimi

hZ
k2ob.I /

RSpec
Com.Xi .k/˝LY.k/_/

' Spec
hocolimi

R h
k2ob.I/ Com.Xi .k/˝LY.k/_/

:

In particular, Map.X1; Y / is a representable stack.
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We refer the reader to Definition 1.2.3.6 and Proposition 1.2.3.7 of [69] for the
definition and properties of perfect objects in a given symmetric monoidal model
category.

Proof. The external tensor product of diagram categories preserves weak equiva-
lences between cofibrant objects of the base category, and homotopy mapping spaces
preserve weak equivalences between fibrant targets, so the functor Map.X1; Y /
defines a simplicial presheaf onAffC preservingweak equivalences, that is, a prestack.
Recall that stacks are the essential image of the right derived Quillen functor

R Id W Ho.Aff�;�C /! Ho.Aff^C /;

hence every prestack weakly equivalent to a stack represents a stack. Moreover,
since we are working in a HAG context, Corollary 1.3.2.5 of [69] ensures that the
topology � is subcanonical, which implies that the model Yoneda embedding gives a
fully faithful functor

Rh W Ho.Aff�;�C /! Ho.Aff�;�C /

whose essential image consists of representable stacks. So we have to prove that the
prestack Map.X1; Y / is weakly equivalent to a stack.

In particular, the functorRh commutes withU-small homotopy limits. Given that
the model category of T -algebras T -Alg is U-combinatorial, the cofibrant T -algebra
X1 is obtained as a U-small homotopy colimit of free T -algebras. This justifies the
second line of the formula in the theorem above.

We have to prove the first line of this formula. Homotopy mapping spaces
transform homotopy colimits at the source into homotopy limits, so we have

MapT -Alg.X1; Y ˝e A
cf/ � holimi MapT -Alg.T .Xi /; Y ˝e A

cf/:

For every i we have

MapT -Alg.T .Xi /; Y ˝e A
cf/ D MorT -Alg.T .Xi /; .Y ˝e A

cf/�
�

/

Š MorCI .Xi ; .Y ˝e Acf/�
�

/:

For any pair of functors F;G W C ! D between two categories C and D, the set of
natural transformations from F to G can be described by the end

Nat.F;G/ D
Z

c2ob.C/

MorD.F.c/; G.c//:

We deduce the isomorphism of simplicial sets

MapT -Alg.T .Xi /; Y ˝e A
cf/ Š

Z
k2ob.I /

MorC.Xi .k/; .Y.k/˝ Acf/�
�

/:
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Let us observe that, since fibrations and limits in diagram categories are defined
pointwise, the fibration condition on matching spaces defining Reedy fibrations (see
for instance [27]) holds pointwise, thus any Reedy fibration of .CI /�� is in particular
a Reedy fibration of C�� at each point. Moreover, weak equivalences of .CI /�� are
weak equivalences of .CI / in each simplicial dimension, which are, in turn, weak
equivalences of C at each point. This means that weak equivalences of .CI /�� are
pointwise weak equivalences of C�� . Given that simplicial resolutions are Reedy
fibrant replacements of constant simplicial objects, all of this implies that a simplicial
resolution of a diagram defines a simplicial resolution of each of its objects. In
particular, the simplicial object .Y.k/˝Acf/�

� is a simplicial resolution ofY.k/˝Acf

in C.
Homotopy mapping spaces with cofibrant source and fibrant target does not

depend, up to natural weak equivalences, on the choice of a functorial simplicial
resolution (See Lemma 5.17). We can apply this to MorC.Xi .k/; .Y.k/˝ Acf/�

�

/,
because by assumption the I -diagram Xi is cofibrant, thus pointwise cofibrant (see
Proposition 11.6.3 of [30]). Since Y.k/ is a perfect object by assumption, we
can choose a more convenient simplicial resolution of Y.k/ ˝ Acf in C given by
HomC.Y.k/

_; .Acf/�
�

/, where .Acf/�
� is a simplicial frame on Acf . The proof that

this forms indeed a simplicial resolution is postponed to Lemma 5.15. We have

MapT - Alg.T .Xi /; Y ˝e A
cf/ Š

Z
k2ob.I /

MorC.Xi .k/;HomC.Y.k/
_; .Acf/�

�

//

Š

Z
k2ob.I /

MorC.Xi .k/˝L Y.k/_; .Acf/�
�

/

Š

Z
k2ob.I /

MorComm.C/.Com.Xi .k/˝L Y.k/_/; .Acf/�
�

/

D

Z
k2ob.I /

MapComm.C/.Com.Xi .k/˝L Y.k/_/; Acf/

D

hZ
k2ob.I /

MapComm.C/.Com.Xi .k/˝L Y.k/_/; Acf/

where Com.�/ is the free commutative monoid in C and
R h stands for the homotopy

limit. The free functor preserves cofibrant objects, so Com.Xi .k/˝L Y.k/_/ is a
cofibrant algebra. This implies that the homotopy mapping spaces

MapComm.C/.Com.Xi .k/˝L Y.k/_/; Acf/

are Kan complexes. The last line follows from Lemma 5.16. We conclude by
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observing that the functor

A 7! MapComm.C/.Com.Xi .k/˝L Y.k/_/; Acf/

is nothing but RSpec
Com.Xi .k/˝LY.k/_/

.

Here is the series of lemmas needed in the proof of Theorem 5.14:
Lemma 5.15. Let A be a cofibrant perfect object of C and B be any fibrant object.
Let B�� be a simplicial frame on B (thus a simplicial resolution of B). Then
HomC.A

_; B�
�

/ is a simplicial resolution of A˝ B .

Proof. The functor HomC.A
_;�/ W C ! C preserves limits, fibrations between

fibrant objects and weak equivalences between fibrant objects. This is due to the
fact that it is a right adjoint to A_ ˝ �, which is a left Quillen functor since A_ is
cofibrant (recall that A is cofibrant, hence A_ D HomC.A;R1C/ is cofibrant too)
and C satisfies the pushout-product axiom. Applying this functor pointwise defines
a functor between simplicial objects HomC.A

_;�/ W C�op
! C�op , which preserves

limits (limits of diagrams are built pointwise), weak equivalences between pointwise
fibrant objects (weak equivalences of diagrams are pointwise weak equivalences),
and pointwise fibrations between pointwise fibrant objects.

Recall that the simplicial resolution B�� is a fibrant replacement in the Reedy
model structure of C�op , that is, we have a factorization

cs�B
�
! B�

� � cs� �

where cs�.�/ is the constant simplicial object, � the terminal object of C, the first
arrow is a weak equivalence and the second a Reedy fibration. Let f W X� � Y�
be any Reedy fibration of C�op between two Reedy fibrant objects. This gives a
simplicial map

HomC.A
_; X�/! HomC.A

_; Y�/:

Recall that f is a Reedy fibration if and only if the matching maps

Xr � Yr �MrY MrX

are fibrations of C, where M�.�/ is the matching space construction. The target is
given by a pullback

Yr �MrY MrX //

��

MrX

Mrf

��
Yr //MrY:

The fact that f is a Reedy fibration implies that each Mrf is a fibration (see
Proposition 15.3.11 of [30]). Fibrations are stable under pullbacks, so Yr �MrY
MrX ! Yr is also a fibration. The fact that Y� is Reedy fibrant implies that it is
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pointwise fibrant, that is, each Yr is fibrant. Consequently, Yr �MrY MrX is fibrant.
Since HomC.A

_;�/ preserves fibrations between fibrant objects, the map

HomC.A
_; Xr/ � HomC.A

_; Yr �MrY MrX/

is a fibration. The functor HomC.A
_;�/ also preserves limits so it commutes with

the matching space construction and we finally get, for every r � 0, a fibration

HomC.A
_; Xr/ � HomC.A

_; Yr/ �HomC.A_;MrY / HomC.A
_;MrX/:

This means that
HomC.A

_; X�/! HomC.A
_; Y�/:

is a Reedy fibration. Applying this property to the particular case of

cs�B
�
! B�

� � cs� �;

we obtain a factorization

cs�HomC.A
_; B/

�
! HomC.A

_; B�
�

/ � cs� �

where the second arrow is a Reedy fibration according to the argument above.
Since Reedy fibrant objects are in particular pointwise fibrant and HomC.A

_;�/

preserves weak equivalences between pointwise fibrant objects, the first arrow is a
weak equivalence. We proved that HomC.A

_; B�
�

/ gives a simplicial resolution of
HomC.A

_; B/.

Lemma 5.16. LetM be a cofibrantly generated model category, and let I be a small
category. We suppose thatMI is equippedwith the projectivemodel structure. LetX
be a cofibrant diagram and Y a diagram with values in fibrations between fibrant
objects. Then

MapCI .X; Y / D
hZ

i2ob.I /

MapC.X.i/; Y.i//:

Proof. Recall that MapCI .X; Y / D MorCI .X; Y �
�

/ can be defined by the coend

MapCI .X; Y / D
Z

i2ob.I /

MorC.X.i/; Y.i/�
�

/

D

Z
i2ob.I /

MapC.X.i/; Y.i//

where the second line holds because, as we already noticed in the proof of
Theorem 5.14, a simplicial resolution on a diagram induces a simplicial resolution
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on each of its objects. Any cofibrant diagram is pointwise cofibrant (see
Proposition 11.6.3 in [30]), and Y is pointwise fibrant, so the homotopy mapping
spaces MapC.X.i/; Y.i// are Kan complexes.

This end can be expressed as an equalizer in simplicial setsZ
i2ob.I /

MapC.X.i/; Y.i//!
Y

i2ob.I /

MapC.X.i/; Y.i// �d0
d1

Y
i!j2mor.I /

MapC.X.i/; Y.j //

where d0 is the product of precomposition maps .�/ ı X.u/; u W i ! j , and d1
is the product of the postcomposition maps Y.u/ ı .�/; u W i ! j . Since Y takes
values in fibrations between fibrant objects, and homotopy mapping spaces preserve
fibrations between fibrant targets, each postcomposition map Y.u/ı .�/ is a fibration
of Kan complexes. Since a product of Kan fibrations is still a Kan fibration, we obtain
that d1 is a fibration of Kan complexes. The equalizer of d0 and d1 is a pullback
of d1 along d0: this a pullback consisting of fibrant objects and one of the two maps
is a fibration, that is, a model for the homotopy pullback. Thus we get

MapCI .X; Y / D
hZ

i2ob.I /

MapC.X.i/; Y.i//

as expected.

Lemma 5.17. Let M be a model category, X a cofibrant object of M and Y any
fibrant object ofM. Let .�/�� and Q.�/

��

be two functorial simplicial frames inM.
Then MorM.X; Y �

�

/ and MorM.X; QY �
�

/ are naturally weakly equivalent.

Proof. Simplicial frames on fibrant objects are simplicial resolutions by Proposi-
tion 16.6.7 of [30]. Then one just applies Proposition 16.1.13 of [30] combined with
Corollary 16.5.5.(4) of [30].

Theorem 5.14 admits the following variation, whose proof is completely similar:
Theorem 5.18. Suppose that all the objects of C are cofibrant. LetX1 be a cofibrant
T -algebra with values in fibrant objects such that X1 � hocolimi T .Xi /, and Y be
a T -algebra with values in fibrations between fibrant dualizable objects of C. Then

Map.X1; Y / ' holimi

hZ
k2ob.I /

RSpec
Com.Xi .k/˝Y.k/_/

' Spec
hocolimi

R h
k2ob.I/ Com.Xi .k/˝Y.k/_/

:

In particular, Map.X1; Y / is a representable stack.
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This holds for instance when C D sSet is the category of simplicial sets. When
C D ChK, all the objects are fibrant and cofibrant so we just have to suppose that Y
take its values in dualizable cochain complexes, which are the bounded cochain
complexes of finite dimension in each degree.

5.3. Examples of monads. We work in the complicial algebraic geometry context
(see [69]). Indeed, we will need to dualize cochain complexes, thus to work in an
unbounded setting.

Examples of interests for us are the following: operads, 1
2
-props, dioperads,

properads and props. The results readily extends to their colored versions. Two
key features of those examples are the following. First, the base category is the
category of differential graded†-objects for operads, the category of dg†-biobjects
for the others. Secondly, the free functor can be expressed as a direct sum, over a
certain class of graphs, of tensor products representing indexation of those graphs by
operations. The adjunction between the free functor and the forgetful functor gives
rise to a monad on †-objects, respectively †-biobjects, whose algebras are operads,
respectively 1

2
-props, dioperads, properads and props.

Some care has to be taken concerning the transfer of model category structures.
The category of †-biobjects is a diagram category over cochain complexes, hence a
cofibrantly generated model category. Over a field of caracteristic zero, there is no
obstruction to transfer this cofibrantly generatedmodel category structure on operads,
1
2
-props, dioperads, properads and props. For those results we refer the reader to [3,

22,23] and the Appendix of [55]. Over a field of positive characteristic, obstructions
appear and one gets a cofibrantly generated semi-model structure. Moreover, one has
to consider a restricted class of objects, for instance properads and props with non
empty inputs or non empty outputs. See for instance [23].
Remark 5.19. In a general setting, replacing cochain complexes by a cofibrantly
generated symmetric monoidal model category C, there are conditions on C such that
operads, properads and props inherit a cofibrantly generated (semi-)model category
structure from †-biobjects. We refer the reader to [3, 22], and [23] for more details.

Now we are going to explain in details how it works with props. The method is
the same for all the aforementionned structures. Props can defined as algebras over
the monad U ıF corresponding to the adjunction

F W ChSK � P W U

between the free prop functor and the forgetful functor. The free prop functor admits
the following description. LetM be a dg †-biobject, then F.M/ is defined by

F.M/.m; n/ D
M

G2Gr.m;n/

0@ O
v2Vert.G/

M.j in.v/j; j out.v/j/

1A
Aut.G/
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where
� the set Gr.m; n/ is the set of directed graphs with m inputs, n outputs and no
directed cycles;

� the set Vert.G/ is the set of vertices of G;
� given a vertex v of G, the sets in.v/ and out.v/ are respectively the set of
inputs of v and the set of outputs of v;

� he notation .�/Aut.G/ stands for the coinvariants under the action of the
automorphism group of G.

Here the tensor product is the usual tensor product of cochain complexes. For any
cdga A, we denote by FA the free prop functor on †-biobjects in A-modules. It is
defined by the same formula, replacing the tensor product of cochain complexes by
the tensor product of A-modules. For any prop Q in ModA and any †-biobject M
in cochain complexes,we have

FA.M ˝e A/ D F.M/˝e A

by direct computation with the formula above. The fact that props are stable under
external tensor product with cdgas is actually already proved in Proposition 3.5.
Consequently, we define:
Definition 5.20. The moduli space functor ofQ-representations of P1 is given by

Map.P1;Q/ W CDGAK ! sSet

A 7!MorProp.ChK/.P1;Q˝e .�� ˝ A//:

By Theorem 5.18, this functor forms thus a representable stack if we suppose that
each Q.m; n/ is a dualizable complex. In particular, for Q D EndX this amounts
to suppose that X itself is a dualizable complex. We would like to present here
the explicit computation. Any homotopy mapping space with cofibrant source and
fibrant target is a Kan complex [30], so the moduli space functor actually takes values
in the subcategory of Kan complexes. Let A

�
! B be a weak equivalence of cdgas.

The tensor product of cochain complexes preserves quasi-isomorphisms, and weak
equivalences in CDGAK are defined by the forgetful functor, so the induced cdga
morphism �� ˝ A

�
! �� ˝ B is a weak equivalence of cdgas in each simplicial

dimension. The external tensor product Q ˝e .�� ˝ A/
�
! Q ˝e .�� ˝ B/

gives a componentwise quasi-isomorphism of componentwise fibrant dg props,
that is, a weak equivalence of fibrant dg props. Homotopy mapping spaces with
cofibrant source preserve weak equivalences between fibrant targets [30], hence a
weak equivalence of Kan complexes

Map.P1;Q/.A/
�
! Map.P1;Q/.B/:
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We have a well defined simplicial presheaf preserving weak equivalences, that is, a
prestack.

Morphisms of †-biobjects are collections of equivariant morphisms of cochain
complexes, that is, for every †-biobjectsM and N we have

MorChSK.M;N / D
Y
m;n

MorChK.M.m; n/;N.m; n//†m�†n

where .�/†m�†n is the set of invariants under the action of the product of symmetric
groups †m � †n. Now letM be a †-biobject and Q be a prop. For every cdga A,
we have

MorP.F.M/;Q˝e .A˝��//

D MorChSK.M;Q˝e .A˝��//

D

Y
m;n

MorChK.M.m; n/;Q.m; n/˝ A˝��/†m�†n

Š

Y
m;n

MorChK..M.m; n/˝Q.m; n/_/†m�†n ; A˝��/

Š

Y
m;n

MorCDGAK

�^
..M.m; n/˝Q.m; n/_/†m�†n/; A˝��

�
D

Y
m;n

MapCDGAK

�^
..M.m; n/˝Q.m; n/_/†m�†n/; A

�
D

hY
m;n

RSpecV
..M.m;n/˝Q.m;n/_/†m�†n /

.A/:

Thus for any cofibrant prop P1 ' hocolimi F.Mi /, we get

Map.P1;Q/ ' holimi

 
hY
m;n

RSpecV
..Mi .m;n/˝Q.m;n/

_/†m�†n /

!
' RSpec

C.P1;Q/

where

C.P1;Q/ D hocolimi

 Y
m;n

^
..Mi .m; n/˝Q.m; n/

_/†m�†n/

!
:

We deduce:
Corollary 5.21. For any cofibrant quasi-free prop P1 D .F.s�1C/; @/, the
simplicial Maurer–Cartan functor

MC�.g/ W CDGAK ! sSet
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associated to the dg complete L1-algebra g D Hom†.C;Q/ (see Section 2.2 for
the definition of a complete L1-algebra) and defined by

MC�.g/.A/ D MC�.g Ő .A˝��//

represents the same stack as Map.P1;Q/. In particular, the stack MC�.g/ is
represented by C.P1;Q/.

The isomorphism between MC�.Hom†.C;Q// and Map.P1;Q/ extends to
an isomorphism between MC�.Hom†.C;Q/ Ő A/ and Map.P1;Q ˝e A/ which
is natural in A, hence defining an isomorphism of simplicial presheaves. Every
simplicial presheaf isomorphic to a stack is a stack. Let us note that we already knew
from the results of [76] that the simplicial Maurer–Cartan functor forms a prestack
(it preserves quasi-isomorphisms of cdgas).
Remark 5.22. Algebraic structures with scalar products and traces needmore general
classes of graphs, which allows loops and wheels: cyclic operads, modular operads,
wheeled operads, wheeled properads, wheeled props. Cyclic operads have been
introduced in [25], modular operads in [26]. Wheeled operads and props have been
studied in [50]. The usual transfer of model structure from †-biobjects does not
apply in these cases. However, this difficulty has been recently got around in [2] via
the formalism of polynomial monads. More precisely, the authors proved a transfer of
model category structure for algebras over a tame polynomialmonad in any compactly
generated monoidal model category satisfying the monoid axiom. For polynomial
monads which are not tame, one can get a model structure by imposing restrictions on
the base category. For instance, when working in cochain complexes over a field of
characteristic zero, algebras over any polynomial monad possess a transferred model
structure. This covers operads, cyclic operads, modular operads, 1

2
-props, dioperads,

properads, props, wheeled operads, wheeled properads, wheeled props.

5.4. The derived stack structure in the non-affine case. In the derived algebraic
geometry context, the derived stack Map.P1;Q/ is not affine anymore wether the
Q.m; n/ are not finite dimensional vector spaces. However, we would like such a
stack to be geometric under the appropriate assumptions for Q. A way to do this is
to resolve it by a derived Artin n-hypergroupoid and apply the main result of [61],
which states an equivalence of 1-categories between n-geometric derived Artin
stacks and derived Artin n-hypergroupoids. A derived Artin n-hypergroupoid is a
smooth n-hypergroupoid object in the category of affine derived schemes. Precisely,
it is a Reedy fibrant simplicial objectX� in the category Aff of derived affine schemes
such that the partial matching maps

HomsSet.�
m; X/! HomsSet.ƒ

m
k ; X/

are smooth surjections for all integers k, m, and weak equivalences for all k and
m > n.
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Now let P1 D .F.s�1C/; @/ be a cofibrant quasi-free prop in non-positively
graded cochain complexes, and Q be a prop such that for every integers m, n, the
Q.m; n/ are perfect complexes with a given finite amplitude. Then, by definition
of the degree in the external hom Hom†.C;Q/, the dg complete L1-algebra g D
Hom†.C;Q/ is bounded below by a certain integer�n. We know that the simplicial
presheaves MC.g/ and Map.P1;Q/ are isomorphic. Moreover, according to the
results of Getzler [24] and Berglund [5], the natural inclusion of Kan complexes
�.g/ ,! MC�.g/ (where �.g/ is the nerve of g in the sense of Getzler) is a weak
equivalence, hence giving rise to a weak equivalence of simplicial presheaves


�
.g/

�
,! MC�.g/ Š Map.P1;Q/

where 
�
.g/.A/ D �.g Ő A/ for any cdga A. According to [24], the fact that g is

concentrated in degrees Œ�nIC1Œ implies that its nerve �.g/ is an n-hypergroupoid
in the sense of Duskin (which implies to be an n-hypergroupoid in the weaker sense
described above). So we expect the left-hand term of the weak equivalence above to
give rise, under appropriate changes, to a derived Artin n-hypergroupoid resolving
Map.P1;Q/.

6. Examples

In order to clarify our explanations, wewill use the presentation of props by generators
and relations. Since there is a free prop functor as well as a notion of ideal in a prop,
such a presentation has a meaning and always exists.

6.1. Homotopy Frobenius bialgebras and Poincaré Duality.

Definition 6.1. A (differential graded) Frobenius algebra is a unitary dg commutative
associative algebra of finite dimensionA endowed with a symmetric non-degenerated
bilinear form < :; : >W A˝ A ! K which is invariant with respect to the product,
i.e. < xy; z >D< x; yz >.

A topological instance of such kind of algebra is the cohomology ring (over a
field) of a Poincaré duality space. There is also a notion of Frobenius bialgebra:

Definition 6.2. A differential graded Frobenius bialgebra of degree m is a triple
.B; �;�/ such that:

(i) .B; �/ is a dg commutative associative algebra;

(ii) .B;�/ is a dg cocommutative coassociative coalgebra with deg.�/ D m;
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(iii) the map� W B ! B˝B is a morphism of leftB-module and rightB-module,
i.e. in Sweedler’s notationsX

.x:y/

.x:y/.1/ ˝ .x:y/.2/ D
X
.y/

x:y.1/ ˝ y.2/

D

X
.x/

.1/
mjxjx.1/ ˝ x.2/:y :

This is called the Frobenius relation.
We will describe the properad encoding such bialgebras in the next section. The

two definitions are strongly related. Indeed, if A is a Frobenius algebra, then the
pairing < :; : > induces an isomorphism of A-modules A Š A�, hence a map

� W A
Š
! A�

��

! .A˝ A/� Š A� ˝ A� Š A˝ A

which equips A with a structure of Frobenius bialgebra. Conversely, one can prove
that every unitary counitary Frobenius bialgebra gives rise to a Frobenius algebra,
which are finally two equivalent notions.

The properad Frobm of Frobenius bialgebras of degree m is generated by

where the generating operation of arity .1; 2/ is of degree m, and the two generators
are invariant under the action of †2. It is quotiented by the ideal generated by the
following relations:

Associativity and coassociativity

� �

Frobenius relations

� �

In the unitary and counitary case, one adds a generator for the unit, a generator for the
counit and the necessary compatibility relations with the product and the coproduct.
We note the corresponding properad ucFrobm. We refer the reader to [34] for a
detailed survey about the role of these operations and relations in the classification
of two-dimensional topological quantum field theories.
Example 6.3. Let M be an oriented connected closed manifold of dimension n.
Let ŒM � 2 Hn.M IK/ Š H 0.M IK/ Š K be the fundamental class of ŒM �. Then
the cohomology ring H�.M IK/ of M inherits a structure of commutative and
cocommutative Frobenius bialgebra of degree n with the following data:
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(i) the product is the cup product

� W H kM ˝H lM ! H kClM

x ˝ y 7! x [ y

(ii) the unit � W K! H 0M Š HnM sends 1K on the fundamental class ŒM �;
(iii) the non-degenerate pairing is given by the Poincaré duality:

ˇ W H kM ˝Hn�kM ! K
x ˝ y 7!< x [ y; ŒM � >

i.e. the evaluation of the cup product on the fundamental class;
(iv) the coproduct � D .�˝ id/ ı .id˝/ where

 W K!
M
kClDn

H kM ˝H lM

is the dual copairing of ˇ, which exists since ˇ is non-degenerate;
(v) the counit � D< :; ŒM � >W HnM ! K i.e. the evaluation on the fundamental

class.

An important problem in the study of the Poincaré duality phenomenon is to
understand what happens at the cochain level, where there is a family of finer
operations gathered into the structure of a Frobenius bialgebra up to homotopy, i.e.
algebras over a resolution ucFrobn1 of ucFrobn. These operations induce the Poincaré
duality at the cohomology level. The properads Frob and ucFrob are proved to be
Koszul respectively by Corollary 2.10.1 and Theorem 2.10.2 in [9], hence there are
explicit resolutions. We thus get a moduli stack of “cochain-level Poincaré duality”
ucFrobn1fC �M g on an n-dimensional compact oriented manifoldM . To conclude,
let us note that a variant of Frobenius bialgebras called special Frobenius bialgebra
is closely related to open-closed topological field theories [38] and conformal field
theories [20].

6.2. Homotopy involutive Lie bialgebras in string topology. Lie bialgebras
originate from mathematical physics. In the study of certain dynamical systems
whose phase spaces form Poisson manifolds, certain transformation groups acting on
these phase spaces are not only Lie groups but Poisson–Lie groups. A Poisson–Lie
group is a Poisson manifold with a Lie group structure such that the group operations
are morphisms of Poisson manifolds, that is, compatible with the Poisson bracket
on the ring of smooth functions. The tangent space at the neutral element is then
more than a Lie algebra. It inherits a “cobracket” from the Poisson bracket on
smooth functions which satisfies some compatibility relation with the Lie bracket.
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Lie bialgebras are used to build quantum groups and appeared for the first time in the
seminal work of Drinfeld [12]. We will come back to this quantization process later
in 5.6.

The properad BiLie encoding Lie bialgebras is generated by

1 2

1 2

where the two generators comes with the signature action of †2, that is, they are
antisymmetric. It is quotiented by the ideal generated by the following relations

Jacobi
1 2 3C 3 1 2C 2 3 1

co-Jacobi

1 2 3

C

3 1 2

C

2 3 1

The cocycle relation

1 2

1 2

� 1 2

1 2

C 2 1

1 2

� 1 2

1 2

C 2 1

1 2

The cocycle relation means that the coLie cobracket of a Lie bialgebra g is a cocycle
in the Chevalley–Eilenberg complex C �CE .g;ƒ

2g/, where ƒ2g is equipped with the
structure of g-module induced by the adjoint action.

Involutive Lie bialgebras appeared a few years after the birth of string
topology [10] in [11]. In the properad of involutive Lie bialgebras BiLie˘, one
adds the involutivity relation

The string homology of a smooth manifoldM is defined as the (reduced) equivariant
homology of the free loop spaceLM ofM , notedHS1

� .LM/. The word equivariant
refers here to the action of the circle on loops by reparameterization. According
to [11], the string homology of a smooth manifold forms an involutive Lie bialgebra.
Let us note that for an n-dimensional manifold, the bracket and the cobracket of
this structure are of degree 2 � n. We denote this graded version by BiLie˘;2�n. It
is conjectured in [11] that such a structure is induced in homology by a family of
string operations defined at the chain level, on the complex of S1-equivariant chains
C S

1

� .LM/. Such operations should then form a structure of involutive Lie bialgebra
up to homotopy, that is, a BiLie˘;2�n1 -algebra structure on C S1� .LM/. If the moduli
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space BiLie˘;2�n1 fC S
1

� .LM/g is not empty, then we get a moduli stack of chain-
level string operations onM . Moreover, the properad of involutive Lie bialgebras is
Koszul by Theorem 2.8 of [9], with the properad of Frobenius bialgebras as Koszul
dual, hence a small explicit model for BiLie˘;2�n1 .

6.3. Geometric structures on gradedmanifolds. The category of formalZ-graded
pointed manifolds is the category opposite to the category whose objects are
isomorphism classes of completed finitely generated free graded commutative
algebras equipped with the adic topology. The morphisms are isomorphisms classes
of continuous morphisms of topological commutative algebras. The choice of a
representant in a given class is a choice of a local coordinates system. Conversely,
given a graded vector space V , there is an associated pointed formal graded
manifold V whose structure sheaf OV (actually just a skyscraper with a single stalk
over the distinguished point) is isomorphic to OS.V �/ (the completed symmetric
algebra on the dual of V ). The choice of such an isomorphism is a choice of local
coordinates system, and if fv˛g˛2I is a basis of V , then the structure sheaf can be
identified with the commutative ring of formal power series KŒŒv˛� ��. The tangent
sheaf is the OV -module of derivations TV D Der.OV/ and the sheaf of polyvector
fields is the exterior algebra ƒ�TV .

Important examples of graded manifolds concentrated in degree 0 are the Rd ,
for any integer d . A famous sort of geometric structure is the notion of Poisson
manifold. A finite dimensional Poisson manifoldM is a finite dimensional manifold
equipped with a Poisson structure on its algebra of smooth functions C1.M/. In the
caseM D Rd , there are several possible Poisson brackets, all of the form

ff; gg D

dX
i;jD1

�ij .x/
@f

@xi

@g

@xj

where the �ij are smooth functions satisfying the required relations to get a Poisson
bracket. Let us define formal variables i D @

@xi
of degree 1, then the graded algebra

of polyvector fields on Rd is defined by

Tpoly.Rd / D C1.Rd /ŒŒ 1; : : : ;  d �� � RŒŒx1; : : : ; xd ;  1; : : : ;  d ��

where the xi are degree 0 variables forming a basis of Rd . This graded space is
equipped with a Gerstenhaber bracket of degree �1, the Schouten bracket, induced
by the formulae Œxi ; xj � D 0, Œ i ;  j � D 0 and Œxi ;  j � D ı

j
i (where ıji is the

Kronecker symbol).
The idea of presenting (formal germs of) geometric structures as algebras over

a prop appeared in [51]. For this, the author introduce Lie n-bialgebras, a variant
of Lie bialgebras for which the Lie bracket is in degree n. Such bialgebras are
parameterized by a properad BiLien which is Koszul, hence an explicit resolution.
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In the case n D 1, this resolution BiLie11 is detailed in [51] and the main result is
the following:
Theorem 6.4 (See [53, Proposition 3.4.1 and Corollary 3.4.2]). (1) TheBiLie11-

algebra structures on a graded vector space V are in bijection with degree 1
elements of the graded Lie algebra of polyvector fields ƒ�TV vanishing at 0
and such that Œ�; �� D 0 (that is, Poisson structures on the formal graded
manifold corresponding to V );

(2) Consequently, the BiLie11-algebra structures on Rd are in bijection with
Poisson structures on Rd vanishing at 0.

Let us note that this result actually encompass all Poisson structures, because
any Poisson structure on V not vanishing at 0 corresponds to a Poisson structure on
V ˚K vanishing at 0. We get a moduli stack of Poisson structures on a formal graded
manifold BiLie11fV g.

6.4. Deformation quantization of graded Poisson manifolds. Let M be a finite
dimensional Poisson manifold. In this situation, one considers the complex of
polydifferential operators Dpoly.M/, which is a sub-Lie algebra of the Hochschild
complex CH�.C1.M/; C1.M//, and the complex of polyvector fields

Tpoly.M/ D

0@M
k�0

k̂

�T .M/Œ�k�

1A Œ1�
where �T .M/ is the space of sections of the tangent bundle on M . To define a
Poisson structure on M is equivalent to define a bivector … 2

V2
�T .M/, the

Poisson bivector, and set ff; gg D ….df; dg/.
We recall the fundamental formality theorem of Kontsevich [36]:

Theorem 6.5 (Kontsevich [36]). There exists a L1-quasi-isomorphism

Tpoly.M/
�
! Dpoly.M/

realizing in particular the isomorphism of the Hochschild–Kostant–Rosenberg
theorem.

Note that a L1-quasi-isomorphism of dg Lie algebras is actually equivalent to a
chain of quasi-isomorphisms of dg Lie algebras. Quantization of Poisson manifolds
is then obtained as a consequence of this formality theorem combined with the
following result:
Theorem 6.6. A L1-quasi-isomorphism of nilpotent dg Lie algebras induces a
bijection between the corresponding moduli sets of Maurer–Cartan elements.

For a graded Lie algebra g, we note gŒŒ„��C D
L
„gnŒŒ„��. The Maurer–Cartan

set MC.Tpoly.M/ŒŒ„��C/ is the set of Poisson algebra structures on C1.M/ŒŒ„��.
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The Maurer–Cartan set MC.Dpoly.M/ŒŒ„��C/ is the set of �„-products, which are
assocative products on C1.M/ŒŒ„�� of the form a:b C B1.a; b/t C � � � (i.e. these
products restrict to the usual commutative associative product on C1.M/). The
conclusion follows:

MC.Tpoly.M/ŒŒ„��C/ ŠMC.Dpoly.M/ŒŒ„��C/;

that is isomorphism classes of Poisson structures on M are in bijection with
equivalence classes of �„-products.

An important example of Poissonmanifold isM D Rd . Poisson structures onRd
are precisely the Maurer–Cartan elements of the Schouten Lie algebra of polyvector
fields Tpoly.Rd /Œ1�. Moreover, the Lie group Diff.Rd / of diffeomorphisms of Rd is
the gauge group of this Lie algebra (and thus acts canonically on Poisson structures).
Kontsevich built explicit star products quantizing these Poisson structures, with
formulae involving integrals on compactification of configuration spaces and deeply
related to the theory of multi-zeta functions [36].

According to [53] and [56], one can see Kontsevich deformation quantizations,
and more generally deformation quantization of Poisson structures on formal graded
manifolds, as morphisms of dg props

DefQ!3BiLie1;	1 :

The prop DefQ is built such that the DefQ-algebra structures on a finite dimensional
graded vector space V correspond to the Maurer–Cartan elements of the dg Lie
algebra Dpoly.V / of polydifferential operators on OV (the structure sheaf of the
formal graded manifold associated to V ). The prop BiLie1;	1 is actually a wheeled
prop, that is, a generalization of the notion of prop for which one allows graphs with
loops and wheels. We refer the reader to [50] for more details. It is a wheeled
extension of the prop BiLie11 encoding Poisson structures. The prop 3BiLie1;	1
appearing as the target of the morphism above is the completion of BiLie11 with
respect to the filtration by the number of vertices. To define a composite

DefQ!3BiLie1;	1 ! EndV

amounts then to consider a Maurer–Cartan element of Dpoly.V /ŒŒh�� associated to
a Poisson structure on the formal graded manifold corresponding to V , that is,
a deformation quantization of this Poisson structure. Let us note that a generic
BiLie1;	1 -algebra structure on V corresponds actually to a more general notion of
wheeled Poisson structure, whose geometric meaning is not fully understood yet.
Usual Poisson structures are special cases of such algebras.
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6.5. Quantization functors.

6.5.1. A candidate for the moduli stack of quantization functors. The prop
approach to a general theory of quantization functors has been set up in [16]. Certain
quantization problems can be formalized in the following way. Consider a “classical”
category Cclass D Pclass-Alg of algebras over a prop Pclass and a “quantum” category
Cquant D Pquant -Alg of algebras over a propPquant. Algebras are defined inK-modules
on the classical side and KŒŒ„��-modules on the quantum side, where „ is a formal
parameter. The quantization problem is then to find a right inverseQ W Cclass ! Cquant
for a given “semi-classical limit” functor SC W Cquant ! Cclass. A classical example
of such a situation is the quantization of Lie bialgebras [17].

The functors SC and Q can be induced by props morphisms SC W Pclass !

Pquant=.„/ and Q W Pquant ! PclassŒŒ„�� satisfying .Q mod „/ ı SC D IdPclass .
The morphismQ is called a quantization morphism. If you suppose SC surjective,
then SC and Q mod „ are isomorphisms, and Q becomes an isomorphism too
by Hensel’s lemma. This implies an equivalence of categories between Cquant and
CclassŒŒ„�� called a dequantization result. The set of quantization morphisms forms a
torsor for the subgroups of props automorphisms in Aut.Pquant/ and Aut.PclassŒŒ„��/

reducing to the identity modulo „.
Since such props are not cofibrant, we do not get a well behaved moduli

space just by taking the simplicial set of maps Map.Pquant; PclassŒŒ„��/. Instead of
props isomorphisms, we consider isomorphisms between a cofibrant replacement
of the source and a fibrant replacement of the target in the homotopy category
of props. This incarnates in our particular situation a general principle inspired
by Kontsevich’s derived geometry program, aiming to work out singularities of
moduli spaces by passing to the derived category. More precisely, we work with a
cofibrant resolution .Pclass/1. Our homotopy quantization problem is the data of two
morphisms SC W Pclass ! .Pquant/1=.„/ andQ W .Pquant/1 ! PclassŒŒ„�� satisfying
.Q mod „/ıSC � IdPclass and .SC ŒŒ„��ıQ � Id.Pquant/1 . So the set of homotopy
classes of quantizationmorphisms is a subset of the set�0Map..Pquant/1; PclassŒŒ„��/,
on which act the groups �0 haut..Pquant/1/ and �0 haut.PclassŒŒ„��/.

6.5.2. The case of Lie bialgebras. In the special case of Lie bialgebras and
homotopy Lie bialgebras, another point of view is the prop profile approach of [52].
We recall the main result of [52]. Merkulov constructed a quasi-free prop, the dg prop
of quantum homotopy bialgebra structures DefQ. Let us note BiLie the prop encoding
Lie bialgebras and 1BiLie its completion with respect to the filtration by the number of
vertices. Let � W BiLie1 ! BiLie be the minimal model of BiLie. Merkulov proved
in [52] that there exists a quantization morphism of dg props F W DefQ ! 2BiLie1
such that the composite

DefQ
F
! 2BiLie1 O�

!1BiLie
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is the quantization morphism of Etingof and Kazhdan [18]. When working over
a field of characteristic zero, the prop DefQ is already cofibrant and there is no
need to take a resolution of it. Another advantage of this approach is that we can
stay in K-modules instead of working with KŒŒ„��-modules. The moduli stack of
quantization functors of Lie bialgebras is then the one associated to the mapping
space DefQfBiLieg.

Remark 6.7. The Grothendieck–Teichmüller group encodes geometric actions of
the Galois groups on curves, and are aimed to understand Galois groups through
these actions. It is a subgroup of the group of Lie formal series in two variables
satisfying certain relations, that is, a subgroup of the profinite completion of the etale
fundamental group of the projective line minus three points, in which the absolute
Galois group of Q embeds. In [35], Kontsevich pointed out that a prounipotent
version of the Grothendieck–Teichmüller group defined by Drinfeld in [13] should be
in some sense a universal group encoding the different deformation quantizations of
a Poisson algebra. Tamarkin’s approach of the Deligne conjecture [67] via formality
morphisms of the little disks operad, as well as the quantization of Lie bialgebra
by Etingof and Kazhdan [17], rely on Drinfeld’s theory of associators [13]. The
prounipotent Grothendieck–Teichmüller group GT acts in a non trivial way on these
quantizations which is not fully understood yet.

6.6. Homotopy operads. Operads can be seen as algebras over an N-colored non-
symmetric operad Ouniv described in Example 1.5.6 of [4]. More generally, for
any set C , the category of C -colored operads is a category of algebras over a
certain colored non-symmetric operad. This construction works in any symmetric
monoidal category. The category of cochain complexes satisfies the assumptions
of Theorem 2.1 of [3] and admits a coalgebra interval, which is given by the
normalization of the standard 1-simplex, hence a model category structure on the
category of dg N-colored operads. We thus define a meaningful notion of homotopy
dg operad as an algebra over a cofibrant resolution Ouniv

1 of Ouniv in the category
of N-indexed collections of cochain complexes. Such a resolution is provided for
instance by the Boardman–Vogt style resolution of [4]. There is a variant of Ouniv

encoding non-symmetric dg operads, for which a smaller resolution exists via the
Koszul duality for colored operads developed in [72].

Deformation theory of operads can then be studied via the moduli stack of
homotopy operad structures, its tangent complexes and obstruction theory.

7. Tangent complexes, higher automorphisms and obstruction theory

7.1. Tangent and cotangent complexes. Recall that we work in the complicial
algebraic geometry context, whose base category is the category of unbounded
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cochain complexes. We refer the reader to Chapter 1.2 of [69] for a more general
treatment of these notions in a given HAG context.

LetF be a stack,A a cdga andM aA-module. Let us fix aA-pointx W RSpec
A
!F .

One defines a derivation space

D erF .RSpecA;M/ D MapRSpec
A
=St.RSpecA˚M ; F /

where RSpec
A
=St is the model category of stacks under RSpec

A
and A˚M is the

square-zero extension ofA byM . The cotangent complex LF;x of F at x, if it exists,
satisfies

D erF .RSpecA;M/ ' MapA-Mod.LF;x;M/

where A-Mod is the category of differential graded A-modules with the model
structure induced by the adjunction between the free A-module functor and the
forgetful functor (see [65]). The cotangent complex is well defined only up to quasi-
isomorphism, so one usually considers it as an object in the homotopy category of
A-modules Ho.A-Mod/. The tangent complex is then the dual A-module

TF;x D HomA.LF;x; A/ 2 Ho.A-Mod/

where HomA is the internal hom of A-modules.

Proposition 7.1. Let A be a cdga, M a A-module, F a stack with a A-point
RSpec

A
! F . Let us suppose that either the cotangent complex of F at this point is

dualizable, orM is a dualizable A-module. Then there are group isomorphisms

��D erF .RSpecA;M/ Š H��.TF;x ˝AM/:

Proof. The Dold–Kan correspondence between non-positively graded cochain
complexes and simplicial modules induces a Quillen equivalence between sim-
plicial A-modules (simplicial objects in A-modules) and non-positively graded
dg A-modules. The mapping space MapA-Mod.M;N / of dg A-modules forms a
simplicial A-module whose normalization N�MapA-Mod.M;N / can be identified,
via the aforementioned equivalence, with the smooth truncation ��0HomA.M;N /
of the internal hom of dg A-modules with reverse grading defined by

��0HomA.M;N /
�
D

8̂<̂
:
HomA.M;N /�; if � > 0;
HomA.M;N /=Im.ı/ if *=0
0; if � < 0:

where ı is the differential of HomA.M;N /. This kind of truncation does not change
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the cohomology for � D 0. Consequently

��D erF .RSpecA;M/ Š ��MapA-Mod.LF;x;M/

Š H�N�MapA-Mod.LF;x;M/

Š H���0HomA.LF;x;M/

Š H�HomA.LF;x;M/

Š H��.TF;x ˝AM/:

The third line is a consequence of the aforementioned Dold–Kan correspondence.
The fourth line holds because � is non negative. The last line follows from the
definition of the tangent complex as the dual of the cotangent complex inside dg
A-modules, and from the adjunction relation between the internal hom and the tensor
product.

In the sequel we work with representable stacks, which all admit a cotangent
complex and an obstruction theory. The cotangent complex of the derived spectrum
of a given cdga coincides with the usual notion of cotangent complex of this cdga. We
actually only need the usual notions of derivations, square-zero extensions, tangent
and cotangent complexes in the category of commutative differential graded algebras
CDGAK. Moreover, the modules we will use for obstruction theory are dualizable,
so that Proposition 7.1 applies.

7.2. Tangent complexes and higher automorphisms. First, since homotopy
classes of stack morphisms between RSpec

A
and RSpec

C.P1;Q/
are in bijection

with ŒC; A�CDGAK , to fix a A-point of RSpec
C.P1;Q/

is equivalent to fix a cdga
morphism x W C.P1;Q/! A.

Now let us fix a prop morphism ' W P1 ! Q. It gives a morphism of props
in A-modules ' ˝e idA W P1 ˝e idA ! Q ˝e idA, which fixes in turn a dg prop
morphism Œx 7! '.x/˝e 1A� W P1 ! Q˝e A. This is a vertex in the Kan complex
Map.P1;Q/.A/, and we know that

Map.P1;Q/.A/ ' RSpec
C.P1;Q/

.A/;

which implies

ŒP1;Q˝e A�Ho.Prop/ Š ŒC.P1;Q/; A�CDGAK :

This bijection sends the homotopy class of Œx 7! '.x/˝e 1A� to a homotopy class of
cgdas morphisms from which we pick up aA-point x' W RSpecA ! RSpec

C.P1;Q/
.

We then state the main theorem of this section:
Theorem 7.2. LetA be a perfect cdga (a cdga which is perfect as a cochain complex)
and n be a natural integer.
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(1) We have isomorphisms

��D erMap.P1;Q/.RSpecA; AŒn�/ Š H
���nC1.Hom†.C ;Q/' ˝ A/

for every natural integer � such that � C n � 1.

(2) We have isomorphisms

H��.TMap.P1;Q/;x' / Š H
��C1.Hom†.C ;Q/' ˝ A/

for every � � 1.

To prove this theorem, we need the following preliminary results:
Lemma 7.3. Let F W C � G W G be a Quillen adjunction (respectively a Quillen
equivalence). Then for every object C of C, the induced adjunction between the
comma categories

F W C=C � F.C/=D W G

is also a Quillen adjunction (respectively a Quillen equivalence).

Corollary 7.4. (1) The geometric realization functor and the singular complex
functor induce a Quillen equivalence

j � j W sSet� � Top� W Sing�.�/

between pointed topological spaces and pointed simplicial sets.

(2) Sullivan’s realization functor and functor of piecewise linear forms [66] induce
a Quillen adjunction

APL W sSet� � .CDGAaug
K /op W< � >

between pointed simplicial sets and the opposite category of augmented
commutative differential graded algebras.

Proof. (1) The geometric realization sends the standard 0-simplex to the point.
(2) In rational homotopy theory, there is a Quillen adjunction

APL W sSet � CDGAop
K W< � >

(see Section 8 of [8]). The functor APL sends the standard 0-simplex to the base
field K, so we get a Quillen adjunction

APL W sSet� � CDGAop
K =K W< � > :

The right-side category is nothing but the opposite category of the category of
augmented cdgas.
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Using (1) we get:
Lemma 7.5. For every pointed simplicial setK and every integer n, the topological
spaces jMapsSet�.@�

nC1; K/j and �njKj (the iterated loop space of the pointed
topological space jKj) have the same homotopy type.

Proof. We have

MapsSet�.@�
nC1; K/ ' MapsSet�.@�

nC1;Sing�.jKj//
' MapTop�.j@�

nC1
j; jKj/

' MapTop�.S
n; jKj/

hence
jMapsSet�.@�

nC1; K/j ' jMapTop�.S
n; jKj/j � �njKj:

Using (2) we get:
Proposition 7.6. Let A be a perfect cdga and x W C ! A be a cdga over A. For
every integer n there is a homotopy equivalence

�nxjMapCDGAK.C;A/j ' jMapCDGAK =A.C;A˚ AŒn�/j

where A˚ AŒn� is the square-zero extension of A by the A-module AŒn�.

Proof. We have

�nxjMapCDGAK.C;A/j ' jMapsSet�.@�
nC1; .MapCDGAK.C;A/; x//j

and
MapCDGAK.C;A/ ' MapCDGAK.C ˝ A

_;K/
D< C ˝ A_ >

since we assume A to be perfect. Moreover, the cdga C ˝ A_ is endowed with an
augmentation C ˝ A_ ! K induced by the base point x W C ! A. We deduce

MapsSet�.@�
nC1; .MapCDGAK.C;A/; x// ' MapsSet�.@�

nC1; < C ˝ A_ >/

Š MapCDGAaug
K
.C ˝ A_; APL.@�

nC1//:

The space @�nC1 is formal (see Definition 2.85 in [19]), so there is a zigzag of
quasi-isomorphisms of cdgas

APL.@�
nC1/

�
 M@�nC1

�
! H�.j@�nC1j;K/

where M@�nC1 is the minimal model of @�nC1, that is, the minimal model of
APL.@�

nC1/ in CDGAK (see Definition 2.30 in [19]). Alternatively, one could use
that the manifold Sn is formal, and then that the homotopy equivalence between
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j@�nC1j and Sn induces a homotopy equivalence of cdgas betweenAPL.@�
nC1/ and

APL.S
n/. Hence we get

MapsSet�.@�
nC1; .MapCDGAK.C;A/; x// � MapCDGAaug

K
.C ˝ A_;H�Sn/:

The fact that A is perfect implies an adjunction

�˝ A_ W CDGAK =A � CDGAaug
K W � ˝ A:

Weak equivalences and fibrations of augmented cdgas are quasi-isomorphisms and
surjections at the level of cochain complexes, and the dg tensor product preserves
such kind of maps so � ˝ A is a right Quillen functor. Thus we have a Quillen
adjunction .�˝ A_;�˝ A/ and natural isomorphisms of simplicial sets

MapCDGAaug
K
.C ˝ A_;H�Sn/ Š MapCDGAK =A.C;H

�Sn ˝ A/:

Finally let us observe that H�Sn D KŒt �=.t2/ with jt j D n, hence H�Sn ˝ A D
A˚ AŒn� is the square-zero extension of A by AŒn�.

Proof of Theorem 7.2. (1) We use the previous results to get the following sequence
of isomorphisms:

��D erMap.P1;Q/.RSpecA; AŒn�/ D ��MapRSpec
A
=St.RSpecA˚AŒn�;Map.P1;Q//

Š ��MapRSpec
A
=St.RSpecA˚AŒn�;RSpecC.P1;Q//

Š ��MapCDGAK =A.C.P1;Q/; A˚ AŒn�/

Š ���
n
x'
jMapCDGAK.C.P1;Q/; A/j

Š ��Cn.MapCDGAK.C.P1;Q/; A/; x'/

Š ��Cn.Map.P1;Q/.A/; ' ˝e idA/

Š H���nC1Hom†.C ;Q˝e A/'˝eidA

Š H���nC1.Hom†.C ;Q/' ˝ A/:

(2) We have

��D er.RSpec
A
; AŒn�/ Š H��.TMap.P1;Q/;x' ˝A AŒn�/

Š H��Cn.TMap.P1;Q/;x' /

hence

H��.TMap.P1;Q/;x' / Š H
��C1.Hom†.C ;Q/' ˝ A/

for n D 0 and � � 1.
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7.3. Obstruction theory. For every integer n, there is a homotopy pullback

KŒt �=.tnC1/ //

��

KŒt �=.tn/

��
K // K˚KŒ1�

inducing a fiber sequence of pointed simplicial sets

MapRSpec
A
=St.RSpecKŒt�=.tnC1/;Map.X1; Y //

! MapRSpec
A
=St.RSpecKŒt�=.tn/;Map.X1; Y //

! MapRSpec
A
=St.RSpecK˚KŒ1�;Map.X1; Y //

hence a long exact sequence

� � � ! �0MapRSpec
A
=St.RSpecKŒt�=.tnC1/;Map.X1; Y //

pn
! �0MapRSpec

A
=St.RSpecKŒt�=.tn/;Map.X1; Y //

! �0MapRSpec
A
=St.RSpecK˚KŒ1�;Map.X1; Y //

Š H 1.TMap.X1;Y /;x' /:

where the last isomorphism follows from Proposition 7.1. Consequently the first
cohomology group of the deformation complex is the obstruction group for formal
deformations:
Proposition 7.7. IfH 1.TMap.X1;Y /;x' / D 0 then for every integer n, the map pn is
surjective, that is, every deformation of order n lifts to a deformation of order nC 1.
Thus any infinitesimal deformation of ' can be extended to a formal deformation.

Unicity results for such lifts follows from Proposition 1.4.2.5 of [69]:
Proposition 7.8. Suppose that a given deformation of order n lifts to a deformation
of order n C 1. Then the set of such lifts forms a torsor under the action of the
cohomology group H 0.TMap.X1;Y /;x' /. In particular, if H 0.TMap.X1;Y /;x' / D 0

then such a lift is unique up to equivalence.

Remark 7.9. These results work as well for A-deformations, where A is a perfect
cdga.

7.4. Zariski open immersions. In classical algebraic geometry, Zariski open
immersions are open immersions for the Zariski topology on the category of affine
schemes Aff. A morphism of affine schemes SpecB ! SpecA is a Zariski open
immersion if the corresponding morphism of commutative algebras A! B is a flat
morphism of finite presentation such that B is canonically isomorphic to B ˝A B .
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Schemes are then defined as sheaves over Affop for the Zariski topology, that is, by
gluing affine schemes along Zariski open immersions. In derived algebraic geometry,
a morphism of simplicial algebrasA! B is a Zariski open immersion if the induced
map

Spec�0B ! Spec�0A

is a Zariski open immersion in the classical sense and the canonical map

��A˝�0A �0B ! ��B

is an isomorphism.
There is a general notion of Zariski open immersion for affine stacks in any HAG

context. However, an explicit description can be more difficult to obtain than in the
derived setting: this is what happens for instance in the complicial context, where
there is no simple description in terms of homotopy groups anymore. We refer the
reader to Chapter 1.2 of [69] for the definitions of finitely presented morphisms,
flat morphisms, epimorphisms, formal Zariski open immersions and Zariski open
immersions for monoids in a given HA context. An interesting feature of these open
immersions is that, intuitively, local properties in a neighborhood of a point in the
source are transposed to local properties in a neighborhood of its image in the target.
In particular, if f W X ! Y is an open immersion and x W RSpec

R
! X anR-point

of X for a given commutative monoid R, then the cotangent complexes LX;x and
LY;f .x/ are quasi-isomorphic.

In complicial algebraic geometry, we provide the following conditions under
which a morphism of cofibrant cdgas is a formal Zariski open immersion:

Proposition 7.10. Let f W C2 ! C1 be a morphism of cofibrant cdgas. Let us
suppose that

(1) For every cdga A, the induced map

�0f
�
W �0RSpec

C1
.A/ ,! �0RSpec

C2
.A/

is injective;

(2) For every cdga morphism ' W C1 ! A, the induced map

��C1.RSpec
C1
.A/; '/

Š
! ��C1.RSpec

C1
.A/; ' ı f /

is an isomorphism;

(3) The map f is finitely presented.

Then f is a Zariski open immersion.
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Proof. Let f W C2 ! C1 be a morphism of cdgas. It induces a morphism of Kan
complexes

f � D .� ı f / W RSpec
C1
.A/ D MapCDGAK.C1; A/! MapCDGAK.C2; A/

D RSpec
C2
.A/:

Let us fix a morphism ' W C2 ! A and consider the homotopy fiber

hofib'.f �/! MapCDGAK.C1; A/! MapCDGAK.C2; A/:

This homotopy fiber is the Kan subcomplex of MapCDGAK.C1; A/ whose vertices
are the maps  W C1 ! A such that  ı f D ', that is, the mapping space
MapC2nCDGAK.C1; A/ of morphisms between f W C2 ! C1 and ' W C2 ! A. This
is nothing but the mapping space of C2-algebra morphisms

hofib'.f �/ D MapC2-Alg.C1; A/:

Using the long exact sequence of homotopy groups associated to this homotopy
fiber sequence, assumptions (1) and (2) imply that the homotopy fiber hofib'.f �/ is
contractible. According to Definition 1.2.6.1 of [69], the fact that MapC2-Alg.C1; A/
is contractible means that f is an epimorphism. Unbounded cochain complexes
form a stable model category, so every morphism is flat and we proved that f is
a formal Zariski open immersion (see [69, Corollary 1.2.6.6]). By definition, a
finitely presented formal Zariski open immersion is a Zariski open immersion [69,
Definition 1.2.6.7].

This applies to the affine stacks Map
T -Alg

.X1; Y /: under finitess conditions on
a T -algebra morphism f W X1 ! X 01, conditions (1) and (2) of Proposition 7.10
about homotopy groups of mapping spaces imply that the deformation complex of
any ' W X1 ! Y is quasi-isomorphic to the deformation complex of ' ı f . For
instance, let T be the monad encoding props and Y D EndX be the endomorphism
prop of a cochain complex X . Let O1 ! P1 be a morphism of cofibrant props.
Suppose that X is a P1-algebra. Proposition 7.10 gives homotopical conditions
under which the deformation complex of X as P1-algebra is quasi-isomorphic
to the deformation complex of X as O1-algebra. This can be seen as a partial
generalization of Theorem 1.1 (homotopical deformation theory controls algebraic
deformation theory).

8. Another description

This short section is devoted to the proof of Theorem 1.14. For this, we use the
following general results about Lie theory of profinite complete L1-algebras. The
first is about the affineness of such stacks:
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Lemma 8.1. Let g be a profinite complete L1-algebra. Then the Maurer–Cartan
stackMC�.g/ is isomorphic toRSpecC�.g/, whereC �.g/ is theChevalley–Eilenberg
algebra of g.

Proof. According to Lemma 2.3 of [5], for every cdga A there is an isomorphism

Morcdga.C �.g/; A/ Š MC.g Ő A/

which is natural in A, hence

MC�.g/.A/ D MC�.g Ő A/
D MC..g Ő A/ Ő ��/
D MC.g Ő .A˝��//
Š Morcdga.C �.g/; A˝��/
D RSpecC�.g/.A/

where the isomorphism preserves the simplicial structure by naturality.

The second is about the cohomology of their tangent complexes:
Lemma 8.2. Let g be a profinite complete L1-algebra and ' be a Maurer–Cartan
element of g, that is, a K-point of RSpecC�.g/. Then the tangent cohomology of the
Maurer–Cartan stack is given by

H�.TMC�.g/;' Œ�1�/ Š H
�g' :

Proof. Recall that we have a bijection between MC.g/ and Morcdga.C �.g/;K/, so
that Maurer–Cartan elements of g correspond to augmentations of C �.g/. We still
note ' the augmentation associated to the Maurer–Cartan element '. Lemma 8.1
gives the isomorphisms

LMC�.g/;' Š LC�.g/;' Š LC�.g/=K' :

The last complex is the relative cotangent complex ofC �.g/with respect toK' , which
denotesK equipped with theC �.g/-algebra structure defined by the augmentation '.
Theorem 4.1. of [39] states a Quillen equivalence between the category CGDAc;f
of connected formal cdgas and the category DGLApro of dg Lie algebras (dgla for
short) with pronilpotent (i.e. complete) homology, forwhich theChevalley–Eilenberg
algebra functor C �.�/ is the right adjoint. The left adjoint is noted L. This is a
dualized version of the classical bar-cobar equivalence between augmented cdgas and
conilpotent dg Lie coalgebras. Then, given a dgla g and a formal cdga A, Lazarev
defines a relative Maurer–Cartan set MC.g; A/ such that

MC.L.A/; B/ Š MorCDGAc;f .A;B/
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for every formal cdgas A and B . Let us note � the Maurer–Cartan element of
MC.LC �.g/;K/ corresponding to the augmentation '. Then, according to Section 7
of [39], the Harrison complex of C �.g/ with coefficients in K' is given by

C �Har.C
�.g/;K'/ D LC �.g/�

where the dg Lie algebra LC �.g/ is twisted by � . Since L and C define a Quillen
equivalence, the counit of the adjunction � W LC ! Id gives a quasi-isomorphism
of complete dg Lie algebras �.g/ W LC �.g/

�
! g. By Proposition 3.8 of [76] this

remains a quasi-isomorphism under twisting

LC �.g/�
�
! g�.g/.�/:

By construction, the last twisting is nothing but �.g/.�/ D '. This induces an
isomorphism between the Harrison cohomology Har�.C �.g/;K'/ and H�g' . The
Harrison cohomology with degree shifted by one Har�C1.C �.g/;K'/, in turn, is
isomorphic to the André–Quillen cohomology of C �.g/ with coefficients inK' (see
Chapter 12 of [40], for instance), which is nothing but the cohomology of the tangent
complex of C �.g/ at '. We finally get

H�.TMC�.g/;'/ Š H
�C1g' :

Remark 8.3. Let us note that an alternative proof consists in comparingHar�.C �.g/,
K'/ with Har�.C �.g'/;K/ (the Harrison complex of C �.g'/ with trivial coef-
ficients) by spectral sequence arguments for filtered complexes, then using the
usual bar-cobar Quillen equivalence which gives a quasi-isomorphism between
Har�.C �.g'/;K/ and g' .

The proof of Theorem 1.14 then follows by using again the filtration defined in the
proof of Proposition 15 of [49]. We already established in the proof of Theorem 3.17
that such a filtration makes Hom†.C ;Q/ into a complete dg Lie algebra. Recall that
this filtration is defined by a decomposition

Hom†.C ;Q/ D
Y
l�1

Hom†.C ;Q/l

and
Fr Hom†.C ;Q/ D

Y
l�r

Hom†.C ;Q/l :

The assumptions of Theorem 1.14 implies that the product indexed by m; n 2 N
defining each Hom†.C ;Q/l (see [49, Proposition 15]) is finite (hence a finite direct
sum) and that its components are of finite dimension. Then each

Hom†.C ;Q/=Fr Hom†.C ;Q/ Š
r�1Y
lD1

Hom†.C ;Q/l

is a finite dimensional dg Lie algebra, making Hom†.C ;Q/ into a profinite complete
dg Lie algebra.
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9. Perspectives

9.1. Deformation theory for morphisms of algebras over polynomial monads.
Under the assumptions of Theorem 5.14 we have

Map
T -Alg

.X1; Y / � RSpec
C.X1;Y /

;

and for a given A-point x' W RSpecA ! Map
T -Alg

.X1; Y / corresponding to a
morphism ' ˝ A W X1 ˝e A! Y ˝e A, the tangent complex is

TMap.X1;Y /;x' D RHomA-Mod.LC.X1;Y /=A; A/

Š DerA.C.X1; Y /; A/

where RHomA-Mod is the derived hom of the internal hom in the category of dg
A-modules. The complex TMap.X1;Y /;x' is actually a dg Lie algebra, hence the
following definition:
Definition 9.1. The A-deformation complex of the T -algebras morphism X1 ! Y

is TMap.X1;Y /;x' .
In the particular case where I D S, we consider T -algebras in the category

of †-biobjects of C. When all the objects of C are fibrant, all the assumptions of
Theorem 5.18 are satisfied. Consequently, we have a well-defined and meaningful
notion of deformation complex of any morphism of T -algebras with cofibrant source.
This gives a deformation complex, for instance, for morphisms of cyclic operads,
modular operads, wheeled properads. . . more generally, morphisms of poynomial
monads as defined in [2]. In the situation where it makes sense to define an algebraic
structure via a morphism towards an “endomorphism object” (operads, properads,
props, cyclic and modular operads, wheeled prop. . . ) this gives a deformation
complex of algebraic structures.

As a perspective for a future work, a better understanding of model categories
of algebras over polynomial monads could be used to obtain results similar to those
proven in this paper for properads:

� for every ' W X1 ! Y , a quasi-isomorphism

TMap.X1;Y /;x' � Der'.X1; Y /

inducing, by transfer, a L1 algebra structure on the derivations complex;
� A homotopy equivalence

Map.X1; Y / � MC�.Der'.X1; Y //

giving as corollaries the group isomorphisms

�nC1.Map.X1; Y /; '/ Š HnDer'.X1; Y /'
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for every integer n > 1 and the isomorphism of pronilpotent Lie algebras

H 0Der'.X1; Y /' Š Lie.�1.Map.X1; Y /; '//I

� if T -algebras encode a certain kind of algebraic structure, and the notion of
“endomorphism object” of a complex C makes sense, study the cohomology
theory given by Der'.X1;EndC /;

� the obstruction theory of the previous section.

The proofs of this paper are quite general, and the author thinks two essential
ingredients to transpose them to this even more general setting are a good
understanding of the notion of cofibrant resolution for algebras over polynomial
monads and the subsequent analysis of Maurer–Cartan elements in Der'.X1; Y /.

9.2. Shifted symplectic structures. We describe briefly how shifted symplectic
and Poisson structures are defined in the affine case, and refer the reader to [60] for
more details about these notions for derived Artin stacks. Let A be a cdga. For
simplicity we suppose that A is cofibrant (the derived spectrum is defined with a
cofibrant resolution). We denote its A dg module of Kähler differentials by�1A. For
every integer i � 0, the exterior power in A-modules �iA D ƒiA�

1
A has a de Rham

differential dR W �iA ! �iC1A . The complex of closed p-forms is defined by

Ap;cl.A/ D
Y
i�0

�
pCi
A Œ�i �

with the differential of degree 1 given byD.f!ig/ D fdR.!i�1/C d.!i /g, where d
is the differential of �pCiA . A closed p-form of degree n is then a cohomology
class of degree n in HnAp;cl.A/. This is a series of elements !i satisfying
relations corresponding to the fact of being a cocycle. To any closed p-form
! D f!ig of degree n corresponds a p-form, actually the term !0. For p D 2, it is
equivalent to a morphism �! W TA ! LAŒn� in the homotopy category ofA-modules
Ho.ModA/, where LA is the cotangent complex of A and TA D HomModA.LA; A/
its tangent complex. An n-shifted symplectic structure on the affine stack RSpec

A
is a closed 2-form ! of degree n such that the associated map �! is an isomorphism
in Ho.ModA/.

One can define an algebra of shifted polyvector fields for any derived Artin stack
locally of finite presentation. In the affine case, it is defined by

Pol.A; n/ D ƒ�A.TAŒ�1 � n�/

and equipped with a Schouten-Nijenhuis bracket, so that Pol.A; n/ŒnC 1� is a graded
dg Lie algebra, with a cohomological grading and a weight grading (associated to
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the exterior powers). The space of n-shifted Poisson structures on RSpec
A
is the

mapping space of graded dg Lie algebra morphisms

Pois.A; n/ D Mapdg Liegr.K.2/Œ1�;Pol.A; n/ŒnC 1�/

whereK.2/Œ1� is concentrated in cohomological degree 1 and weight 2 and equipped
with the zero bracket. Equivalently, Poisson structures are Maurer–Cartan elements
of weight 2 (“bivectors”) in Pol.A; n/ŒnC 1�˝ tKŒŒt ��.

It is strongly conjectured, but not proved in full generality yet, that an n-shifted
symplectic structure induces an n-shifted Poisson structure. The n-quantization
process then consists in a one-parameter formal deformation of the dg category of
quasi-coherent complexes on a derived Artin stack, viewed as an En-monoidal dg
category. This relies on a higher formality conjecture, providing a quasi-isomorphism
of dg Lie algebras between shifted polyvector fields on a derived Artin stack and
higher Hochschild homology of its dg category of quasi-coherent complexes.

In a future work we intend to study the existence of shifted symplectic structures
on Map

T -Alg
.X1; Y / for a monad T general enough. We would like to include in

particular the case of polynomial monads [2], whose algebras are operads, properads,
props and their cyclic, modular, wheeled versions. When a X1-algebra structure
on a complex C can be encoded by morphisms of the form X1 ! EndC , this
gives a shifted symplectic structure on the moduli stack of X1-algebra structures
on C . By this way, the program started in [60] could lead to a general theory
of deformation quantization of algebraic structures. We hope to discover new
deformation quantizations as well as recover the known cases (like quantization
morphisms of Lie bialgebras), and use this approach to get new properties of these.
New deformation quantizations include, for instance, the quantization of the moduli
stack of complex structures on a formal manifold, which are described in [58] as
algebras over a certain cofibrant operad.
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