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Abstract. In this paper we calculate both the periodic and non-periodic Hopf-cyclic cohomology
of Drinfeld–Jimbo quantum enveloping algebraUq.g/ for an arbitrary semi-simple Lie algebra g
with coefficients in a modular pair in involution. We obtain this result by showing that the
coalgebra Hochschild cohomology of these Hopf algebras are concentrated in a single degree
determined by the rank of the Lie algebra g.
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1. Introduction

In this paper we calculate the Hopf-cyclic cohomology of Drinfeld–Jimbo quantum
enveloping algebra Uq.g/ for an arbitrary semi-simple Lie algebra gwith coefficients
in a modular pair in involution (MPI) �k". This cohomology was previously
calculated only for s`2 by Crainic in [7]. We also verified the original calculations of
Moscovici–Rangipour [26] of the Hopf-cyclic cohomology of the Connes–Moscovici
Hopf algebras H1 and H1S with coefficients in the trivial MPI 1k" using our new
cohomological machinery.

The calculation of the Hopf-cyclic cohomology for Connes–Moscovici Hopf
algebras Hn is a big challenge. These Hopf algebras are designed to calculate the
characteristic classes of codimension-n foliations [4]. The intricate calculations
of Hopf-cyclic cohomology of these Hopf algebras by Moscovici and Rangipour
used crucially the fact that these Hopf algebras are bicrossed product Hopf
algebras [13, 24, 26–28]. On top of previously calculated explicit classes of H1,
explicit representatives of Hopf-cyclic cohomology classes of H2 are recently
obtained in [32] via a cup product with a SAYD-twisted cyclic cocycle. More
recently, Moscovici gave a geometric approach for Hn in [25] using explicit quasi-
isomorphisms between the Hopf-cyclic complex ofHn, Dupont’s simplicial de Rham
DG-algebra [9], and the Bott complex [1].
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The cohomological machinery we developed in this paper, allowed us to replicate
the results of [26] on the Hopf-cyclic cohomology of the Hopf algebra H1, and its
Schwarzian quotient H1S. To this end, we start by calculating in Proposition 4.3 the
cohomologies of the weight 1 subcomplex of the coalgebra Hochschild complexes
of these Hopf algebras using their canonical grading, but without appealing their
bicrossed product structure. Then we use the Cartan homotopy formula for H1,
as developed in [26], to obtain the periodic Hopf-cyclic cohomology groups with
coefficients in the trivial, which happens to be the only finite dimensional, SAYD
module for these Hopf algebras [31].

On the quantum enveloping algebra side there are several computations [11, 17,
29, 30] on the Ext-groups. However, the literature on Hopf-cyclic cohomology, or
even coalgebraic cohomology of any variant, of quantum enveloping algebras is
rather meek. The only results we are aware of are both for Uq.s`2/: one for the
ordinary Hopf-cyclic cohomology by Crainic [7], and one for the dual Hopf-cyclic
cohomology by Khalkhali and Rangipour [21].

The central result we achieve in this paper is the computation of both the periodic
and non-periodicHopf-cyclic cohomology of the quantized enveloping algebra Uq.g/
in full, for an arbitrary semisimple Lie algebra g. In Theorem 4.8 we first calculate the
coalgebra Hochschild cohomology of Uq.g/with coefficients in the comodule �k" of
Klimyk–Schmüdgen [22, Prop. 6.6], which is in fact an MPI overUq.g/. We observe
that the Hochschild cohomology is concentrated in a single degree determined by
the rank of the Lie algebra g, and finally we calculate the periodic and non-periodic
Hopf-cyclic cohomology groups of Uq.g/ in Theorem 4.10.

One of the important implications of Theorem 4.8 is that we now have candidates
for noncommutative analogues of the Haar functionals for Uq.g/. The fact that
coalgebra Hochschild cohomology ofUq.s`2/ is concentrated only in a single degree
was first observed by Crainic in [7]. The dual version of the statement, that is the
algebra Hochschild homology of kqŒSL.N /� the quantized coordinate ring of SL.N/
with coefficients twisted by the modular automorphism � of the Haar functional is
also concentrated in a single degree, is proven by Hadfield and Kraehmer in [12].
Kraehmer used this fact to prove an analogue of the Poincaré duality for Hochschild
homology and cohomology for kqŒSL.N /� in [23]. We plan on investigating the
ramification of the fact that Hochschild cohomology of Uq.g/ is concentrated in a
single degree, and its connections with the dimension-drop phenomenon and twisted
Calabi–Yau coalgebras [16], in a future paper.

2. Preliminaries

In this section we recall basic material that will be needed in the sequel. More
explicitly, in the first subsection our objective is to recall the coalgebra Hochschild
cohomology. To this end we also bring the definitions of the cobar complex of a
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coalgebra, and hence the Cotor-groups. The second subsection, on the other hand, is
devoted to a very brief summary of the Hopf-cyclic cohomology with coefficients.

2.1. Cobar and Hochschild complexes. In this subsection we recall the definition
of the cobar complex of a coalgebra C, and it is followed by the definition of the Cotor-
groups associated to a coalgebra C and a pair .V;W / of C-comodules of opposite
parity.

Let C be a coassociative coalgebra. Following [3, 8] and [20], the cobar complex
of C is defined to be the differential graded space

CB�.C/ WD
M
n�0

C˝nC2

with the differential

d W CBn.C/ �! CBnC1.C/

d.c0 ˝ � � � ˝ cnC1/ D

nX
jD0

.�1/j c0 ˝ � � � ˝�.cj /˝ � � � ˝ cnC1:

Let Ce WD C ˝ Ccop be the enveloping coalgebra of C. In case C is
counital, the cobar complex CB�.C/ yields a Ce-injective resolution of the (left)
Ce-comodule C, [8].

Following the terminology of [19], for a pair .V;W / of two C-comodules of
opposite parity (say, V is a right C-comodule, and W is a left C-comodule), we call
the complex�

CB�.V; C; W /; d
�
; CB�.V; C; W / WD V2CCB�.C/2CW

where d W CBn.V; C; W / �! CBnC1.V; C; W /

d.v ˝ c1 ˝ � � � ˝ cn ˝ w/ D v
<0>
˝ v

<1>
˝ c1 ˝ � � � ˝ cn ˝ w

C

nX
jD1

.�1/j v ˝ c1 ˝ � � � ˝�.cj /˝ � � � ˝ cn ˝ w

C .�1/nC1 v ˝ c1 ˝ � � � ˝ cn ˝ w
<�1>

˝ w
<0>

;

(2.1)

the two-sided (cohomological) cobar complex of the coalgebra C.
The Cotor-groups of a pair .V;W / of C-comodules of opposite parity are defined

by
Cotor�C.V;W / WD H�.V2CY .C/2CW; d/;

where Y .C/ is an injective resolution of C via C-bicomodules. In case C is a counital
coalgebra one has

Cotor�C.V;W / D H�.CB
�.V; C; W /; d/: (2.2)
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We next recall the Hochschild cohomology of a coalgebra C with coefficients in
the C-bicomodule (equivalently Ce-comodule) V , from [8], as the homology of the
complex

CH�.C; V / D
M
n�0

CHn.C; V /; CHn.C; V / WD V ˝ C˝n

with the differential b W CHn.C; V /! CHnC1.C; V /

b.v ˝ c1 ˝ � � � ˝ cn/ D v
<0>
˝ v

<1>
˝ c1 ˝ � � � ˝ cn

C

nX
kD1

.�1/kv ˝ c1 ˝ � � � ˝�.ck/˝ � � � ˝ cn

C .�1/nC1v
<0>
˝ c1 ˝ � � � ˝ cn ˝ v

<�1>
:

(2.3)

Identification

CBn.C/ Š Ce ˝ C˝n; n > 0; c0 ˝ � � � ˝ cnC1 7! .c0 ˝ cnC1/˝ c1 ˝ � � � ˝ cn

as left Ce-comodules, where the left Ce-comodule structure on C˝nC2 is given by
r.c0˝ � � � ˝ cnC1/ D .c0.1/ ˝ cnC1.2//˝ .c0.2/ ˝ c1˝ � � � ˝ cn˝ cnC1.1//, and on
Ce˝C˝n byr..c˝c0/˝.c1˝� � �˝cn// D .c.1/˝c0.2//˝.c.2/˝c0.1//˝.c1˝� � �˝cn/,
yields �

CH�.C; V /; b
�
Š
�
V2CeCB�.C/; d

�
:

Hence, in case C is counital one can interpret the Hochschild cohomology of C, with
coefficients in V , in terms of Cotor-groups as

HH�.C; V / D H�.CH�.C; V /; b/ D Cotor�Ce .V; C/;

or more generally,
HH�.C; V / D H�.V2CeY .C/; d/

for any injective resolution Y .C/ of C via left Ce-comodules.

2.2. Hopf-cyclic cohomology of Hopf algebras. In this subsection we recall the
basics of the Hopf-cyclic cohomology theory for Hopf algebras from [4, 6]. To
this end we start with the coefficient spaces for this homology theory, the stable
anti-Yetter–Drinfeld (SAYD) modules.

Let H be a Hopf algebra. A right H-module, left H-comodule V is called an
anti-Yetter–Drinfeld (AYD) module overH if

H.v � h/ D S.h.3//v<�1>
h.1/ ˝ v<0>

� h.2/ ;

for any v 2 V and any h 2 H, and V is called stable if

v
<0>
� v

<�1>
D v

for any v 2 V .
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In particular, the field k, regarded as an H-module by a character ı W H �! k, and
aH-comodule via a group-like � 2 H, is an AYD module overH if

S2ı D Ad� ; Sı.h/ D ı.h.1//S.h.2//;

and it is stable if
ı.�/ D 1:

Such a pair .ı; �/ is called a modular pair in involution (MPI), [5, 15].
Let V be a right-left SAYD module over a Hopf algebraH. Then

C �.H; V / D
M
n�0

C n.H; V /; C n.H; V / WD V ˝H˝n

is a cocyclic module [14], via the face operators

di W C
n.H; V /! C nC1.H; V /; 0 � i � nC 1

d0.v ˝ h
1
˝ � � � ˝ hn/ D v ˝ 1˝ h1 ˝ � � � ˝ hn;

di .v ˝ h
1
˝ � � � ˝ hn/ D v ˝ h1 ˝ � � � ˝ hi.1/ ˝ hi.2/ ˝ � � � ˝ hn;

dnC1.v ˝ h
1
˝ � � � ˝ hn/ D v

<0>
˝ h1 ˝ � � � ˝ hn ˝ v

<�1>
;

the degeneracy operators

sj W C
n.H; V /! C n�1.H; V /; 0 � j � n � 1

sj .v ˝ h
1
˝ � � � ˝ hn/ D v ˝ h1 ˝ � � � ˝ ".hjC1/˝ � � � ˝ hn;

and the cyclic operator

t W C n.H; V /! C n.H; V /;

t.v ˝ h1 ˝ � � � ˝ hn/ D v
<0>
� h1.1/ ˝ S.h1.2// � .h2 ˝ � � � ˝ hn ˝ v<�1>

/:

The total cohomology of the associatedfirst quadrant bicomplex .CC �;�.H; V /; b; B/, [27],
where

CCp;q.H; V / WD
(
C q�p.H; V /; if q � p � 0;
0; if p > q;

with the coalgebra Hochschild coboundary

b W CCp;q.H; V / �! CCp;qC1.H; V /; b WD

qX
iD0

.�1/idi ;

and the Connes boundary operator

B W CCp;q.H; V / �! CCp�1;q.H; V /; B WD

 
pX
iD0

.�1/ni t i

!
sp�1t;

is called the Hopf-cyclic cohomology of the Hopf algebraH with coefficients in the
SAYD module V , and is denoted byHC.H; V /.
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Finally, the periodic Hopf-cyclic cohomology is defined similarly as the total
complex of the bicomplex

CCp;q.H; V / WD
(
C q�p.H; V /; if q � p
0; if p > q;

and is denoted byHP.H; V /.

3. The cohomological machinery

This section contains the main computational tool of the present paper, namely, given
a coalgebra coextension C �! D with a coflatness condition, we compute the
coalgebra Hochschild cohomology of C by means of the Hochschild cohomology
ofD on the E1-term of a spectral sequence.

Let a coextension � W C �! D be given. We first introduce the auxiliary
coalgebra Z WD C ˚D with the comultiplication

�.y/ D y.1/˝ y.2/ and �.x/ D x.1/˝ x.2/C�.x.1//˝ x.2/C x.1/˝�.x.2//

and the counit
".x C y/ D ".y/;

for any x 2 C and y 2 D.
Next, let V be a C -bicomodule, and let C be coflat both as a left and a right

D-comodule. Then consider the decreasing filtration

GpCqp D

(L
n0C���CnpDq

V ˝Z˝n0 ˝D ˝ � � � ˝Z˝np�1 ˝D ˝Z˝np ; p � 0

0; p < 0

on CH�.Z; V /. In the associated spectral sequence we get

E
i;j
0 D G

iCj
i =G

iCj
iC1 D

M
n0C���CniDj

V ˝ C˝n0 ˝D ˝ � � � ˝ C˝ni�1 ˝D ˝ C˝ni ;

which gives us
E
0;j
1 D HH j .C; V /:

On the horizontal differential however, by the definition of the filtration we use only
theD-bicomodule structure on C . Hence, by the coflatness assumption

E
i;j
2 D 0; i > 0:

As a result, the spectral sequence collapses and we get

HHn.Z; V / Š HHn.C; V /; n � 0: (3.1)
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Alternatively, one can use the short exact sequence

0! D
i
�! Z

p
��! C ! 0 where i W y 7! .0; y/ ; p W .x; y/ 7! x

of coalgebras, and [10, Lemma 4.10], to conclude (3.1).
Now consider CH�.Z; V /, this time with the decreasing filtration

F nCpp D

(L
n0C���CnpDn

V ˝Z˝n0 ˝ C ˝ � � � ˝Znp�1 ˝ C ˝Z˝np ; p � 0

0; p < 0:

The associated spectral sequence is

E
i;j
0 D F

iCj
i =F

iCj
iC1 D

M
n0C���CniDj

V ˝D˝n0 ˝ C ˝ � � � ˝Dni�1 ˝ C ˝D˝ni ;

and by the coflatness assumption, on the vertical direction it computes

HH j .D;C2D i 2D V /:

We can summarize our discussion in the following theorem.
Theorem 3.1. Let � W C �! D be a coalgebra projection, V a C -bicomodule,
and C be coflat both as a left and a right D-comodule. Then there is a spectral
sequence, whose E1-term is

E
i;j
1 D HH

j .D;C2D i 2D V /;

converging toHH iCj .C; V /.

4. Computations

In this section we will apply the cohomological machinery developed in Section 3
to compute the Hopf-cyclic cohomology groups of quantized enveloping algebras,
Connes–Moscovici Hopf algebraH1 and its Schwarzian quotientH1S.

To this end, we will compute the Cotor-groups with MPI coefficients, from which
we will obtain coalgebra Hochschild cohomology groups in view of [7, Lemma 5.1].
Therefore we note the following analogue of Theorem 3.1.
Theorem 4.1. Let � W C �! D be a coalgebra projection, and V D V 0 ˝ V 00

a C -bicomodule such that the left C -comodule structure is given by V 0 and the
right C -comodule structure is given by V 00. Let also C be coflat both as a left and
a rightD-comodule. Then there is a spectral sequence, whoseE1-term is of the form

E
i;j
1 D CotorjD.V

00; C2D i 2D V
0/;

converging toHH iCj .C; V /.
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Proof. The proof follows from Theorem 3.1 in view of the definition (2.1) of the
coboundary map of a cobar complex, and (2.2).

Let us also recall the principal coextensions from [33], see also [2]. Let H be a
Hopf algebra with a bijective antipode, and C a leftH -module coalgebra. Moreover,
HC being the augmentation ideal of H (that is, HC WD ker "), define the (quotient)
coalgebraD WD C=HCC .

Then, by [33, Theorem II],
(a) C is a projective leftH -module,
(b) can W H ˝ C �! C2DC , h˝ c 7! h � c.1/ ˝ c.2/ is injective,

if and only if
(a) C is faithfully flat left (and right)D-comodule,
(b) can W H ˝ C �! C2DC is an isomorphism.

We will use this set-up to meet the hypothesis of Theorem 3.1 (and Theorem 4.1).

4.1. Connes–Moscovici Hopf algebras. In this subsection we will compute
the periodic Hopf-cyclic cohomology groups of the Connes–Moscovici Hopf
algebra H1 and its Schwarzian quotient H1S using the spectral sequence introduced
in Theorem 4.1, and the Cartan homotopy formula developed in [26].

We will use our main machinery to recover the results of [26] on the periodic
Hopf-cyclic cohomology of the Connes–Moscovici Hopf algebra H1. Therefore, in
this subsection we will take a quick detour to the Hopf algebraH1 of codimension 1,
and its Schwarzian quotientH1S from [4, 6, 26].

Let FR �! R be the frame bundle over R, equipped with the flat connection
whose fundamental vertical vector field is

Y D y
@

@y
;

and the basic horizontal vector field is

X D y
@

@x
;

in local coordinates ofFR. They act on the crossed product algebraA D C1c .FR/o
Diff.R/, a typical element of which is written by f U �' WD f o '�1, via

Y.f U �' / D Y.f /U
�
' ; X.f U �' / D X.f /U

�
' :

ThenH1 is the unique Hopf algebra that makes A to be a (left)H1-module algebra.
To this end one has to introduce the further differential operators

ın.f U
�
' / WD y

n d

dxn
.log '0.x//f U �' ; n � 1;
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and the Hopf algebra structure ofH1 is given by

ŒY; X� D X; ŒY; ın� D nın; ŒX; ın� D ınC1; Œın; ım� D 0;

�.Y / D Y ˝ 1C 1˝ Y;

�.ı1/ D ı1 ˝ 1C 1˝ ı1;

�.X/ D X ˝ 1C 1˝X C ı1 ˝ Y;

".X/ D ".Y / D ".ın/ D 0;

S.X/ D �X C ı1Y; S.Y / D �Y; S.ı1/ D �ı1:

The ideal generated by the Schwarzian derivative

ı02 WD ı2 �
1

2
ı21 ;

is a Hopf ideal (an ideal, a coideal and is stable under the antipode), therefore the
quotient H1S becomes a Hopf algebra, called the Schwarzian Hopf algebra. As an
algebraH1S is generated by X; Y;Z, and the Hopf algebra structure is given by

ŒY; X� D X; ŒY; ın� D nın; ŒX;Z� D
1

2
Z2;

�.Y / D Y ˝ 1C 1˝ Y;

�.Z/ D Z ˝ 1C 1˝Z;

�.X/ D X ˝ 1C 1˝X CZ ˝ Y;

".X/ D ".Y / D ".Z/ D 0;

S.X/ D �X CZY; S.Y / D �Y; S.Z/ D �Z:

Hence

F WD Span
˚
ın1
˛1
� � � ı

np
˛p
jp; ˛1; : : : ˛p � 1; n1; : : : np � 0

	
� H1

is a Hopf subalgebra of H1. Finally let us note, by [31], that the only modular pair
in involution (MPI) on H1 is .ı; 1/ of [4], where ı W g`aff1 �! k is the trace of the
adjoint representation of g`aff1 on itself.

Let C WD H1, and let us consider the Hopf subalgebra F � C . Then

D D C=FCC D U WD U.g`aff1 /;

see [27, Lemma 3.19], or [6, Section 5]. Hence, by [33, Thm. II] we conclude
that C is (faithfully) coflat as left and right D-comodule. Therefore, the hypothesis
of Theorem 4.1 is satisfied.
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Since �k D k, we have

C2D i 2D k D F˝ i ;

and hence by Theorem 3.1,

E
i;j
1 D HH

j .U ;F˝ i /) HH iCj .H1; k/:

Moreover, since the U -coaction on F is trivial, we have

E
i;j
1 D HH

j .U ; k/˝F˝ i ) HH iCj .H1; k/:

As a result of the Cartan homotopy formula [26, Coroll. 3.9] for H1, one
has [26, Coroll. 3.10] as recalled below. We adopt the same notation from [26],
and we denote byHP.H1\Œp�; k/ the periodic Hopf-cyclic cohomology, with trivial
coefficients, of the weight p subcomplex ofH1, with respect to the grading given by
the adjoint action of Y 2 H1.
Corollary 4.2. The periodic Hopf-cyclic cohomology groups ofH1 are computed by
the weight 1 subcomplex, i.e.

HP.H1\Œ1�; k/ D HP.H1; k/; HP.H1\Œp�; k/ D 0; p ¤ 1:

Since our spectral sequence respects the weight, in view of [18, Thm. 18.7.1] we
check only

E
1;0
1 D

˝
1˝ ı1 ˝ 1

˛
2 k ˝ C 2D k;

E
1;1
1 D

˝
1˝ Y ˝ ı1 ˝ 1

˛
2 k ˝D ˝ C 2D k;

E
0;1
1 D

˝
1˝X ˝ 1

˛
2 k ˝D ˝ k;

E
0;2
1 D

˝
1˝X ^ Y ˝ 1

˛
2 k ˝D ˝D ˝ k;

as the weight 1 subcomplex. Here by x 2 D we mean the element x 2 H1 viewed
inD.

Let d0 W Ei;j0 �! E
i;jC1
0 be the vertical, and d1 W Ei;j1 �! E

iC1;j
1 be the

horizontal coboundary. Then we first have

d1 .1˝ ı1 ˝ 1/ D 1˝ 1˝ ı1 ˝ 1 � 1˝�.ı1/˝ 1C 1˝ ı1 ˝ 1˝ 1 D 0:

Next, we similarly observe

d1
�
1˝X ˝ Y ˝ 1

�
D 1˝ 1˝X ˝ Y ˝ 1 � 1˝X ˝ Y ˝ 1˝ 1;

and

d0

�
1˝X ˝ Y ˝ 1C 1˝X ˝ Y ˝ 1˝ 1C

1

2
1˝ ı1 ˝ Y

2
˝ 1

�
D 1˝X ˝ Y ˝ 1˝ 1 � 1˝ 1˝X ˝ Y ˝ 1:
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On the other hand, we have

d1
�
1˝ Y ˝X ˝ 1

�
D 1˝ 1˝ Y ˝X ˝ 1 � 1˝ Y ˝X ˝ 1˝ 1;

and

d0

�
1˝ Y ˝X ˝ 1C 1˝ Y ˝X ˝ 1�

1

2
1˝ Y 2˝ ı1˝ 1� 1˝ Y ˝ ı1Y ˝ 1

�
D 1˝ Y ˝X ˝ 1˝ 1 � 1˝ 1˝ Y ˝X ˝ 1:

Therefore
d1
�
1˝X ^ Y ˝ 1

�
D 0:

Finally we calculate

d1
�
1˝X ˝ 1

�
D 1˝ 1˝X ˝ 1C 1˝X ˝ 1˝ 1:

We also note that

d0 .1˝X ˝ 1/ D �1˝X ˝ 1˝ 1 � 1˝ 1˝X ˝ 1 � 1˝ ı1 ˝ Y ˝ 1;

and
d0 .1˝ ı1Y ˝ 1/ D �1˝ Y ˝ ı1 ˝ 1 � 1˝ ı1 ˝ Y ˝ 1:

Hence,

1˝ Y ˝ ı1 ˝ 1 D d1
�
1˝X ˝ 1

�
C d0 .1˝X ˝ 1 � 1˝ ı1Y ˝ 1/ :

As a result, on the E2-term we will see

E
1;0
2 D

˝
1˝ ı1 ˝ 1

˛
; E

0;2
2 D

˝
1˝X ^ Y ˝ 1

˛
:

Transgression of these cocycles yields [26, Prop. 4.3] as follows.
Proposition 4.3. The Hochschild cohomology of the weight 1 subcomplex of H1 is
generated by

Œı1� 2 HH
1.H1; k/; ŒX ˝ Y � Y ˝X � ı1Y ˝ Y � 2 HH

2.H1; k/:

Consequently, we recover [26, Thm. 4.4].
Theorem 4.4. The periodic Hopf-cyclic cohomology of H1 with coefficients in the
SAYD module 1k" is given by

HP odd.H1; k/ D
˝
ı1
˛
; HP even.H1; k/ D

˝
X ˝ Y � Y ˝X � ı1Y ˝ Y

˛
:

On the Schwarzian quotient we similarly recover [26, Thm. 4.5] as follows.
Theorem 4.5. The periodic Hopf-cyclic cohomology of H1S with coefficients in the
SAYD module 1k" is given by

HP odd.H1S; k/ D
˝
Z
˛
; HP even.H1S; k/ D

˝
X ˝ Y � Y ˝X �ZY ˝ Y

˛
:
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4.2. Quantum enveloping algebras. In this subsection we will compute the
(periodic and non-periodic) Hopf-cyclic cohomology groups of the quantized
enveloping algebrasUq.g/. Our strategywill be to realize it as a principal coextension.

Let us first recall Drinfeld–Jimbo quantized enveloping algebras of Lie algebras
from [22, Subsect. 6.1.2].

Let g be a finite dimensional complex semi-simple Lie algebra, ˛1; : : : ; ˛` a fixed
ordered sequence of simple roots, and A D Œaij � the Cartan matrix. Let also q be a
fixed nonzero complex number such that q2i ¤ 1, where qi WD qdi , 1 � i � `, and
di D .˛i ; ˛i /=2.

Then the Drinfeld–Jimbo quantized enveloping algebra Uq.g/ is the Hopf algebra
with 4` generators Ei ; Fi ; Ki ; K�1i , 1 � i � `, and the relations

KiKj D KjKi ; KiK
�1
i D K

�1
i Ki D 1;

KiEjK
�1
i D q

aij

i Ej ; KiFjK
�1
i D q

�aij

i Fj ;

EiFj � FjEi D ıij
Ki �K

�1
i

qi � q
�1
i

;

1�aijX
rD0

.�1/r
�
1 � aij
r

�
qi

E
1�aij�r

i EjE
r
i D 0; i ¤ j;

1�aijX
rD0

.�1/r
�
1 � aij
r

�
qi

F
1�aij�r

i FjF
r
i D 0; i ¤ j;

where �
n

r

�
q

D
.n/q Š

.r/q Š .n � r/q Š
; .n/q WD

qn � q�n

q � q�1
:

The rest of the Hopf algebra structure of Uq.g/ is given by

�.Ki / D Ki ˝Ki ; �.K�1i / D K�1i ˝K
�1
i

�.Ei / D Ei ˝Ki C 1˝Ei ; �.Fj / D Fj ˝ 1CK
�1
j ˝ Fj

".Ki / D 1; ".Ei / D ".Fi / D 0

S.Ki / D K
�1
i ; S.Ei / D �EiK

�1
i ; S.Fi / D �KiFi :

Let us also recall, from [22], the Hopf-subalgebras

Uq.bC/ D Span
˚
E
p1

1 � � �E
p`

`
K
q1

1 � � �K
q`

`
j r1; : : : r` � 0; q1; : : : ; q` 2 Z

	
;

Uq.b�/ D Span
˚
K
q1

1 � � �K
q`

`
F
r1
1 � � �F

r`
`
jp1; : : : p` � 0; q1; : : : ; q` 2 Z

	
;

of Uq.g/.
Amodular pair in involution for theHopf algebraUq.g/ is given by [22, Prop. 6.6].

Let K� WD K
n1

1 � � �K
n`

`
for any � D

P
i ni˛i , where ni 2 Z. Then, � 2 h� being
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the half-sum of the positive roots of g, by [22, Prop. 6.6] we have

S2.a/ D K2�aK
�1
2� ; 8a 2 Uq.g/:

Thus, .";K2�/ is a MPI for the Hopf algebra Uq.g/.
For the Hopf subalgebra H WD Uq.b�/ � Uq.g/ DW C , we obtain D D

C=CHC D Uq.bC/. Then by [33, Thm. II] we conclude that C is (faithfully)
coflat as left and right D-comodule, and hence the hypothesis of Theorem 4.1 is
satisfied.
Lemma 4.6. Let C and D be as above, and � D K

p1

1 � � �K
p`

`
, p1; : : : ; p` � 0.

Then we have

CotornD.k;
�k/ D

(
k
˚

.p1C���Cp`/ Š

p1 Š::: p` Š ; if n D p1 C p2 C � � � C p`;
0; if n ¤ p1 C p2 C � � � C p`:

Proof. We apply Theorem 4.1 to the coextension

� W D �! W WD SpanfKm1

1 � � �K
m`

`
jm1; : : : ; m` 2 Zg

E
r1
1 � � �E

r`
`
K
m1

1 � � �K
m`

`
7!

(
K
m1

1 � � �K
m`

`
; if r1 D r2 D � � � D r` D 0;

0; otherwise

to have a spectral sequence, converging to CotorD.k; �k/, whose E1-term is

E
i;j
1 D CotorjW .k;D2W � � � 2W D„ ƒ‚ …

i many

2W
�k/:

Since

D2W � � � 2W D„ ƒ‚ …
i many

2W
�k

D Span
n
Ebs
as
� � �Eˇs

˛s
�K�b1

a1
� � �K�ˇ1

˛1
� � �K�bs

as
� � �K�ˇs

˛s
˝ � � �

� � � ˝ �K�b1
a1
� � �K�ˇ1

˛1
˝ � � � ˝ �K�b1

a1
� � �K�ˇ1

˛1„ ƒ‚ …
i2 many

˝Eb1
a1
� � �Eˇ1

˛1
�K�b1

a1
� � �K�ˇ1

˛1
˝ �˝ � � � ˝ �„ ƒ‚ …

i1 many

˝1
o
;

i � s � 0, ` � a1; : : : ; as; : : : ; ˛1; : : : ; ˛s � 1, i1; i2; : : : ; b1; : : : bs; ˇ1; : : : ; ˇs � 0,
the left W -coaction on a typical element is given by

r
L
W .Eai

K�1ai
� � �K�1a1

�˝ � � � ˝Ea2
K�1a2

K�1a1
�˝Ea1

K�1a1
�˝ 1/

D K�1ai
� � �K�1a1

�˝Eai
K�1ai
� � �K�1a1

�˝ � � � ˝Ea2
K�1a2

K�1a1
�˝Ea1

K�1a1
�˝ 1:

(4.1)
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Since W consists only of the group-like elements, the result follows from the
W -coaction (4.1) to be trivial.

Lemma 4.7. Let C andD be as above, and � D K2�. Then we have

CotornD.k; C 2D � � � 2D C„ ƒ‚ …
i many

2D
�k/ D

(
k
˚

�
`
i

�
; if n D ` � i;

0; if n ¤ ` � i:

Proof. Let us first note that

C 2D � � � 2D C„ ƒ‚ …
i many

2D
�k

D Span
n
�K�b1

a1
� � �K�ˇ1

˛1
� � �K�bs�1

as�1
� � �K�ˇs�1

˛s�1
F bs
as
� � �F ˇs

˛s
˝ � � �

� � � ˝ �K�b1
a1
� � �K�ˇ1

˛1
˝ � � � ˝ �K�b1

a1
� � �K�ˇ1

˛1„ ƒ‚ …
i2 many

˝�F b1
a1
� � �

� � �F ˇ1
˛1
˝ � ˝ � � � ˝ �„ ƒ‚ …

i1 many

˝1
o
;

i � s � 0, ` � a1; : : : ; as; : : : ; ˛1; : : : ; ˛s � 1, i1; i2; : : : ; b1; : : : bs; ˇ1; : : : ; ˇs � 0.
Then, the leftD-coaction on a typical element is given by

r
L
D.�K

�1
a1
� � �K�1ai�1

Fai
˝ � � � ˝ �K�1a1

Fa2
˝ �Fa1

˝ 1/
D �K�1a1

� � �K�1ai�1
K�1ai

˝ �K�1a1
� � �K�1ai�1

Fai
˝ � � � ˝ �K�1a1

Fa2
˝ �Fa1

˝ 1:
(4.2)

By the proof of Lemma 4.6, there is no repetition on the indexes appearing in (4.2).
Accordingly, the result follows from Lemma 4.6.

Proposition 4.8. For � WD K2� we have

CotornUq.g/
.k; �k/ D

(
k˚2

`
; if n D `

0; if n ¤ `:

Proof. Letting C and D be as above, it follows from Theorem 4.1 that we have a
spectral sequence converging to CotorC .k; �k/ whose E1-term is

E
i;j
1 D CotorjD.k; C

2D i 2D
�k/:

By Lemma 4.7 the cocycles are computed at j D `� i , i.e. i C j D `. The number
of cocycles, on the other hand, is X̀

iD0

�
`

i

�
D 2`:



Hopf-cyclic cohomology of quantum enveloping algebras 443

Remark 4.9. We note that since C D Uq.g/ is a Hopf algebra, we could start with
the Hopf subalgebra H D C � C to get D D H=HC D W , and to arrive at the
same result.

We are now ready to compute the (periodic) Hopf-cyclic cohomology of Uq.g/.
Theorem 4.10. For � WD K2�, and ` � � .mod 2/, we have

HP �.Uq.g/;
�k/ D k˚2

`

; HP 1��.Uq.g/;
�k/ D 0:

Proof. Let C be as above. As a result of Proposition 4.8 we have

HHn.C; �k/ D

(
k˚2

`
; if n D `

0; if n ¤ `:

Hence, the Connes’ SBI sequence yields

HC n.C; �k/ D 0; n < `;

HC `C1.C; �k/ Š HC `C3.C; �k/ Š � � � Š 0

k˚2
`

Š HH `.C; �k/ Š HC `.C; �k/ Š HC `C2.C; �k/ Š � � �

where the isomorphisms are given by the periodicity map

S W HCp.C; �k/ �! HCpC2.C; �k/:
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