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Modular envelopes, OSFT and nonsymmetric (non-†) modular
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Abstract. Our aim is to introduce and advocate non-† (non-symmetric) modular operads. While
ordinary modular operads were inspired by the structure of the moduli space of stable complex
curves, non-† modular operads model surfaces with open strings outputs. An immediate
application of our theory is a short proof that the modular envelope of the associative operad is
the linearization of the terminal operad in the category of non-† modular operads. This gives a
succinct description of this object that plays an important rôle in open string field theory. We
also sketch further perspectives of the presented approach.
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1. Introduction

Operads have their non-† (non-symmetric) versions obtained by forgetting the
symmetric group actions. Likewise, for the non-† version of cyclic operads one
requires only the actions of the cyclic subgroups of the symmetric groups, see
e.g. Definitions II.1.4, II.1.14 and Section II.5.1 of [32]. In both cases we thus
demand less structure. As we explain in Example 2.9 below, this straightforward
approach fails for modular operads whose non-† versions have been a mystery so far.

There are, fortunately, some clues and inspirations, namely modular envelopes of
cyclic operads, introduced under the name modular completions by the author in [28,
Definition 2]. The modular envelope Mod.�C / of the terminal cyclic operad �C

in the category Set of sets turned out to be the terminal modular operad in Set,
see [28, p. 382]. Notice that the linearization Span.�C / of �C is the cyclic operad
Com for commutative associative algebras.

The modular envelope Mod.�C / of the terminal non-† cyclic Set-operad,
described much later in [6, 9], turned out to be surprisingly complex. (The authors
of [6, 9] worked with the linearized version, i.e. with the cyclic operad Ass for
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associative algebras, but the linear structure is irrelevant here as everything important
happens inside Set.) A derived version of this modular envelope was studied
in [7, 15]. Guided by the example of Mod.�C /, one would expect Mod.�C / to
be the (symmetrization of) the terminal Set-operad in the conjectural category of
non-† modular operads. The description of Mod.�C / given in [9, Theorem 3.1] and
its relation to the moduli space of Riemann surfaces with boundaries [6, Theorem 3.7]
therefore gives some feeling what non-† modular operads should be.

Another natural requirement is that the conjectural category of non-† modular
operads should fill the left bottom corner of the diagram

NsCycOp

Sym
,,

Mod

��

CycOp

Mod

		

Desll

‹‹

�

TT

Sym
,,
ModOp

�

JJ

Desjj

in which � W ModOp ! CycOp is the forgetful functor, Mod W CycOp ! ModOp the
modular completion [28] (known today as the modular envelope), Des W CycOp !

NsCycOp the forgetful functor (the desymmetrization, not to be mistaken with
Batanin’s desymmetrization of [2]) and the symmetrization Sym W NsCycOp !

CycOp its left adjoint.
The category of (ordinary) modular operads contains the category of cyclic

operads as the full subcategory of operads concentrated in genus 0. Requiring the
same from the category of non-† modular operads leads to the notion of geometricity
that does not have analog in the symmetric world.

Our aim is to introduce and advocate the notion of non-† (non-symmetric)
modular operads. The main definitions are Definitions 4.1 and 5.6, and the main
result is isomorphism (6.2a) of Theorem 6.3. As an immediate application we give
a short, elementary proof of the description of the modular envelope Mod.Ass/ of
the associative operad given in [6,9].

Perspectives. It turns out that the elements of the modular envelope Mod.�C / of
the terminal cyclic Set operad �C describe isomorphism classes of oriented surfaces
with holes, and likewise the non-† modular envelope Mod.�C / of the terminal non-
† cyclic Set-operad describe isomorphism classes of oriented surfaces with teethed
holes. These geometric objects describe interactions in closed and open string field
theory. Very crucially, Theorem 6.3 asserts that both Mod.�C / and Mod.�C / are the
terminal objects in an appropriate category of modular operads.

In Section 7 we consider the operad �D describing associative algebras with
an involution. It is a cyclic dihedral operad in the sense of [31, Section 3] that
equals the Möbiusisation [4, Definition 3.32] of the terminal cyclic operad �C .
By [4, Theorem 3.10], its modular envelope Mod.�D/ consist of isomorphism classes
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of non-oriented surfaces with teethed holes. We believe that there exists another
version of modular operads (say dihedral modular operads) such that Mod.�D/ is the
(symmetrization of the) terminal modular operad of this type.

We hope that similar reasoning applies to other objects, such as the surfaces
describing interactions in open-closed string field theory that may include also
D-branes, or even higher-dimensional manifolds. In each case the corresponding
type of modular operad should reflect how a geometric object is composed from
simper pieces, e.g. pair of pants in the case of closed string field theory. We are led
to formulate

Principle. For a large class of geometric objects there exists a version of modular

operads such that the set of isomorphism classes of these objects is the terminal

modular Set-operad of a given type.

Several steps in this direction have already been made in [8] where various
generalizations of dihedral, quaternionic and other generalizations of cyclic structures
based on crossed simplicial groups of Krasauskas [25] and Fiedorowicz–Loday [10]
were studied, and their relation to structured surfaces was clarified.

The nature of the above principle is similar to the cobordism hypothesis [11]
as they both describe objects of geometric nature by purely categorial means, see
again [8] where the relation to the structured cobordism hypothesis in dimension 2

was explicitly formulated, cf. also Remark 4.3.7 of [8].

Notations and conventions. Throughout the paper, M D .M; ˝; 1/ will stand
for a complete and cocomplete, possibly enriched, symmetric monoidal category,
with the initial object 0 2 M. Typical examples will be k-Mod, the category of
modules over a commutative unital ring k, or the cartesian category Set of sets. By
Span W Set! k-Mod we denote the k-linear span, i.e. the left adjoint to the forgetful
functor k-Mod ! Set. The glossary of categories introduced and used throughout
the paper is given in Figure 1, various forgetful functors and their adjoints are listed
in Figure 2.

An order (without an adjective) in this paper will always be a linear order of a
finite set. By � we denote a chosen one-point set.

Assumptions. We assume certain familiarity with basic notions of operad theory.
There exists rich and easily accessible literature, for instance the monograph [32],
overview articles [12, 29, 30] or a recent account [26]. For the reader’s convenience,
we recall a definition of cyclic and modular operads based on finite sets in the
Appendix.

Acknowledgements. We would like to express our thanks to Martin Doubek and
Ralph Kaufmann for inspiring suggestions and comments. Some of the ideas
presented here stemmed from our discussions during Ralph’s visit to Prague in
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April, 2014. We are also indebted to anonymous referees for helpful comments that
led to substantial improvement of the exposition.

Set; the cartesian monoidal category of sets,

k-Mod; the category of k-modules,

Fin; the category of finite sets,

Cyc; the category of finite cyclically ordered sets,

MultCyc; the category of finite multicyclically ordered sets,

ModMod; the category of modular modules,

NsModMod; the category of non-† modular modules,

CycOp; the category of cyclic operads,

NsCycOp; the category of non-† cyclic operads,

ModOp; the category of modular operads,

NsModOp; the category of non-† modular operads,

�..SI g//; the category of non-† modular graphs.

Figure 1. Notation of categories.

forgetful functor: left adjoint:

� W ModOp �! CycOp Mod W CycOp �! ModOp

� W NsModOp �! NsCycOp Mod W NsCycOp �! NsModOp

Des W CycOp �! NsCycOp Sym W NsCycOp �! CycOp

Des W ModOp �! NsModOp Sym W NsModOp �! ModOp

F W ModOp �! ModMod M W ModMod �! ModOp

F W NsModOp �! NsModMod M W NsModMod �! NsModOp

U W k-Mod �! Set Span W Set �! k-Mod

Figure 2. Forgetful functors and their left adjoints.

2. Cyclic orders and the first try

We open this section by recalling basic facts about cyclically ordered sets and their
morphisms. Although we will actually need only combinations of isomorphisms of
totally cyclically ordered finite sets, see Remark 3.3, we will present the definitions
in full generality, putting the material of this and the following sections into a
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broader context. Our exposition follows closely [8, Section 2.2], cf. also the classical
sources [16,33].

Definition 2.1. A partial cyclic order on a set C is a ternary relation C � C �3

satisfying the following conditions.

(i) The triplet .c; c; c/ belongs to C for any c 2 C .

(ii) If .a; b; c/ 2 C and .b; a; c/ 2 C, then cardfa; b; cg � 2.

(iii) Let a; b; c; d 2 C be mutually distinct elements. If .a; b; c/ 2 C and
.a; c; d/ 2 C, then .a; b; d/ 2 C and .b; c; d/ 2 C.

(iv) If .a; b; c/ 2 C, then .b; c; a/ 2 C.

(v) If .a; b; c/ 2 C, then .a; a; c/ 2 C.

If C satisfies, moreover, the condition:

(vi) for any a; b; c 2 C , either .a; b; c/ 2 C, or .b; a; c/ 2 C,

then C is called a total cyclic order. A cyclically ordered set is a couple C D .C;C/

of a set with a (partial or total) cyclic order.

Example 2.2. Each set C with less than two elements (including the empty one)
has a unique total cyclic order C D C �3. The disjoint union S D C1 [ � � � [ Cb of
cyclically ordered sets Ci D .Ci ;Ci/, 1 � i � b, bears a natural induced cyclic order
C1 [ � � � [ Cb , cf. [33, Definition 3.7]. Each subset T � C of a cyclically ordered
set C D .C;C/ bears an induced cyclic order CjT .

To define morphisms, we need the following construction. Assume that
� W C 0 ! C 00 is a map of sets, that C 00 bears a partial cyclic order C

00, and that
one is given a partial linear order �c on each fiber ��1.c/, c 2 C 00.

Definition 2.3. The lexicographic order C
0 D Lex

�
�; f�cg

�
on C 0 is given by

postulating that .a; b; c/ 2 C
0 if

�
�.a/; �.b/; �.c/

�
2 C

00 and either

(i) The elements �.a/; �.b/; �.c/ are mutually distinct, or

(ii) for some cyclic permutation .x; y; z/ 2
˚
.a; b; c/; .b; c; a/; .c; a; b/

	
one has

�.x/ D �.y/ ¤ �.z/; x ��.x/ y;

(iii) or �.a/ D �.b/ D �.c/ and x ��.x/ y ��.x/ z for some .x; y; z/ 2˚
.a; b; c/; .b; c; a/; .c; a; b/

	
.

If C0 is a total cyclic order and each �c a total linear order, then Lex
�
�; f�cg

�

is a total cyclic order. If, moreover, C 0 and C 00 are finite sets, a simple alternative
description of the lexicographic order is given in [8, Example 2.2.2(4)].

Example 2.4. If � W C 0 ! C 00 is a monomorphism of sets and C 00 is totally ordered,
then the induced lexicographic order on C 0 is the inverse image .��3/�1.C00/ of C00

under the map ��3 W C 0�3 ! C 00�3. The opposite extreme is when A D .A; �/ is a
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totally linearly ordered set and � W A ! � the (unique) map to a one-point set. The
total lexicographic order C induced on A by � is then given by

.a; b; c/ 2 C if and only if a � b � c or b � c � a or c � a � b: (2.1)

The following notation will often be used in the sequel.

Definition 2.5. For a totally ordered set A D .A; �/ we denote by ŒA� the underlying
set of A with the total cyclic order (2.1). We say that this cyclic order is represented

by the linear order �.

We can finally define morphisms of cyclically ordered sets, cf. [8, Defini-
tion 2.2.9].

Definition 2.6. Let C 0 D .C 0;C0/ and C 00 D .C 00;C00/ be partially cyclically ordered
sets.

If the order C0 is total, then a morphism .C 0;C0/ ! .C 00;C00/ is a couple
�
�; f�cg

�

consisting of a map � W C 0 ! C 00 of the underlying sets and of a family f�cg of total
linear orders on each fiber ��1.c/, c 2 C 00, such that Lex

�
�; f�cg

�
D C0.

If .C 0;C0/ is a partially cyclically ordered set, then a morphism is a compatible
system of morphisms .T;C0jT / ! .C 00;C00/ given for all totally cyclically ordered
subsets T � C 0.

Example 2.7. A morphism of cyclically ordered sets is therefore a map of the
underlying sets plus some additional data. We will however actually need only
morphisms whose underlying map is an isomorphism. Since all its fibers are one-
point sets, we do not need any additional data, and such a morphism will simply be
an isomorphism � W C 0 ! C 00 of the underlying sets for which .��3/�1.C00/ D C

0.

From now on, by a cyclic order (without the adjective partial) we will always
mean a total cyclic order. While linearly ordered sets A are naturally represented by
horizontal intervals oriented from the left to the right, or as the combs

whose teeth represent elements of A, we depict cyclically ordered sets C as
circumferences of counterclockwise oriented circles in the plane R

2. We call such
pictures pancakes:

(2.2)

with the spikes representing elements of C . Our pancakes appeared as ‘spiders’
in [5,32], and, in the form of 2k-gons, as complementary regions of quasi-filling arc
systems in [22, Section 4].

We will need to extend the notation of Definition 2.5 as follows. For finite ordered
sets A1; : : : ; Ak we denote by A1 � � � Ak , their union with the unique order in which
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A1 < � � � < Ak , and by ŒA1 � � � Ak� the corresponding cyclically ordered set. If e.g.
A1 D fug we abbreviate ŒfugA2� by ŒuA2�, &c.

Remark 2.8. While A1A2 6D A2A1 when both A1 and A2 are non-empty, ŒA1A2�

always equals ŒA2A1�. Notice that ŒA0� D ŒA00� for some finite ordered sets A0; A00 if
and only if there are ordered sets A1 and A2 such that A0 D A1A2 and A00 D A2A1.

Let Fin (resp. Cyc) denote the category of finite (resp. cyclically ordered finite)
sets and their isomorphisms. As we recall in the Appendix, the pieces P..S// of an
(ordinary) cyclic operad P are indexed by finite sets S 2 Fin, and their structure
operations are

uıv W P..S 0// ˝ P..S 00// �! P
��

.S 0 [ S 00/ n fu; vg
��

; (2.3)

where S 0 and S 00 are disjoint finite sets and u 2 S 0, v 2 S 00.
We will follow the convention used in [32] and distinguish non-† versions of

operads by underlying. A non-† cyclic operad [32, II.5.1] P has its components
P..C // indexed by cyclically ordered sets C 2 Cyc, and structure operations

uıv W P..C 0// ˝ P..C 00// �! P
��

.C 0 [ C 00/ n fu; vg
��

(2.4)

of the same type as (2.3). The codomain of (2.4) however does not make sense unless
we specify a cyclic order on the set

.C 0 [ C 00/ n fu; vg; (2.5)

were C 0 [C 00 is the union of the corresponding underlying sets; we will use this kind
of shorthand freely. It is given by the pancake merging at fu; vg as follows.

Assume that the cyclic order of C 0 is represented by the linear order

a1 < a2 < � � � < ak < u

and the cyclic order of C 00 by

v < b1 < b2 < � � � < bl :

Then we equip (2.5) with the cyclic order is represented by

a1 < a2 < � � � < ak < b1 < b2 < � � � < bl :

Notice that we allow the case when C 0 D fug and C 00 D fvg, then (2.5) is an
empty cyclically ordered set. In the pancake world, (2.5) is realized by merging two
pancakes into one:

C 0 C 0 n fugC 00 C 00 n fvg

H)u v bcbc

(2.6)
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Modular operads [14, Section 2], [32, Section II.5.3] have, besides (2.3), also the
contractions

�uv W P..S I g// ! P
��

S n fu; vgI g C 1
��

;

where S 2 Fin and u; v 2 S are distinct elements; P here has an additional grading
by the genus g 2 N which is irrelevant now. It is therefore natural to expect that our
conjectural non-† modular operad has pieces P.C I g/ indexed by C 2 Cyc, g 2 N

and, besides (2.4), the contractions

�uv W P..C I g// ! P
��

C n fu; vgI g C 1
��

: (2.7)

There is only one natural cyclic order on the subset C n fu; vg of C , namely the
restriction of the cyclic order of C , so we are forced to equip (2.5) with this cyclic
order. The following example shows that it does not work.

Example 2.9. Consider ordered sets X , Y and Z, and distinct symbols u0, u00, v0

and v00. Let

x 2 P
��

ŒXv0Zu0�I g0
��

and y 2 P
��

ŒY u00v00�I g00
��

be arbitrary elements. According to the definition of the cyclic order of (2.5) used
in (2.4),

.x v0ıv00 y/ 2 P
��

ŒZu0XY u00�I g0Cg00
��

and .x u0ıu00 y/ 2 P
��

ŒXv0Zv00Y �I g0Cg00
��

;

thus

�u0u00.x v0ıv00 y/ 2 P
��

ŒXYZ�I g0Cg00C1
��

while

�v0v00.x u0ıu00 y/ 2 P
��

ŒYXZ�I g0Cg00C1
��

:

The standard exchange rule in Definition A.4(iv) between compositions and
contractions in a modular operad must of course hold also in the non-† case, therefore

�u0u00.x v0ıv00 y/ D �v0v00.x u0ıu00 y/: (2.8)

But this is not possible. If X; Y; Z 6D ;, the cyclically ordered sets ŒXYZ� and ŒXZY�

are non-isomorphic, so (2.8) compares elements of different spaces. This quandary
will be resolved by introducing multicyclically ordered sets.

We believe that Figure 3 helps to understand the situation. It shows (from the left
to the right the pancake representing the cyclically ordered set C 0 D ŒXv0Zu0�, the
one representing C 00 D ŒY u00v00� and two realizations of the pancakes representing
the merging of C 0 [ C 00 at fv0; v00g resp. the merging C 0 [ C 00 at fu0; u00g. The
meaning of the dotted lines will be explained in Example 4.3.
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x yu0

u00

Z
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Y

x yv0

Z
v00
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u0

v0
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u00

v00
Y

bc

bc

bc

bc

bc

bc

bc

bc

bc
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Y

X

X

Y

Z

u00

u0

v0

v00

Z

v0ıv00

u0ıu00

D

D

Figure 3. Naïve attempts fail: the relative positions of X and Y decorating the circumferences
of the two pancakes in the last column are interchanged.

3. Multicyclic orders

In this section we introduce multicyclically ordered sets as objects appropriately
indexing the pieces of non-† modular operads.

Definition 3.1. A multicyclic order on a set finite S is a disjoint decomposition
S D C1 [ � � � [ Cb of S into b > 0 possibly empty totally cyclically ordered sets. A
morphism

� W S0 D C 0
1 [ � � � [ C 0

b0 �! S00 D C 00
1 [ � � � [ C 0

b00

is a couple .�; u/ consisting of

(i) a morphism � D
�
�; f�sg

�
W S 0 ! S 00 of the underlying sets with the induced

cyclic orders, and of

(ii) a map u W f1; : : : ; b0g ! f1; : : : ; b00g of the indexing sets

such that that �.C 0
i / � C 00

u.i/
for each 1 � i � b0.

Notice that a given set has infinitely many multicyclic orders, but the geometricity
that we introduce in Definition 3.6 below allows only finite number of them.

Remark 3.2. It is clear that a morphism in Definition 3.1 is given by a family

�i D
�
�i ; f�ci

g
�

W C 0
i ! C 00

u.i/; 1 � i � b0;

of morphisms of totally cyclically ordered sets. This offers the following alternative
description. For a category C denote by coProd.C/ the category of formal finite
coproducts A1 t � � � t As , s � 1, of objects of C with the Hom-sets

coProd.C/
�
A1 t � � � t As; B1 t � � � t Bt

�
WD

Y

1�i�s

a

1�j �t

C.Ai ; Bj /:

Morphisms of Definition 3.1 are precisely morphism in the category coProd.ƒ/

generated by the category ƒ of finite totally cyclically ordered sets.
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We denote by MultCyc the category of multicyclically ordered sets and their
isomorphisms. It contains the full subcategory Cyc of cyclically ordered finite sets
and their isomorphisms embedded as multicyclically ordered sets with b D 1.

Remark 3.3. It follows from the observations in Remark 3.2 that

MultCyc Š coProd.Cyc/;

our basic category of multicyclic sets could therefore be introduced using only
isomorphisms of totally cyclically ordered sets.

Remark 3.4. The underlying set S of each S D C1 [ � � � [ Cb 2 MultCyc has a
partial cyclic order C1 [ � � � [ Cb induced by the cyclic orders Ci of Ci , 1 � i � b.
Notice however that the correspondence S 7! .S;C1 [ � � � [ Cb/ does not induce an
embedding of MultCyc into the category of partially cyclically ordered sets. If, for
instance, S0 D C1 is a non-empty totally cyclically ordered set and S00 D C1 [ C2

with C2 D ;, then the underlying cyclically ordered sets agree, but S0 and S00 are not
isomorphic in MultCyc.

Definition 3.5. A non-† modular module is a functor

E W MultCyc � N ! M;

where M is our fixed symmetric monoidal category and the natural numbers N D

f0; 1; 2; : : :g are considered as a discrete category.

Explicitly, a non-† modular module is a rule .S; g/ 7! E..SI g// that assigns
to each multicyclically ordered S and g 2 N an object E..S; g// 2 M, together
with a functorial family of maps E..�// W E..S0; g// ! E..S00; g// defined for each
isomorphism � W S0 ! S00 of multicyclically ordered sets. If S D C1 [ � � � [ Cb ,
we will sometimes write more explicitly E..C1; : : : ; CbI g// instead of E..SI g//. We
call g the (operadic) genus.

Definition 3.6. We call a couple .S; g/ 2 MultCyc � N with S D C1 [ � � � [ Cb

geometric if
G WD 1

2
.g � b C 1/ 2 N: (3.1)

A non-† modular module E is geometric, if E..SI g// 6D 0 implies that .S; g/ is
geometric.

Geometricity therefore means that g � b C 1 is an even non-negative integer. We
will call G defined in (3.1) the geometric genus and b the number of boundaries. The
reasons for this terminology will be clarified later in Section 7, see also Remark 4.5.

Example 3.7. For g � 3, only the following components of a geometric non-†
modular module can be nontrivial: E..C1I 0//, E..C1; C2I 1//, E..C1; C2; C3I 2// and
E..C1; C2; C3; C4I 3// in the geometric genus 0, and E..C1I 2//, E..C1; C2I 3// in
geometric genus 1.
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Let C be a cyclically ordered set. For u; v 2 C , the set C n fu; vg has an
obvious induced cyclic order given by the restriction of the original one. It naturally
decomposes as

C n fu; vg D I1 [ I2 (3.2)

where I1, I2 are the open intervals whose boundary points are u and v, considered
with the induced cyclic orders. Notice that if u and v are adjacent in the cyclic order,
one or both of I1, I2 may be empty.

If we distribute the elements of C around the circumference of a pancake so that
their cyclic order is induced by the (say) counterclockwise orientation of the oven
plate, then (3.2) is realized by cutting the pancake, with the knife running through u

and v, as in:

C

u

v

I1

I2

H)
bc

bc

Pancake cutting together with pancake merging (2.6) induce two basic operations
on multicyclically ordered sets. The merging starts with two multicyclically ordered
sets

S0 D C 0
1 [ � � � [ C 0

b0 and S00 D C 00
1 [ � � � [ C 00

b00 ;

whose underlying sets S 0 and S 00 are disjoint. For u 2 C 0
i and v 2 C 00

j , let

S0 [ S00 n fu; vg

be the multicyclically ordered set whose underlying set is S 0 [S 00nfu; vg, decomposed
as

C 0
1 [ � � � [ cC 0

i [ � � � [ C 0
b0 [ C 00

1 [ � � � cC 00
j [ � � � [ C 00

b00 [
�
C 0

i [ C 00
j n fu; vg

�
; (3.3)

where b indicates that the corresponding term has been omitted, and
�
C 0

i [ C 00
j n

fu; vg
�

is cyclically ordered as in (2.5).
Let S D C1 [ � � �[ Cb is a multicyclically ordered set, u 2 Ci , v 2 Cj . If i 6D j ,

we define the cut

S n fu; vg (3.4)

to be the multicyclically ordered set whose underlying set S n fu; vg decomposed as

S n fu; vg D C1 [ � � � [ bCi [ � � � cCj [ � � � [ Cb [
�
Ci [ Cj n fu; vg

�
(3.5)

with Ci [ Cj n fu; vg cyclically ordered as in (2.5). If i D j , we define (3.4) as the
multicyclically ordered set given by the decomposition

S n fu; vg D C1 [ � � � [ bCi [ � � � [ Cb [
�
Ci n fu; vg

�
; (3.6)

where Ci n fu; vg is the union of two multicyclically ordered sets as in (3.2). Notice
that the number of cyclically ordered components of (3.3) is b0 C b00 � 1, of (3.5) is
b � 1 and of (3.6) is b C 1.
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4. Biased definition of non-† modular operads

We formulate a definition of non-† modular operads biased towards the bilinear
operations uıv and contractions �uv . Recall that M denotes our basic symmetric
monoidal category; let � be its commutativity constraint. Regarding multicyclically
ordered sets, we use the notation introduced in §3.

Definition 4.1. A non-† modular operad in M D .M; ˝; 1/ is a non-† modular
module

P D
˚
P..SI g// 2 MI .S; g/ 2 MultCyc � N

	

together with morphisms (compositions)

uıv W P..S0I g0// ˝ P..S00I g00// ! P
��

S0 [ S00 n fu; vgI g0 C g00
��

(4.1)

defined for arbitrary disjoint multicyclically ordered sets S0 and S00 with elements
u 2 S 0, v 2 S 00 of their underlying sets, and contractions

�uv D �vu W P..SI g// ! P
��

S n fu; vgI g C 1
��

(4.2)

given for any multicyclically ordered set S and distinct elements u; v 2 S of its
underlying set. These data are required to satisfy the following axioms.

(i) For S0, S00 and u, v as in (4.1), one has the equality

uıv D vıu �

of maps P..S0I g0// ˝ P..S00I g00// ! P
��

S0 [ S00 n fu; vgI g0 C g00
��

.

(ii) For mutually disjoint multicyclically ordered sets S1; S2; S3, and a 2 S1,
b; c 2 S2, b 6D c, d 2 S3, one has the equality

aıb.id ˝ cıd / D cıd . aıb ˝id/

of mapsP..S1I g1//˝P..S2I g2//˝P..S3I g3// ! P
��

S1 [S2 [S3nfa; b; c; dgI

g1Cg2Cg3

��
.

(iii) For a multicyclically ordered set S and mutually distinct a; b; c; d 2 S , one
has the equality

�ab �cd D �cd �ab

of maps P..SI g// ! P
��

S n fa; b; c; dgI g C 2
��

.

(iv) For multicyclically ordered sets S0; S00 and distinct a; c 2 S 0, b; d 2 S 00, one
has the equality

�ab cıd D �cd aıb

of maps P..S0 [ S00I g// ! P
��

S0 [ S00 n fa; b; c; dgI g C 1
��

.
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(v) For multicyclically ordered sets S0; S00 and mutually distinct a; c; d 2 S 0,
b 2 S 00, one has the equality

aıb .�cd ˝ id/ D �cd aıb

of maps P..S0 [ S00I g// ! P
��

S0 [ S00 n fa; b; c; dgI g C 1
��

.

(vi) For arbitrary isomorphisms � W S0 ! D0 and � W S00 ! D00 of multicyclically
ordered sets and u, v as in (4.1), one has the equality

P
��

�jS 0nfug [ � jS 00nfvg

��
uıv D �.u/ı�.v/

�
P..�// ˝ P..�//

�

of maps P..S0I g0// ˝ P..S00I g00// ! P
��

D0 [ D00 n f�.u/; �.v/gI g0 C g00
��

.

(vii) For S, u, v as in (4.2) and an isomorphism � W S ! D of multicyclically
ordered sets, one has the equality

P
��

�jDnf�.u/;�.v/g

��
�ab D ��.u/�.v/P..�//

of maps P..SI g// ! P
��

S n f�.u/; �.v/gI g C 1
��

.

Remark 4.2. While �uv D �vu, the behavior of the uıv-operation under the
interchange u $ v is given by axiom (i). Axioms (ii)–(v) are interchange rules
between uıv’s and the contractions, while the remaining two axioms describe how
the structure operations behave under automorphisms. In (vi) and (vii) one sees the
restrictions of automorphisms of multicyclically ordered sets. It is clear that they are
automorphisms of the corresponding multicyclically ordered subsets.

Example 4.3. With the definition of non-† modular operads given above, both sides
of (2.8) belong to the same space, namely toP

��
ŒXY �; ŒZ�I g0Cg00C1

��
. The problem

risen in Example 2.9 is thus resolved by cutting the two rightmost pancakes in Figure 3
along the dotted lines.

Definition 4.4. A non-† modular operad P is geometric, if its underlying non-†
modular module is geometric.

Notice that the uıv-operations always preserve the geometric genus (3.1). The
contractions �uv preserve it if u; v in (4.2) belong to the same component of the
multicyclically ordered set S, and raise it by 1 if they belong to different components
of S. Therefore each non-† modular operad P contains a maximal geometric
suboperad.

From this point on, we assume that all non-† modular operads are geometric.
With this assumption, the only nontrivial components of P in (operadic) genus 0 are
P..C I 0//, where C is a cyclically ordered set, i.e. a multicyclically ordered set with
one component. It is simple to show that the collection

�P WD
˚
P..C I 0//I C is cyclically ordered
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together with uıv operations (4.1) is a non-† cyclic operad. So we have the forgetful
functor

� W NsModOp! NsCycOp: (4.3)

In Section 6 we construct its left adjoint Mod W NsCycOp! NsModOp.
One also has the forgetful functor (the desymmetrization) Des W ModOp !

NsModOp given by
Des.P/..SI g// WD P..S//;

where S is the underlying set of the multicyclically ordered set S. It has the left
adjoint Sym W NsModOp! ModOp given by

Sym.P/..S I g// WD
a

P..SI g//; (4.4)

where the coproduct runs over all multicyclically ordered sets whose underlying set
equals S . Notice that the geometricity guarantees that the coproduct in (4.4) is finite.
We call Sym.P/ the symmetrization of the non-† modular operad P .

Remark 4.5. Assuming the geometricity, the category of non-† cyclic operads
is isomorphic to the full subcategory of non-† modular operads P such that
P..SI g// D 0 for g � 1. Without the geometricity assumption, this natural property
that obviously holds for ordinary modular operads, will not be true. A ‘geometric’
explanation of the geometricity will be given in Remark 7.1.

Example 4.6. Assume that the basic monoidal category is the cartesian category Set
of sets and let � be a fixed one-point set. Then one has the terminal non-† modular
operad �M with

�M ..SI g// WD � for each geometric .S; g/ 2 MultCyc � N;

with all structure operations the unique maps � ! � or � � � ! �.

5. Un-biased definition of non-† modular operads

We give an alternative definition of non-† modular operads as algebras over a certain
monad of decorated graphs representing their pasting schemes, thus extending the
table in [30, Figure 14]. This way of defining various types of operads is standard,
see e.g. [14, §2.20], [32, II.1.12, II.5.3] or [30, Theorem 40], so we only emphasize
the particular features of the non-† modular case. We start by recalling a definition
of graphs suggested by Kontsevich and Manin [24] commonly used in operad theory.
More refined notions of graphs already exist, see e.g. [3, Part 4], but we will not need
them here.

Definition 5.1. A graph � is a finite set Flag.�/ (whose elements are called flags or
half-edges) together with an involution � and a partition �.
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The vertices Vert.�/ of a graph � are the blocks of the partition �. The edges

edge.�/ are pairs of flags forming a two-cycle of � relative to the decomposition of
a permutation into disjoint cycles. The legs Leg.�/ are the fixed points of � .

We denote by Leg.v/ the flags belonging to the block v or, in common speech,
half-edges adjacent to the vertex v. The cardinality of Leg.v/ is the valency of v.
We say that two flags x; y 2 Flag.�/ meet if they belong to the same block of the
partition �. In plain language, this means that they share a common vertex.

Definition 5.2. A non-† modular graph � is a connected graph as above that has,
moreover, the following local structure at each vertex v 2 Vert.�/:

(i) a multicyclic order of the set Leg.v/ of half-edges adjacent to v and

(ii) a genus gv 2 N.

Remark 5.3. Non-† modular graphs satisfying moreover a stability condition already
appeared under the name stable graphs in [23, Appendix B], or as stable ribbon

graphs in [1, Section 8], in connection with compactifications of moduli spaces
of Riemann surfaces, cf. also [34, Section 1]. The relation between stable ribbon
graphs and quotients of ribbon graphs was discussed in [27, Section 9]. The local
multicyclic structure of graphs dual to arc families was also explicitly recognized
in [18, Appendix A.1], while the global one is apparent at the set of marked points
of windowed surfaces [20, Section 1].

We will denote by Leg.v/ the set Leg.v/ with the given multicyclic order and
by bv the number of cyclically ordered subsets in the corresponding decomposition.
We say that � is geometric if at each v 2 Vert.�/,

Gv WD 1
2
.gv C 1 � bv/ 2 N:

Crucially, the local structure of a non-† modular graph induces the same kind of
structure on its external legs:

Proposition 5.4. The set of legs of a non-† modular graph has an induced multicyclic

order.

Proof. By an oriented edge cycle in � we understand a sequence

.a1; b1/; .a2; b2/; : : : ; .as; bs/;

where ai ; bi are half-edges such that �.ai/ D bi for 1 � i � s. So, if ai 6D bi ,
.ai ; bi / is an oriented edge, if ai D bi it is a leg of � . We require that ai is the
immediate successor of bi�1, 1 < i � s, and that a1 is the immediate successor of bs

in the cyclically ordered set to which these elements belong.
If this cyclically ordered set consists of bi�1 resp. of bs only, then of course

ai D bi�1 resp. a1 D bs so the cycle runs back along the same half-edge. We also
assume that each ordered couple .ai ; bi / occurs exactly once so that the cycle does
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not not run twice along itself. This does not exclude that .ai ; bi / D .bj ; aj /, i.e. that
the cycle runs twice along the same edge, but each time in different direction.

Let fX1; : : : ; Xbg be the set of oriented edge cycles of � and

Ci WD
˚
e 2 Leg.�/I .e; e/ 2 Xi ; 1 � i � b

	
: (5.1)

Then C1; : : : ; Cb is the required disjoint decomposition of Leg.�/ and each
individual Ci is cyclically ordered by the cyclic orientation of the corresponding
edge cycle.

We will denote by Leg.�/ the set Leg.�/ with the multicyclic order of
Proposition 5.4 and by b.�/ the number of cyclically ordered sets in the
decomposition of Leg.�/. The (operadic) genus of a non-† modular graph is defined
by the usual formula [32, (II.5.28)]

g.�/ WD b1.�/ C
X

v2Vert.�/

g.v/;

where b1.�/ is the first Betti number of � , i.e. the number of independent circuits
of � . We leave as an exercise to prove

Proposition 5.5. If � is geometric then
�
Leg.�/; g

�
2 MultCyc � N is geometric,

too, i.e.

G.�/ WD 1
2

�
g.�/ C b.�/ � 1

�
2 N:

A morphism f W �0 ! �1 of graphs is given by a permutation of vertices,
followed by a contraction of some edges of the graph �0, leaving the legs untouched;
a precise definition can be found in [32, II.5.3]. Assume that �0 and �1 bear a non-†
modular structure. It is simple to see that the non-† modular structure of �0 induces
via f a non-† modular structure on �1. We say that f W �0 ! �1 is a morphism of

non-† modular graphs if this induced structure on �1 coincides with the given one.
For a multicyclically ordered set S, let �..SI g// be the category whose objects are

pairs .�; �/ consisting of a non-† modular graph � of genus g and an isomorphism
� W Leg.�/ ! S of multicyclically ordered sets. Morphisms of �..S I g// are
morphisms as above preserving the labelling of the legs. The category �..SI g// has
a terminal object ?S;g , the ‘non-† modular corolla’ with no edges, one vertex v of
genus g and legs labeled by S.

For a non-† modular module E and a non-† modular graph � , one forms the
unordered product [32, Definition II.1.58]

E.�/ WD
O

v2Vert.�/

E..Leg.v/I gv//: (5.2)

Let Iso�..SI g// denote the subcategory of isomorphisms in �..SI g//. The
correspondence � 7! E.�/ extends to a functor from the category Iso�..SI g//
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to M. We define the endofunctor M W NsModMod ! NsModMod on the category of
non-† modular modules as the colimit

M.E/..SI g// WD colim
� 2 Iso�..SI g//

E.�/:

For each non-† modular graph � 2 �..SI g// one has the coprojection

�� W E.�/ �! M.E/..S; g//: (5.3)

In particular, for the corolla ?S;g , one gets the morphism

�?S;g
W E.SI g/ D E.?S;s/ �! M.E/..SI g//: (5.4)

Given a non-† modular module E, the second iterate .M ı M/.E/ is a colimit
of non-† modular graphs whose vertices are decorated by non-† modular graphs
decorated by E, i.e. a colimit of ‘nested’ graphs. Forgetting the nests gives rise to a
natural transformation

� W M ı M �! M (the multiplication)

while morphisms (5.4) form a natural transformation

� W id �! M (the unit).

Precisely as in [14, §2.17] or in the proof of [32, Theorem II.5.10] one shows that
M D .M; �; �/ is a monad on the category NsModMod. We have the following
theorem/definition.

Theorem 5.6. Non-† modular operads are algebras for the monad M D .M; �; �/.

Proof. A straightforward modification of the proof of [32, Theorem II.5.41].

A non-† modular operad is thus a non-† modular module P equipped with a
morphism

˛ W M.P/ �! P (5.5)

of non-† modular modules having the usual properties [32, Definition II.1.103]. The
following claim expresses a standard property of algebras over a monad.

Proposition 5.7. The multiplication � W .M ı M/.E/ ! M.E/ makes M.E/ an

algebra for the monad M. It is the free non-† modular operad on the non-† modular

module E.

Thus M.�/ interpreted as a functor NsModMod! NsModOp is the left adjoint to
the obvious forgetful functor F W NsModOp! NsModMod.
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Remark 5.8. The biased structure operations of the free operad M.E/ are induced
by the grafting of the underlying graphs. For graphs � 0, � 00 with legs u 2 Leg.� 0/,
v 2 Leg.� 00/, one has the graph � 0

uıv � 00 obtained by grafting the free end of the
half-edge u to the free end of v. Formally, � 0

uıv � 00 is defined by

Flag.� 0
uıv � 00/ WD Flag.� 0/ [ Flag.� 00/;

the partition of Flag.� 0
uıv � 00/ being the union of the partitions of Flag.� 0/ and

Flag.� 00/, the involution � on Flag.�1 uıv �2/ agreeing with the involution � 0 of
Flag.� 0/ on Flag.� 0/ n fug, with the involution � 00 of Flag.� 00/ on Flag.� 00/ n fvg,
and �.u/ WD v. The contraction �uv.�/ is, for u; v 2 Flag.�/, defined similarly.

Example 5.9. Assume that E is a geometric non-† modular module such that
E..SI g// D 0 for g � 1. In other words, the only nontrivial pieces of E are
E..C I 0//, where C is a cyclically ordered set. The elements of the free non-
† modular operad M.E/ are the equivalence classes of decorated graphs whose
vertices v are umbels with one blossom, i.e. the pancakes (2.2) with the spikes
representing the half-edges in the cyclically ordered set Leg.v/. Free operads of this
form will play a central rôle in our proof of (6.2b).

A very particular case is the geometric non-† modular module � in Set defined
by

�..SI g// WD

(
� if g D 0, and

; otherwise.

In Section 7 we visualize the generators of M.�/ via cog wheels (7.1).

For a non-† modular operad P and � 2 �..SI g// we will call the composition

˛� W P.�/
��

�! .M P/..SI g//
˛

�! P..SI g// (5.6)

of (5.5) with (5.3) the contraction along the graph � . The following analog of [32,
Theorem II.5.42] claims that the contractions are part of a functor:

Theorem 5.10. A geometric non-† modular module P is a non-† modular

operad if and only if the correspondence � 7! P.�/ is, for each geometric

.S; g/ 2 MultCyc�N, an object part of a functor ˛ W �..SI g// ! M extending (5.6).

By this we mean that ˛.f / D ˛� for the unique morphism f W � ! ?S;g .

Proof. A simple modification of the proof of [32, Theorem II.5.42].

6. Modular envelopes

Modular envelopes of (ordinary) cyclic operads were introduced under the name
modular operadic completions by the author in [28, Definition 2]. The modular
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envelope functor Mod W CycOp ! ModOp is the left adjoint to the obvious forgetful
functor � W ModOp ! CycOp. Analogously we define the modular envelope of
a non-† cyclic operad via the left adjoint to the non-† version � of the forgetful
functor considered in Section 4. We of course need to prove that this left adjoint
exists:

Proposition 6.1. The forgetful functor (4.3) has a left adjoint Mod W NsCycOp !

NsModOp.

Proof. The proof will be transparent if we assume that the objects of the basic
category M have elements. Then we take the free non-† modular operad M.F P/

generated by the non-† cyclic collection F P placed in the operadic genus 0 and
define Mod.P/ as the quotient

Mod.P/ WD M.F P/=I (6.1)

of M.F P/ by the operadic ideal I generated by

xuıP
vy D xuıM

vy;

where uıP
v resp. uıM

v are the uıv-operations in P resp. M, x 2 P.C 0/, y 2 P.C 00/,
u 2 C 0 and v 2 C 00 for some disjoint cyclically ordered sets C 0, C 00.

If objects of M do not have elements, we replace the quotient (6.1) by an obvious
colimit. It is clear that (6.1) defines a left adjoint to (4.3).

Definition 6.2. We call Mod.P/ the non-† modular envelope of the non-† cyclic
operad P .

Informally, Mod.P/ is obtained by adding to P the results of contractions,
splinting the cyclically ordered groups of inputs if the contraction takes place within
the same group. This process is nicely visible at Doubek’s construction of the
modular envelope of the operad for associative algebras [9].

If the basic category M is Set, the category of cyclic (resp. non-† cyclic, resp.
modular, resp. non-† modular) operads has a terminal object �C (resp. �C , resp. �M

resp. �M ) consisting of a chosen one-point set � in each arity; the terminal non-†
modular operad �M has already been mentioned in Example 4.6. The main result of
this section is:

Theorem 6.3. The modular envelope of the terminal operad in the category of cyclic

(resp. non-† cyclic) Set-operads is the terminal modular (resp. the terminal non-†

modular) Set-operad, in formulas:

Mod.�C / Š �M (6.2a)

and Mod.�C / Š �M : (6.2b)
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The cyclic operad Com for commutative associative algebras is the linear span of
the terminal cyclic Set-operad, that is Com D Span.�C /. The following immediate
corollary of Theorem 6.3 was stated without proof in [28, p. 382].

Theorem 6.4 ([28]). The modular envelope Mod.Com/ of the cyclic operad for

commutative associative algebras is the linear span of the terminal modular set-

operad, i.e.

Mod.Com/..S I g// D k; .S; g/ 2 Fin�N;

the maps Mod.Com/..�// induced by morphisms in Fin are the identities, all

uıv-operations are the canonical isomorphisms k˝k
Š

�! k and all contractions �uv

are the identities.

Proof. Both Span.�/ and Mod.�/ are the left adjoints to forgetful functors that
commute with each other, so

Span
�
Mod.S/

�
Š Mod

�
Span.S/

�

for each cyclic operad S in Set.

Since the non-† cyclic operad Ass is the linear span of the terminal non-† cyclic
Set-operad �C , we likewise obtain from Theorem 6.3:

Theorem 6.5. The non-† modular envelope Mod.Ass/ of the non-† cyclic operad

Ass for associative algebras is the linear span of the terminal non-† modular operad

in the category of sets. Explicitly,

Mod.Ass/..SI g// D k

for each multicyclically ordered set S and g 2 N. All structure operations are either

the identities of k or the canonical isomorphisms k ˝ k
Š

�! k.

Since the symmetrization (4.4) clearly commutes with the non-† modular
envelope functor, Theorem 6.5 implies the isomorphisms

Mod.Ass/ Š Sym
�
Span.�M /

�
(6.3)

proved in [6,9] though not expressed in this form there.
Let us start proving the isomorphisms (6.2a) and (6.2b) of Theorem 6.3. From

here till the end of this section the basic category will be the category of sets.

Proof of (6.2a). It will be a warm-up for the proof of (6.2b) given below. The
modular envelope Mod.�C / is characterized by the adjunction

ModOp
�
Mod.�C /;P

�
Š CycOp.�C ; �P/ (6.4)

that must hold for each modular Set-operad P . It is clear that there is a one-to-one
correspondence between morphisms in CycOp.�C ; �P/ and families

&.S/ 2 P..S I 0//; S 2 Fin; (6.5)
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such that

P..�//
�
&.S/

�
D &.D/ and &.S 0/ uıv &.S 00/ D &.S 0 [ S 00 n fu; vg/ (6.6)

for each S 0; S 00; u; v; � for which the above expressions make sense.
The theorem will obviously be proved if we exhibit a one-to-one correspondence

between morphisms �C ! �P represented by (6.5), and families

$.S I g/ 2 P..S I g//; S 2 Fin�N; (6.7)

such that $.S I 0/ D &.S/ for each S 2 Fin, and

P..�//
�
$.S I g/

�
D $.DI g/; � W S ! D 2 Fin; (6.8a)

$.S 0I g0/ uıv $.S 00I g00/ D $
�
S 0 [ S 00 n fu; vgI g0 C g00

�
; (6.8b)

and �uv$.S I g/ D $
�
S n fu; vgI g � 2

�
; (6.8c)

whenever the above objects are defined. In the light of (6.4) this is the same as to
show that each family (6.5) uniquely determines a family (6.7) with &.S I 0/ D &.S/

for each S 2 Fin.
Let � be a connected graph of genus g with trivial local genera gv at each vertex,

and Leg.�/ D S . Decorate the vertices of � by (6.5) and denote the result by

&.�/ D
O

v2Vert.�/

&
�
Leg.v/

�
2 M.P/..S I g//;

where M.P/ is the free modular operad [32, Section II.5.3] on the modular
module FP . Formally correct notation would therefore be M.FP/ but we want
to save space. The composition (contraction) c W M.P/..S I g// ! P..S I g// along
the graph � determines

$� WD c
�
&.�/

�
2 P..S I g//: (6.9)

Assume we proved, for � , S and g as above, that

$� depends only on the type of � , i.e. on S and g, not on the concrete � . (6.10)

We claim that then $.S I g/ WD $� is the requisite extension of (6.7).
Indeed, to establish (6.8a), denote by � 0 the graph � with the legs relabeled

according to � . Then (6.10) implies that P..�//$� D $�0 . As for (6.8b), assume
that $.S 0I g0/ D $�0 and $.S 00I g00/ D $�00 . Then $.S 0I g0/ uıv $.S 00I g00/

equals $�0
uıv �00 with � 0

uıv � 00 the grafting recalled in Remark 5.8, which in turn
equals $.S 0 [ S 00 n fu; vgI g0 Cg00/. This proves (6.8b). Property (6.8c) can be
discussed similarly.

Choose a maximal subtree T of � and denote by K WD �=T the result of
shrinking T � K into a corolla. Notice that K has only one vertex. By the
associativity [32, Theorem II.5.42] of the contractions, $� D $K , it is therefore
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enough to prove (6.10) for graphs K with one vertex. Graphically, such a K is a
non-planar ‘tick’ with g ‘bellies’ as in

b

where g D 3. We prove (6.10) by induction on the genus g.
If g D 0, K is the corolla with Leg.K/ D S whose unique vertex is decorated

by $T which equals &.S/, because the contraction in (6.9) uses only the cyclic
part �P of the operad P . Therefore $T does not depend on the choice of T and is
determined by a given map �C ! �P .

Assume we have proved (6.10) for all g0 < g. Let K 0 be a tick obtained by
removing one belly of K. Then clearly Leg.K 0/ D S [ fu; vg for some u and v, and

$K D �uv.$K0/:

By the induction assumption, $K0 equals $
�
S [ fu; vgI g � 1

�
and does not depend

on the concrete form of K 0, so

$K D �uv

�
$.S [ fu; vgI g � 1/

�

depends only on the finite set S and the genus g.

Let us formulate a useful

Definition 6.6. A family (6.5) satisfying (6.6) is an internal operad in the cyclic
operad �P . Similarly (6.7) satisfying (6.8a)–(6.8c) is an internal operad in the
modular operad P . These notions have obvious non-† analogs.

The proof of (6.2b) occupies the rest of this section. Since it follows the scheme
of the proof of Theorem 6.4, we only emphasize the differences. We must to show
that each internal non-† cyclic operad

&.C / 2 P..C I 0//; C 2 Cyc; (6.11)

in �P uniquely extends to an internal non-† modular operad

$.SI g/ 2 P..S; g//; S 2 MultCyc�N

in P such that $.C I 0/ D &.C / for C 2 Cyc � MultCyc.
As in the proof of Theorem 6.4, for a non-† modular graph � with Leg.�/ D S

whose local genera vanish we define $� 2 P..SI g// using the contractions (5.6)
along � in P . We then need to prove an analog of (6.10):

$� depends only on the type of � , i.e. on the multicyclically
ordered set S D Leg.�/ and the genus g D g.�/.

(6.12)
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By choosing a maximal subtree T of � we again reduce (6.12) to graphs K with
only one vertex. This time, K is not a ‘tick’ but a pancake

bc

bc
bc

bc
bcbc

bc
bc

bc

bc

bc
bc

(6.13)

with the internal ribs marking the half-edges which have been contracted.

Example 6.7. The only pancake K with the operadic genus g D 0 has b.K/ D 0. It
is a circle with the circumference decorated by a cyclically ordered set C WD Leg.K/.
In this case $K D &.C /, so (6.10) is satisfied trivially.

Example 6.8. There is only one type of a pancake with g D 1, the left one in
Figure 4.

X

bc

bc

Y

u

v
bc bc

bcbc

X Z

Y1

Y2

u0

u00

v0

v00

bc

bc

bc

bc

X

Z

U Y

u0

u00v00

v0

Figure 4. Three pancakes.

When its circumference is labeled by the ordered sets X and Y as in the figure,
then, by definition

$K WD �uv&
�
ŒXuY v�

�
2 P

��
ŒX�; ŒY �I 1

��
:

We prove that $K depends only on the induced cyclically ordered sets ŒX� and ŒY �,
not on the particular orders of X and Y .

Let, for instance, X 0 be an ordered set such that ŒX 0� D ŒX� and K 0 be the pancake
obtained from K by replacing X by X 0. We will show that

$K D $K0; (6.14)

where

$K0 WD �uv&
�
ŒX 0uY v�

�
2 P

��
ŒX 0�; ŒY �I 1

��
D P

��
ŒX�; ŒY �I 1

��
:
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As we noticed in Remark 2.8, ŒX 0� D ŒX� if and only if there are ordered sets
X1 and X2 such that X D X1X2 and X 0 D X2X1. By the interchange (iv) of
Definition 4.1,

�v0v00

˚
&.Œu0v0X1�/ u0ıu00 &.ŒX2v00Y u00�/

	
D �u0u00

˚
&.Œu0v0X1�/ v0ıv00 &.ŒX2v00Y u00�/

	
:

(6.15)
The corresponding term in the curly bracket in the left hand side equals

&
�
Œu0v0X1�

�
u0ıu00 &

�
ŒX2v00Y u00�

�
D &

�
Œv0X1X2v00Y �

�

D &
�
ŒX1X2v00Y v0�

�
D &

�
ŒXv00Y v0�

�
;

while the term in the right hand side is

&
�
Œu0v0X1�

�
v0ıv00 &

�
ŒX2v00Y u00�

�
D &

�
ŒX1u0Y u00X2�

�

D &
�
ŒX2X1u0Y u00�

�
D &

�
ŒX 0u0Y u00�

�
;

thus (6.15) implies

�v0v00&
�
ŒXv00Y v0�

�
D �u0u00&

�
ŒX 0u0Y u00�

�

which is (6.14). The independence of the particular order of Y can be proved
similarly.

Example 6.9. There are two types of pancakes with g D 2. The middle one in
Figure 4 has b D 3 and

$K D �u0u00�v0v00&
�
ŒXu0Y1v0Zv00Y2u00�

�
2 P

��
ŒX�; ŒY1Y2�; ŒZ�I 3

��
: (6.16a)

The second type in the right hand side of Figure 4 has b D 1 and

$K D �u0u00�v0v00&
�
Xv0Y u00Zv00Uu0

�
2 P

��
ŒUZYX�I 2

��
: (6.16b)

We leave as an exercise on the axioms of non-† modular operads to prove that the
elements $K in (6.16a) resp. in (6.16b) depend only on the cyclically ordered sets
ŒX�, ŒY1Y2� and ŒZ� resp. ŒUZYX�.

We prove (6.12) by induction based on the following simple:

Lemma 6.10. Let K be a pancake with g > 0.

(i) If b.K/ D 1, then there exist a pancake K 0 obtained by removing one rib of K

such that b.K 0/ D 2.

(ii) If b.K/ > 1, then there exist a pancake K 0 obtained from K by removing one

rib that has b.K 0/ D b.K/ � 1.

Proof. The case b.K/ D 1 may happen only when g.K/ is even, by the
geometricity (3.1). Thus by removing an arbitrary rib we obtain a pancake K 0

with b.K 0/ D 2. This proves (i).
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To prove (ii) we analyze the pancake (6.13) representing K. The legs of K are
irrelevant for the proof so we ignore them. Let us inspect how the ribs enter the
circumference of the pancake. The oriented edge cycles (5.1) are the boundaries of
the regions between the ribs:

Ci Cj Ck

bc bc

In this picture, the horizontal line represents a part of the circumference of the pancake
and the vertical lines the ribs.

It is simple to see that removing a rib adjacent to two different regions
decreases b.K/ by one. Since b.K/ > 1 by assumption, there are at least two
different edge cycles, therefore such a rib exists. This finishes the proof.

Let us finally start the actual inductive proof of (6.12). The cases when g.K/ � 2

are analyzed in Examples 6.7–6.9. Fix g � 3, assume that we have proved (6.12) for
all K’s with g.K/ < g and prove it for K with g.K/ D g. As in Lemma 6.10 we
distinguish two cases.

Case 1: b.K/ D 1. As there are no pancakes with b.K/ D 1 and g.K/ D 4, in this
case in fact g.K/ � 4. By Lemma 6.10.(i) and the inductive assumption,

$K D �u0u00$
�
ŒX1u0�; Œu00X2�I g � 1

�
; (6.17)

where X1, X2 are ordered sets such that C WD Leg.K/ D ŒX1X2�. We must show
that the right hand side of (6.17) does not depend on the particular choices of X1

and X2. The choices are represented by a rib of a circle with the circumference
decorated by C as in Figure 5–left.

bc

bc

u0

u00
X1

X2

bc

bc

bcbc

v00

v0

u00

u0

X

Y

Z

U

bc

bc

bc

bc

Y

X
U

Z

v0

v00

u0

u00

Figure 5. One rib (left), two crossing ribs (middle) and two parallel ribs (left).

Assume we have two different ribs, C D ŒX 0
1X 0

2� and C D ŒX 00
1 X 00

2 �. They may
either be crossing as in the middle of Figure 5, or parallel as in the rightmost picture
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of Figure 5. The crossing case is parametrized by ordered sets X; Y; Z; U such that

X 0
1 D ZY; X 0

2 D XU; X 00
1 D YX and X 00

2 D UZ;

see Figure 5 again. The element

$
�
Œv00Y u00Zv0Uu0X�I g � 2

�
2 P

��
Œv00Y u00Zv0Uu0X�I g � 2

��

is then the ‘equalizer’ of the ribs, which is expressed by the commutative square

$
�
Œv00Y u00Zv0Uu0X�I g � 2

�
✶

�v0v00

xxqqq
qq
qq
qq ✍ �u0u00

&&◆◆
◆◆◆

◆◆◆
◆◆

$
�
ŒX 0

1u00�; Œu0X 0
2�I g � 1

�
✎

�u0u00 ''❖❖
❖❖❖

❖❖❖
❖❖

$
�
ŒX 00

1 v00�; Œv0X 00
2 �I g � 1

�
:✴

�v0v00ww♦♦♦
♦♦♦

♦♦♦
♦♦

$K

Therefore

�u0u00$
�
ŒX 0

1u0�; Œu00X 0
2�I g � 1

�
D �u0u00$

�
ŒX 00

1 u0�; Œu00X 00
2 �I g � 1

�

as we needed to show. Notice that we need to assume g � 2 in order the equalizer to
exist.

The non-crossing case is parametrized by ordered sets X; Y; Z; U such that

X 0
1 D ZYX; X 0

2 D U; X 00
1 D XUZ and X 00

2 D Y:

The equalizer of these two choices is $
�
ŒXu0Zv0�; Œv00Y �; Œu00U �I g�2

�
as the reader

easily verifies. This finishes the discussion of the b.K/ D 1 case.

Case 2: b.K/ > 1. Now K is of type .C1; : : : ; CbI g/ with b � 2. Lemma 6.10.(ii)
translates to the formula

$K D �u0;u00$
�
C1; : : : ; bCi ; : : : ; cCj ; : : : ; Cb; Œu0Xi u

00Xj �I g � 1
�
; (6.18)

where b indicates the omission and Xi , Xj are ordered sets such that ŒXi � D Ci

and ŒXj � D Cj . As before we must prove that the right hand side of (6.18) does not
depend on the particular choices of i , j and ordered sets Xi , Xj . So suppose that we
have two different choices

ŒX 0
i � D Ci 0 ; ŒX 0

j � D Cj 0 ; resp. ŒX 00
i � D Ci 00 ; ŒX 00

j � D Cj 00

for some ordered sets X 0
i ; X 0

j ; X 00
i ; X 00

j and 1 � i 0 < j 0 � b, 1 � i 00 < j 00 � b. We
distinguish three cases.
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Case 2(i): fi 0; j 0g D fi 00; j 00g. We may clearly assume that i 0 D i 00 D1, j 0 Dj 00 D2.
Since Ck’s with k > 2 do not affect calculations we will not explicitly mention them.
We therefore have

C1 D ŒX 0
1� D ŒX 00

1 �; C2 D ŒX 0
2� D ŒX 00

2 �;

which, as observed in Remark 2.8, happens if and only if there are ordered sets
X; Y; Z; U such that

X 0
1 D XY; X 0

2 D ZU; X 00
1 D YX and X 00

2 D UZ:

One easily verifies that then $
�
ŒY v00Zu0�; Œu00Uv0X�I g � 2

�
is a equalizer of these

choices.

Case 2(ii): the cardinality of fi 0; j 0; i 00; j 00g is 3. We may assume that i 0 D 1,
j 0 D i 00 D2, j 00 D3, and neglect Ck’s with k > 3. So we have two presentations

$K D $
�
Œu0X1u00X 0

2�; C3I g � 1
�

and $K D $
�
C1; Œv0X 00

2 v00X3�I g � 1
�

(6.19)

in which C1 D ŒX1�; C2 D ŒX 0
2� D ŒX 00

2 � and C3 D ŒX3�. By Remark 2.8, there
are ordered sets Y , Z such that X 0

2 D YZ and X 00
2 D ZY . One easily sees that

$
�
u0X1u00Y v0X3v00ZI g � 2

�
is a equalizer for the two presentations in (6.19). The

last case is

Case 2(iii): the cardinality of fi 0; j 0; i 00; j 00g is 4. This case is simple so we leave
its analysis to the reader. This finishes the proof of Theorem 6.5.

Remark 6.11. The computations in this section, namely in Example 6.8, can be used
to lift the commutativity assumption in [22, Section 4.1], cf. namely Remark 4.1
of [22], proving that TFT’s as functors from the category of cobordisms to vector
spaces are equivalent to Frobenius algebras.

7. Surface models of Mod.Ass/

In this section we recall the approach which J. Chuang and A. Lazarev used to prove
their [6, Theorem 3.7] that describes the modular envelope Mod.Ass/ via the set
of isomorphism classes of oriented surfaces with teethed holes. We also present a
parallel approach due to R.M. Kaufmann, M. Livernet and R.C. Penner [19,20]. Our
setup nicely conveys their ideas. The above mentioned authors of course worked
in the category of ordinary operads, but what they did in fact took place within
non-† modular operads. In the second half of this section we briefly mention a
non-oriented modification due to C. Braun [4]. Throughout this section, the basic
monoidal category will be the cartesian category Set of sets.
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Let � be the geometric non-† modular module of Example 5.9. Its generators
�..C // will this time be visualized as oriented cog wheels

(7.1)

whose cogs are indexed by the cyclically ordered set C . The elements of the free
non-† modular operad M.�/ are then obtained by gluing these wheels together along
the tips of their cogs so that the orientation is preserved, see Figure 6–left.

Figure 6. Oriented (left) and un-oriented (right) glueing of cog wheels.

It is an exercise in combinatorial geometry that M.�/.C1; : : : ; CbI g/ consists of
all decompositions of an oriented surface of the genus

G D 1
2
.g � b C 1/ (7.2)

with b teethed boundaries whose teeth are labelled by the cyclically ordered sets
C1; : : : ; Cb shown in Figure 7.
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Figure 7. The oriented surface with b teethed boundaries and genus G.

By (6.1), the modular envelope Mod.�C / is the quotient of M.�/ D M
�
F .�C /

�

by the relations that forget how a concrete surface was build from the cog wheels. As
in the proof of [6, Theorem 3.7] we therefore identify, referring to the results of [17],
Mod.�C / with the set of isomorphism classes of surfaces as in Figure 7. Since there
is only one isomorphism class for a given geometric .C1; : : : ; CbI g/ 2 MultCyc�N,
we get (6.2b).
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Remark 7.1. Notice that, given .C1; : : : ; CbI g/ 2 MultCyc� N, there exists a
surface as in Figure 7 if and only if .C1; : : : ; CbI g/ is geometric. This shall explain
our terminology.

Other incarnations of the surface model of the operad Mod.�C / appeared also e.g.
in [19,20]. Let us outline its basic features. Our exposition will be merely sketched
and also the notation will serve only for the purposes of this section. Denote by Sur

the modular operad of isomorphism classes of surfaces as in Figure 7, with the operad
structure given by glueing the tips of the teeth. This operad is a version of the operad
of isomorphism classes of windowed surfaces introduced in [20, Section 1], with the
rôle of teeth played by marked points on the boundary.

The operad Arc of isotopy classes of arc families in windowed surfaces, see [19,
Section 1] or [20, Section 2], contains the suboperad T ri of arc families whose
complementary regions triangulate the underlying surface. One has the commutative
diagram

Mod.�C /
!

Š
// Sur

T ri

ˇ
dddd❏❏❏❏❏❏❏❏❏

˛
<< <<②②②②②②②②

�

� // Arc


bbbb❊❊❊❊❊❊❊❊

in which  W Arc ! Sur associates to an arc family its underlying surface, and
˛ W T ri ! Sur is the restriction of  . Both maps are surjective because every
surface has a triangulation. The existence of the third map ˇ W T ri ! Mod.�C /

follows from the freeness T ri while ! exists because Sur contains �C as a cyclic
suboperad. The morphism ˇ is surjective as well, since T ri contains the generators
of the terminal non-† cyclic operad �C .

To establish that ! is an isomorphism, one needs to know that the kernel of ˛

contains the kernel of ˇ. In geometric terms this means that all triangulations of a
given surface differ by a sequence of ‘elementary moves’ corresponding to the axioms
of modular operads.

Despite its conceptual clarity, the above approaches relied on a rather deep result
of [17] that the classifying space of the category of ribbon graphs of genus G with b

boundary components is homeomorphic to the moduli space of Riemann surfaces of
the same genus and the same number of boundary components. We therefore still
believe that a direct combinatorial description of Mod.Ass/ given in [9] or here has
some merit.

Remark 7.2. There are three equivalent pictures of the surface model for Mod.�C /:
teethed surfaces in Figure 7 and the windowed surfaces with marked points on the
boundary, resp. appropriate subdivisions of these surfaces given by arc families.
The third, dual picture, closer to the approach of the present article, uses graphs
whose vertices correspond to the regions of the subdivision and the edges to the their
common boundaries. This remark should relate e.g. [1, 18, 20] where these objects
were used in the operadic context, to the present article.
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A non-oriented variant of the above calculations starts with the cyclic operad �D

whose component �D..S// consists of cog wheels whose cogs are indexed by the
finite set S and have their tips decorated by arrows, as

Clearly, if S has n elements, �D..S// has 2n�1.n � 1/Š elements. The structure
operations glue the tips of the cogs in such a way that the arrows go in the opposite
directions, as in

u v
uıv
7�!

The operad �D is the Möbiusisation [4, Definition 3.32] of the terminal cyclic
operad �C , the subscript D referring to the dihedral structure [31, Section 3]
that �D carries. Algebras over its linearization Span.�D/ are associative algebras
with involution [4, Proposition 3.9]. The Chuang-Lazarev approach applies also
to this situation, except that the sewing may not preserve the orientations now, see
Figure 6–right. Indeed, C. Braun (who of course worked in k-Mod not in Set) proved

Theorem 7.3 ( [4, Theorem 3.10]). The component Mod.�D/..S I g// of the modular

envelope Mod.�D/ is the set of isomorphism classes of (not necessarily oriented)

surfaces with b teethed holes whose teeth are labeled by S , with m handles and u

crosscaps such that g D 2m C b C u � 1.

As we theorized in the Introduction, we believe that Mod.�D/ is (related to) the
terminal operad in a suitable category of dihedral operads.

A. Cyclic and modular operads

There are two versions of biased definitions of operads. The skeletal version has
natural numbers as the arities, in the non-skeletal the arities are finite sets. We recall,
following [9, Section 2], the non-skeletal definitions of classical cyclic and modular
operads.

Definition A.1. A cyclic module is a functor E W Fin ! M from the category of
finite sets and their isomorphisms to our fixed symmetric monoidal category M.
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Definition A.2. A cyclic operad in M D .M; ˝; 1/ is a cyclic module

P D
˚
P..S// 2 MI S 2 Fin

	

together with morphisms (compositions)

uıv W P..S 0// ˝ P..S 00// ! P
��

S 0 [ S 00 n fu; vg
��

(A.1)

defined for arbitrary disjoint sets S 0 and S 00 with elements u 2 S 0, v 2 S 00. These
data are required to satisfy the following axioms.

(i) For S 0, S 00 and u, v as in (A.1), one has the equality

uıv D vıu �

of maps P..S 0// ˝P..S 00// ! P
��

S 0 [ S 00 n fu; vg
��

, where � is the symmetry
constraint in M.

(ii) For mutually disjoint sets S1; S2; S3, and a 2 S1, b; c 2 S2, b 6D c, d 2 S3,
one has the equality

aıb.id ˝ cıd / D cıd . aıb ˝id/

of maps P..S1//˝P..S2//˝P..S3// ! P
��

S1 [S2 [S3 n fa; b; c; dg
��

.

(iii) For arbitrary isomorphisms � W S 0 ! D0 and � W S 00 ! D00 of sets and u, v as
in (A.1), one has the equality

P
��

�jS 0nfug [ � jS 00nfvg

��
uıv D �.u/ı�.v/

�
P..�// ˝ P..�//

�

of maps P..S 0// ˝ P..S 00// ! P
��

D0 [ D00 n f�.u/; �.v/g
��

.

The category Fin of finite sets is equivalent to its full skeletal subcategory Finsk

whose objects are the sets Œn� WD f1; : : : ; ng, n � 0, with Œ0� interpreted as the empty
set ;. The components of the skeletal version of P are

P.n/ WD P
��

ŒnC1�
��

; n � �1;

with the induced action of the symmetric group †nC1 D Aut
�
ŒnC1�

�
. The structure

operations

iıj W P.m/ ˝ P.n/ ! P.mCn�1/; 0 � i � m; 0 � j � n;

are induced from the equivalence of Fin with Finsk.
Notice that we allow also the component P.. ; // D P.�1/ and the operation

uıv W P
��

fug
��

˝ P
��

fvg
��

! P.. ; // resp. 0ı0 W P.0/ ˝ P.0/ ! P.�1/;

while the original definition [13, Theorem 2.2] always requires an ‘output,’ i.e. the
arities must be non-empty sets (or n � 0 in the skeletal P.n/). We do not demand
operadic units.
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Definition A.3. A modular module is a functor

E W Fin � N ! M;

where the natural numbers N D f0; 1; 2; : : :g are considered as a discrete category.

Definition A.4. A modular operad in M D .M; ˝; 1/ is a modular module

P D
˚
P..S I g// 2 MI .S; g/ 2 Fin � N

	
(A.2)

together with morphisms (compositions)

uıv W P..S 0I g0// ˝ P..S 00I g00// ! P
��

S 0 [ S 00 n fu; vgI g0 C g00
��

defined for arbitrary disjoint sets S 0 and S 00 with elements u 2 S 0, v 2 S 00, and
contractions

�uv D �vu W P..S I g// ! P
��

S n fu; vgI g C 1
��

given for any set S and distinct elements u; v 2 S . These data are required to satisfy
the following axioms.

(i) For S 0, S 00 and u, v as in (A.2), one has the equality

uıv D vıu �

of maps P..S 0I g0// ˝ P..S 00I g00// ! P
��

S 0 [ S 00 n fu; vgI g0 C g00
��

.

(ii) For mutually disjoint sets S1; S2; S3, and a 2 S1, b; c 2 S2, b 6D c, d 2 S3,
one has the equality

aıb.id ˝ cıd / D cıd . aıb ˝ id/

of mapsP..S1I g1//˝P..S2I g2//˝P..S3I g3// ! P
��

S1 [S2 [S3nfa; b; c; dgI

g1Cg2Cg3

��
.

(iii) For a set S and mutually distinct a; b; c; d 2 S , one has the equality

�ab �cd D �cd �ab

of maps P..S I g// ! P
��

S n fa; b; c; dgI g C 2
��

.

(iv) For sets S 0; S 00 and distinct a; c 2 S 0, b; d 2 S 00, one has the equality

�ab cıd D �cd aıb

of maps P..S 0 [ S 00I g// ! P
��

S 0 [ S 00 n fa; b; c; dgI g C 1
��

.

(v) For sets S 0; S 00 and mutually distinct a; c; d 2 S 0, b 2 S 00, one has the equality

aıb .�cd ˝ id/ D �cd aıb

of maps P..S 0 [ S 00I g// ! P
��

S 0 [ S 00 n fa; b; c; dgI g C 1
��

.
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(vi) For arbitrary isomorphisms � W S 0 ! D0 and � W S 00 ! D00 of sets and u, v as
in (4.1), one has the equality

P
��

�jS 0nfug [ � jS 00nfvg

��
uıv D �.u/ı�.v/

�
P..�// ˝ P..�//

�

of maps P..S 0I g0// ˝ P..S 00I g00// ! P
��

D0 [ D00 n f�.u/; �.v/gI g0 C g00
��

.

(vii) For S , u, v as in (4.2) and an isomorphism � W S ! D of sets, one has the
equality

P
��

�jDnf�.u/;�.v/g

��
�ab D ��.u/�.v/P..�//

of maps P..S I g// ! P
��

S n f�.u/; �.v/gI g C 1
��

.

Informally, cyclic operads are modular operads without the contractions and the
genus grading. In the seminal paper [14] where modular operads were introduced,
the stability demanding that

P..S I g// D 0 if card.S/ < 3 and g D 0, or card.S/ D 0 and g D 1

was assumed, but we do not require this property. As a matter of fact, our main
examples of non-† modular operads are not stable, though stable versions of our
results can easily be formulated and proved.
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