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The Noether problem for Hopf algebras
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Abstract. In previous work, Eli Aljadeff and the first-named author attached an algebra BH of
rational fractions to each Hopf algebra H . The generalized Noether problem is the following:
for which finite-dimensional Hopf algebras H is BH the localization of a polynomial algebra?
A positive answer to this question whenH is the algebra of functions on a finite groupG implies
a positive answer to the classical Noether problem for G. We show that the generalized Noether
problem has a positive answer for all finite-dimensional pointed Hopf algebras over a field of
characteristic zero (we actually give a precise description of BH for such a Hopf algebra).

A theory of polynomial identities for comodule algebras over a Hopf algebraH gives rise to
a universal comodule algebra whose subalgebra of coinvariants VH maps injectively into BH .
In the second half of this paper, we show that BH is a localization of VH when H is a finite-
dimensional pointed Hopf algebra in characteristic zero. We also report on a result by Uma Iyer
showing that the same localization result holds when H is the algebra of functions on a finite
group.
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1. Introduction

Let G be a finite group and k a field. Consider the purely transcendental extension
K D k.tg jg 2 G/ of k generated by indeterminates tg indexed by the elements
of G. The group G acts on K by left multiplication: h � tg D thg (g; h 2 G). Let
L D KG be the subfield of G-invariant elements of K. Emmy Noether posed the
following problem in [14]: is L a purely transcendental extension of k? A positive
answer ensures thatG can be realized as the Galois group of a Galois extension of k;
it also implies the existence of a generic polynomial for G over k (at least when k is
infinite).

�The second author was supported by JSPS Grant-in-Aid for Scientific Research (C) 23540039.
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There is an abundant bibliography on Noether’s problem. Answers depend on the
group and on the base field. For instance, by Fischer [3] the extension L=k is purely
transcendental ifG is abelian and k contains a primitive e-th root of unity, where e is
the exponent ofG. If k has not enough roots of unity, for instance when k D Q is the
field of rationals, then Swan [19] showed that there are cyclic groupsG such thatL is
not purely transcendental over k. For non-abelian groups, the answer to the problem
may be negative even over an algebraically closed field: by Saltman [17] this is the
case for certain meta-abelian p-groups when k is the field of complex numbers.

In this note we extend Noether’s problem to the framework of finite-dimensional
Hopf algebras over the base field k. To such a Hopf algebra H Eli Aljadeff and
the first-named author associated an algebra BH of rational fractions, which is a
finitely generated smooth domain of Krull dimension equal to the dimension of H
(see [2]). The algebra BH is called the generic base algebra associated to H ; in
the terminology of non-commutative geometry it is the “base space” of a “non-
commutative fiber bundle” whose fibers are the forms ofH .

The generalized Noether problem (GNP) which we introduce in this paper is
the following: is BH the localization of a polynomial algebra? A positive answer
to (GNP) for the Hopf algebra of k-valued functions on a finite group G implies a
positive answer to the classical Noether problem for G and k. Our first main result
(Theorem 4.4) states that (GNP) has a positive answer for all finite-dimensional
pointed Hopf algebras over a field of characteristic zero. Actually in Theorem 4.6 we
prove more precisely that for such a Hopf algebraH ,

BH D kŒu˙11 ; : : : ; u˙1` ; u`C1; : : : ; un� ;

where n is the dimension of H and ` is the order of the group G of group-like
elements ofH , and where u1; : : : ; un are monomials whose degrees are bounded by
an integer defined in terms of a certain abelian quotient of G. The latter statement
is a Hopf algebra analogue of the fact, due to Noether [13], that the algebra of
G-invariant polynomials in kŒtg jg 2 G� is generated by homogeneous polynomials
of degree � cardG.

A theory of polynomial identities for comodule algebras had also been set up
in [2], giving rise to the so-called universal comodule algebra UH , an analogue
of the relatively free algebra of the classical theory of polynomial identities. The
subalgebra VH of H -coinvariants of UH maps injectively into BH . In Section 5
we show that BH is a localization of VH when H is a finite-dimensional pointed
Hopf algebra over a field of characteristic zero (see Theorem 5.4). Uma Iyer showed
likewise that BH is a localization of VH whenH is the algebra of k-valued functions
on a finite group whose order is prime to the characteristic of k; with her permission
we state and prove her result (Theorem 5.5) in Section 5.5.

Throughout the paper we fix a field k. All linear maps are to be k-linear and
unadorned tensor products mean tensor products over k.
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2. Pointed Hopf algebras

In this section we prove some facts on pointed Hopf algebras needed in the proofs of
the main results.

2.1. Hopf algebras and comodule algebras. By algebra we mean an associative
unital k-algebra and by coalgebra a coassociative counital k-coalgebra. We denote
the coproduct of a coalgebra by � and its counit by ". We shall also make use of a
Heyneman–Sweedler-type notation for the image

�.x/ D x1 ˝ x2

of an element x of a coalgebra C under the coproduct, and we write

�.2/.x/ D x1 ˝ x2 ˝ x3

for the image of x under the iterated coproduct �.2/ D .�˝ idC / ı�.
Given a Hopf algebraH , we denote its counit by " and its antipode by S . We also

denote the augmentation ideal ker." W H ! k/ by HC and the group of group-like
elements ofH by G.H/.

Recall that a right H -comodule algebra over a Hopf algebra H is an algebra A
equippedwith a rightH -comodule structure whose (coassociative, counital) coaction
ı W A! A˝H is an algebra map. The subalgebra Aco�H of right coinvariants of
anH -comodule algebra A is the following subalgebra of A:

Aco�H
D fa 2 A j ı.a/ D a˝ 1g :

2.2. Finite-dimensional pointedHopf algebras. In this subsectionwepresent three
technical results for finite-dimensional pointed Hopf algebras.

Recall that a Hopf algebra H is pointed if any simple subcoalgebra is one-
dimensional. Group algebras kŒG�, enveloping algebras U.g/ of Lie algebras,
Drinfeld–Jimbo quantum enveloping algebras Uq.g/ and their finite-dimensional
quotients uq.g/ are important examples of pointed Hopf algebras.

See [20, Chap. VIII] and [12, Chap. 5] for basic properties of pointed Hopf
algebras.
Lemma 2.1. Any finite-dimensional commutative pointed Hopf algebra over a field
of characteristic zero is a group algebra.

Proof. SinceH is pointed, by scalar extension to the algebraic closure Nk of k, wemay
suppose that k is algebraically closed; note that G.H/ D G.H ˝ Nk/. It then follows
from [19, Th. 13.1.2] that H is reduced, hence H D Ok.G/ is the Hopf algebra of
k-valued functions on some finite group G. For the dual Hopf algebra H� D kŒG�,
the pointedness of H means that any simple H�-module is one-dimensional, which
is only possible if G is abelian. By Fourier transform, we haveH D kŒbG�, where bG
is the group of characters of G.
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Given aHopf algebraH , letHab be the largest commutative Hopf algebra quotient
ofH and let q W H ! Hab be the canonical Hopf algebra surjection.
Lemma 2.2. Let H be a finite-dimensional pointed Hopf algebra. Assume that Hab
is a group algebra. Then there exists a right kŒG.H/�-module coalgebra retraction
 W H ! kŒG.H/� of the inclusion kŒG.H/� � H such that the composite

H

�! kŒG.H/�

qjkŒG.H/�
�! Hab

coincides with q.

By Lemma 2.1 and the fact that any Hopf algebra quotient of a pointed Hopf
algebra is pointed, the assumption in the previous lemma is always satisfied when the
base field is of characteristic zero.

Proof. Set G D G.H/. The quotient R D H=H.kŒG�/C is a quotient coalgebra
of H . Let H ! R I h 7! Nh denote the quotient coalgebra map. By the
cosemisimplicy of kŒG� it follows from [10, Lemma 4.2] (or [11, Cor. 3.11]) that
there is a right kŒG�-module coalgebra retraction  W H ! kŒG� of the inclusion.
Then the map

� W R! kŒG�˝R I �. Nh/ D .h1/ S..h3//˝ Nh2 (2.1)

defines a left kŒG�-comodule coalgebra structure on R, and the associated smash-
coproduct coalgebra R >J kŒG� is isomorphic to H via the unit-preserving, right
kŒG�-module coalgebra isomorphism

� W H
Š
�! R >J kŒG� I �.h/ D Nh1 ˝ .h2/ : (2.2)

Note that this kind of isomorphism from H to a smash-coproduct of R by kŒG�
arises, in this manner, uniquely from a retraction H ! kŒG� as above. Identify H
withR>JkŒG� via the isomorphism (2.2). Since  is then identified with the quotient
H ! H=RCkŒG� D kŒG�, one sees that qjkŒG� ı  D q if and only if

q vanishes on RCD RC˝ k : (2.3)

We will now choose a new retraction  so that this last condition is satisfied.
Denote the coradical filtrations onH and on R respectively by

kŒG� D H0 � H1 � H2 � � � � ; k D R0 � R1 � R2 � � � � :

Note that each Hn is a right kŒG�-module subcoalgebra in H , and the isomor-
phism (2.2) restricts to

Hn
Š
�! Rn >J kŒG�; n D 0; 1; : : : :
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On the associated gradings, there is an induced isomorphism of graded right kŒG�-
module coalgebras. It coincides with the canonical isomorphism of graded Hopf
algebras

grH D
M
n�0

Hn=Hn�1
Š
�! gr R >lC kŒG� ; grR D

M
n�0

Rn=Rn�1

onto the biproduct grR >lC kŒG� (see [15, Th. 3]) which arises from the projection
grH ! H0 D kŒG�. Indeed, the composition of the induced isomorphism with
" ˝ id coincides with the projection. For the biproduct we naturally identify the
graded coalgebra grR with grH=.grH/kŒG�C, and thereby regard it as a graded
Hopf algebra object in the braided category of Yetter-Drinfeld modules over kŒG�.

Since Hab is cosemisimple by the assumption, q W H ! Hab is a filtered
Hopf algebra map, where Hab is trivially coradically filtered, meaning that
.Hab/n D Hab for all n � 0. Hence, q induces a graded Hopf algebra map
gr q W grH ! Hab D Hab.0/ which vanishes in positive degrees. It follows that
q.RC1 / D q.RCn / for all n > 0. Therefore, for (2.3) to hold, it is enough for the
following to hold:

q vanishes on RC1 D R1 \R
C: (2.4)

Note that RC1 consists of all primitive elements in the coalgebra R. It has a basis
v1; : : : ; vr such that �.vi / D gi ˝ vi for some gi 2 G; see (2.1). Note that vi is
.1; gi /-primitive in H , namely �.vi / D gi ˝ vi C vi ˝ 1 on H . Since q.vi / is
.1; q.gi //-primitive in the group algebra Hab, we have q.vi / D ci .1 � q.gi // for
some ci 2 k. Define wi D vi � ci .1 � gi /; this element remains .1; gi /-primitive.
Note that

q.wi / D 0 ; 1 � i � r : (2.5)

We see that vi 7! wi and 1 7! 1 give rise to a unit-preserving, right kŒG�-module
coalgebra isomorphism

R1 >J kŒG�
Š
�! H1 :

By [10, Th. 4.1] (or [11, Th. 3.10]) the corresponding retraction H1 ! kŒG� of
kŒG� � H1, namely the inverse of the last isomorphism composed with " ˝ id W
R1 >JkŒG�! kŒG� extends to a right kŒG�-module coalgebra retractionH ! kŒG�

of kŒG� � H . Choose the latter retraction as the new  . Then one sees from (2.5)
that the desired condition (2.4) is satisfied.

Let A be a commutative pointed Hopf algebra containing a left coideal
subalgebra B . We denote by Q the quotient Hopf algebra A=.BC/, where .BC/ is
the ideal of A generated by BC D B \ AC. The natural projection turns A into a
right Q-comodule algebra. Let G.B/ D G.A/ \ B be the monoid consisting of all
group-like elements of A contained in B .
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Lemma 2.3. With the previous notation, the left coideal subalgebraAco�Q consisting
of the rightQ-coinvariant elements of A is the localization

B
�
g�1 j g 2 G.B/

�
of B by G.B/.

Proof. By [9, Th. 1.3], C D Aco�Q is the smallest left coideal subalgebra of A
containing B such that G.C/ D G.A/ \ C is a group. One easily checks that
BŒ g�1 jg 2 G.B/� is such a left coideal subalgebra.

3. The generic algebra associated to a Hopf algebra

We now introduce the objects needed to state the generalized Noether problem in
Section 4.

3.1. The free commutative Hopf algebra generated by a coalgebra. By Takeuchi
[21, Chap. IV], given a coalgebra C , there is (up to isomorphism) a unique
commutative Hopf algebra S.tC /‚ together with a coalgebra map

t W C ! S.tC /‚

such that for any coalgebra map f W C ! H 0 from C to a commutative Hopf
algebra H 0, there is a unique Hopf algebra map Qf W S.tC /‚ ! H 0 such that
f D Qf ı t . The commutative Hopf algebra S.tC /‚ is called the free commutative
Hopf algebra generated by C .

Let us give an explicit construction of S.tC /‚. Pick a copy tC of the underlying
vector space of C and denote the identity map from C to tC by x 7! tx (x 2 C ). Let
S.tC / be the symmetric algebra over the vector space tC . By [2, Lemma A.1] there
is a unique linear map x 7! t�1x from C to the field of fractions FracS.tC / of S.tC /
such that for all x 2 C ,

tx1 t
�1
x2
D t�1x1 tx2D ".x/ 1 :

Then S.tC /‚ is the subalgebra of FracS.tC / generated by all elements tx and t�1x ,
where x runs over C . The coproduct, counit, antipode of S.tC /‚ are determined for
all x 2 C by

�.tx/ D tx1˝ tx2 and �.t�1x / D t�1x2 ˝ t
�1
x1
; (3.1)

".tx/ D ".t
�1
x / D ".x/ ; (3.2)

S.tx/ D t
�1
x and S.t�1x / D tx : (3.3)

The map t W C ! S.tC /‚ is defined by x 7! tx (x 2 C ).
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By [21, Th. 61 and Cor. 64] the algebra S.tC /‚ is a localization of S.tC /. More
precisely, if .D˛/˛ is a family of finite-dimensional subcoalgebras of C such thatP
˛D˛ contains the coradical ofC , then S.tC /‚ is obtained from S.tC / by inverting

certain group-like elements ‚˛ 2 S.tD˛ / � S.tC /:

S.tC /‚ D S.tC /

��
1

‚˛

�
˛

�
: (3.4)

In the sequel we shall need the following lemma.

Lemma 3.1. If the coalgebra C is pointed, then so is S.tC /‚.

Proof. Recall the following facts from [12, Lemma 5.1.10 and Cor. 5.3.5].

(i) If C and D are coalgebras with respective coradicals C0 and D0, then the
coradical .C ˝D/0 of the tensor product C ˝D of coalgebras is contained
in C0 ˝D0.

(ii) Given a coalgebra surjection f W C ! D, we haveD0 � f .C0/.

Note that a bialgebra B generated by a subcoalgebra C is pointed if C is pointed.
Indeed, by (i), and by (ii) applied to the product map C˝n ! C n, we have

B0 D

0@X
n�0

C n

1A
0

D

X
n�0

.C n/0 �
X
n�0

C n0 :

Thus, B0 is included in the subalgebra generated by C0, and is generated by the
group-like elements of C if C is pointed. Applying this to B D S.tC / and C D tC ,
we deduce that S.tC / is pointed if C is pointed.

Now by (3.4) the algebra S.tC /‚ is obtained from S.tC / by inverting a
(central) multiplicative subset T consisting of group-like elements. We consider
the pointed coalgebra kŒT �1� spanned by the symbols t�1, t 2 T , which are
supposed to be group-like. Thus by (i) above, the tensor product of coalgebras
S.tC /˝ kŒT

�1� is pointed. We conclude by applying (ii) to the coalgebra surjection
S.tC /˝ kŒT

�1�! S.tC /‚ given by P ˝ t�1 7! P t�1 (P 2 S.tC /; t 2 T ).

3.2. The Hab-coaction and the subalgebra CH . Let H be a Hopf algebra and
S.tH /‚ be the free commutative Hopf algebra generated by the coalgebra
underlying H , as defined in the previous subsection. We denote by Hab the largest
commutativeHopf algebra quotient ofH . Applying the universal property ofS.tH /‚
to the canonical surjection of Hopf algebras q W H ! Hab, we obtain a unique Hopf
algebra surjection

Qq W S.tH /‚ ! Hab (3.5)

such that Qq.tx/ D q.x/ and Qq.t�1x / D S.q.x// D q.S.x// for all x 2 H .
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Using Qq, we may equip S.tH /‚ with a right Hab-comodule algebra structure. Its
coaction is the algebra map ıS defined as the following composition:

ıS W S.tH /‚
�
�! S.tH /‚ ˝ S.tH /‚

id˝ Qq
�! S.tH /‚ ˝Hab : (3.6)

We have ıS .tx/ D tx1 ˝ q.x2/ for all x 2 H .
The previous formula shows that ıS sends S.tH / to S.tH /˝Hab, which implies

that S.tH / is anHab-comodule subalgebra of S.tH /‚.
Let CH be the subalgebra of rightHab-coinvariants of S.tH /‚:

CH D S.tH /co�Hab
‚ D fa 2 S.tH /‚ j ıS .a/ D a˝ 1g :

It contains the subalgebra of rightHab-coinvariants of S.tH /:

S.tH /
co�Hab � CH D S.tH /co�Hab

‚ :

Since S.tH /‚ is a localization of S.tH /, wemay wonder whether CH D S.tH /co�Hab
‚

is likewise a localization of S.tH /co�Hab . The following provides an answer.
Proposition 3.2. The algebra CH is a localization of S.tH /co�Hab .

For the proof we need the following lemma.
Lemma 3.3. Each element ‚˛ as in (3.4) may be chosen so that Qq.‚˛/ D 1.

Proof. According to [21, Sect. 11], ‚˛ is given by the determinant of a square
matrix

�
txi;j

�
, where xi;j 2 D˛ and

�.xi;j / D
X
`

xi;` ˝ x`;j and ".xi;j / D ıi;j

for all i; j . These formulas imply that in S.tH / the matrixM D .txi;j / satisfies the
equations�.M/ D .M ˝ I /.I ˝M/ and ".M/ D I , where I is an identity matrix.
This implies that ‚˛ D detM is group-like, as is well known.

Let us now consider the image S.xi;j / of xi;j under the antipode of H . The
transposeM 0 of the matrix .tS.xi;j // satisfies the same formulas as above. Therefore,
‚0˛ D detM 0 is a group-like element of S.tS.D˛//. We may replace D˛ by
D˛ C S.D˛/ and ‚˛ by ‚˛‚0˛ . It remains to prove that Qq.‚˛‚0˛/ D 1. But
this follows from the fact that the matrices�

q.xi;j /
�
D
�
Qq.txi;j /

�
and

�
q.S.xi;j //

�
D
�
Qq.tS.xi;j //

�
with entries inHab are inverses of each other.

Proof of Proposition 3.2. Choose .‚˛/˛ as in Lemma 3.3. Let NP be an element
of CH D S.tH /

co�Hab
‚ . Then NP ‚ 2 S.tH / for some finite product ‚ of the

elements ‚˛; the element ‚ is group-like and Qq.‚/ D 1. Define P D NP ‚. Since
ıS . NP / D NP ˝ 1 and ıS .‚/ D ‚˝ Qq.‚/ D ‚˝ 1, we have ıS .P / D P ˝ 1, which
means that P belongs to S.tH /co�Hab .
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3.3. The generic base algebra. Under some conditions onH , the commutative alg-
ebra CH has an alternative description, which we now present.

For any pair .x; y/ of elements of a Hopf algebra H consider the following
elements of S.tH /‚:

�.x; y/ D tx1 ty1 t
�1
x2y2

and ��1.x; y/ D tx1y1 t
�1
x2
t�1y2 : (3.7)

Following [2, Sect. 5] and [6, Sect. 3], we define the generic base algebra BH
attached to the Hopf algebra H to be the subalgebra of S.tH /‚ generated by all
elements �.x; y/ and ��1.x; y/. Since BH sits inside S.tH /‚, it is a domain.

The generic base algebraBH is the algebra of coinvariants of a rightH -comodule
algebraAH parametrizing the “forms” ofH (for details, see [2,6] and also Section 5.3
of this paper).

If H is finite-dimensional, then by Theorem 3.6 and Corollary 3.7 of [8] the
following holds:

(a) BH is a finitely generated smooth Noetherian domain of Krull dimension equal
to dim H ;

(b) the embeddingBH � S.tH /‚ turnsS.tH /‚ into a finitely generated projective
BH -module.

We now relate BH to the algebra CH of Hab-coinvariants introduced in the
previous subsection.

Proposition 3.4. LetH be a Hopf algebra.

(a) We have BH � CH .

(b) The equality BH D CH holds if one of the following conditions is satisfied:

(i) H is finite-dimensional;

(ii) H is cocommutative;

(iii) H is pointed and each element of the kernel of the natural homomorphism
G.H/ab ! G.Hab/ is of finite order;

(iv) H is commutative.

HereG.H/ab denote the abelianization of the groupG.H/ of group-like elements
ofH . Note that in view of (i), Conditions (ii)–(iv) above are only relevant for infinite-
dimensional Hopf algebras.

Proof. (a) It suffices to show that all elements �.x; y/ and ��1.x; y/ are Hab-
coinvariants. We shall check this for �.x; y/, the proof for ��1.x; y/ being similar.
By [8, Lemma 3.3],

ıS .�.x; y// D tx1 ty1 t
�1
x3y3
˝ Qq .�.x2; y2// :
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Now,

Qq .�.x; y// D Qq.tx1/ Qq.ty1/ Qq.t
�1
x2y2

/ D Qq.tx1/ Qq.ty1/ Qq.S.tx2y2//

D q.x1/ q.y1/ q.S.x2y2// D q ..x1y1/ S.x2y2//

D ".xy/ q.1/ :

Consequently,

ıS .�.x; y// D tx1 ty1 ".x2y2/ t
�1
x3y3
˝ q.1/ D �.x; y/˝ q.1/ ;

which shows that �.x; y/ belongs to CH .
(b) (i)–(iii) By Theorems 3.6, 3.8, and 3.9 of [8], S.tH /‚ is faithfully flat as

a BH -module. Then by [22, Th. 3], BH D S.tH /
co�Q
‚ , where Q is the quotient

Hopf algebra of S.tH /‚ by the ideal .BCH / generated by BCH D BH \ ker ". By [8,
Prop. 3.1], there is a natural identificationQ Š Hab, which allows us to conclude.

(iv) As is shown in Part (a) of the proof of [8, Th. 3.13], the mapping c ˝ x 7! ctx
gives an isomorphism CH ˝ H Š S.tH /‚. Moreover, since the natural inclusion
BH ˝ H � CH ˝ H , composed with the isomorphism, gives a surjection
by [8, Lemma 3.2], we have BH D CH .

4. The generalized Noether problem

We now state the problem which gives the title to the paper. We provide answers for
certain classes of Hopf algebras.

4.1. The problem and its relationship with the classical Noether problem.
Problem 4.1 (GNP). Given a field k and a finite-dimensional Hopf algebraH over k,
is the algebra BH a localization of a polynomial algebra in finitely many variables?

We call Problem (GNP) the generalized Noether problem. Let us first show how
(GNP) is related to the classical Noether problem for finite groups.

Let G be a finite group and H D Ok.G/ the dual Hopf algebra of the group
algebra kŒG�. The elements of H can be seen as k-valued fonctions on G; denote
by eg the function which vanishes everywhere on G, except at the element g, where
eg.g/ D 1. On the basis feggg2G the coproduct, the counit and the antipode of H
are given by

�.eg/ D
X
h2G

egh�1 ˝ eh ; S.eg/ D eg�1 ; (4.1)

".eg/ D 1 if g D 1 is the identity element of G, and ".eg/ D 0 otherwise.
Proposition 4.2. If (GNP) has a positive answer for the Hopf algebraH D Ok.G/,
then so has the classical Noether problem for G and k.
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In this sense, (GNP) is an extension of Noether’s problem.

Proof. If we set tg D te
g�1

for any g 2 G, then S.tH / D kŒ tg jg 2 G � is the
bialgebra with coproduct given for g 2 G by

�.tg/ D
X
h2G

thg ˝ th�1 : (4.2)

By [2, Ex. B.5], the algebra S.tH /‚ is the following localization of S.tH /:

S.tH /‚ D kŒ tg jg 2 G �

�
1

‚G

�
;

where ‚G D det.tgh�1/g;h2G is Dedekind’s group determinant.
Under the algebra map Qq W S.tH /‚ ! Hab D H of (3.5), the algebra S.tH /‚

becomes a rightH -comodule algebra with coaction (3.6). Now it is well known that
any right H -comodule algebra structure on an algebra A is the same as a left action
.h; a/ 7! h �a ofG onA by algebra automorphisms: theH -coaction ı onA is related
to the G-action by

ı.a/ D
X
h2G

h � a˝ eh : (4.3)

Moreover, the subalgebra of coinvariants Aco�H coincides with the subalgebra AG
of G-invariant elements of A. Since for H D Ok.G/ we have Qq.tg/ D eg�1 for all
g 2 G, it follows from (3.6) and from (4.2) that

ıS .tg/ D
X
h2G

thg ˝ eh :

Comparing this formula with (4.3), we see that the corresponding left action of G
on S.tH /‚ is given by h � tg D thg , which is precisely the one presented in the
introduction. One easily checks that the square ‚2G of the Dedekind determinant is
G-invariant, so that by Proposition 3.4,

BH D CH D
�
S.tH /‚

�G
D kŒ tg jg 2 G �

G

�
1

‚2G

�
:

If BH D kŒ tg jg 2 G �
G Œ1=‚2G � is the localization of a polynomial algebra in

finitely many variables, then its fraction field is a purely transcendental extension
of k. This fraction field is also the fraction field of kŒ tg jg 2 G �G . Now the
latter is k. tg jg 2 G /G : indeed, if F D P=Q is a G-invariant fraction with
polynomial numerator and denominator, then it can be written as F D P 0=Q0,
where P 0 D P

Q
g¤1 .g �Q/ and Q0 D

Q
g2G .g � Q/ are invariant polynomials.

Therefore, the field k. tg jg 2 G /G is a purely transcendental extension of k.
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4.2. Positive answers to (GNP). Before stating the main result of this section, we
present a class of Hopf algebras for which it is easy to provide a positive answer
to (GNP).
Example 4.3. Let H D kŒG� be the Hopf algebra of a finite group G. It is easy
to see that the maximal commutative Hopf algebra quotient is the group algebra
Hab D kŒGab�, where Gab is the abelianization of G. By Proposition 3.4, BH D CH .
It is the group algebra of a finitely generated free abelian group; more precisely,
by [1, Prop. 9 and 14] (see also [4, Prop. A.1]),

BkŒG� D CkŒG� D S.tkŒG�/co�kŒGab�
‚ D kŒYG � ;

where YG is the kernel of the homomorphism ZG ! Gab I tg 7! Ng .g 2 G/.
(Here ZG is the free abelian group generated by the symbols tg (g 2 G) and Ng
denotes the image of g 2 G in Gab.) Since YG is a finite index subgroup of ZG ,
it is a free abelian group of the same rank card G. (A basis of YG is described
in Lemma 4.7). Therefore BkŒG� D kŒYG � is an algebra of Laurent polynomials in
finitely many (card G) variables, which shows that (GNP) has a positive answer for
H D kŒG�.

The main result of this section is the following.
Theorem 4.4. Let H be a finite-dimensional pointed Hopf algebra such that Hab is
a group algebra. Then (GNP) has a positive answer forH .

Recall from Lemma 2.1 that the hypothesis on Hab is satisfied when the base
field k is of characteristic zero.

The theorem had previously been established for special classes of finite-
dimensional pointed Hopf algebras: for finite group algebras by Aljadeff, Haile
and Natapov [1] as detailed in Example 4.3; furthermore, for the Taft algebras, for
the Hopf algebras E.n/ and for certain monomial Hopf algebras by Iyer and the
first-named author (see [4, Th. 2.1, Th. 3.1, Th. 4.1]). In all these cases, Hab is a
group algebra.

Proof. We set G D G.H/. Let R D H=H.kŒG�/C and choose  W H ! kŒG� as in
Lemma 2.2. Define � W R! kŒG�˝R as in (2.1), and construct thereby the smash-
coproduct coalgebra R >J kŒG�. Identify H with R >J kŒG� via the kŒG�-module
coalgebra isomorphism � given by (2.2). SinceH D RCG ˚ kŒG�, we have

S.tH /‚ D S.tRCG/˝ S.tkŒG�/‚: (4.4)

Note that this is an identification of S.tkŒG�/‚-algebras.
Consider the Hopf algebra surjections

Q W S.tH /‚ ! S.tkŒG�/‚ and Qq W S.tH /‚ ! Hab

induced from the coalgebra maps  and q, respectively.
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Regard S.tH /‚ as a right S.tkŒG�/‚-comodule algebra along Q , and let A denote the
(left coideal) subalgebra of S.tH /‚ consisting of all right S.tkŒG�/‚-coinvariants.
Since Q is a Hopf algebra retraction of the inclusion S.tkŒG�/‚ � S.tH /‚, the
product map gives a natural isomorphism

A˝ S.tkŒG�/‚ D S.tH /‚ (4.5)

of right S.tkŒG�/‚-comodules and of S.tkŒG�/‚-algebras. Recall from Lemma 2.2
that q D qjkŒG� ı  . It follows that

Qq D QqjS.tkŒG�/‚ ı Q : (4.6)

Regard S.tkŒG�/‚ as a rightHab-comodule algebra along QqjS.tkŒG�/‚ . Then sinceA is
right Qq-coinvariant, it follows from (4.6) that the isomorphism given in (4.5) restricts
to an isomorphism

A˝ S.tkŒG�/
co�Hab
‚ D S.tH /

co�Hab
‚ D BH : (4.7)

Now S.tkŒG�/
co�Hab
‚ , being the algebra of coinvariants along a Hopf algebra map,

is a Hopf subalgebra of S.tkŒG�/‚; the latter being the group algebra of a finitely
generated free abelian group (see Example 4.3), so is S.tkŒG�/co�Hab

‚ ; in other words,
S.tkŒG�/

co�Hab
‚ Š kŒZ`� for some non-negative integer `. We remark that ` D cardG,

since the short exact sequence

S.tkŒG�/
co�Hab
‚ ! S.tkŒG�/‚ ! Hab

of commutative Hopf algebras restricts on the level of group-like elements to the
short exact sequence

0! Z` ! ZG ! G.Hab/! 0 (4.8)

of abelian groups with finite cokernel.
It remains to prove that A is a polynomial algebra with finitely many variables.

But this follows since one sees from (4.4) and (4.5) that

S.tRCG/ Š S.tH /‚=.S.tkŒG�/
C

‚/ Š A : (4.9)

In conclusion, the isomorphism BH Š S.tRCG/˝ kŒZ`� provides a positive answer
to (GNP). We remark that, if we set n D dim H , then S.tRCG/ Š kŒNn�`�, since
we see fromH D RCG ˚ kŒG� that dim RCG D n � `.

In the previous proof we have actually established the more precise isomorphism

BH Š kŒZ`�˝ kŒNn�`� ; n D dim H and ` D card G.H/ :

We will come back to it in Section 4.3.
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Remark 4.5 (A variant of (GHP)). By Proposition 3.4, BH D S.tH /
co�Hab
‚ if H is

finite-dimensional. Aswas seen in Section 3.2, S.tH / is anHab-comodule subalgebra
of S.tH /‚, so that we can consider the coinvariant subalgebra S.tH /co�Hab . A
variant of (GNP) is the following: is S.tH /co�Hab a polynomial algebra in finitely
many variables? The following example shows that this variant may have a negative
answer at the same time as (GNP) has a positive one.

Let H be the four-dimensional Sweedler algebra. Proceeding as in the proof
of [4, Th. 2.1], it is easy to check that S.tH /co�Hab is spanned by the monomials
ta1 t

b
x t
c
y t
d
z (a; b; c; d 2 N) such that b C c is even. Hence, S.tH /co�Hab is the

subalgebra of kŒt1; tx; ty ; tz� generated by t1, t2x , txty , t2y , tz; this is not a polynomial
algebra, whereas BH D S.tH /

co�Hab
‚ , which is obtained from the previous algebra

by inverting t1 and t2x , is a localization of the polynomial algebra kŒt1; t2x ; txty ; tz�.

4.3. Bounding the degrees of generators. Given a finite group G, consider the
polynomial algebra S.tG/ D kŒtg jg 2 G� in the variables tg (g 2 G) and let G
act on the variables tg , hence on S.tG/, as in the introduction. Let S.tG/G be the
subalgebra of S.tG/ of G-invariant polynomials. We denote by ˇ.G/ the smallest
integer ˇ such that S.tG/G is generated by homogeneous polynomials of degree� ˇ.

In [13] Emmy Noether proved that ˇ.G/ � cardG. It is easy to check that, if the
group G is cyclic, then ˇ.G/ D cardG. In her thesis [18], Barbara Schmid proved a
conjecture by Kraft, namely ˇ.G/ < cardG if G is not cyclic.

We now prove a similar result for a finite-dimensional pointed Hopf algebra H
such thatHab is a group algebra. Set NG D G.Hab/; equivalently,Hab D kŒ NG�.

Define two non-negative integers d; r related to the finite abelian group NG as
follows: if NG is trivial, set d D r D 0; if NG is not trivial, let

NG D Z=pe11 � � � � � Z=perr ; r � 1; pi primes; ei � 1 (4.10)

be the primary decomposition of NG, and set d D pe11 C � � � C p
er
r (� 2).

Theorem 4.6. Under the hypotheses of Theorem 4.4 and with the above notation, we
have

BH D kŒu˙11 ; : : : ; u˙1` ; u`C1; : : : ; un� ;

where n D dim H and ` D card G.H/ and where u1; : : : ; u` are monomials in the
variables tg of degree � d � r C 1 and u`C1; : : : ; un are monomials of degree � 2.

Note that d � r C 1 � card NG, but d � r C 1 may be much smaller: for instance,
if NG is a p-group of order pe , then d � r C 1 ranges from pe when NG Š Z=pe is
cyclic down to e.p � 1/C 1 when NG Š .Z=p/e is elementary abelian.

For the proof of Theorem 4.6 we shall make use of the fact that S.tkŒG�/co�Hab
‚

is a subalgebra of BH inside S.tkŒG�/‚ (see proof of Theorem 4.4) and of the two
lemmas below.
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To state the first lemma we need the following notation. By Item (ii) in the proof
of Lemma 3.1, the surjection of pointed Hopf algebras H ! Hab restricts to a
surjection of groupsG ! NG. Suppose that the group NG is non-trivial. For 1 � i � r
let si be a generator of the summand Z=peii in the primary decomposition (4.10)
of NG, and fix an element �i 2 G whose image in NG is si . Given an element g 2 G,
its image in NG is of the form s

f1.g/
1 � � � s

fr .g/
r (0 � fi .g/ < p

ei
i , 1 � i � r). For

g 2 G different from the identity element e and of the elements �1; : : : ; �r , let
I D fi 2 f1; : : : ; rg jfi .g/ ¤ 0g and set

ug D tg
Y
i2I

t
p
ei
i
�fi .g/

�i 2 S.tkŒG�/ � S.tH / :

Lemma 4.7. The set consisting of the monomials (in the t -variables) te , t
p
e1
1

�1 ; : : : ; t
p
er
r

�r

and of the above monomials ug is a (multiplicatively written) basis of the kernel Z`
appearing in the short exact sequence of groups (4.8).

Proof. These elements clearly belong to the kernel Z`. Their matrix with respect
to the suitably ordered basis .tg/g2G of ZG is triangular with determinant equal to
p
e1
1 � � �p

er
r D

NG. Therefore, they form a basis of Z`.

Lemma4.8. As anS.tkŒG�/co�Hab
‚ -algebra,BH is freely generated byn�`monomials

of degree � 2 in S.tH /.

Proof. We return to the situation of the proof of Theorem 4.4: we have the
identification H D R >J kŒG� of right kŒG�-module coalgebras, under which
the right kŒG�-module coalgebra map  W H ! kŒG� is identified with
"˝ id W R˝ kŒG�! kŒG�.

We claim that R D R ˝ k precisely consists of those elements of H which are
right kŒG�-coinvariant along  , that is,

R D fh 2 H j .id˝/ ı�.h/ D h˝ 1g :

Indeed, this holds for smash coproducts in general. In our situation, recall from
the proof of Lemma 2.2 that R is a left kŒG�-comodule coalgebra with respect to
� W R ! kŒG�˝ R. For x 2 R and g 2 G, the coproduct �.x ˝ g/ on H is given
by

�.x ˝ g/ D .x1 ˝ .x2/
.�1/g/˝ ..x2/

.0/
˝ g/ ;

where �.x/ D x.�1/ ˝ x.0/. Since .id˝"/ ı �.x/ D ".x/1, it follows that

.id˝/ ı�.x ˝ g/ D .x ˝ g/˝ g :

Thus the right kŒG�-comodule structure on H D R ˝ kŒG� is the natural one given
by the right tensor factor kŒG�. This proves the claim.
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Now choose arbitrarily a k-basis fxigi of RC. Then we have the k-basis fxiggi;g
of RCG, where g runs over G. Note dim RCG D n � `. One sees from the claim
above that the coproduct �.txig/ on S.tH /‚, composed with id˝e , turns into

.id˝e/ ı�.txig/ D txig ˝ tg :
Obviously, ftxiggi;g is a set of free generators of S.tRCG/. Each txig is congruent,
modulo .S.tkŒG�/C‚/, to txig.tg/

�1, which is seen, by the last equation, to be in A.
Recall from (4.9) and (4.7) the isomorphisms

S.tRCG/ Š S.tH /‚=.S.tkŒG�/
C

‚/ Š A ; A˝ S.tkŒG�/
co�Hab
‚ Š BH :

It follows that ftxig.tg/�1gi;g is a set of free generators of the k-algebra A, and is a
set of free generators of the S.tkŒG�/co�Hab

‚ -algebra BH . Multiplying txig.tg/�1 by
the unit tg tg�1 in S.tkŒG�/

co�Hab
‚ , we obtain the set ftxig tg�1gi;g of free generators of

the S.tkŒG�/co�Hab
‚ -algebra BH . The set consists of monomials of degree 2 in S.tH /,

among which txi te may be replaced by the degree-one monomial txi (since te is a
unit in S.tkŒG�/co�Hab

‚ ). Thus the lemma follows.

Proof of Theorem 4.6. It follows from Lemma 4.8 that inside S.tkŒG�/‚ we have
BH D S.tkŒG�/

co�Hab
‚ Œu`C1; : : : ; un�, where u`C1; : : : ; un are monomials of S.tH /

of degree � 2.
Now by the proof of Theorem 4.4 the subalgebra S.tkŒG�/co�Hab

‚ is the algebra
of the kernel Z` of the surjection ZG ! NG D G.Hab/ appearing in the short exact
sequence of groups (4.8).

If NG is trivial, then Z` D ZG , hence S.tkŒG�/co�Hab
‚ D S.tkŒG�/‚, which is the

algebra of Laurent polynomials in the monomials tg (g 2 G), which are of degree
1 D d � r C 1.

Otherwise, S.tkŒG�/co�Hab
‚ is the algebra of Laurent polynomials in the basis

elements described in Lemma 4.7. To complete the proof, it is enough to bound the
degree of these elements. Now each monomial ug is of degree

1C
X
i2I

.p
ei
i � fi .g//;

which is smaller than or equal to

1C
X
i2I

.p
ei
i � 1/ � 1C

rX
iD1

.p
ei
i � 1/ D d � r C 1 :

Weconclude by observing that the degrees of the remainingmonomials te; t
p
e1
1

�1 ; : : : ; t
p
er
r

�r

are not larger than d � r C 1.
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Remark 4.9. Let H be a pointed Hopf algebra such that Hab D kŒ NG� is a group
algebra. As observed above, the canonical surjection of pointed Hopf algebras
H ! Hab restricts to a surjection kŒG� ! kŒ NG�, where G D G.H/. Denoting the
abelianization of G by Gab, we see that the surjection kŒG�! kŒ NG� in turn induces
a surjection ' W kŒGab�! Hab D kŒ NG�.

The map ' is an isomorphism if the Hopf algebra embedding kŒG� � H splits as
a Hopf algebra map. Indeed, in this case, a splitting H ! kŒG� composed with the
canonical map kŒG�! kŒGab� induces a Hopf algebra map Hab D kŒ NG�! kŒGab�.
The latter map is an inverse of ' since both maps are induced from the identity
on kŒG�.

In general ' W kŒGab�! Hab is not an isomorphism, as is seen from the following
examples. Consider the pointed Hopf algebra H D Uq.sl2/ as given in [5, p. 122].
The group G D G.H/ is infinite cyclic, hence Gab Š Z. Now the relations (1.10)–
(1.12) in loc. cit. imply that E D 0, F D 0 and K D K�1 in Hab. Therefore,
Hab Š kŒZ=2�.

Similarly letH D U q be the finite-dimensionalHopf algebra defined in [5, p. 136]
as the quotient ofUq.sl2/ by the relationsEe D F e D 0 andKe D 1 for some integer
e � 2. For this Hopf algebra, we have G D Gab Š Z=e whereas Hab Š k if the
integer e is odd andHab Š kŒZ=2� if e is even. Thus, the surjection ' W kŒGab�! Hab
cannot be an isomorphism when e � 3.

5. Polynomial identities

A theory of polynomial identities for comodule algebras was worked out in [2]. It
leads naturally to a “universal H -comodule algebra” UH , whose definition will be
recalled below. The subalgebra of H -coinvariants VH of UH maps injectively into
the generic base algebra BH defined in Section 3.3. In this section we consider
another localization problem for BH , which is motivated by the fact that a positive
answer to it has important consequences (detailed below) for the “versal deformation
space” AH D BH ˝VH UH .

5.1. The universal comodule algebra. Starting from a Hopf algebraH , we fix an-
other copy XH of the underlying vector space of H ; we denote the identity map
fromH to XH by x 7! Xx .

Consider the tensor algebra T .XH / over the vector space XH ; it is an algebra of
non-commutative polynomials. The algebra T .XH / possesses a right H -comodule
algebra structure that extends the natural rightH -comodule algebra structure onH :
its coaction ıT W T .XH /! T .XH /˝H is given by

ıT .Xx/ D Xx1 ˝ x2 ; .x 2 H/ :



422 C. Kassel and A. Masuoka

We equip S.tH /˝H with the trivial rightH -comodule algebra structure whose
coaction is given by id˝�. The subalgebra ofH -coinvariant elements of S.tH /˝H
is S.tH /˝ 1, which we may identify with S.tH /.

By [2, Lemma 4.2] the algebra map� W T .XH /! S.tH /˝H defined for x 2 H
by

�.Xx/ D tx1 ˝ x2 (5.1)

is a right H -comodule algebra map, which is universal in the sense that any H -
comodule algebra map T .XH /! H factors through � (see [2, Th. 4.3]).

Now let IH be the kernel of the comodule algebramap� W T .XH /! S.tH /˝H

defined by (5.1). The kernel IH is a two-sided ideal, rightH -subcomodule ofT .XH /.
Any element P 2 IH is an identity forH in the sense that it vanishes under any right
H -comodule algebra map T .XH /! H . See [2,6,7] for a theory of such comodule
algebra identities.

Consider the quotient rightH -comodule algebra

UH D T .XH /=IH :

We call UH the universal H -comodule algebra (this corresponds to the “relatively
free algebra” in the classical literature on polynomial identities; see [16]).

By definition of IH , the map � W T .XH /! S.tH /˝H induces an injection of
rightH -comodule algebras

N� W UH D T .XH /=IH ,! S.tH /˝H :

5.2. The algebra of coinvariants VH . We denote the subalgebra of rightH -coin-
variants of the universal comodule algebra UH by VH :

VH D U co�H
H :

The algebra VH is a central subalgebra of UH . Note that an element NP of UH is
in VH if and only if N�. NP / belongs to S.tH /˝ 1.

Using Lemma 8.1 of [2] and following the proof of Proposition 9.1 of loc. cit.,
one shows that the map N� send VH into the subalgebra BH \ S.tH / of BH (here we
identify S.tH / with the subalgebra S.tH /˝ 1 of S.tH /˝H ).

By [8, Cor. 4.4], the generic base algebra BH of a Hopf algebra H (defined in
Section 3.3) has another set of generators, namely the elements

px D tx1 tS.x2/ ; qx;y D tx1 ty1 tS.x2y2/ ; (5.2)
p0x D t

�1
S.x1/

t�1x2 ; q0x;y D t
�1
S.x1y1/

t�1x2 t
�1
y2
; (5.3)

when x; y run over all elements of H . The essential virtue of these generators over
the older generators �.x; y/ and ��1.x; y/ of (3.7) is that px and qx;y (resp. p0x
and q0x;y) are polynomials in the t -variables (resp. in the t�1-variables), whereas the
formulas for �.x; y/ and ��1.x; y/ mix the t -variables and the t�1-variables.
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Lemma 5.1. LetH be a Hopf algebra. The elements px and qx;y (x; y 2 H ) belong
to N�.VH /.

Proof. Consider the following elements of T .XH /:

Px D Xx1 XS.x2/ ; Qx;y D Xx1 Xy1 XS.x2y2/ ;

where x; y 2 H . By [2, Lemma 2.1] they are coinvariant elements of T .XH /, and
by [8, Lemma 4.1] we have �.Px/ D px and �.Qx;y/ D qx;y .

Let WH be the subalgebra of N�.VH / generated by all elements px and qx;y ,
where x; y run overH .

Lemma 5.2. LetH be a Hopf algebra.

(i) The algebraWH is a left coideal subalgebra of S.tH /‚.

(ii) The Hopf ideal .WCH / of S.tH /‚ generated by WCH D WH \ S.tH /
C

‚

coincides with .BCH /.

Proof. (i) Using the formula (3.1) for the coproduct � of S.tH /‚, we obtain

�.px/ D tx1 tS.x3/ ˝ px2 and �.qx;y/ D tx1 ty1 tS.x3y3/ ˝ qx2;y2 :

SinceWH is generated by the elements px and qx;y , the conclusion follows.
(ii) Let R D S.tH /‚=.WCH /. Since WH � BH , we have a Hopf algebra

surjection R! S.tH /‚=.BCH /. From

tSH .x/ D SR.tx/ ; txty D SR.tSH .xy// 2 R ;

it follows that
txty D SR.SR.txy// D txy 2 R:

Here,SH (resp.SR) denotes the antipode ofH (resp. ofR). The result forx D y D 1,
together with the existence of t�11 , shows that t1 D 1 2 R. Therefore, the map
t W H ! S.tH /‚ composed with the natural projection S.tH /‚ ! R yields a
Hopf algebra surjection, which in turn factors through a Hopf algebra surjection
Hab ! R. Since the composite of the last surjection with R! S.tH /‚=.BCH / is an
isomorphism by [8, Prop. 3.1], the desired result follows.

5.3. The second localization problem. In the sequel we identify VH with its image
N�.VH / in BH . We now raise another question.

Problem 5.3 (loc). Given a Hopf algebraH , is the algebra BH a localization of the
subalgebra VH?
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Problem (loc) is motivated by the fact proved in [2, Sect. 7] and in [8, Sect. 3]
that, if BH a localization of VH , then the central localization

AH D BH ˝VH UH

of the universal comodule algebra UH satisfies the following two properties.
(i) The extension BH � AH is a cleftH -Galois extension; in particular, there is

a left BH -module, rightH -comodule isomorphism

AH Š BH ˝H :

Thus, after localization, UH becomes a free module of rank dim H over its
subalgebra of coinvariants.

(ii) The comodule algebra AH is a “versal deformation space” for the forms
of H in the following sense. Any cleft right H -comodule algebra A
that is a form of H (i.e., such that k0 ˝k A Š k0 ˝k H for some field
extension k0 of k) is isomorphic to a comodule algebra of the formAH=mAH ,
where m is some maximal ideal of BH . Conversely, if in addition S.tH /‚ is
faithfully flat over BH , then for any maximal ideal m of BH , the comodule
algebra AH=mAH is a form of H . (The faithful flatness assumption is
satisfied in a number of cases, including the casewhenH is finite-dimensional,
see [8, Sect. 3.2] and below.)

In the language of non-commutative geometry, AH is a “non-commutative fiber
bundle” over the generic base algebra BH .

In view of the statements of Section 5.2, to obtain a positive answer to
Problem (loc), it suffices to check that the elements p0x and q0x;y defined by (5.3)
are all fractions of elements of VH . This is easily verified if x, y are certain special
elements of H . Indeed, by elementary computations, if x, y are both group-like
elements, then

p0x D
1

px
and q0x;y D

1

qx;y
:

Similarly, if y is group-like and x is skew-primitive with�.x/ D g˝xCx˝h and
".x/ D 0 for some group-like elements g; h, then

p0x D �
px

pgph
and q0x;y D �

qx;y

qg;yqh;y
:

Our second main result is the following.
Theorem 5.4. Let H be a pointed Hopf algebra such that S.tH /‚ is faithfully flat
over BH , then BH is a localization of VH .

The faithful flatness assumption is verified for instance if the pointed Hopf
algebraH is cocommutative by [8, Th. 3.13], if kŒG.H/� ,! H splits as an algebra
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map by [8, Remark 3.14(a)], if H is finite-dimensional, or if each element of the
kernel of the canonical group epimorphism G.H/ab ! G.Hab/ is of finite order
by [8, Th. 3.9].

Proof. Since WH � VH � BH , it is enough to prove that BH is a localization
ofWH . It follows from the assumptions and from [8, Lemma 3.11] that

BH D S.tH /co�Q‚ ;

whereQ D S.tH /‚=.BCH /. Now, it follows from Lemma 5.2 (ii) that

Q D S.tH /‚=.WCH / :

We conclude by applying Lemma 2.3 to the Hopf algebra A D S.tH /‚, which is
pointed by Lemma 3.1, and to the left coideal subalgebra B DWH .

5.4. A commutative square. Recall from Section 3.2 that S.tH / has an Hab-co-
module algebra structure with the coaction ıS defined by (3.6).

Let � W T .XH / ! S.tH / be the abelianization map, which is the algebra map
determined by �.Xx/ D tx for all x 2 H . It easily follows from the definitions that
the square

T .XH / S.tH /

T .XH /˝H S.tH /˝Hab

�

�
//

ıT

��

ıS

��
�˝q

//

(5.4)

commutes.
From this square we deduce that � sends the subalgebra T .XH /co�H ofH -coin-

variants to the subalgebra S.tH /co�Hab ofHab-coinvariants:

� W T .XH /
co�H

! S.tH /
co�Hab :

We can also express .id˝ q/ ı � as the diagonal in the square:

.id˝ q/ ı � D ıS ı � : (5.5)

5.5. The algebra of functions on a finite group. Uma Iyer (January, 2014) proved
the following result, which provides a positive answer to Problem (loc) when H is
the algebra of functions on a finite group.

Theorem 5.5. If H D Ok.G/ is the Hopf algebra of k-valued functions on a finite
group G and the characteristic of k does not divide the order of G, then BH is a
localization of VH .
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Since H is a commutative Hopf algebra, the canonical map q W H ! Hab is the
identity and Qq W S.tH /‚ ! H is given by Qq.tx/ D x for all x 2 H .

The coaction ıS now turns S.tH /‚ and S.tH / into H -comodule algebras. The
commutative square (5.4) means that � W T .XH / ! S.tH / is an H -comodule
algebra map and that it induces a map on the subalgebras of coinvariant elements

� W T .XH /
co�H

! S.tH /
co�H :

It follows from (5.5) that the map � W T .XH /! S.tH /˝H is given in this case by

� D ıS ı � : (5.6)

Since N� W UH ! S.tH /˝H is a comodule algebra injection and the subalgebra
ofH -coinvariants in S.tH /˝H is S.tH / D S.tH /˝ 1, we obtain the inclusion

VH � S.tH / :

Lemma 5.6. Under the hypotheses of the theorem, the algebra VH is the subalgebra
ofH -coinvariants in S.tH /:

VH D S.tH /co�H :

Proof. LetP 2 T .XH /co�H . By definition, ıT .P / D P˝1. Since � is a comodule
algebra map, we have ıS .�.P // D �.P / ˝ 1. It follows from this and from (5.6)
that

�.P / D ıS .�.P // D �.P /˝ 1 :

In other words, the map � restricted to T .XH /co�H coincides with � and thus sends
T .XH /

co�H into S.tH /co�H :

� D � W T .XH /
co�H

! S.tH /
co�H :

This proves the inclusion VH � S.tH /co�H .
Under the hypotheses of the theorem, H is cosemisimple. So the surjection

� W T .XH /! S.tH / splitsH -colinearly, implying that T .XH /co�H ! S.tH /
co�H

is surjective. Thus, S.tH /co�H D �.T .XH /co�H / D N�.VH /.

Proof of Theorem 5.5. By Propositions 3.2 and 3.4, BH D CH is a localization of
the algebra S.tH /co�Hab D S.tH /

co�H . We conclude with Lemma 5.6.
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