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Abstract. We present a geometric approach to the Baum–Connes conjecture with coefficients
for Gromov monster groups via a theorem of Khoskham and Skandalis. Secondly, we use
recent results concerning the a-T-menability at infinity of large girth expanders to exhibit a
family of coefficients for a Gromov monster group for which the Baum–Connes conjecture is
an isomorphism.
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1. Introduction

In [7], Gromov introduced the first examples of non-exact groups. The idea behind
the construction involves taking spaces that do not have Yu’s Property A, such
as sequences of expander graphs, and embedding them into a group using small
cancellation theory. More recently, Osajda [11] constructed further examples of
groups using more refined small cancellation techniques. Osajda’s examples are
interesting as the expander sequence used in the construction is coarsely embedded:
these groups will be the focus of this paper.

The particular types of space that appear in the constructions of both Gromov and
Osajda come from sequences of finite graphs that have the property that their girth,
the length of the shortest simple cycle, tends to infinity in throughout the family.
The coarse geometry of this type of sequence is well understood: it is known that
expander sequences of large girth do not satisfy the coarse Baum–Connes assembly
conjecture, and in particular their coarse Baum–Connes assembly map is known to
be injective but not surjective - this is a result of Willett and Yu, from [16]. This
result was proved again by the author in [6] using groupoid techniques.

The groupoid techniques used in [6] were first introduced by Skandalis, Tu and Yu
in [14], where it was shown that for any uniformly discrete metric space of bounded
geometry X , there is a groupoid, denoted G.X/, that encodes the coarse Baum–
Connes assembly map of X as a groupoid Baum–Connes assembly map for G.X/.
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One benefit of this approach is that the groupoidG.X/ can often be easier to study as
it comes with a large toolkit of operator algebraic and K-theoretic results concerning
the Baum–Connes conjecture that can be readily accessed: for example, the work of
Tu [15] on a-T-menability significant and quite relevant to both this paper, to [6] and
to the original results of Skandalis, Tu and Yu from [14].

The main idea we use here is quite simple: a uniformly discrete metric space with
bounded geometry X that is coarsely embedded into a finitely generated group �
should inherit a large proportion of the geometry of the group. We illustrate this by
constructing, from the group structure, a collection of maps that both generate the
metric structure and control the coarse groupoid G.X/ in this case.

Armed with these maps, we appeal to results of Skandalis and Khoshkam [10]
to produce a Morita equivalence between the coarse groupoid G.X/ and a
transformation groupoid involving the discrete group � that generated the family
of maps. This provides a direct method of converting statements about the
groupoid G.X/ into statements concerning actions of the discrete group � . In
particular, we prove:
Theorem 1.1. Let � be a finitely generated discrete group that contains a coarsely
embedded large girth expanderX of uniformly bounded vertex degree. Then there is
a locally compact �-space �ˇX such that G.X/ is Morita equivalent to �ˇX Ì � .

We use this result to derive some results of Willett and Yu (see Corollary 1.7
in [16] for the relevant statement) concerning the assembly map with coefficients for
groups that coarsely contain large girth expanders:
Theorem 1.2. Let � be a group satisfying the hypothesis of the Theorem above.
Then the Baum–Connes conjecture for � with coefficients in C0.�ˇX / fails to be a
surjection, but is an injection.

By introducing a reduction of the coarse groupoid G.X/ known as the boundary
groupoid (denoted in this text by G.X/j@ˇX ), and by proving a permanence result
for groupoid reductions (see Lemma 3.9 in the text), we are able to improve this to
obtain positive results for another family of coefficients:
Theorem 1.3. Let � be a finitely generated discrete group that contains a coarsely
embedded large girth expander X of uniformly bounded vertex degree. Then there
is a locally compact Hausdorff �-space �@ˇX such that the boundary groupoid
G.X/j@ˇX is Morita equivalent to�@ˇX Ì� . Moreover this groupoid is a-T-menable.

Using results of Tu concerning the Baum–Connes conjecture for a-T-menable
groupoids from [15] we conclude:
Theorem 1.4. Let � satisfy the hypothesis of the previous Theorem. Then the
Baum–Connes conjecture with coefficients in any .�@ˇX Ì �/-C �-algebra is an
isomorphism.

This result can also be obtained from recent results of Baum, Guentner andWillett
as a consequence of their work on exactC �-crossed products (see Theorem 7.8 in [1]).
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As a additional consequence of the techniques in this paper, it is possible to provide
another proof that groups that coarsely contain large girth expander sequences are
not K-exact (this can be shown using the techniques first introduced by Higson,
Lafforgue and Skandalis in Section 7 of [9]). Whilst this proof is different, the ideas
are essentially present in [9] and we include this here for completeness.

As mentioned earlier by using a groupoid approach (instead of to jumping right
to the operator algebraic picture) the simple geometric and topological arguments in
this paper allow us to apply many results from the established literature surrounding
the Baum–Connes assembly conjecture for groupoids. This is a strength as it reduces
the arguments to homological algebra, but also a weakness as it relies on the results
of Tu concerning groupoid Baum–Connes conjecture.

In the following two sections, we describe some basic facts about étale groupoids
and their topology, define the coarse groupoid of Skandalis, Tu and Yu [14] and the
Morita equivalence result of Khoshkam and Skandalis [10]. We then show that this
result applies to the coarse groupoid G.X/ in the particular situation that the metric
space X is coarsely embedded into a finitely generated discrete group � . The final
sections of the paper then give proofs of the previously mentioned Baum–Connes
statements.

2. The coarse groupoid

In this section we recall some fundamental notions on groupoids, as well as outlining
the construction of the coarse groupoid first given by Skandalis, Tu and Yu in [14].
We will always use G to denote a abstract small groupoid.

A groupoid G is a topological groupoid if both G and G.0/ are topological spaces,
and the maps r; s;�1 and the composition are all continuous. A Hausdorff, locally
compact topological groupoid G is proper if .r; s/ is a proper map, principal if .r; s/
is injective and étale or r-discrete if the map r is a local homeomorphism. When G
is étale, s and the product are also local homeomorphisms.

As they will be necessary later, we collect here some particular facts (with
references) concerning the topology of a étale groupoid. Recall that a slice is a
subset U � G on which both the source and range maps are injective.

Proposition 2.1. Let G be a locally compact Hausdorff étale groupoid. Then:
� G.0/ is open in G (Proposition 3.2 in [3])
� The set of open slices forms a basis of the topology for G (Proposition 3.5
in [3])

� If, in addition, G.0/ is totally disconnected then the set of clopen slices of G
form a basis for the topology of G (Proposition 4.1 in [4]).

We now make precise the class of metric spaces that we will study.
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Definition 2.2. Let X be a metric space. Then X is said to be uniformly discrete if
there exists c > 0 such that for every pair of distinct points x 6D y 2 X the distance
d.x; y/ > c. Additionally, X is said have bounded geometry if for every R > 0

there exists NR > 0 such that for every x 2 X the cardinality of the ball of radius R
about x is smaller than NR.

LetX be a uniformly discrete bounded geometry metric space. We want to define
a groupoid with the property that it captures the coarse information associated to X .
To do this effectively we need to define what we mean by a coarse structure that is
associated to a metric. The details of this can be found in Chapter 2 of [13].

Definition 2.3. Let X be a set and let E be a collection of subsets of X � X . If E
has the following properties:

(1) E is closed under finite unions;

(2) E is closed under taking subsets;

(3) E is closed under the induced product and inverse that comes from the pair
groupoid product on X �X ;

(4) E contains the diagonal.

Then we say E is a coarse structure on X and we call the elements of E entourages.
If in addition E contains all finite subsets then we say that E is weakly connected.

Example 2.4. Let X be a metric space. Then consider the collection S of the
R-neighbourhoods of the diagonal in X �X ; that is, for every R > 0 the set:

�R D f.x; y/ 2 X �X jd.x; y/ � Rg

Let E be the coarse structure generated byS . This is called themetric coarse structure
onX . IfX is a uniformly discrete metric space of bounded geometry then this coarse
structure is uniformly locally finite, proper and weakly connected - that is this coarse
structure is of the type studied in [14].

Let X be a uniformly discrete metric space with bounded geometry. We denote
by ˇX the Stone–Čech compactification of X (similarly with ˇ.X �X/).

Define G.X/ WD
S
R>0�R � ˇ.X � X/1. Then G.X/ is a locally compact,

Hausdorff topological space. To equip it with a product and inverse we would ideally
consider the natural extension of the pair groupoid product on ˇX �ˇX . We remark
that the map .r; s/ from X � X extends first to an inclusion into ˇX � ˇX and
universally to ˇ.X � X/, giving a map .r; s/ W ˇ.X � X/ ! ˇX � ˇX . We can
restrict this map to each entourage E 2 E allowing us to map the set G.X/ to
ˇX � ˇX . The following is Lemma 2.7b) from [14]:

1Equally, we could have used the definitionG.X/ WD
S

E2E E , where E is themetric coarse structure
and the closure operation takes place in the topology of ˇ.X �X/.
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Lemma 2.5. Let X be a uniformly discrete bounded geometry metric space, let E
be any entourage from the metric coarse structure on X and let E its closure in
ˇ.X � X/. Then the inclusion E ! X � X extends to a topological embedding
E ! ˇX � ˇX via .r; s/.

Using this Lemma, we can conclude that the pair groupoid operations onˇX�ˇX
restrict to give continuous operations onG.X/ and we equipG.X/with this induced
product and inverse.

Additionally, as ˇX is totally disconnected, it follows from point 3) in
Proposition 2.1 that a basis for the topology of G.X/ is formed of clopen slices.

2.1. Different generators. LetX be a uniformly discretemetric spacewith bounded
geometry. In this section we provide a different generating set for the metric coarse
structure of X by supposing that it is coarsely embedded into a discrete group � .
Definition 2.6. A partial translation of a metric space X is a bijection between
subsets of X whose graph is a controlled subset in the metric coarse structure: a
map: t W U ! V (for U; V � X ) is a partial translation if and only if there exists
R > 0 such that d.x; t.x// � R for every x 2 U .

This concept is important from the perspective of coarse structures on metric
spaces as every entourage of the metric coarse structure is contained in the graphs
of finitely many partial translations (see Lemma 4.10 in [13]). In the situation that
the metric space X is coarsely embedded into a finitely generated discrete group �
we can obtain, through restriction, a natural collection of partial translations that
generate the metric coarse structure.
Proposition 2.7. Let � be a finitely generated discrete group with a left invariant
word metric and let f W X ! � be an injective coarse embedding. Then the
restriction of the right multiplication action of � on itself to X generates the metric
coarse structure of X .

Proof. We identify X as a subset of the Cayley graph of � with the induced metric,
which is of the same coarse type as the original metric of X because f is a coarse
embedding.

Consider the right action of � on itself as a collection of bijections of � defined
by the formula:

tg W � ! �; x 7! xg�1

We can now restrict these maps to X , where they may not be defined everywhere. If
for each g 2 � we denote the set of points inX with image under tg also inX byDg
then we have:

tg W Dg ! Dg�1 ; x 7! xg�1

Let TX denote the collection of tg restricted toX . These maps are partial translations
of X : for every g 2 � , the map tg moves elements of X at most the length of g as
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d.x; tg.x// D d.x; xg�1/ D d.e; g�1/, where the last inequality follows from the
left invariance of the metric.

To see that they generate the metric coarse structure, observe that as the action
of � on itself is transitive we have, for every R > 0, that every pair .x; y/ 2 �R
can be written as .x; xg�1/, where the length of g is at most R. Thus, we have the
decomposition:

�R D
G
jgj�R

f.x; tg.x//jx 2 Xg D
G
jgj�R

gr.tg/

where gr.tg/ is the graph of the map tg and j:j represents the length of the element
of g in the metric of � .

Restrictions of this type appear in the literature as a example of a partial translation
structure (see for instance the work in [2] for a good introduction).

3. The Morita equivalence results of Khoshkam and Skandalis

In this sectionwe outline the technique that is used byKhoshkamandSkandalis in [10]
to construct Morita equivalences between general groupoids and transformation
groupoids arising from group actions on topological spaces. The central piece
of notation we require is the following:
Definition 3.1. Let G be a locally compact groupoid and let � be a discrete group.
A homomorphism of groupoids G ! � will be called a cocycle.

The main idea of [10] is that strong properties of cocycles determine Morita
equivalences.
Definition 3.2. Let � W G ! � be a cocycle. We say it is:
(1) transverse if the map � � G ! � � G.0/, .g; / 7! .g�./; s.// is open.
(2) closed if the map  7! ..r./; �./; s.// is closed.
(3) faithful if the map  7! ..r./; �./; s.// is injective.
(4) (T,C,F) if it satisfies properties 1,2 and 3.

Remark 3.3. If � is a discrete group then to prove that a cocycle � is transverse it is
enough to check if the map  7! .�./; s./ is open [10].

Following [10] we can construct a locally compact Hausdorff �-space � from a
(T,C,F)-cocycle in the following manner. Considering the space G.0/ � � equipped
with the product topology we define a relation � on G.0/ � �: .x; g/ � .y; h/ if
there exists  2 G with s./ D x; r./ D y and �./ D h�1g.

Denote the quotient of G.0/ � � under �, equipped with the quotient topology,
by �. The closed condition on the cocycle makes this space Hausdorff.
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As it will become relevent to keep track of the unit space in this construction, we
will denote the space � defined above by �G.0/ whenever there is ambiguity.

The main result of Khoskham and Skandalis [10] we require is the following:

Theorem 3.4. Let � W G ! � be a continuous, faithful, closed, transverse cocycle.
Then the space � defined above is a locally compact Hausdorff space and there is a
Morita equivalence of G with � Ì � .

Our aim will be to use this result for the groupoid G.X/ when X is a space that
satisfies the hypothesis of Proposition 2.7.

3.1. Cocycles for G(X). Suppose we are in the situation described by Proposi-
tion 2.7, that is we have a uniformly discrete bounded geometry metric spaceX that is
coarsely embedded into a finitely generated discrete group � . Then we can construct
a cocycle from G.X/ to � using the natural decomposition G.X/ D [g2�gr.tg/,
that maps any element  2 G.X/ first to a pair .!; tg.!// 2 ˇX � ˇX , and then
maps this pair to g 2 � . Denote this map by �.

Theorem 3.5. Let X be a uniformly discrete metric space of bounded geometry and
let X ,! � be a coarse embedding of X into a finitely generated discrete group �
equipped with its usual left invariant word metric. Then the map � from the coarse
groupoid G.X/ to the group � is (T,C,F).

Proof. Let  2 G.X/, g; h 2 � . We have to check the three properties:
� Transverse: We must show that the map .g; / 7! .g�./; s.// is open, and
it is enough to check this on a basis elements, which we know from from the
definition of the product topology and Proposition 2.1 is made up of sets of
the form fgg � U , where U is a clopen slice of G.X/. This maps to the set
fg�./g2U � s.U / under the map above. However this set is open as the
set s.U / is homeomorphic to U and is open in ˇX .

� Closed: We must show that the map .r; �; s/ W G.X/ ! ˇX � � � ˇX is
closed. Again, it is enough to check this on a basis for G.X/, which we know
from Proposition 2.1 consists of clopen slices. Let V � G.X/ be a clopen
slice. The conclusion follows as s.V /, r.V / are closed in ˇX as they are
homeomorphic to V , and as every subset of � is closed the desired result
follows.

� Faithful: Suppose for a contradiction that .r; �; s/./ D .r; �; s/. 0/, but that
 6D 

0 . As G.X/ is principal, we know that  and  0 are composable
(because  and  0 have the same source and range) and thus �.�1 0/ is not
the identity in  . This contradicts our initial assumption that �./ D �.

0

/

as � is a groupoid homomorphism.



214 M. Finn-Sell

From Theorem 3.4 we obtain the following Corollary:
Corollary 3.6. If X satisfies the hypothesis of Theorem 3.5, then there is a locally
compact, Hausdorff �-space�ˇX such that the groupoidG.X/ is Morita equivalent
to the transformation groupoid �ˇX Ì � .

3.2. A permanence result for groupoid reductions. In this section we show that
the property of having a (T,C,F)-cocycle to a group passes to groupoid reduction,
which is a relevant step in using these techniques in combination with homological
properties of the groupoid Baum–Connes assembly map.
Definition 3.7. A subset of F � G.0/ is said to be saturated if for every element of
 2 G with s./ 2 F we have r./ 2 F . For such a subset we can form subgroupoid
ofG, denoted byGF which has unit spaceF andG.2/F D f 2 Gjs./ and r./ 2 F g.

We remark also that this concept is sometimes called invariance in the groupoid
literature.
Lemma 3.8. Let G be an étale locally compact Hausdorff groupoid with a (T,C,F)-
cocycle � to � . Then relation � on G.0/ � � preserves saturated subsets of G.0/

Proof. Let U be a saturated subset of G.0/ and let x 2 U , y 2 U c . Assume for a
contradiction that .x; g/ � .y; h/ in G.0/ � � . Then there exists a  2 G such that
s./ D x, r./ D y and �./ D g�1h, but as U is saturated no such  exists.

Now we can show how (T,C,F)-cocycles interact with groupoid reduction.
Lemma 3.9. Let G be an étale locally compact Hausdorff groupoid and let F be
a closed saturated subset of G.0/. If G admits a (T,C,F)-cocycle � onto a discrete
group � then so do GF and GF c .

Proof. Observe thatGF is a closed subgroupoid ofG andGF c is its open complement.
We consider them as topological groupoids in their own right using the subspace
topology. We now check that these topologies are compatible with the subspace
topologies in the appropriate places in the definition of (T,C,F).
(1) Transverse: It is enough to show that f.�./; s.// W  2 GF c g is open; this

follows as it is precisely the intersection of f.�./; s.// W  2 Ggwith��F c .
The same holds for GF .

(2) Closed: We must show P W  7! .r./; �./; s.// is closed. Let V be a
closed subset of GF c . Then, as GF c is equipped with the subspace topology,
there is aV 0 inG that is closed and such thatV D V 0\GF c . Nowby saturation,
we can conclude P.V / D P.V

0

/ \ .F c � � � F c/. Hence P.V / is closed
(from the definition of the subspace topology coming from G.0/ � � � G.0/).

(3) Faithful: as the map P W  7! .r./; �./; s.// is injective, it is clear that its
restriction to either GF c or GF will also be injective.
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If we suppose now that we have a groupoid G that admits a (T,C,F)-cocycle to a
group � . Lemma 3.9 enables us to apply Theorem 3.4 compatably to the reductions
arising from any closed (or open) invariant subset F � G.0/.
Remark 3.10. For a uniformly discrete metric space X of bounded geometry there
are natural reductions of G.X/ that are interesting to consider. It is easy to see that
the set X is an open saturated subset of ˇX and in particular this means that the
Stone–Čech boundary @ˇX is saturated. We remark additionally that the groupoid
G.X/jX is the pair groupoid X �X (as the coarse structure is weakly connected).
Definition 3.11. The boundary groupoid associated to X is the groupoid reduction
G.X/j@ˇX .

We collect the output of Lemma 3.9 applied to G.X/ with saturated pair X and
@ˇX below for clarity:
Proposition 3.12. Let X be a uniformly discrete metric space of bounded geometry,
let G.X/ be its coarse groupoid and let � be a discrete group. If G.X/ admits
a (T,C,F)-cocycle to � , then so do the pair groupoid G.X/jX D X � X and the
boundary groupoid G.X/j@ˇX .

In the situation of Proposition 2.7, i.e that X is coarsely embedded into a finitely
generated group� , Proposition 3.12will allow us to apply Theorem3.4whenworking
with both X �X and G.X/j@ˇX .

4. Results on Gromov monsters

We begin this section by recalling some definitions concerning expansion and girth
of finite graphs, as well as some of the main results shown about sequences of these
spaces. The aim in this section is to prove the positive results about the Baum–
Connes conjecture with coefficients for a group � that coarsely contains a large girth
expander sequence as was outlined in the introduction.
Definition 4.1. Let fXigi2N be a sequence of finite metric spaces that are uniformly
discrete with bounded geometry uniformly in the index i , such that jXi j ! 1 in i .
Then we can form the coarse disjoint union X with underlying set tXi , metric d
given by the metric on each component and setting d.Xi ; Xj /!1 as i C j !1.
Any such metric is proper and unique up to coarse equivalence.

If each of the Xi are finite graphs, then the girth of Xi is understood to be the
length of the shortest simple cycle in Xi . A sequence of graphs fXig has large girth
if the girth of Xi tends to infinity as i does.

Let fXig be a sequence of finite graphs and let�i be the graph Laplacian operator
for eachXi , that is the bounded linear operator inB.`2.Xi // defined by the formula:

�i .ıx/ D
X

d.x;y/D1

ıx � ıy

where fıxg is the standard orthonormal basis indexed by Xi and the distance on Xi
is given by shortest path length.
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The definition of a expander sequence is given in terms of the spectrum of these
operators:

Definition 4.2. Let fXig be a sequence of finite graphs and let X be the associated
coarse disjoint union. Then the space X (or the sequence fXig) is an expander if:

(1) There exists k 2 N such that all the vertices of each Xi have degree at most k.

(2) jXi j ! 1 as i !1.

(3) There exists c > 0 such that spectrum.�i / � f0g [ Œc; 1� for all i .

We remark that this last condition can be phrased as saying that

spectrum.�/ � f0g [ Œc; 1�

where � is the orthogonal sum of the �i inB.`2.X//.

These spaces are relevant here because:

(1) They fail to satisfy the coarseBaum–Connes conjecture. Thiswas first outlined
by Higson in [8], and for certain expanders it was shown more generally by
Higson, Lafforgue and Skandalis in [9] that some aspect of the coarse assembly
conjecture fails. More refined results concerning large girth families were
shown by Willett and Yu in [16] and later using a groupoid technique by
Wright and the author in [6].

(2) They coarsely embed into finitely generated discrete groups. This was shown
by Osajda in [11], building on ideas of Gromov [7].

We now obtain results concerning Baum–Connes for the groups constructed by
Osajda [11] mentioned above.

Theorem 4.3. Let � be a finitely generated discrete group that contains a coarsely
embedded large girth expanderX of uniformly bounded vertex degree. Then there is
a locally compact �-space �ˇX such that G.X/ is Morita equivalent to �ˇX Ì � .

Proof. This result follows from Theorem 3.5 and Theorem 3.4.

As mentioned above, we know that for a large girth expander X of uniformly
bounded vertex degree the Baum–Connes conjecture for G.X/ is injective, but not
surjective (using Theorems 4.6 and 3.35 from [6] or using the meta-Theorem 1.5
from [16] and Proposition 4.8 from [14]). This translates, via Theorem 4.3, to:

Theorem 4.4. Let � be a group satisfying the hypothesis of Theorem 4.3. Then the
Baum–Connes conjecture for � with coefficients in C0.�ˇX / fails to be a surjection,
but is an injection.
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4.1. A different proof of non-K-exactness and the failure of the Baum–Connes
conjecture. We will describe the failure of the Baum–Connes conjecture via a
K-exactness argument and theMorita equivalence results that were proved in previous
sections. The K-exactness method is adapted from Section 9 of [9].

Theorem 4.5. Let � be a finitely generated discrete group that coarsely contains a
large girth expander X . Then � is not K-exact.

Proof. Using Proposition 3.12 and the construction that goes into Theorem 3.4, we
obtain a short exact sequence of commutative �-C �-algebras:

0! C0.�X /! C0.�ˇX /! C0.�@ˇX /! 0:

We will show that this sequence fails to remain exact after completing using the
reduced crossed product by � in each term.

In order to do this, we observe here that the combination of Proposition 3.12 and
Theorem 3.5 with Theorem 3.4 shows that the transformation groupoid �Y Ì � are
Morita equivalent to the groupoid G.X/jY , where Y D X;ˇX or @ˇX .

These Morita equivalences induce strong Morita equivalences of C �-algebras:
as � is countable and ˇX is � -compact we can, for Y D X;ˇX or @ˇX , deduce that
each of the spaces �Y are also � -compact, hence the cross product algebras are all
� -unital. Using the results of Rieffel [12] we have long exact sequences of K-theory
groups in which all the vertical maps are isomorphisms:

� � � // K0.C0.�X / Ìr �/ // K0.C0.�ˇX / Ìr �/ // K0.C0.�@ˇX / Ìr �/ // � � �

� � � // K0.K.`2.X/// //

Š

OO

K0.C
�
r .G.X///

//

Š

OO

K0.C
�
r .G.X/j@ˇX //

//

Š

OO

� � �

Where K.`2.X// is the compact operators on `2.X/.
We can conclude the result by observing that the bottom line is not exact

as a sequence of abelian groups by appealing to known results concerning the
groupoid G.X/ and the reductions (either Section 7 in [9] or a diagram chase and
Theorem 4.6 of [6]). It follows therefore that the sequence:

0! C0.�X / Ìr � ! C0.�ˇX / Ìr � ! C0.�@ˇX / Ìr � ! 0

is not exact in the middle term.

4.2. Positive results for Gromov monsters. To prove positive results we will use
ideas from [6] that are recalled below.

Definition 4.6. Auniformly discretemetric spaceX with bounded geometry is said to
be a-T-menable at infinity if the coarse boundary groupoid G.X/@ˇX is a-T-menable
in the sense of [15], i.e it admits a (locally) proper negative type function to R.
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Examples of spaces that are a-T-menable at infinity are spaces that coarsely embed
into Hilbert space, or more generally fibred coarsely embed into Hilbert space [5].
We recall the outcome of [6] in the following Proposition:

Proposition 4.7. Let X be a large girth expander with vertex degree uniformly
bounded above. Then X is a-T-menable at infinity.

Using the Theorem 3.4 and Proposition 4.7 we will prove that the groupoid
�@ˇX Ì � is a-T-menable. From here, using results of Tu, we can conclude that the
Baum–Connes conjecture holds for this groupoid with any coefficients.

Theorem 4.8. Let � be a finitely generated group that coarsely contains a large girth
expander X with uniformly bounded vertex degree. Then the groupoid �@ˇX Ì � is
a-T-menable.

Proof. By Proposition 3.12 and Theorem 3.4 the groupoid G.X/j@ˇX is Morita
equivalent to �@ˇX Ì � . The result now follows as a-T-menability for groupoids is
an invariant of Morita equivalences (see [15]).

This has a natural corollary:

Corollary 4.9. Let � be a finitely generated group that coarsely contains a large
girth expander X . Then the Baum–Connes conjecture for � with coefficients in any
.�@ˇX Ì �/-C �-algebra is an isomorphism.

We remark that different techniques that rely on a-T-menability at infinity were
considered in [1] to obtain a similar result.
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