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Conformal structures in noncommutative geometry

Christian Bär

Abstract. It is well known that a compact Riemannian spin manifold .M; g/ can be recon-
structed from its canonical spectral triple .C 1.M /; L2.M; †M /; D/ where †M denotes the
spinor bundle and D the Dirac operator. We show that g can be reconstructed up to conformal
equivalence from .C 1.M /; L2.M; †M /; sign.D//.
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1. Introduction

To a closed Riemannian manifold .M; g/ with a fixed spin structure one can associate
its canonical spectral triple .A; H ; D/ where A D C 1.M/ is the pre-C*-algebra of
smooth complex functions on M , H D L2.M; †M/ is the Hilbert space of square
integrable complex spinors on M and D is the Dirac operator. It is not hard to
see that .M; g/ can be reconstructed from .A; H ; D/. While A determines M as a
differentiable manifold, the pair .H ; D/ together with the action of A on H determine
the geometry. This is the starting point of noncommutative geometry because the
concept of spectral triples is not confined to commutative algebras A.

The action of A on H (and the commutators with D) are important in the recon-
struction of the metric. The pair .H ; D/ alone is up to unitary equivalence given by
the eigenvalues of the Dirac operator D. These eigenvalues contain quite a bit of
geometric information, but they are not sufficient to determine the metric, not even
the topology of M . For example, there are explicit examples of Dirac isospectral
manifolds with nonisomorphic fundamental groups [2].

Therefore it is debatable whether attempts to replace the metric by the Dirac
eigenvalues as basic dynamical variables in General Relativity can succeed [9], [10].
In the present note we will show that one can reconstruct the metric up to conformal
equivalence using a modification of canonical spectral triples where the Dirac operator
D is replaced by sign.D/. This is the difference of two spectral projections of D;
one need not know a single Dirac eigenvalue. This indicates that most information
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of a spectral triple is contained in the interplay of D with the action of A, not in the
spectrum of D.

Our approach is not to be confused with Connes’construction of a natural Fredholm
module on even-dimensional conformal manifolds [3], Ch. IV.4. His construction is
based on the fact that the Hodge �-operator on differential forms of middle degree is
conformally invariant. We use the spinorial Dirac operator just as for spectral triples,
which works in odd dimensions as well as in even dimensions. We hope that our
approach will open a door to noncommutative conformal geometry just as spectral
triples are the basic objects of noncommutative Riemannian geometry.

The paper is organized as follows. In the next section we introduce some termi-
nology and recall the reconstruction of the metric from the spectral triple. In the third
section we state and prove the main theorem. It says that two Riemannian metrics
g and g0 on M are conformally equivalent if and only if their Fredholm modules
.H ; sign.D// and .H 0; sign.D0// are weakly unitarily equivalent. It seems to be a
folklore fact among noncommutative geometers that sign.D/ determines the confor-
mal structure. Nevertheless, we found it worthwhile to give a precise formulation and
proof of this fact.

Our proof is based on symbolic calculus of the pseudo-differential operator
sign.D/. The main technical difficulty is caused by the necessity to use a stan-
dard fact for principal symbols in the case of low regularity (Lemma 4.3). For the
sake of better readability these more technical considerations are postponed to the last
section.
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for important remarks. Many thanks go to Elmar Schrohe and Bert-Wolfgang Schulze
for helpful remarks on pseudo-differential operators. I would also like to thank the
Mathematische Forschungsinstitut Oberwolfach for its hospitality and SPP 1154
funded by Deutsche Forschungsgemeinschaft for financial support.

2. Operator modules

Definition 2.1. Let A be a pre-C*-algebra. An operator module of A is a pair .H ; D/

where H is a complex Hilbert space together with a �-representation of A on H by
bounded linear operators and D is a (possibly unbounded but densely defined) linear
operator in H whose domain is left invariant by the action of A.

For the �-representation of A on H we will write .a; h/ 7! a � h D ah. This
concept of operator modules contains Connes’ spectral triples [5], Def. 9.16, as well
as Fredholm modules which are used to define K-homology [6], Ch. 8.
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Definition 2.2. Two operator modules .H ; D/ and .H 0; D0/ of A are called unitarily
equivalent if there exists a unitary isomorphism U W H ! H 0 such that

(i) U.ah/ D aU.h/,

(ii) D0 D UDU �1.

for all a 2 A and h 2 H . In condition (ii) it is understood that U maps the domain of
definition of D onto the domain of D0. If we replace (ii) by the weaker requirement
that D0 � UDU �1 be a compact operator, then we call .H ; D/ and .H 0; D0/ weakly
unitarily equivalent.

Now let .M; g/ be a compact Riemannian spin manifold. By a spin manifold we
mean a manifold with a fixed spin structure.

We define A ´ C 1.M/, the algebra of smooth C-valued functions, and
H ´ L2.M; †M/, the Hilbert space of square integrable complex spinor fields,
and let D be the Dirac operator. Then .H ; D/ is an operator module of A and
.A; H ; D/ is called the canonical spectral triple of .M; g/.

It is well known that .H ; D/ determines the Riemannian metric on M . The
argument for this is as follows, compare [3], p. 544: The metric distance d.x; y/ of
two points in .M; g/ is given by

d.x; y/ D supf ja.x/ � a.y/j j a 2 A with kŒD; a�k � 1 g:
Notice that d.x; y/ D 1 if and only if x and y lie in different connected compo-
nents of M . Now if .H ; D/ and .H 0; D0/ are unitarily equivalent, then kŒD; a�k D
kŒD0; a�k for any a and hence d D d 0. Since the metric distance function d de-
termines the Riemannian metric we have g D g0. Conversely, if g D g0, then
.H ; D/ D .H 0; D0/. This discussion shows that the following are equivalent:

� g D g0,
� .H ; D/ and .H 0; D0/ are unitarily equivalent,
� .H ; D/ D .H 0; D0/.
The aim of this note is to find a similar criterion for g and g0 being conformal to

each other rather than equal.

3. Conformal structures

Two Riemannian metrics g and g0 on M are called conformally equivalent, if there
exists a smooth function v W M ! R such that g0 D e2vg.

Let sign W R ! R be the sign function,

sign.t/ D

8̂<
:̂

1 if t > 0,

0 if t D 0,

�1 if t < 0.
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To a compact Riemannian spin manifold we associate the operator module
.H ; sign.D// of A D C 1.M/ where again H D L2.M; †M/ is the Hilbert space
of square integrable complex spinor fields, and D is the Dirac operator. We call
.H ; sign.D// the canonical Fredholm module of .M; g/.

Theorem 3.1. Let M be a compact spin manifold. Let g and g0 be Riemannian met-
rics on M and let .H ; sign.D// and .H 0; sign.D0// be the corresponding canonical
Fredholm modules of A D C 1.M/.

Then g and g0 are conformally equivalent if and only if .H ; sign.D// and
.H 0; sign.D0// are weakly unitarily equivalent.

Proof. Let v be a smooth function on M such that g0 D e2vg. There exists a fiberwise
isometric vector bundle isomorphism ‰ W †M ! †0M between the spinor bundles
of M with respect to the metrics g and g0 such that we have for the Dirac operators

D0 D e� nC1
2 v B ‰ B D B ‰�1 B e

n�1
2 v; (1)

see e.g. [7], Sec. 4, for details. Here n denotes the dimension of M . The fiberwise
vector bundle isometry ‰ does not induce a Hilbert space isometry L2.M; †M/ !
L2.M; †0M/ because the volume forms of g and g0 are different, vol0 D env vol. To
correct this we put z‰ ´ e� n

2 v � ‰. Now (1) translates into

D0 D e� 1
2 v B z‰ B D B z‰�1 B e� 1

2 v: (2)

Denote the unitary isomorphism induced by z‰ by U W L2.M; †M/ ! L2.M; †0M/.
Equation (2) implies for the principal symbols

�D0.�/ D e� 1
2 v.x/ � z‰.x/ � �D.�/ � z‰�1.x/ � e� 1

2 v.x/

D e�v.x/ � z‰.x/ � �D.�/ � z‰�1.x/

for � 2 T �
x M . Now sign.D/ and sign.D0/ are classical pseudo-differential operators

of order 0, compare the argument in [1], p. 48, based on the work in [13]. See e.g. [11]
for an introduction to these operators. For the principal symbol we have

�sign.D/.�/ D �D.�/

j�D.�/j

for nonzero � 2 T �
x M . Here j�D.�/j denotes the operator

p
�D.�/2 and �D.�/

j�D.�/j means

�D.�/ B j�D.�/j�1 D j�D.�/j�1 B �D.�/. Notice that �D.�/ 2 Hom.†xM; †xM/
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is a symmetric operator. Moreover,

�sign.D0/.�/ D e�v.x/ � z‰.x/ � �D.�/ � z‰�1.x/

je�v.x/ � z‰.x/ � �D.�/ � z‰�1.x/j

D
z‰.x/ � �D.�/ � z‰�1.x/

j z‰.x/ � �D.�/ � z‰�1.x/j

D
z‰.x/ � �D.�/ � z‰�1.x/

z‰.x/ � j�D.�/j � z‰�1.x/

D z‰.x/ � �D.�/

j�D.�/j � z‰�1.x/

D �U Bsign.D/BU �1.�/:

Hence sign.D0/ � U B sign.D/ B U �1 is a classical pseudo-differential operator
of order 0 with vanishing principal symbol and thus compact as an operator on
L2.M; †0M/, compare the exact sequence (3) below. This shows that the canon-
ical Fredholm modules .L2.M; †M/; sign.D// and .L2.M; †0M/; sign.D0// of
C 1.M/ are weakly unitarily equivalent.

Conversely, assume that the canonical Fredholm modules .L2.M; †M/; sign.D//

and .L2.M; †0M/; sign.D0// of C 1.M/ are weakly unitarily equivalent. The uni-
tary isomorphism U commutes with the action of C 1.M/, hence U is induced by a
section ‰ 2 L1.M; Hom.†M; †0M//, see Lemma 4.1. Since U is invertible, ‰ is
invertible almost everywhere and ‰�1 2 L1.M; Hom.†0M; †M//.

The principal symbol of a Dirac operator is given by Clifford multiplication with
respect to the metric g, more precisely, �D.�/ D icg.�/ for all � 2 T �M . Clifford
multiplication has the property cg.�/cg.�/ C cg.�/cg.�/ C 2g.�; �/ D 0 for all
�; � 2 T �

x M and all x 2 M . Hence the principal symbol of sign.D/ is given by

�sign.D/.�/ D icg.�/

k�kg
for � 2 T �

x M , � 6D 0. By Lemma 4.3

�U Bsign.D/BU �1.�/ D ‰.x/ � �sign.D/.�/ � ‰�1.x/:

Since sign.D0/ and U Bsign.D/BU �1 differ by a compact operator we have �sign.D0/ D
�U Bsign.D/BU �1 . This means that

cg0.�/

k�kg0

D ‰.x/ � cg.�/

k�kg

� ‰�1.x/
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for all nonzero �. Therefore

�2g0.�; �/

k�kg0k�kg0

D cg0.�/

k�kg0

cg0.�/

k�kg0

C cg0.�/

k�kg0

cg0.�/

k�kg0

D ‰.x/ �
�

cg.�/

k�kg

cg.�/

k�kg

C cg.�/

k�kg

cg.�/

k�kg

�
� ‰�1.x/

D ‰.x/ �
� �2g.�; �/

k�kgk�kg

�
� ‰�1.x/

D �2g.�; �/

k�kgk�kg

:

The last equation holds because �2g.�;�/
k�kgk�kg

is scalar and thus commutes with ‰.x/.
This proves that g and g0 are conformally equivalent.

Remark 3.2. Let �C W R ! R and �0 W R ! R be given by

�C.t/ D
(

1 if t > 0,

0 if t � 0,
and �0.t/ D

(
1 if t D 0,

0 if t 6D 0.

Since �C.D/ D 1
2
.sign.D/ C id � �0.D// and since �0.D/ is a finite rank operator

and hence compact we see that .H ; sign.D// and .H 0; sign.D0// are weakly uni-
tarily equivalent if and only if .H ; �C.D// and .H 0; �C.D0// are weakly unitarily
equivalent. Therefore one can replace sign.D/ by the spectral projector �C.D/ in
Theorem 3.1.

4. Three auxiliary lemmas

Throughout this section let E ! M and E 0 ! M be Hermitian vector bundles over
the closed Riemannian manifold M .

Lemma 4.1. Let U W L2.M; E/ ! L2.M; E 0/ be a bounded linear map. Suppose
that U.a'/ D aU.'/ for all a 2 C 1.M/ and all ' 2 L2.M; E/.

Then there exists a unique ‰ 2 L1.M; Hom.E; E 0// such that

.U'/.x/ D ‰.x/'.x/

for almost all x 2 M and for all ' 2 L2.M; E/.

Proof. Uniqueness of ‰ is obvious. To show existence we choose trivializing com-
plements F and F 0 for the bundles E and E 0, i.e., F and F 0 are Hermitian vector
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bundles over M such that E ˚ F and E 0 ˚ F 0 are trivial bundles. Without loss of
generality we assume that E ˚ F and E 0 ˚ F 0 have equal rank N . We extend U

trivially to an operator

zU D
�

U 0

0 0

�
W L2.M; E ˚F / D L2.M; CN / ! L2.M; E 0 ˚F 0/ D L2.M; CN /:

The extended operator zU still commutes with the action of C 1.M/ on L2.M; CN /

and hence also with the action of L1.M/, the von Neumann algebra generated by
C 1.M/. It is well known that the commutant of L1.M/ on the Hilbert space
L2.M; CN / is given by L1.M; Mat.C; N //, see e.g. [4], p. 61. This proves the
lemma.

We denote the space of classical pseudo-differential operators of order 0 acting on
sections in E by P .M; E/. Each element of P .M; E/ extends to a bounded linear
map on the Hilbert space L2.M; E/. We denote the closure of P .M; E/ with respect
to the L2-operator norm by xP .M; E/. There is a well-known exact sequence [12],
Theorem 11.1,

0 �! K.L2.M; E// �! xP .M; E/
���! Symb.M; E/ �! 0 (3)

where K stands for compact operators and

Symb.M; E/ D f� 2 C 0.S�M; Hom.��E; ��E// j �.t�/ D �.�/ for all t > 0

and all � 6D 0g:
Here � W S�M ! M is the cotangent bundle with the zero-section removed. The
symbol map ��, P 7! �P , can be characterized as follows:

Lemma 4.2. Let P 2 xP .M; E/, let h 2 C 1.M/ be a real function and f 2
C 1.M; E/ such that dh.x/ 6D 0 for all x 2 supp.f /. Then

e�ithP.eithf /
L2

��! �P .dh/f

as t ! 1.

Proof. The statement is known to hold if P 2 P .M; E/, compare [8], Section 2. In
this case the convergence is uniform.

Let P 2 xP .M; E/ and choose Pj 2 P .M; E/ such that Pj ! P in the L2-norm
topology. Then �Pj

! �P uniformly. Fix " > 0. Choose j so large that

kP � Pj k � "

and
k�P � �Pj

kC 0 � ":
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Now choose T so large that

k�Pj
.dh/f � e�ithPj .eithf /kC 0 � "

for all t � T . Then we have for such t

k�P .dh/f � e�ithP.eithf /kL2

� k�P .dh/f � �Pj
.dh/f kL2 C k�Pj

.dh/f � e�ithPj .eithf /kL2

C ke�ith.Pj � P /.eithf /kL2

� " � kdhkC 0 � kf kL2 C " �
p

vol.M/ C " � kf kL2 D C � "

where the constant C depends only on M , h, and f . This proves the lemma.

Both xP .M; E/ and Symb.M; E/ are C*-algebras and the symbol map is a homo-
morphism, �P BQ.�/ D �P .�/ B �Q.�/. In particular, if ˆ 2 C 0.M; Hom.E 0; E//

and ‰ 2 C 0.M; Hom.E; E 0//, then

�‰BP Bˆ.�/ D ‰.x/ � �P .�/ � ˆ.x/

holds for all � 2 S�
x M . The following lemma says that this is still true if ˆ and ‰

are only L1 provided the left hand side makes sense.

Lemma 4.3. Let P 2 P .M; E/, let ˆ 2 L1.M; Hom.E 0; E//, and let ‰ 2
L1.M; Hom.E; E 0//. Suppose Q ´ ‰ B P B ˆ 2 xP .M; E 0/. Then

�Q.�/ D ‰.x/ � �P .�/ � ˆ.x/

holds for almost all x 2 M and � 2 S�
x M .

Proof. Since M is compact L1 � L2. Choose ĵ 2 C 1.M; Hom.E 0; E// and

‰j 2 C 1.M; Hom.E; E 0// such that ĵ
L2

��! ˆ and ‰j
L2

��! ‰ as j ! 1. Note
that Qj ´ ‰j B P B ĵ 2 P .M; E 0/ and

�Qj
.�/ D ‰j .x/ � �P .�/ � ĵ .x/: (4)

Put rj ´ ‰ �‰j and qj ´ ˆ� ĵ . Let h 2 C 1.M/ be a real function such that its
critical set fx 2 M j dh.x/ D 0g consists of finitely many points, e.g., h can be any
Morse function. Let f; g 2 C 1.M; E 0/ vanish on a neighborhood of the critical set
fdh D 0g. Then x 7! h�Qj

.dh.x//f .x/; g.x/i are well-defined smooth functions.
From (4) and L2-convergence of ĵ and ‰j we conclude

h�Qj
.dh/f; gi L1

��! h‰�P .dh/ f̂; gi



Conformal structures in noncommutative geometry 393

as j ! 1 and hence

.�Qj
.dh/f; g/L2 D

Z
M

h�Qj
.dh.x//f .x/; g.x/i dx

j !1����! .‰�P .dh/ f̂; g/L2 :

(5)
On the other hand, we compute using Lemma 4.2

.�Q.dh/f; g/L2

D
Z

M

hL2-limt!1 e�ithQ.eithf /; gi dx

D
Z

M

hL2-limt!1 e�ith.‰j C rj /P.. ĵ C qj /eithf /; gi dx

D .�Qj
.dh/f; g/L2 C

Z
M

hL2-limt!1 e�ith.‰j P qj C rj P ˆ/eithf; gi dx

D .�Qj
.dh/f; g/L2 C

Z
M

L1-limt!1 e�ithh.‰j P qj C rj P ˆ/eithf; gi dx

D .�Qj
.dh/f; g/L2 C lim

t!1

Z
M

e�ith.x/h.‰j P qj C rj P ˆ/eithf jx; g.x/i dx:

Now fix " > 0 and choose j0 such that krj kL2 ; kqj kL2 < " for all j � j0. Then we
have for all j � j0ˇ̌̌

lim
t!1

Z
M

e�ith.x/h.‰j P qj C rj P ˆ/eithf /jx; g.x/i dx
ˇ̌̌

� lim sup
t!1

Z
M

ˇ̌
e�ith.x/h.‰j P qj C rj P ˆ/eithf /jx; g.x/iˇ̌ dx

D lim sup
t!1

Z
M

ˇ̌h.‰j P qj C rj P ˆ/eithf /jx; g.x/iˇ̌ dx:

(6)

Denote the L2-operator norm of P by C . Then we have for all t > 0Z
M

ˇ̌h.‰j P qj /eithf /jx; g.x/iˇ̌ dx � kP.qj eithf /kL2 � k‰�
j gkL2

� C � kqj kL2 � kf kL1 � k‰�
j kL2 � kgkL1

� C � " � kf kL1 � .k‰kL2 C "/ � kgkL1

(7)

and Z
M

ˇ̌h.rj P ˆ/eithf /jx; g.x/iˇ̌ dx � kP ˆeihtf kL2 � kr�
j gkL2

� C � kˆeithf kL2 � kr�
j kL2 � kgkL1

� C � kˆkL2 � kf kL1 � " � kgkL1 :

(8)
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Plugging (7) and (8) into (6) we find thatˇ̌̌
lim

t!1

Z
M

e�ith.x/h.‰j P qj C rj P ˆ/eithf /jx; g.x/i dx
ˇ̌̌

� C 0 � ." C "2/

for all j � j0 with a constant C 0 independent of ", j0, and j . Thus

lim
j !1.�Qj

.dh/f; g/L2 D .�Q.dh/f; g/L2 :

By (5) this means

.�Q.dh/f; g/L2 D .‰�P .dh/ f̂; g/L2 :

Therefore
�Q.dh.x// D ‰.x/�P .dh.x//ˆ.x/

for almost all x 2 M with dh.x/ 6D 0. Since h is arbitrary

�Q.�/ D ‰.x/�P .�/ˆ.x/

for almost all x 2 M and � 2 S�
x M .
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