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On the geometry of Hele–Shaw flows with small surface tension
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We study the time evolution of the free boundary of a viscous fluid in the non-zero-surface-tension
models for planar flows in Hele–Shaw cells under injection. Applying methods of conformal map we
prove that certain geometric properties, such as starlikeness and directional convexity, are preserved
in time.
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1. Introduction

We discuss the Hele–Shaw problem in the plane in two basic cases. The first one deals with
the classical situation of injection through a unique source in a finite region. The second one is
concerned with the free boundary extending to the point at infinity. Starting with the earlier works of
L. A. Galin [9] and P. Ya. Polubarinova-Kochina [19, 20], various aspects of the planar Hele–Shaw
viscous flows with vanishing surface tension were investigated by a number of scientists. It is known
[31] that in the zero-surface-tension Hele–Shaw problem with an initial region with an analytic
boundary the classical solution exists locally in time. Recently [25], it became clear that the model
could be interpreted as a particular case of the abstract Cauchy problem, and thus, the classical
solvability (locally in time) may be proved using the nonlinear abstract Cauchy–Kovalevskaya
Theorem.

One asks whether a non-zero-surface-tension model approximates the zero-surface-tension one.
The answer is negative in the case of a receding fluid (see numerical evidence in [1, 24]). In the case
of injection the answer is supposed to be affirmative but is still unknown. In our paper we consider
geometric properties that are preserved under injection during the time evolution of zero- as well as
of non-zero-surface-tension models.

For the non-zero-surface-tension case J. Duchon and R. Robert [3] proved the local existence
in time of the weak solution for bounded domains. Recently, G. Prokert [23] obtained even global
existence in time and exponential decay of the solution near equilibrium (when surface tension is a
unique driving mechanism). The results are obtained in Sobolev spacesH s with sufficiently larges.
J. Escher and G. Simonett [5, 6] proved the local existence, uniqueness and regularity of classical
solutions to one- and two-phase Hele–Shaw problems with surface tension when the initial domain
has a smooth boundary. The global existence in the case of the phase domain close to a disk was

†
E-mail: alexander.vasiliev@mat.utfsm.cl

‡
E-mail: irina.markina@mat.utfsm.cl

This work is partially supported by Projects Fondecyt (Chile) # 1020067 and 1030373.

c© European Mathematical Society 2003



184 A . VASIL’ EV & I . MARKINA

proved in [7]. For unbounded domains with unbounded boundary the corresponding result about
short-time existence and uniqueness for positive surface tension has been obtained by M. Kimura
[15]. More about the local existence of classical solutions can be found in [30].

In the present paper we derive equations for the free boundaries either for unbounded domains
(similarly to [8]) whose free boundary extends to infinity, or for the classical situation of suction
and injection, in non-zero-surface-tension models. Using methods of geometric function theory we
prove that some geometric properties of the free boundary that depend on those of the initial one are
preserved as long as the classical solution exists.

2. Bounded case

A simple dimensionless model of a moving viscous incompressible fluid in a plane Hele–Shaw cell
is described by a potential flow with velocity fieldV = (V1, V2). We assume that a unique force
acting in this field is the dimensionless pressurep which is the potential for the fluid velocity

V = −
h2

12µ
∇p,

whereh is the cell gap andµ is the viscosity of the fluid (see e.g. [18, 27]). Denote byΩ(t) a
bounded simply connected domain inC occupied by the moving fluid and byΓ (t) its moving
boundary. Suction or injection is carried out through a point sink or source placed at the origin
0 ∈ Ω(t). The initial boundaryΓ0 ≡ Γ (0) is supposed to be analytic and smooth. We have
a homogeneous sink/source with the normalizationp(z, t) ∼

Q
2π log |z| about the origin. The

incompressibility of the fluid implies the harmonicity of the pressurep(z, t) except for a singular
point at the origin,

∆p = −Qδ0(z), z = x + iy ∈ Ω(t), (1)

whereδ0(z) stands for the standard Dirac distribution with singularity at the origin. The valueQ is
the strength of the sink (source),Q > 0 in the case of a sink (andQ < 0 in the case of a source).
The non-zero-surface-tensiondynamicboundary condition is given by the product of the surface
tensionγ and the mean curvatureκ in thez-plane (J. W. McLean and P. G. Saffman [16]),

p(z) = γ κ for z ∈ Γ (t). (2)

In a real Hele–Shaw cell, (2) is an approximation to the effect of complicated three-dimensional
free surface flow near the moving interface. The normal velocity on the boundary is given by the
kinematiccondition for the normal velocity

vn = −
∂p

∂ En
, (3)

where En is the outward unit normal vector toΓ (t). The problem (1)–(3) has a unique classical
solution locally in time for both positive and negativeQ [6, 30].

The zero-surface-tension problem (γ = 0) with suction is ill-posed in the Hadamard sense. This
means that an arbitrarily small perturbation of the initial domainΩ0 ≡ Ω(0) can produce anO(1)
effect in arbitrarily short time. The injection problem is well-posed (C. M. Elliott and V. Janovský
[4]). The condition (2) is one of the proposals for the regularization of the ill-posed problem (which
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is also known as the Laplace–Young condition). It accounts for the influence of surface tension on
the pressure across the interface.

We consider the complex potentialW = W(x, y, t) ≡ W(z, t), ReW = p. For each fixedt
it is an analytic function defined inΩ(t) whose real part solves the problem (1)–(2). In the
neighbourhood of the origin we have the expansion

W(z, t) =
Q

2π
logz+ w(z, t), (4)

wherew(z, t) is an analytic regular function inΩ(t). We have

∂W

∂z
=
∂p

∂x
− i

∂p

∂y
, (5)

by the Cauchy–Riemann conditions.
In order to derive the equation for the free boundaryΓ (t) we consider an auxiliary parametric

complexζ -plane,ζ = ξ + iη. The Riemann Mapping Theorem shows that there exists a unique
conformal univalent mapf (ζ, t) of the unit diskU = {ζ : |z| < 1} onto the phase domain,
f : U → Ω(t), with f (0, t) ≡ 0, f ′(0, t) > 0. The functionf (ζ, t) gives the parameterization
Γ (t) = {f (eiθ , t) : θ ∈ [0,2π)} of the moving boundary.

The outward unit normal vector in (3) is given as

En = ζ
f ′(ζ, t)

|f ′(ζ, t)|
, ζ ∈ ∂U.

From now on, we use the notationṡf = ∂f/∂t , f ′
= ∂f/∂ζ . Thus, (3) and (5) lead to the formula

vn = V · En = − Re

(
∂W

∂z
ζ
f ′(ζ, t)

|f ′(ζ, t)|

)
.

The superpositionW ◦f (ζ, t) is an analytic function in the unit disk. Since the Laplacian is invariant
under conformal map, the solution to (1)–(2) is given in terms of theζ -plane as

W ◦ f (ζ, t) =
Q

2π
logζ +

γ

2π

∫ 2π

0
κ(eiθ , t)

eiθ + ζ

eiθ − ζ
dθ + iC, (6)

where

κ(eiθ , t) =
Re(1 + eiθf ′′(eiθ , t)/f ′(eiθ , t))

|f ′(eiθ , t)|
, θ ∈ [0,2π).

We calculate
∂κ(eiθ , t)

∂θ
=

− Im e2iθSf (eiθ , t)

|f ′(eiθ , t)|
,

whereSf is the Schwarzian derivative. Differentiating (6) we deduce that

ζ
∂W

∂z
f ′(ζ, t) =

Q

2π
+
γ

π

∫ 2π

0

κ(eiθ )ζeiθ

(eiθ − ζ )2
dθ, ζ ∈ U.

Integrating by parts we obtain

ζ
∂W

∂z
f ′(ζ, t) =

Q

2π
−

γ

2πi

∫ 2π

0

Im e2iθSf (eiθ , t)

|f ′(eiθ , t)|

eiθ + ζ

eiθ − ζ
dθ.
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Then we apply the Sokhotskiı̆–Plemelj formulae [17] and, finally, deduce that

Reḟ (ζ, t)ζf ′(ζ, t) = − Re

(
∂W

∂z
◦ f (ζ, t)

)
ζf ′(ζ, t)

= −
Q

2π
− γH

[
i Im

ζ 2Sf (ζ, t)

|f ′(ζ, t)|

]
(θ), ζ = eiθ , (7)

where the Hilbert transform in (7) is of the form

H [ψ ](θ) :=
1

π
P.V.θ

∫ 2π

0

ψ(eiθ
′

)

1 − ei(θ−θ ′)
dθ ′.

This type of equation is known as thePolubarinova–Galin equation(see e.g. [13]). In terms of
the equation (7) the existence of a classical solution means that the parametric functionf (ζ, t) is
analytic in a neighbourhood of the diskU and univalent inU locally in time (see e.g. [24, 25]).

3. Geometric properties of the free boundary

Several authors studied starlike dynamics under injection. For example, some authors imposed
“strict starlikeness” as an additional condition to prove short-time existence and uniqueness of a
weak or classical solution (see, e.g., [23, 26]). Let us refer also to the paper by E. Di Benedetto
and A. Friedmann [2] where the authors discussed the weak solution and proved that starting with
a domainΩ0 that is starlike with respect to a small ball centred at the point of the source the
evolutionary domainsΩ(t) remain starlike with respect to a ball (maybe of different radius) in the
zero-surface-tension case. If the classical solution exists, then it is the same as the weak one (see,
e.g., [11]). Therefore, the same is true for the classical solution. In [12] the same result is proved
but for domains which are starlike with respect to a point source, using complex variable methods.
Here we generalize this result to non-zero surface tension using a slightly different method.

We recall that a domainΩ ⊂ C with 0 ∈ Ω is said to bestarlike (with respect to the origin) if
each ray starting at the origin intersectsΩ in a set that is either a line segment or a ray. A function
f mappingU onto a starlike domain is said to be starlike (f ∈ S∗), and it satisfies the necessary
and sufficient condition of starlikeness (see [10, 21, 22])

Re
ζf ′(ζ )

f (ζ )
> 0, ζ ∈ U. (8)

If the functionf can be extended analytically onto the closureŪ of U , then the inequality sign in
(8) can be replaced by> where the equality can be attained at the unit circle∂U .

We need a technical formula. For the functionf : U → C which parameterizes the phase
domainΩ(t) we have the equality

∂

∂θ
H

[
ie2iθ Im Sf (eiθ )

|f ′(eiθ )|

]
(θ) = −H [iA](θ) (9)

with

A(ζ ) =

Re

(
2ζ 2Sf (ζ )+ ζ

[(
f ′′(ζ )

f ′(ζ )

)′′

−
f ′′(ζ )

f ′(ζ )

(
f ′′(ζ )

f ′(ζ )

)′ ])
+ Im

ζf ′′(ζ )

f ′(ζ )
Im ζ 2Sf (ζ )

|f ′(ζ )|
.

We denote byT the blow-up time (the classical solution exists during the period [0, T )).
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THEOREM 1 LetQ < 0 and let the surface tensionγ be sufficiently small. If the initial domain
Ω0 is starlike, then there existst = t (γ ) 6 T such that for eacht ∈ [0, t (γ )] the domainΩ(t) is
also starlike.

Proof. Suppose that there exists a critical mapf ∈ S∗. Saying this we mean that the image ofU
under the mapζf ′(ζ, t)/f (ζ, t), |ζ | 6 1, touches the imaginary axis and there existt ′ > 0 and
ζ0 = eiθ0 such that

arg
ζ0f

′(ζ0, t
′)

f (ζ0, t ′)
=
π

2

(
or = −

π

2

)
, (10)

and for anyε > 0 there aret > t ′ andθ ∈ (θ0 − ε, θ0 + ε) such that

arg
eiθf ′(eiθ , t)

f (eiθ , t)
>
π

2

(
or 6 −

π

2

)
. (11)

For definiteness we put the sign(+) in (10). Without loss of generality, assumet ′ = 0. Since
f ′(eiθ , t) 6= 0, our assumption about the sign in (10) yields

Im
ζ0f

′(ζ0,0)

f (ζ0,0)
> 0 (12)

(the negative case is considered similarly).
Sinceζ0 is a critical point and the image of the unit diskU under the mappingζf ′(ζ,0)/f (ζ,0)

touches the imaginary axis at the pointζ0 = eiθ0, we deduce that

∂

∂θ
arg

eiθf ′(eiθ ,0)

f (eiθ ,0)

∣∣∣∣
θ=θ0

= 0,
∂

∂r
arg

reiθ0f ′(reiθ0,0)

f (reiθ ,0)

∣∣∣∣
r=1

> 0.

We calculate

Re

[
1 +

ζ0f
′′(ζ0,0)

f ′(ζ0,0)
−
ζ0f

′(ζ0,0)

f (ζ0,0)

]
= 0, (13)

Im

[
1 +

ζ0f
′′(ζ0,0)

f ′(ζ0,0)
−
ζ0f

′(ζ0,0)

f (ζ0,0)

]
> 0. (14)

One can derive

∂

∂t
arg

ζf ′(ζ, t)

f (ζ, t)
= Im

∂

∂t
log

f ′(ζ, t)

f (ζ, t)
= Im

(
∂
∂t
f ′(ζ, t)

f ′(ζ, t)
−

∂
∂t
f (ζ, t)

f (ζ, t)

)
. (15)

Now we differentiate the equation (7) with respect toθ using (9):

Im

(
f ′(ζ, t)

∂

∂t
f ′(ζ, t)− ζf ′(ζ, t)ḟ (ζ, t)− ζ 2f ′′(ζ, t)ḟ (ζ, t)

)
= −γH [iA](θ) (16)

for ζ = eiθ . This equality is equivalent to the following:

|f ′(ζ, t)|2 Im

(
∂
∂t
f ′(ζ, t)

f ′(ζ, t)
−

∂
∂t
f (ζ, t)

f (ζ, t)

)
= Im(ζf ′(ζ, t)ḟ (ζ, t))

(
ζf ′′(ζ, t)

f ′(ζ, t)
−
ζf ′(ζ, t)

f (ζ, t)
+ 1

)
−γH [iA](θ).
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Substituting (7) and (13) in the latter expression, we finally have

∂

∂t
arg

ζf ′(ζ, t)

f (ζ, t)

∣∣∣∣
ζ=eiθ0, t=0

=
1

|f ′(eiθ0,0)|2

(
Q

2π
+ γH

[
i Im

e2iθSf (eiθ , t)

|f ′(eiθ , t)|

]
(θ0)

)
× Im

(
eiθ0f ′(eiθ0,0)

f (eiθ0,0)
+

eiθ0f ′′(eiθ0,0)

f ′(eiθ0,0)

)
− γ

H [iA(eiθ )](θ0)

|f ′(eiθ0,0)|2
. (17)

The right-hand side of this equality is strictly negative for smallγ because of (12), (14). Since we
consider the set of critical points in the compact set∂U , we can chooseγ0 > 0 to be minimal such
that the right-hand side is negative for all critical points andγ ∈ [0, γ0]. Therefore,

arg
eiθ0f ′(eiθ0, t)

f (eiθ0, t)
<
π

2

for t > 0 (close to 0). By continuity, the same inequality holds in some neighbourhood of any
critical pointθ0. For allθ outside the above mentioned neighbourhoods the same inequality is valid
because

arg
eiθf ′(eiθ , t)

f (eiθ , t)
−
π

2
6 −δ < 0.

This contradicts the assumption of the existence of critical points and ends the proof. 2

Discussion

1) An interesting question appears whenγ → 0. It turns out that the solution in the limiting
γ -surface-tension case need not always be the corresponding zero-surface-tension solution at
least in the problem of receding fluid (see the discussion in [28, 29, 30]). This means that if
Ω(t, γ ) stands for the moving fluid domain at timet with surface tensionγ , then assuming
limγ→0Ω(t, γ ) = Ω(t,0), the domainΩ(0,0) is not necessarily the limit ofΩ(0, γ ) as
γ → 0. Theorem 1 shows that some geometry remains the same asγ → 0. In particular,
in the zero-surface-tension modelt (0) = T and starlikeness is preserved for the whole time
t ∈ [0, T ).

2) The result of Theorem 1 is local in the sense that the starlikeness in question remains the
same in some neighbourhood of the initial instant when the domainΩ0 is starlike. This
neighbourhood depends either onγ or else on the properties of the boundaryΓ0 involving
the value ofH [iζ 2 Im Sf /|f

′
|](θ) andH [iA](θ). We also point out that in the case of the

zero-surface-tension model,Q < 0 corresponds to the situation when the travelling wave
solution is linearly stable [13] fort ∈ [0, T ).

3) There are expectations that Theorem 1 is still true for largeγ . Unfortunately, we are not
able to prove this at the moment. The influence of the curvature makes it less probable that
t (γ ) = t0 for γ 6= 0 butt (γ ) could exist even for largeγ . The restriction on the smallness of
γ comes from the method of proof.

4. Isoperimetric inequalities

Let S(t) be the area of the domainΩ(t) in the Hele–Shaw dynamics under the conditions of
Section 2. A simple application of the Green theorem implies that the rate of the area change is
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Ṡ = −Q. Let γ = 0,Q < 0. From (7) we deduce that

ȧ = −a
1

4π2

∫ 2π

0

Q

|f ′(eiθ , t)|2
dθ > −a

1

4π2

∫ 2π

0
Re

Q

f ′(eiθ , t)2
dθ =

−Q

2πa
=

Ṡ

2πa
,

wherea = f ′(0, t). In other words the area variation is controlled by the conformal radius of the
domainΩ(t) with respect to the origin:̇S 6 2πaȧ. We point out here that generallyS > πa2 (this
is a simple consequence of the area principle, see e.g. [10]). The equality in the above inequalities
is attained forΩ(t) = {z : |z| < a(t)}. In a similar manner S. D. Howison and Yu. E. Hohlov [14]
estimated from below the distance fromΓ (t) to the origin.

The lower bound foṙS is unclear or at least much more difficult. One must estimate the integral
mean ∫ 2π

0

1

|f ′(eiθ , t)|2
dθ (18)

from above. The cusp formation does not allow us to obtain a uniform (with respect tot) bound.
But one can estimate (18) under some geometric conditions on the domainΩ(t) at time t . For
example, this is possible if we assume that at timet the domainΩ(t) is convex. Then the function
f is also convex, and thus12-starlike, say Reζf ′(ζ )/f (ζ ) > 1/2. Moreover the 1/4-Koebe theorem
for convex functions yields|f (ζ )| > a/2. This implies the estimates∫ 2π

0

1

|f ′(eiθ , t)|2
dθ <

32π

a2
and Ṡ >

πa

8
ȧ.

5. Free boundary extends to infinity

This model corresponds to the moving fluid front which for definiteness we suppose to be located
to the right. More precisely, we denote byΩ(t) a simply connected domain in the phasez-plane
occupied by the moving fluid and we suppose its moving boundaryΓ (t) = ∂Ω(t) contains the
point at infinity. Withz = x + iy one can construct a parameterizationΓ (t). Assuming a natural
normalization forΓ (t) close to∞, we require thatΓ (t) is a vertical straight line near infinity. The
initial situation is represented at timet = 0 asΩ(0) = Ω0, ∂Ω0 = Γ (0) ≡ Γ0. We construct the
complex potentialW(z, t), ReW = p, wherep is, as usual, the pressure field inΩ(t). For each
fixed t the potentialW is an analytic function defined inΩ(t) which solves the problem

∇
2p = 0 in z ∈ Ω(t), (19)

p = γ κ(z) on z ∈ Γ (t), (20)

vn = −
∂p

∂ En
on z ∈ Γ (t). (21)

We assume that the velocity tends to a constant valueQ asx → ∞, which is positive when the fluid
is removed to the right and negative otherwise. In terms of the potentialp we havep(x, y, t)/x →

−Q asx → ∞ for anyt fixed. The existence problem has been discussed in the introduction. Note
that for this case the local solvability and uniqueness were proved by M. Kimura [15].

We consider the auxiliary parametric complexζ -plane,ζ = ξ + iη. The Riemann Mapping
Theorem shows that there exists a conformal univalent mapf (ζ, t) of the right half-planeH+

=

{ζ : Reζ > 0} into the phase plane,f : H+
→ Ω(t). The half-planeH+ is a natural param-
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etric domain forΩ. The functionf (ζ,0) = f0(ζ ) produces a parameterization ofΓ0. The
smoothness of the boundaryΓ (t) and its behaviour in the neighbourhood of∞ allow us to
assume the normalizationf (ζ, ·) = ζ + a0 + a−1/ζ + . . . , ζ ∼ ∞, i.e. the functionf has
an analytic continuation on the imaginary axis∂H+ near ∞. Thus, the moving boundary is
parameterized byΓ (t) = f (∂H+, t). The normal exterior vector in (21) is given by the formula
En = −f ′(ζ, t)/|f ′(ζ, t)|, ζ ∈ ∂H+. We represent the curvatureκ of Γ (t) in terms off as

κ(iη, t) =
Ref ′′(iη, t)/f ′(iη, t)

|f ′(iη, t)|
, η ∈ (−∞,∞).

Repeating the calculation for the normal velocity as in Section 2 we come to the equation of
Polubarinova–Galin type

Re(ḟ (ζ, t)f ′(ζ, t)) = Q+ γH

[
i Im Sf

|f ′|

]
(η), Reζ = 0, (22)

with the Hilbert transform defined as

H [ψ ](η) :=
1

πi
P.V.η

∫
∞

−∞

ψ(iη′)

η′ − η
dη′.

Note that a simple caseγ = 0 of the zero-surface-tension model has been considered in [13]. An
equation similar to (22) for non-zero-surface-tension model has been obtained in [8].

Now we define a geometric property ofΩ(t) which is natural for the problem in question. A
simply connected domainΩ on the extended complex planeC is said to beconvex in the positive
direction of the real axisif its complement can be covered by a family of non-intersecting parallel
rays with the direction ofR+. This definition can be found, e.g., in [10]. In the case of a smooth
boundary this means that any point of the boundary is reachable from the right by a ray parallel
to R+. A holomorphic univalent mappingf (ζ ), ζ ∈ H+, is said to be convex in the positive
direction iff (H+) is as above. A criterion for this property is provided by the following inequality:

Ref ′(ζ ) > 0, ζ = ξ + iη ∈ H+. (23)

If we considerf in the closure ofH+, then the equality in (23) can be attained on the axisξ = 0.
The level lines, i.e., thef -images of the linesξ = const,ξ > 0, also bound domains convex in the
positive direction as soon as the functionf is convex in the positive direction.

Denote byT the blow-up time. The following theorem is proved by analogy with Theorem 1.

THEOREM 2 Consider the fluid region expanding to the left(Q < 0). Let the surface tensionγ
be sufficiently small. If the initial domainΩ0 is convex in the positive direction, then there exists
t = t (γ ) 6 T such that for eacht ∈ [0, t (γ )] the domainΩ(t) is also convex in the positive
direction.

Remark.In particular, in the zero-surface-tension modelt (0) = T and the above property is
preserved for the whole timet ∈ [0, T ).
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