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Some new results on the flow of waxy crude oils in a loop
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Waxy crude oils are characterized by a large concentration of paraffin (a mixture of heavy
hydrocarbons). For sufficiently low temperatures paraffin is partly crystallized and crystals tend
to form a structure that is stable below some critical stress. The system can be modelled as a
Bingham fluid with rheological parameters dependent on: (i) the fraction of crystallized paraffin,
(ii) the aggregation degree of crystals. In previous papers various situations have been analysed for
the flow of waxy crude crude oils in a loop in conditions such that all relevant quantities do not
depend on the longitudinal coordinate along the pipe. The new factors here analysed are the paraffin
deposition rate on the walls influencing the paraffin content in the flow and the boundary conditions,
and the possibility of heat exchange with the medium that surrounds the pipe. This problem has two
free boundaries: the boundary of the inner plug of the Bingham flow and the boundary of the solid
paraffin layer at the wall. The mathematical model is formulated and well posedness is proved.
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1. Introduction

Waxy crude oils are mineral oils with high concentration of paraffin (a mixture of heavy
hydrocarbons) which at low temperatures may precipitate as a wax phase. They are known to cause
difficulties in handling and pipelining, especially when they are transported across arctic regions
and cold oceans. At high temperatures they behave like Newtonian fluids, but if the temperature is
lowered below some critical value their flow properties become distinctly non-Newtonian. As shown
in [1], paraffin begins to crystallize when the equilibrium pressure and temperature is reached (cloud
point), while, at a lower temperature (pour point), crystals begin to agglomerate entrapping the oil
in a gel-like structure, changing radically the rheological parameters of the flow. Below the cloud
point the presence of a yield stress can be detected, so that we are led to consider the system as
an incompressible Bingham fluid (although with variable parameters). In this paper we will treat
the solid part of the Bingham fluid as a rigid body, i.e. we suppose it undergoes no deformation.
Actually, it would be better to consider the solid zone as an elastic solid with the appropriate material
symmetry associated with the crystalline structure, even though this is a very difficult task. Indeed,
treating the solid part of the fluid as a rigid body does not take into account the discontinuous change
in the symmetry group associated with the material (see [13, 14]).

Many simplified situations, based on the available experimental investigations, have been
studied in previous works [6, 8], [3–5]. Here we investigate the flow in a cylindrical pipe taking
into account that solid paraffin may adhere to the walls (also an experimentally observed fact) and
that there can be heat exchange with the surrounding medium.

The problem of paraffin deposition is quite complex. There are two important mechanisms for
transporting precipitated paraffin to the pipewalls, namely molecolar diffusion and shear dispersion
[9, 15]. It has been shown [12] that molecolar diffusion is the dominant process at the higher
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temperatures, whereas shear dispersion dominates at the lower ones. Here we deal only with the
shear dispersion process in a loop.

Particles, such as paraffin crystals, suspended in the fluid and transported by the flow, are also
subjected to radial displacement because of the presence of a velocity gradient (shear dispersion).
The latter phenomenon leads to the formation of a solid paraffin layer at the pipe wall. Therefore,
the parameters affecting the deposition rate by shear dispersion are the shear stress on the walls and
the precipitated paraffin content. Being in a loop situation, the formation of a solid paraffin layer
implies a loss in the concentration of paraffin in the fluid, a phenomenon not occurring in pipelines
where the concentration can be considered always the same, even if a deposition process is taking
place. We will develop a mathematical model in a general form and study the stationary flow both
for the isothermal and non-isothermal case.

2. The physical model

As a first step we have to consider some physical assumptions:

• Temperature below the pour point. The temperature T is always below the pour point and it
depends only on the radial coordinate (we have no convection)

• Incompressible fluid. We consider ρ = constant, ρ being the oil density, in the range of
temperature and pressure we are going to consider.

• Laminar Flow. We assume, in agreement with the experimental data, that the Reynolds number
is less than the threshold value of the turbulent flow.

Following [3] we introduce two nondimensional parameters which can describe the state of the
crystalline component. They are crucial in determining the basic rheological parameters of the
system. We denote by Cw the concentration of paraffin in the oil, i.e Cw represents the quantity
(mass) of paraffin per unit volume. If the temperature is sufficiently low the concentration Csat
of dissolved paraffin is less than Cw. So we define C p = Cw − Csat representing the mass of
precipitated paraffin per unit volume. We suppose that Csat = Csat(T ), where T is the mean
temperature over a cross section of the fluid, and we introduce the nondimensional parameter β

β = C p

Cw

(1)

which is called the crystallization degree and expresses the fraction of precipitated paraffin.
Obviously β takes values between 0 and 1. For temperatures below the pour point, we will have
aggregated crystals. We introduce Ca for the concentration of aggregated crystals and we define

α = Ca

C p
(2)

α, called the aggregation degree, i.e. the fraction of aggregated crystals, taking values between 0
and 1. We suppose that

α = α(t). (3)

Assuming α space-independent is quite reasonable in experimental loops where pumps mix the
fluid over time intervals much smaller that the evolution time scale of α. From (1) we see that
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β = β(T , Cw). This is clearly a simplifying approach (otherwise a crystallization kinetics should
be considered). Still following [3] we will assume that the evolution of α is governed by

α̇ = K1(T )(1 − α) − K2(T )αW (4)

where K1, K2 are two known positive functions of T and W is the average power dissipated by the
viscous forces (note that α = 1 is the value at rest). Suppose that the radius of the pipe is R and
take a section of length one. Denoting by σ(t) the thickness of the solid paraffin layer adhering to
the wall (δ(t) = R − σ(t) will be the reduced pipe radius), by ρp the paraffin density (we suppose
ρ = ρp) and supposing that the concentration Cw is uniform in the flow we can write the simple
equation

Cwπδ2(t) + ρπ
[

R2 − δ2(t)
]

= Cw0π R2 (5)

which states that the sum of the paraffin mass in the solid layer on the wall and the paraffin mass
in solution must be constant in time (Cw0 is the initial concentration, corresponding to δ(0) = R).
From (5) we deduce the concentration as a function of δ

Cw = Cw(δ) = Cw0 R2

δ2
− ρ

[
R2

δ2
− 1

]
. (6)

From (6) we see that if we suppose 0 < Csat < Cw0 < ρ we have C p = βCw = 0 when
δ = R((ρ − Cw0)/(ρ − Csat))

1/2. Bearing in mind the shear dispersion phenomenon in the loop,
we can write the equation for the evolution of δ in the following way{

δ̇ = −λ(|τw|)Cw(δ)β

δ(0) = R
(7)

where τw is the stress at the boundary δ(t) and λ(ξ) is a positive bounded nondecreasing function
for ξ > 0 and λ(0) = 0.

2.1 The mathematical problem

We want to write the equations for the flow through a cylindrical pipe. As we said, due to the
presence of a yield stress, the simplest scheme we can consider for the fluid is the one of a Bingham
fluid in which the relation between the shear stress and the strain rate is

(τ − τ0)+ = ηγ̇ (8)

τ0 > 0 being the yield stress, η > 0 the Bingham viscosity and γ̇ the strain rate (see [2] for more
details). We will assume η = η(α, β) and τ0 = τ0(α, β). Denoting the radial coordinate by r , we
can divide the pipe into three regions: the so-called plug 0 < r < s(t) where the fluid undergoes
no deformation, the intermediate one s(t) < r < δ(t) in which γ̇ > 0, and the paraffin layer
δ(t) < r < R. Considering the laminar axial flow �v = v(r, t)�ez in the fluid region we have (see [4])

ρ
∂v

∂t
= −∂p

∂z
+ 1

r

∂

∂r

[
r

(
−τ0 + η

∂v

∂r

)]
s(t) < r < δ(t); t > 0 (9)
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where ρ is the density, τ = −τ0 + ηvr is the shear stress and −∂p/∂z = f0 is the driving pressure
gradient which will be considered known, constant and positive. For what concerns the initial and
boundary data, we have

s(0) = s0 0 < s0 < R (10)

v(r, 0) = v0(r) s0 < r < R (11)

v(δ(t), t) = 0 t > 0 (12)

∂v

∂r
(s(t), t) = 0 t > 0 (13)

∂v

∂t
(s(t), t) = 1

ρ

[
f0 − 2τ0

s(t)

]
t > 0 (14)

where (12) and (13) express respectively the no-slip condition at r = δ(t) and the absence of strain
rate at r = s(t), s0 is the initial position of the inner core plug, v0(r) is the initial velocity of the
fluid phase, while (14) represents the momentum balance for a unit length portion of the rigid core.
The average power density dissipated by the viscous force over a cross section is (see [4])

W (t) = 2

δ2(t)

∫ δ(t)

s(t)
r
∂v

∂r

[
−τ0 + η

∂v

∂r

]
dr.

Hence (4) becomes

dα

dt
= K1(1 − α) − K2

2α

δ2(t)

∫ δ(t)

s(t)
r
∂v

∂r

[
−τ0 + η

∂v

∂r

]
dr (15)

with the initial condition α(0) = α0 ∈ (0, 1). The equation for δ is still

dδ

dt
= −λ(|τw|)Cw(δ)β (16)

with the initial condition δ(0) = R. If heat exchange with the surrounding medium is taking place
we have also

ρco
∂T

∂t
− ko

[
∂2T

∂r2
+ 1

r

∂T

∂r

]
= 0 t > 0 0 < r < δ(t). (17)

ρcp
∂T

∂t
− kp

[
∂2T

∂r2
+ 1

r

∂T

∂r

]
= 0 t > 0 δ(t) < r < R. (18)

Here ρi , ci and ki are the density, the specific heat and the thermal conductivity of the oil (i = o)
and of the paraffin (i = p). Typical values for the thermal moduli of the oil are ko = 0.134 × 10−3

(W K−1/cm−1), co = 1920 × 10−3 (J K−1 gr−1). In (17) we are tacitly assuming that the internal
energy depends only on temperature. The initial, boundary and interface conditions are

[T ]|r=δ = 0

[
k
∂T

∂r

]
|r=δ

= 0 (19)
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T (R, t) = Te T (r, 0) = T0(r) (20)

where

k =



ko 0 � r < δ(t)

kw δ(t) < r < R
(21)

with [.] denoting jumps across the interface, and T (R, 0) = T0(R). Here Te is the wall temperature
and T0(r) is the initial temperature of the system (both below the pour point)

System (9)–(20), referred to as problem (P), is the mathematical formulation of the flow in its
general form. This is a free boundary problem where the unknown boundaries are s(t) and δ(t) and
the other unknowns are v, α and T . We will study a stationary motion both for the isothermal and
non-isothermal case, showing that both problems are well posed. Of course the isothermal situation
is much easier because the thermal problem disappears and the problem is reduced to equations
(9)–(16).

3. Quasisteady approximation: isothermal case

In this first simplified situation T is supposed constant and below the pour point. The thermal
problem is no longer involved in our model and problem (P) is reduced to equations (9)–(16).
We can consider K1, K2 and Csat constant. What we intend to do is to perform a quasisteady
approximation for v. This means that, under appropriate hypotheses, the velocity field v will be
given by the steady solutions of problem (9), (12)–(14) with α and δ obtained by solving the system
of ODEs (15) and (16). Of course this is possible only if the time scale of the evolution of v is
considerably larger than the ones of α and δ. Let us make some assumptions on the data:

1. Csat = constant, 0 < Csat < Cw0 < ρ

2. K1, K2 > 0, τ0 = τ0(α, β), η = η(α, β)

3. τ0 ∈ C1([0, 1] × [0, 1]), 0 < τ0m � τ0(α, β) � τ0M

4. η ∈ C1([0, 1] × [0, 1]), 0 < ηm � η(α, β) � ηM

5. 0 � τ0α
, 0 � τ0β

6. 0 � ηα , 0 � ηβ

7. λ(|τw|) Lipschitz continuous and nondecreasing, 0 � λ(|τw|) � N ; λ = 0 ⇐⇒ τw = 0

8. f0 > 2τ0M /R.

Assumptions 5 and 6 state that the rheological parameters η and τ0 are nondecreasing functions of
the parameters α and β. Physically this means that the viscosity and the yield stress increase if the
quantity of crystallized or aggregated paraffin is increasing. Assumption 8 ensures that the system
never comes to a stop. From equation (6) we see that C p(δ) = Cw(δ) − Csat ∈ C∞[ξ, R] (where
ξ = R[(ρ − Cw0)/(ρ − Csat)]1/2), 0 � C p � ρ − Csat and (2ρ − 2Csat)/R � (dC p/dδ) �
(2ρ − 2Csat)/ξ . In order to justify the quasisteady approximation, we trasform problem (P) in a
nondimensional form by putting

v = ṽv∗, r = r̃ R, t = t̃ tδ, η = η̃η∗;
τ = τ̃ τ ∗

0
, τ0 = τ̃0τ

∗
0
, λ(|τw|) = λ̃(|τ̃w|)N (22)
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where

η∗ = ηM , v∗ = f0 R2

η∗ , tδ = R

Nρ
, τ ∗

0
= f0 R (23)

and we define

tα = 1

K1
, tv = R2ρ

ηM

. (24)

Note that in choosing tδ as in (23) we have selected the time scale of the evolution of δ. In the
following, since we will always work with nondimensional variables, we omit the tilda. Problem
(P) becomes

tv
tδ

· ∂v

∂t
= 1 + 1

r

∂

∂r

[
r

(
−τ0 + η

∂v

∂r

)]
s(t) < r < δ(t) t > 0 (25)

s(0) = s0 0 < s0 < 1 (26)

v(r, 0) = v0(r) s0 < r < 1 (27)

v(δ(t), t) = 0 t > 0 (28)
∂v

∂r
(s(t), t) = 0 t > 0 (29)

tv
tδ

· ∂v

∂t
(s(t), t) =

[
1 − 2τ0

s(t)

]
t > 0 (30)

tα
tδ

· dα

dt
= (1 − α) − K

2α

δ2(t)

∫ δ(t)

s(t)
r
∂v

∂r

[
−τ0 + η

∂v

∂r

]
dr (31)

α(0) = α0 0 < α0 < 1 (32)
dδ

dt
= −λ (|τw|) F0(δ) (33)

δ(0) = 1 (34)

where

K = K2 f 2
0 R2

K1ηM

; F0(δ) = 1

ρ

[
(Cw0 − ρ) + δ2(ρ − Csat)

δ2

]
. (35)

Let us refer to problem (25)–(34) as problem (Pd). When

tv
tδ

= ρ2 RN

ηM

� 1 (36)

it makes sense to neglect the terms containing ∂v/∂t in (25) and (30). If we consider typical values
C p = 0.1 g cm−3, |δ̇| = 0.8 × 10−4 and ηM = 10 Po (Jackson-Hutton oil) we have

N = 0.8 × 10−3 cm4

g · s
(37)
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and consequently, for R = 25 cm and ρ = 0.8 g cm−3,

tv
tδ

= 2.56 × 10−3 (38)

which confirms the validity of the quasisteady flow approximation. By simple calculations, we
obtain

v(r, t) = − 1

4η

[
r2 − δ2(t)

]
+ τ0

η
[r − δ(t)] (39)

s(t) = 2τ0 (40)

with τ0 = τ0(α, β), η = η(α, β), and the pair (α(t), δ(t)) given by the solution of the system of
ODEs

α̇
tα
tδ

= (1 − α) − Kα(24ηδ2)−1
(

3δ4 − 4sδ3 + s4
)

; α(0) = α0 (41)

δ̇ = −λ(δ/2)F0(δ); δ(0) = 1. (42)

Note that in (41) W is obtained from (31) with v given by (39) and in (42) τw is obtained by
τw = −τ0 + ηvr |r=δ with v given by (39). In order to show well posedness of the quasistationary
problem it remains to prove that the system (41)–(42) has a unique global solution (α(t), δ(t)). ODE
(42) can be integrated separately. Since we are working with nondimensional variables we have

0 <
τ0m

f0 R
� τ0 � τ0M

f0 R
0 <

2τ0m

f0 R
� s � s1 := 2τ0M

f0 R
.

Define

−λ(δ/2)F0(δ) = Λ(δ).

We have

• δ̇ = Λ(δ)

• Λ ∈ C[δ′, 1]; δ′ = ((ρ − Cw0)/(ρ − Csat))
1/2

• Λ(δ′) = 0

• 0 � |Λ| � 1

• Λ Lipschitz continuous in [δ′, 1].
As a consequence of these properties ODE (42) has a unique solution δ(t) that belongs to C1[0, ∞)

with δ′ < δ(t) � 1. If we now put it in (41), we see that the right-hand side of the ODE is a
bounded Lipschitz-continuous function in α. Thus we have a unique solution α(t) ∈ C1[0, ∞),
with 0 < α(t) < 1. A condition that guarantees that the system does not come to a stop in a finite
time is the following:

f0 � 2τ0M

Rδ′ . (43)

Indeed, this condition ensures that the solid layer will never touch the inner core of the Bingham
fluid.
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3.1 Continuous dependence upon the data

Consider the system (41)–(42). We introduce

• ε ∈ [0, 1)

• Λ̂(δ) Lipschitz continuous and bounded in [δ′, 1]
• τ̂0(α, β) ∈ C1([0, 1] × [0, 1]) with the same properties as τ0

• η̂(α, β) ∈ C1([0, 1] × [0, 1]) with the same properties as η

• K̂ > 0; t̂α > 0; t̂δ > 0

• α̂0 ∈ (0, 1).

We write system (41)–(42) for the new data and find a new solution (α̂, δ̂) that satisfies

t̂α
t̂α

· ˙̂α = (1 − α̂) − K̂ α̂(24η̂δ̂2)−1(3δ̂4 − 8τ̂0 δ̂
3 + 16τ̂ 4

0
); α̂(0) = α̂0 (44)

˙̂
δ = Λ̂(δ̂); δ̂(0) = 1 − ε. (45)

Note that the choice δ̂(0) = 1 − ε means that, in the dimensional problem, the initial datum for the
reduced pipe radius is given by some R̂ with R̂ ∈ (0, R]. Let us fix a time t̄ > 0. We have

|δ(t) − δ̂(t)| � ε + t‖Λ − Λ̂‖[δ′,1] +
∫ t

0
L̂|δ(τ ) − δ̂(τ )| dτ t ∈ [0, t̄] (46)

where L̂ is the Lipschitz constant of Λ̂ and ‖.‖ is the sup norm defined by

‖ f ‖A = sup
x∈A

| f (x)| (47)

where A is the domain of definition of f . Applying Gronwall’s lemma we have

‖δ − δ̂‖t̄ � C(t̄){‖Λ − Λ̂‖[δ′,1] + ε} (48)

where C(t̄) is a constant depending on t̄ . Proceeeding in the same way for α and α̂ we obtain

‖α − α̂‖t̄ � C(t̄)
{‖η − η̂‖[0,1]×[0,1] + ‖τ0 − τ̂0‖[0,1]×[0,1]

+|K − K̂ | + ‖δ − δ̂‖t̄ + |α0 − α̂0 | +
∣∣∣∣ t̂α
t̂δ

− tα
tδ

∣∣∣∣
}

. (49)

Inequalities (48) and (49) ensure continuous dependence for every fixed time interval [0, t̄].

4. Quasisteady approximation: non-isothermal case

Let us come back to problem (P), i.e. equations (9)–(20). Now we assume that there is heat
exchange with the outer medium. The rheological parameters are η = η(α, β) and τ0 = τ0(α, β)

with α = α(t) and β given by (1). We suppose that the assumptions 3–7 of Section 3.1 are still valid
and assume
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• Csat Lipschitz continuous in T with Lipschitz constant Ls

• 0 < Cmin � Csat(T ) � Cmax < ρ in the range of T .

We assume again hypotesis (36) and consider the stationary motion of the fluid. We write the explicit
form for the velocity field and for the inner core boundary, now in a dimensional form:

v(r, t) = − f0

4η

[
r2 − δ2(t)

]
+ τ0

η
[r − δ(t)] (50)

s(t) = 2τ0

f0
(51)

with η = η(α, β(T , Cw)) and τ0 = τ0(α, β(T , Cw)). For what concerns α we have

dα

dt
= K1(T )(1 − α) − K2(T )

α f 2
0

24ηδ2

[
3δ4 − 4sδ3 + s4

]
; α(0) = α0 (52)

where we suppose that K1, K2 are positive bounded smooth functions of T . The equations for δ and
T are coupled: {

δ̇ = −λ( f0δ/2)[Cw(δ) − Csat(T )] =: Ψ(δ, T )

δ(0) = R1 0 < R1 < R
(53)




ρcoTt − ko
(
Trr + r−1Tr

) = 0 t > 0 0 < r < δ(t)

ρcpTt − kp
(
Trr + r−1Tr

) = 0 t > 0 δ(t) < r < R

[T ]|r=δ = 0 t > 0[
k∂T/∂ �n]

|r=δ
= 0 t > 0

T (R, t) = 0 t > 0

T (r, 0) = T0(r) 0 � r � R

(54)

with

T (t) = 2

δ2(t)

∫ δ(t)

0
T (r, t)r dr (55)

Here we put Te = 0. For simplicity we have supposed that we have an initial layer of paraffin,
i.e. δ(0) = R1 < R with s(0) < R1 < R. The latter inequality ensures that the system can move.
Problem (54) is a parabolic diffraction problem (see [11], page 224).

4.1 Existence and uniqueness

We will prove the following theorem.

THEOREM 1 Suppose sM = (2τ0M / f0) < R1 < R. For every time t0 > 0 there exist two functions
δ(t), T (r, t) such that:

1. δ(t) ∈ C1[0, t0] with sM < δ(t) � R1 in [0, t0]
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2. T (r, t) ∈ C(Ω̄ × [0, t0]), Ω = {0 � r < R}
3. T (r, t) ∈ C2,1(Qo), Qo = {0 � r < δ(t), 0 < t < t0}
4. T (r, t) ∈ C2,1(Q p), Q p = {δ(t) < r < R, 0 < t < t0}
5. T is continuously differentiable with respect to r up to δ

6. δ(t) and T (r, t) satisfy all the equations of the system (53)–(54).

This theorem ensures global existence and uniqueness of the quasisteady non-isothermal problem.
The solution will be given by (50), (51), where α(t) is obtained integrating (52) with δ(t) and T (r, t)
given by Theorem 1. The hypothesis sM < R1 guarantees that the inner core and the solid layer will
never touch. If we remove this hypothesis we can no longer assert that the system cannot come to a
stop in a finite time. Let us prove Theorem 1. We choose

t̄ = R1 − sM

A
(56)

with A = N (ρ−Cmin) = sup |λCwβ| and sM = (2τ0M / f0) and consider the space C1[0, t̄] endowed
with the norm

‖δ‖1,t̄ = sup
t∈[0,t̄]

|δ(t)| + sup
t∈[0,t̄]

|δ̇(t)|. (57)

Let us fix a δ ∈ C1[0, t̄] with δ̇(t) ∈ [−A, 0] for all t ∈ [0, t̄]. With such a choice, following [10],
we know we have a unique classical solution T (r, t) of problem (54), where by classical we mean
that T (r, t) has the properties 2–5 of Theorem 1 and satisfies all the equations of (54). Further, we
have

|Ψ(δ(t ′), T (t ′)) − Ψ(δ(t ′′), T (t ′′))| � L|t ′ − t ′′| ∀ t ′, t ′′ ∈ [0, t̄] (58)

where Ψ is defined in (53) and L is a constant that depends only upon A, ρ, R, R1, N , Cw0, Cmin,
Ls . We denote by Γ the subset of C1[0, t̄] made by functions δ with the properties:

1. δ(0) = R1

2. −A � δ̇(t) � 0 forall t ∈ [0, t̄]
3. |δ̇(t ′) − δ̇(t ′′)| � L|t ′ − t ′′| forall t ′, t ′′ ∈ [0, t̄].

The subset Γ is closed, convex and compact with respect to the norm (57). Let us take a δ ∈ Γ . We
define

δ̃(t) = R1 +
∫ t

0
Ψ(δ(τ ), T (τ )) dτ t ∈ [0, t̄]. (59)

It is easy to see that δ̃(t) ∈ Γ ; thus the operator ϕ such that ϕ(δ) = δ̃ maps Γ into itself. If we
show the continuity of ϕ in the norm (57), then, by the Schauder fixed-point theorem, we have
the existence of a fixed point δ in the time interval [0, t̄]. Let us fix R0 ∈ (0, sM ). We search for a
coordinate transformation y = y(δ, r) with the following properties:

1. y(δ, r) ∈ C∞([sM , R1] × [0, R])
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2. y(δ, r) = r r ∈ [0, R0]
3. y(δ, δ) = R1

4. y(δ, R) = R

5. yr (δ, r) > 0 in [sM , R1] × [0, R]
6. The inverse r = r(δ, y) ∈ C∞([sM , R1] × [0, R]).

When δ(t) is fixed in Γ such a transformation “rectifies” the surface r = δ(t) into y = R1 and in
the inner cylinder of radius R0 the transformation is simply the identity. We take δ1 and δ2 in Γ and
a smooth function y = y(δ, r) that has the above properties. In the following C will represent a
constant that depends only upon the data of the problem. We have

‖δ̃1 − δ̃2‖t � Ct‖δ1 − δ2‖t

+C
∫ t

0

∣∣∣∣
∫ δ1

0
T1(r, τ )r dr −

∫ δ2

0
T2(r, τ )r dr

∣∣∣∣ dτ (60)

where ‖.‖t = ‖.‖[0,t]. We transform the integral for T1 in the right-hand side of inequality (60) by
means of y = y(δ1, r) and the integral for T2 by means of y = y(δ2, r). We obtain

‖δ̃1 − δ̃2‖t � Ct‖δ1 − δ2‖t

+C
∫ t

0

∫ R1

0

∣∣∣T̂1(y, τ ) − T̂2(y, τ )

∣∣∣ dy (61)

where T̂i (y, t) = Ti (r(δi , y), t), i = 1, 2. We put Ŵ = T̂1 − T̂2:

∂Ŵ

∂t
= σ G(δ1, y)

∂2Ŵ

∂y2
+ [

δ̇1 H(δ1, y) + σ F(δ1, y)
] ∂Ŵ

∂y

+
{

σ
∂2T̂2

∂y2 [G(δ1, y) − G(δ2, y)] + σ
∂ T̂2

∂y
[F(δ1, y) − F(δ2, y)]

+∂ T̂2

∂y
δ̇1 [H(δ1, y) − H(δ2, y)] + ∂ T̂2

∂y
H(δ2, y)

[
δ̇1 − δ̇2

]}

where

σ =
{

[ko/ρco] 0 < y < R1[
kp/ρcp

]
R1 < y < R

H(δ, y) = ∂r

∂δ
(δ, y)

∂y

∂r
(δ, r(δ, y))

G(δ, y) =
[
∂y

∂r
(δ, r(δ, y))

]2

F(δ, y) =
[

∂2 y

∂r2
(δ, r(δ, y)) + 1

r(δ, y)

∂y

∂r
(δ, r(δ, y))

]
.
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The problem satisfied by Ŵ (y, t) is

∂Ŵ

∂t
= σ G(δ1, y)

∂2Ŵ

∂y2
+ [

δ̇1 H(δ1, y) + σ F(δ1, y)
] ∂Ŵ

∂y

+E1(y, t) [δ1 − δ2] + E2(y, t)
[
δ̇1 − δ̇2

]
(62)

with the initial, boundary and interface data given by

Ŵ (y, 0) = 0 Ŵ (R, t) = 0

[
k
∂Ŵ

∂y

]
y=R1

= 0
[
Ŵ

]
y=R1

= 0 (63)

where

E1(y, t) = σ
∂2T̂2

∂y2

∂G

∂δ
(ξ1, y) + σ

∂ T̂2

∂y

∂ F

∂δ
(ξ2, y) + ∂ T̂2

∂y

∂ H

∂δ
(ξ3, y)δ̇1

E2(y, t) = ∂ T̂2

∂y
H(δ2, y);

inf{δ1(t), δ2(t)} < ξ j (t) < sup{δ1(t), δ2(t)} t ∈ [0, t̄].
By the hypotheses 1–6 on y(δ, r) and by Lemma 7 of [10], E1 and E2 are two bounded
functions with a jump discontinuity on the interface y = R1. We write problem (62)–(63)

in Cartesian coordinates, i.e. we use the transformation y =
√

x2
1 + x2

2 and the new function

W (x, t) = W (x1, x2, t) = Ŵ (y, t), and come to

∂W

∂t
=

2∑
i, j=1

ai j (x, t)
∂2W

∂xi∂x j
+

2∑
i=1

bi (x, t)
∂W

∂xi

+ f1(x, t)(δ1 − δ2) + f2(x, t)(δ̇1 − δ̇2) = L(W ) + f (x, t) (64)

with

L =
2∑

i, j=1

ai j (x, t)
∂2

∂xi∂x j
+

2∑
i=1

bi (x, t)
∂

∂xi
(65)

f (x, t) = f1(x, t)(δ1 − δ2) + f2(x, t)(δ̇1 − δ̇2) (66)

where ai j , bi , fi are bounded functions in {0 � y < R} × (0, t̄) and have a jump discontinuity in
y = R1 (note that L is simply the Laplacian when 0 � y � R0). Let us consider the sets

• Qt̄ = {(x, t) : 0 � y < R, t ∈ (0, t̄)}
• Qot̄ = {(x, t) : 0 � y < R1, t ∈ (0, t̄)}
• Q pt̄ = {(x, t) : R1 < y < R, t ∈ (0, t̄)}
• Ωo = {(x, t) : 0 � y < R1, t = 0}
• Ωp = {(x, t) : R1 < y < R, t = 0}
• Γt̄ = {(x, t) : y = R1, t ∈ (0, t̄]}.
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W (x, t) is a classical solution of problem (64) in both the domains Qit̄ (i.e
W (x, t) ∈ C2,1(Qit̄ ) ∩ C(Qit̄ ), i = o, p) and W = 0 in the parabolic boundary of Qt̄ .
Following [11: p. 13], we put

W (x, t) = v(x, t)eλt

for a certain λ > 0. The new function v(x, t) satisfies

vt − ai j (x, t)vxi x j − bi (x, t)vxi + λv = f (x, t)e−λt . (67)

Select t1 ∈ (0, t̄). There are three possible cases:

1. v(x, t) � 0 in Qt1

2. 0 < supQt1
v(x, t) � maxΓt1

v(x, t) = v(x0, t0) (x0, t0) ∈ Γt1

3. 0 < supQt1
v(x, t) � v(x0, t0) (x0, t0) ∈ (Ωo ∪ Ωp) × (0, t1].

In case 3, in (x0, t0), we have vt � 0, vxi = 0 and −ai jvxi x j � 0, i.e.

λv(x0, t0) � f (x0, t0)e
−λt0

which becomes

W (x, t1) � sup
Qt1

{
f (x, t)eλ(t1−t)

λ

}
. (68)

In case 2 we have that vxi (x0, t0) = 0 (∂v/∂y keeps its sign in passing through y = R1) and (68)
still holds. In the end we get

W (x, t1) � max

{
0; sup

Qt1

[
f (x, t)eλ(t1−t)

λ

]}
∀t1 ∈ [0, t̄] (69)

and analogously, considering a point of least nonpositive value,

W (x, t1) � min

{
0; inf

Qt1

[
f (x, t)eλ(t1−t)

λ

]}
∀t1 ∈ [0, t̄]. (70)

Inequalities (69) and (70) can be coupled:

|W (x, t1)| � sup
Qt1

| f (x, t)|
λ

eλt1 ∀t1 ∈ [0, t̄] (71)

which is the estimate we need to conclude our demonstration. Inequality (71) states that in {0 �
y < R} × (0, t), with t ∈ (0, t̄]:

|W (x, t)| = |T̂1(y, t) − T̂2(y, t)| � Ceλt

λ
‖δ1 − δ2‖1,t . (72)
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If we put (72) in (61) we have

‖δ̃1 − δ̃2‖t � Ct‖δ1 − δ2‖t + Cteλt

λ
‖δ1 − δ2‖1,t (73)

and proceeding in the same way for the derivatives of δ1 and δ2,

‖˙̃
δ1 − ˙̃

δ2‖t � C‖δ1 − δ2‖t + Ceλt

λ
‖δ1 − δ2‖1,t . (74)

Now, coupling (73) and (74) and setting λ = t−1/2, we finally get

‖δ̃1 − δ̃2‖1,t � f (t)‖δ1 − δ2‖1,t (75)

where f (t) is a nondecreasing function of time. It is easy to see that for t sufficiently small f (t) <

1. Inequality (75) shows that ϕ is continuous in the norm (57) and that ϕ is a contraction in a
sufficiently small time interval. Our argument can be repeated up to time t̄ , showing existence and
uniqueness in [0, t̄], hence the proof of Theorem 1 up to time t̄ . We have

δ(t̄) = R1 −
∫ t̄

0
Ψ(δ(τ ), T (τ )) dτ > R1 − At̄ = sM . (76)

This means that we can find another time interval [t̄, ¯̄t] in which the solution exists and is unique. If
there were a time t0 such that

lim
t→t0

δ(t) = sM (77)

then

At0 = R1 − sM =
∫ t0

0
Ψ(δ(τ ), T (τ )) dτ > At0 (78)

which is a contradiction that ensures that δ(t) cannot reach sM in a finite time, hence the proof of
Theorem 1.

5. Conclusions

We have proved the well posedness of the problem related to the flow of a waxy crude oil in
a cylindrical pipe of radius R (laboratory loop). We have modelled the oil as an incompressible
Bingham fluid, considering that deposition on the pipe walls can occur. We have considered both
the isothermal and the non-isothermal case, showing conditions that guarantee that the system starts
to move and never comes to a stop in a finite time.

Even though many simplifying hypotheses have been made, the mathematical model we have
formulated is quite complex, especially in the non-isothermal case, where we have considered
different thermal coefficients for the layer and for the oil.

Many interesting questions still remain open. A problem we have not treated here is the
mechanism of molecular diffusion, which occurs in presence of large thermal gradients and affects,
together with shear dispersion, the growth of the solid layer. Another interesting problem is the
study of a model in which the aggergation degree and the crystallization degree depend on the
radial coordinate. All these problems will be the subject of further research.
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