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Simulation of dendritic crystal growth with thermal convection
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The dendritic growth of crystals under gravity influence shows a strong dependence on convection
in the liquid. The situation is modelled by the Stefan problem with a Gibbs–Thomson condition
coupled with the Navier–Stokes equations in the liquid phase. A finite element method for the
numerical simulation of dendritic crystal growth including convection effects is presented. It consists
of a parametric finite element method for the evolution of the interface, coupled with finite element
solvers for the heat equation and Navier–Stokes equations in a time dependent domain. Results from
numerical simulations in two space dimensions with Dirichlet and transparent boundary conditions
are included.
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1. Introduction

When a small seed crystal is placed (or nucleates) in an undercooled melt, the solid phase grows
rapidly. Directional anisotropies of surface and kinetic energies, due to the underlying molecular
geometry, for example, result in preferred growth directions and the development of dendrites
[13, 18]. Experiments under 1g earth gravity conditions show a strong dependence of the growth
velocities and the resulting structures on the angle between the growth direction and gravity vector,
especially for low undercooling [11]. These effects are attributed to (natural) thermal convection in
the liquid, driven by buoyancy forces. Recent micro gravity (i.e. vanishing or nearly zero gravity)
space shuttle experiments show similar effects that can also be ascribed to thermal convection and
thus underline its importance [12].

Some theoretical investigations of dendritic growth with convection were performed for a special
case, where the interface is parabolic, the main growth direction is parallel to the gravity vector,
and the phase transition is modelled by the classical one-phase Stefan problem with an isothermal
interface, without any surface tension or kinetic undercooling and without any anisotropy in the
equations. Using a boundary layer flow model, the effect of fluid flow on steady dendrite growth
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was studied by Cantor & Vogel [8]. Ananth & Gill [1, 2] are able to predict experimentally observed
growth characteristics quite well for a wide range of physical parameters.

Numerical simulations were done recently by Griebel et al. [16]. They consider an extended
model with additional density changes and present a numerical algorithm based on a finite difference
method and a surface tracking method to capture the phase boundaries.

We present a numerical algorithm based on a sharp interface model, i.e. the free boundary is
assumed to be a smooth curve (but maybe with high curvature). Finite element approximations are
used for temperature and velocity as well as for a parametrization of the moving interface. Adaptive
methods based on local error indicators are used to generate locally refined meshes which allow for
a high resolution of relevant data, especially near the interface.

The rest of this article is organized as follows: in Section 2 we present the equations, Section
3 deals with the finite element discretization and, finally, we present the numerical results with
different convection strengths and boundary conditions in Section 4.

2. The mathematical model

g

Ωs

Ω

�

l

FIG. 1. Setting of the problem.

We consider a bounded container Ω ⊂ R
2 and an initial solid subdomain Ωs(0) ⊂⊂ Ω with

solid–liquid interface Γ (0) = ∂Ωs(0). The liquid subdomain is Ωl(t) = Ω \ Ωs(t). The model
includes the temperature ϑ , velocity u, pressure p, and the time dependent distribution of phases
with a moving solid–liquid interface Γ .

The heat equation (3), (4) models energy diffusion in both the liquid and solid, with an
advection term in the liquid. The Stefan condition (5) and a Gibbs–Thomson condition (6) with
anisotropic kinetic and surface terms model the phase transition. Here, VΓ and CΓ denote the
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scalar interface velocity and curvature, respectively, while εV , εC are coefficient functions which
depend on the interface normal νΓ . If the surface energy anisotropy γ (ν) is smooth, and γ̃ (s) :=
γ (cos(s), sin(s)) = γ (ν), then εC (ν) = γ̃ (s) + γ̃ ′′(s). A generalization to (nearly) crystalline
anisotropy is possible, compare [21]. We use an additional coefficient Cconv to model different
strengths of advection.

The Boussinesq approximation with gravity vector g = −e2 = (0, −1)T is used to account for
the buoyancy forces (1), and the liquid is assumed to be incompressible (2). We assume that the
material density is constant and does not change between the solid and liquid. This leads to a non-
slip boundary condition on the interface (7). A density change between the solid and liquid would
induce a normal velocity u · νΓ proportional to the interface velocity VΓ , compare [16].

After an appropriate scaling, introducing the Grashof number Gr , Prandtl number Pr , and
scaled latent heat L , the dimensionless equations read:

∂u

∂t
+ u · ∇u − 1√

Gr
∆u + ∇ p = ϑe2 in Ωl , (1)

∇ · u = 0 in Ωl . (2)

∂ϑ

∂t
+ Cconv u · ∇ϑ − 1

Pr
√

Gr
∆ϑ = 0 in Ωl , (3)

∂ϑ

∂t
− 1

Pr
√

Gr
∆ϑ = 0 in Ωs . (4)

[
1

Pr
√

Gr
∂νϑ

]
+ LVΓ = 0 on Γ, (5)

εV VΓ + εC CΓ + ϑ = 0 on Γ, (6)

u = 0 on Γ. (7)

In the Stefan condition (5), [·] := (·)liquid − (·)solid denotes the jump across the interface. The
system is completed by initial and boundary conditions:

u(·, 0) = 0 in Ω,

u(·, t) = 0 on ∂Ωl ,

ϑ(·, 0) = ϑ0 in Ω,

ϑ(·, t) = ϑ0 on ∂Ω,

Γ (0) = Γ0.

With appropriately low initial temperature data ϑ0, the liquid is undercooled, and dendritic growth
of the solid phase is expected.



98 E. BÄNSCH & A. SCHMIDT

3. Weak formulations and discretization

3.1 Heat equation with Stefan and Gibbs–Thomson conditions

Following the lines of [6, 20, 21], we divide problem (3)–(6) into an anisotropic mean curvature
flow equation for Γ and a modified heat equation. The weak formulation and discretization of the
interface motion uses the approach of Dziuk [9] to mean curvature evolution of curves and surfaces.

Using an extension u = 0 in Ωs , we multiply (3) and (4) with a test function φ ∈ H1(Ω), use
integration by parts in both subdomains, and replace the occurring jump of normal derivatives by
the Stefan and Gibbs–Thomson conditions to arrive at∫

Ω

(
∂ϑ

∂t
φ + Cconv u · ∇ϑ φ + 1

Pr
√

Gr
∇ϑ · ∇φ

)
+

∫
Γ

L

εV
ϑ φ = −

∫
Γ

LεC

εV
CΓ φ (8)

for all φ. For the interface motion, the Gibbs–Thomson condition (6) leads to a weak formulation
that is similar to a heat equation. To begin, the curvature vector CΓ ν can be written as the Laplace–
Beltrami operator applied to the identity id : Γ → R

2, or to the parametrization x : Γ → R
2.

After multiplication with a test function ψ ∈ H1(Γ ) and integration by parts, where ∇̄ denotes the
tangential (covariant) derivative, we obtain:

∫
Γ

(
εV

εC

∂x

∂t
ψ + ∇̄x · ∇̄ψ

)
= −

∫
Γ

1

εC
ν ϑ ψ for all ψ. (9)

Assuming that Γ is a closed Lipschitz curve or hypersurface, all terms are well defined and no
boundary integrals appear from the integration by parts.

Both weak formulations are well suited for finite element discretizations. After a time
discretization with time steps t0 = 0 < t1 < t2 < · · · and time step sizes τn = tn − tn−1, we use
conforming subdivisions T n of Ω into triangles and corresponding spaces Vn of piecewise quadratic
finite element functions over T n and Vn

0 := Vn ∩ H1
0 (Ω). Given an approximation Θ0 ∈ V0

0 of ϑ0,
discrete temperatures Θn+1 ∈ Vn+1 are defined for n � 0 by

∫
Ω

(
Θn+1 − Θn

τn+1
Φ + Cconv u · ∇Θn+1 Φ + 1

Pr
√

Gr
∇Θn+1 · ∇Φ

)

+
∫

Γ n+1

L

εV
Θn+1 Φ = −

∫
Γ n+1

εC L

εV
CΓ n+1 Φ for all Φ ∈ Vn+1

0 , (10)

with appropriate Dirichlet boundary conditions on ∂Ω . By using the Gibbs–Thomson relation, we
obtain an implicit term for Θn+1 on the free boundary Γ n+1 on the left-hand side, which is positive,
semi-definite, and additionally leads to a good approximation for the temperature on the interface.
Such values will be used on the right-hand side of the interface propagation equation (11) below.

Using a polygonal, piecewise quadratic discretization of the interface Γ n and isoparametric
finite element spaces Wn over Γ n , we define parametrizations Xn+1 ∈ (Wn)2 : Γ n → R

2 of Γ n+1

by

∫
Γ n

(
εV

εC

Xn+1 − id

τn+1
Ψ + ∇̄ Xn+1 · ∇̄Ψ

)
= −

∫
Γ n

1

εC
ν Θn Ψ for all Ψ ∈ Wn (11)
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and define the discrete interfaces by

Γ n+1 := Xn+1(Γ n). (12)

Finally, the curvature approximation CΓ ∈ Wn+1 is defined by first calculating a vector valued
curvature �CΓ ∈ (Wn+1)2 solving∫

Γ n+1

�CΓ Ψ =
∫

Γ n+1
∇̄id · ∇̄Ψ for all Ψ ∈ Wn+1.

The values of CΓ in vertices and edge midpoints of Γ n+1 are defined as the scalar products
CΓ (p) = �CΓ (p) · np where np is an outer normal vector to Γ n+1 at p, defined as a weighted
sum of adjacent normals for the case that p is a vertex, where the discrete interface is not smooth.

Note that by this approach we restrict ourselves to the case where no topological changes of
liquid/solid occur. In particular, the solid region Ωs(t) ⊂⊂ Ω is bounded by the embedded curve
Γ (t) ⊂⊂ Ω during the whole time interval (without any self-intersection or intersection with ∂Ω).
We will see in the numerical simulations that this is no real restriction, at least for moderate time
intervals and in the range of parameters that we currently use. The only true restriction is an upper
bound for the time interval given by the fact that the interface must not meet the boundary ∂Ω .

The numerical approximation of dendritic growth (without convection) with this method gives
much better results when piecewise quadratic finite element functions are used instead of piecewise
linears. This holds especially for the interface and curvature approximation, compare [20].

Recently, Veeser [22, 23] proved convergence and error estimates for a semi-discrete finite
element method for dendritic growth with a slightly different discretization of the mean curvature
evolution.

3.2 Navier–Stokes flow in a time dependent domain

One particular problem in computing the flow field by using equations (1)–(2) is the time dependent
definition of Ωl(t). There are several ways to solve this problem in the discrete case, for instance:

• An explicit definition for Ωh,l(tn) and a no-slip condition for u on ∂Ωh,l(tn).

• Fictitious domain approaches, where the Navier–Stokes equations are solved in the whole
domain Ω and the no-slip boundary condition on Γ is enforced only in a weak sense:

— A penalty approach, using an additional term 1/δ
∫
Γ n+1 u·ϕ in the corresponding bilinear

form in the momentum equation, where 1/δ � 1 is the penalty parameter.

— An implementation of the no-slip boundary condition on Γ by an additional constraint,
see, for instance, [14, 15].

Numerical experiments with all three methods above gave comparable solutions, but the first method
turned out to be the most robust and by far, most efficient one. Therefore we will only address this
method here. In order to apply this method we use the following definition for Ωh,l(tn): an element
T ∈ T n is called liquid iff T lies completely in the liquid region, i.e. all x ∈ T lie outside the solid
region defined by the curve Γ n . It is called solid iff it is not liquid. Define

Ωh,l(tn) := ∪{T ∈ T n | T is liquid },
see Fig. 2. An algorithm to mark all mesh elements as either liquid or solid is the following:
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• Follow the interface curve and mark all triangles T with T ∩ Γ �= ∅ as solid.

• Mark all non-solid elements at ∂Ω as liquid.

• Continue by marking all non-solid neighbors of liquid elements as liquid, and repeat this step
as long as possible.

• Finally, all not yet marked elements are solid elements.

This algorithm can be implemented easily with a computational complexity that is linear in the
number of mesh elements.

Γ

liquid

liquid

solid

solid

solid

solid

solid

FIG. 2. Liquid and solid triangles.

To solve the Navier–Stokes equations we use a time discretization based on the fractional θ -
scheme in a variant as an operator splitting, which was proposed in [7]. For the space discretization,
the Taylor–Hood element, i.e. piecewise quadratics for the velocity and piecewise linears for the
pressure, is used. More precisely, let Yn := {Φ ∈ (Vn

0 )2 | Φ = 0 on Ω \ Ωn
h,l} be the space of

globally continuous, vector valued piecewise quadratics on Ωn
h,l := Ωh,l(tn), vanishing on ∂Ωn

h,l ,
and for convenience extended to Ω \ Ωn

h,l by zero. Likewise, Zn denotes the space of globally
continuous, piecewise linears on Ωn

h,l .

Let θ = 1−
√

2
2 and α, β ∈ (0, 1), α+β = 1, α > 1

2 . Split each time interval [tn, tn+1] into three
subintervals [tn, tn + θτn+1], [tn + θτn+1, tn + θ ′τn+1], and [tn + θ ′τn+1, tn+1] with θ ′ = 1 − θ .
The fractional θ -scheme applied to our case reads: for n � 0 find U n+θ , U n+θ ′

, U n+1 ∈ Yn+1 and
Pn+θ , Pn+1 ∈ Zn+1 such that

U 0 = 0 in Ω

and for all Φ ∈ Yn+1, Ψ ∈ Zn+1
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∫
Ωn+1

h,l

(
U n+θ − πn+1U n

θτn+1
Φ + α√

Gr
∇U n+θ∇Φ − Pn+θ∇ · Φ

)

=
∫

Ωn+1
h,l

( −β√
Gr

∇U n∇Φ − (
U n · ∇)

U nΦ + Θn+1 e2 · Φ

)
,

∫
Ωn+1

h,l

∇ · U n+θ Ψ = 0,

(13)




∫
Ωn+1

h,l

(
U n+θ ′ − U n+θ

(1 − 2θ)τn+1
Φ + β√

Gr
∇U n+θ ′∇Φ +

(
U n+θ ′ · ∇

)
U n+θ ′

Φ

)

=
∫

Ωn+1
h,l

(
− α√

Gr
∇U n+θ∇Φ + Pn+θ∇ · Φ + Θn+1 e2 · Φ

)
,

(14)




∫
Ωn+1

h,l

(
U n+1 − U n+θ ′

θτn+1
Φ + α√

Gr
∇U n+1∇Φ − Pn+1∇ · Φ

)

=
∫

Ωn+1
h,l

( −β√
Gr

∇U n+θ ′∇Φ −
(

U n+θ ′ · ∇
)

U n+θ ′
Φ + Θn+1 e2 · Φ

)
,

∫
Ωn+1

h,l

∇ · U n+θ Ψ = 0.

(15)

In (13), πn+1 denotes a projection operator from Yn to the discretely solenoidal functions in
Yn+1:

πn+1 : Yn → Yn+1
0 :=


Φ ∈ Yn+1 |

∫
Ωn+1

h,l

∇ · ΦΨ = 0 for all Ψ ∈ Zn+1


 .

This projection is used in order to prevent spurious pressure spikes in regions where the mesh
changes from tn to tn+1, see Section 3.5 below.
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By scheme (13)–(15), two major numerical difficulties of the Navier–Stokes equations, the
treatment of the solenoidal condition and the nonlinearity, are decoupled. In (13) and (15), one has
to solve a linear, self-adjoint Stokes-like system, where the non-linearity is treated explicitly. The
nonlinear part (14) is a Burger’s-like system of equations, the divergence free condition is dropped
and the pressure gradient is taken from the previous time step. Thus, by this operator splitting, one
reduces the Navier–Stokes equations to two considerably simpler subproblems.

The Stokes-like subproblems are solved by a preconditioned conjugate gradient (CG) method
applied to the Schur complement operator for P and a non-linear generalized minimal residual
(GMRES) solver is used for the Burger’s problem, see [5] for details.

3.3 Coupling of equations

The overall numerical method is based on a semi-implicit time discretization scheme with a Gauß–
Seidel-type coupling of the three subproblems of interface, temperature, and velocity evolution. In
each time step:

(A) Solve one time step of the mean curvature flow equation (11) for the parametric interface,
giving Γ n+1. The temperature Θn is taken explicitly from the last time step.

(B) Using the old velocity field U n and the new interface Γ n+1, solve one time step for the heat
equation with Stefan-condition on the phase boundary (10), giving Θn+1.

(C) Using the new temperature and interface (and thus the new liquid domain Ωn+1
h,l ), solve one

time step for the Navier–Stokes equation (13)–(15), giving U n+1 and Pn+1.

We like to remark that for this semi-implicit coupling, no stability problems were observed
experimentally. This means that we do not have to fulfill a Courant–Friedrichs–Lewy (CFL)
condition which would cause very small time steps due to the highly refined grids.

3.4 Initial values

For the first time step, values of the initial temperature on the initial interface are used in step (A)
as the driving force for the interface evolution. In order to obtain compatible temperature values
for this problem, the initial temperature Θ0 ∈ V0 is defined as the solution to a stationary problem
similar to the time dependent one, compare [20]. In particular, we solve∫

Ω

1

Pr
√

Gr
∇Θ0 · ∇Φ +

∫
Γ 0

L

εV
Θ0 Φ = −

∫
Γ 0

εC L

εV
CΓ Φ for all Φ ∈ V0

0 (16)

with Dirichlet boundary values on ∂Ω and given initial interface Γ 0. The implicit treatment of Θ0

on Γ 0 guarantees that the initial temperature is compatible. The initial mesh T 0 and finite element
space V0 are adapted to the initial temperature in the same way as described in the next section.

3.5 Adaptive finite element method

During the evolution, the interface grows a lot in length and complexity. Thus, an adaptive
discretization of the interface is indispensable. Here, we use a simple adaptivity criterion, namely
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an upper limit for the length of each segment of the interface discretization. Every segment which
grows longer than a given tolerance is refined by bisection at its midpoint. Such refinements are
done in each time step at the beginning of part (A), before calculating the new interface.

The same triangulations T n of the domain Ω are used to define finite element spaces for discrete
temperature and velocity. Local refinement of the meshes is based on a posteriori control of the
discrete temperature. Numerical tests show that it is not necessary to use a combination of error
estimators for temperature and velocity, as the velocity is much smoother than the temperature.

The Stefan condition (5) for the temperature implies a jump in the normal derivatives of ϑ at Γ .
Moreover, steep gradients of ϑ occur close to the free boundary Γ . In order to approximate such a
temperature field sufficiently well, we use adaptively refined meshes. Using highly refined meshes
at Γ one also reduces the ‘ roughness’ of ∂Ωh,l .

Following the lines of [10, 20], we use a posteriori error indicators which can be computed from
the discrete temperature and given data for the heat equation. Assuming regularity of the temperature
ϑ(·, t) ∈ H1,∞(Ω) ∩ H2,2(Ωl ∪ Ωs) with corresponding a priori estimates, the usual derivation of
residual a posteriori error estimates leads to local error indicators

ηT (Θ)2 =




h4
T

∥∥∥∥∂tΘ + Cconv u · ∇Θ − ∆Θ

Pr
√

Gr

∥∥∥∥
2

L2(T )

+ h3
T

∥∥∥∥ 1

Pr
√

Gr

[
∂Θ

∂ν

]∥∥∥∥
2

L2(∂T \∂Ω)

if T ∩ Γ = ∅,

h3
T

∥∥∥∥∂tΘ + Cconv u · ∇Θ − ∆Θ

Pr
√

Gr

∥∥∥∥
2

L2(T )

+ h2
T

∥∥∥∥ L

εV
(Θ + εC CΓ )

∥∥∥∥
2

L2(Γ ∩T )

+ h2
T

∥∥∥∥ 1

Pr
√

Gr

[
∂Θ

∂ν

]∥∥∥∥
2

L2(∂T \∂Ω)

otherwise

for all T ∈ T , where ∂tΘ denotes the temporal difference quotient and [ ∂Θ
∂ν

] the jump of normal
derivatives over inner edges of the triangulation. The lower h exponents near Γ account for the loss
of regularity of the temperature at the free boundary. In part (B) of each time step, the triangulation
is adapted by local refinement and coarsening of mesh elements such that the indicators ηT (Θ)2

are (nearly) equidistributed over all elements and the total estimate (
∑

T ∈T ηT (Θ)2)1/2 is smaller
than a given error tolerance. We use a semi-implicit adaptive method [4]; in particular, a solution
Θ̃n+1 ∈ Vn is calculated on the old mesh, then the mesh is adapted using indicators ηT (Θ̃n+1), and
finally Θn+1 ∈ Vn+1 is computed on the new mesh. For the refinement and coarsening of triangular
meshes we use algorithms based on the bisection of elements [3, 19].

As indicated, the same meshes are used for velocity discretization. Unfortunately, mesh changes
between time steps which imply changing velocity spaces may introduce an inconsistency in the
discrete Navier–Stokes equation due to the violation of the discrete solenoidal condition. The use of
a simple nodal interpolation, say In+1U n instead of πn+1U n in (13), would add a term

1

θτn
In+1U n �∈ Yn+1

0 ,

which is not discretely divergence free. This would lead to strong numerical oscillations in the
pressure P . Therefore we use a projection πn+1, defined by: for U ∈ Yn find (πn+1U, q) ∈ Yn+1 ×
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Zn+1 such that for all (Φ, Ψ ) ∈ Yn+1 × Zn+1

∫
Ωn+1

h,l

(
γ1πn+1UΦ + γ2∇(πn+1U )∇Φ − q ∇ · Φ

)
=

∫
Ωn+1

h,l

(
γ1UΦ + γ2∇U∇Φ

)
,

∫
Ωn+1

h,l

∇ · (πn+1U ) Ψ = 0

with γ1, γ2 > 0. This means that πn+1 is a weighted H1-projection to the space of discretely
divergence free functions Yn+1

0 . Note that πn+1 = id if {T ∈ Ωn+1
h,l | T is liquid} = {T ∈

Ωn
h,l | T is liquid}, i. e. no refinement or coarsening was done in the liquid subdomain.

4. Numerical Simulations

We consider problem (1)–(7) in the domain Ω = (−8, +8)2 with Grashof number Gr = 100,
Prandtl number Pr = 0.1, latent heat L = 1, and anisotropy functions

εC (cos s, sin s) = 0.001 + 0.0003 cos(4s), εV (cos s, sin s) = 0.01 + 0.003 cos(4s).

The initial interface Γ0 is a circle of radius 0.05 with center (0, 0). Boundary values for the
temperature are chosen as the external undercooling ϑ = −0.5 on ∂Ω; initial temperature is then
given by (16). Finite element computations use piecewise quadratic approximations of u, ϑ , and Γ .
The meshes are adapted using the a posteriori techniques described in Section 3.5, and the time step
size is fixed for all computations to τ = 0.01.

4.1 Dirichlet problem

We want to demonstrate the influence of the parameter Cconv in a Dirichlet environment. Boundary
values are

ϑ = −0.5, u = 0 on ∂Ω.

The following figures compare results for Cconv ∈ {0, 10, 100}. For Cconv = 0, the convection has
no influence on the heat equation and on the phase transition; this case describes crystal growth
under zero gravity with diffusion only. For Cconv = 10 or 100, the influence of the additional
advection in the heat equation is clearly visible. Due to the convection in the liquid, the latent heat
set free during solidification is transported away from the lower dendrite branches more quickly.
This results in larger growth velocities for the lower branches of the crystal.

Figures 4–6 show the interfaces after 0, 20, . . . , 400 time steps at times t = k 0.2, k =
0, 1, 2, . . . , 20. While the upper and lower dendrite branches are symmetric for Cconv = 0, the lower
branches are faster than the upper ones for Cconv > 0. It can be seen that, with strong convection,
both upper and lower branches may be faster than in the diffusion-only case.

The three pictures in Fig. 3 show the velocities of dendrite tips from the three simulations. The
faster tip velocities correspond to the lower dendrite branches.
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FIG. 3. Problem 4.1, Cconv = 0, 10, 100; tip velocities.

FIG. 4. Problem 4.1, Cconv = 0; interfaces at t = 0.0, 0.2, . . . , 4.0.

FIG. 5. Problem 4.1, Cconv = 10; interfaces at t = 0.0, 0.2, . . . , 4.0.
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FIG. 6. Problem 4.1, Cconv = 100; interfaces at t = 0.0, 0.2, . . . , 4.0.

FIG. 7. Problem 4.1, Cconv = 10; velocity at t = 3.0.
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FIG. 8. Problem 4.1, Cconv = 100; velocity at t = 3.0.

FIG. 9. Problem 4.1, Cconv = 0; isothermal lines at t = 3.0.

Velocities and interfaces at t = 3.0 are shown in Figs 7 and 8. The maximal velocities, ‖V ‖∞ =
0.34 and 0.24, respectively, are attained near the upper dendrite tips. Figures 9–11 show interfaces
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FIG. 10. Problem 4.1, Cconv = 10; isothermal lines at t = 3.0.

FIG. 11. Problem 4.1, Cconv = 100; isothermal lines at t = 3.0.

and isothermal lines Θ = −0.05, −0.15, −0.25, −0.35, −0.45 at t = 3.0. The heat transport to
upper parts of the domain for Cconv > 0 is clearly seen. The adapted mesh for Cconv = 100 at
t = 3.0 is shown in Fig. 12.
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FIG. 12. Problem 4.1, Cconv = 100; triangulation at t = 3.0.

FIG. 13. Problem 4.2.1; interfaces after 0, 10, . . . , 200 time steps.

4.2 Transparent boundary conditions

In order to reduce the influence of the Dirichlet boundary and approximate the problem in an
unbounded domain, we impose natural boundary conditions for the coupled problem, i.e. absorbing
boundary conditions for the flow problem and Neumann conditions for the temperature. To be more
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FIG. 14. Problem 4.2.1; triangulation at t = 2.0.

precise, we impose the following condition for u and p:

1√
Gr

∂νu − pν = gν on ∂Ω. (17)

Here, g is a given function, accounting for the hydrostatic pressure and for a possibly horizontal
pressure gradient for the case of a horizontal advection:

g(x1, x2) = C1 x1 −
x2∫

0

θ̄ (x1, s) ds (18)

with a constant C1 (C1 = 0 for the case of no horizontal advection) and θ̄ := −0.5 the ‘main’ part
of θ .

In the variational formulation for the momentum equation (17) turns out to be just the natural
boundary condition for u and p at ∂Ω if the velocity space is defined such that the functions may
have arbitrary values on ∂Ω and the right-hand side is given by

F(Φ) :=
∫

Ωl

ϑ e2 · Φ +
∫

∂Ω

gν · Φ,

see also [17] for details.
For the temperature equation we impose a homogeneous Neumann condition on ∂Ω , which

means that the normal heat flux q · ν = (− 1
Pr

√
Gr

∇ϑ + Cconvϑu) · ν on ∂Ω is given by the

convective flux only: q ·ν = Cconvϑu ·ν. Again, defining the temperature accordingly, the Neumann
condition is the natural boundary condition for the variational formulation.

Note that all subsequent simulations use the convection parameter Cconv = 100.
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FIG. 15. Problem 4.2.1; interface and velocity at t = 2.0.

4.2.1 Natural convection problem. Figures 13–16 show a problem similar to the third Dirichlet
case, with only natural convection, i.e. C1 = 0 in (18). Since the boundary condition (17) mimics
an infinite domain, there are no convection rolls as in the previous examples and the transport is
mainly upward.

4.2.2 Problem with additional advection. Figures 17–20 show a problem with additional
horizontal advection, i.e. C1 = 0.2. The influence of the advection on the crystal growth is again
clearly visible, resulting in a fast and strongly non-symmetric growth.
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3. BÄNSCH, E. Local mesh refinement in 2 and 3 dimensions. Impact Comput. Sci. Eng. No. 3, (1991)

181–191.
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FIG. 19. Problem 4.2.2; interface and velocity at t = 1.57.

FIG. 20. Problem 4.2.2; interface and isothermal lines at t = 1.57.
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Color plate 1: Problem 4.2.1; temperature, velocity, and interface at time t = 2.0.

Color plate 2: Problem 4.2.2; temperature, velocity, and interface at time t = 1.57.


