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Convergence of a mass conserving Allen–Cahn equation whose Lagrange
multiplier is nonlocal and local
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We consider the mass conserving Allen–Cahn equation proposed in [8]: the Lagrange multiplier
which ensures the conservation of the mass contains not only nonlocal but also local effects (in
contrast with [14]). As a parameter related to the thickness of a diffuse internal layer tends to zero,
we perform formal asymptotic expansions of the solution. Then, equipped with this approximate
solution, we rigorously prove the convergence to the volume preserving mean curvature flow, under
the assumption that a classical solution of the latter exists. This requires a precise analysis of the
error between the actual and the approximate Lagrange multipliers.
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1. Introduction

Setting of the problem. In this paper, we consider u" D u".x; t/ the solution of an Allen–Cahn
equation with conservation of the mass proposed in [8], namely

@tu" D �u" C 1

"2

�
f .u"/�

R
˝
f .u"/R

˝

p
4W.u"/

p
4W.u"/

�
in ˝ � .0;1/; (1.1)

supplemented with the homogeneous Neumann boundary conditions

@u"

@�
.x; t/ D 0 on @˝ � .0;1/; (1.2)

and the initial conditions
u".x; 0/ D g".x/ in ˝: (1.3)

Here ˝ is a smooth bounded domain in R
N (N > 2) and � is the Euclidian unit normal vector

exterior to @˝ . The small parameter " > 0 is related to the thickness of a diffuse interfacial layer.
The term
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˝
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�
(1.4)

c� European Mathematical Society 2014

mailto:malfaro@math.univ-montp2.fr
mailto:alifrang@math.univ-montp2.fr


244 M. ALFARO AND P. ALIFRANGIS

can be understood as a Lagrange multiplier for the mass constraint

d

dt

Z
˝

u".x; t/ dx D 0: (1.5)

Let us notice that (1.4) combines nonlocal and local effects (see below).
The nonlinearity is given by f .u/ WD �W 0.u/, where W.u/ is a double-well potential with

equal well-depth, taking its global minimum value at u D ˙1. More precisely we assume that f is
C 2 and has exactly three zeros �1 < 0 < C1 such that

f 0.˙1/ < 0; f 0.0/ > 0 (bistable nonlinearity); (1.6)

and
f .�u/ D �f .u/ (odd nonlinearity): (1.7)

The condition (1.6) implies that the potential W.u/ attains its local minima at u D ˙1, and (1.7)
implies that W.�1/ D W.C1/, so that the two stable zeros of f , namely ˙1, have “balanced”
stability. For the sake of clarity, in the computations we restrict ourselves to the case where

f .u/ D u.1 � u2/; W.u/ D 1

4
.1 � u2/2: (1.8)

This will simplify the presentation of the asymptotic expansions and is enough to capture all the
features of the problem. For a more general odd and bistable nonlinearity, one would only has to
make additional expansions of f .u/ in Section 4 and Section 6.

REMARK 1.1 A more general assumption than (1.7) ensuring balanced stability is
R C1

�1
f D 0. In

this case, this is not clear whether or not our result applies. For instance an additional term will
appear in (4.35) and so in (4.46), so that h1 � 0 in (5.2) may fail. Since this last property is the
main reason for introducing equation (1.1) (see below), we did not go further into the proof for this
more general case.

The initial data g" are well-prepared in the sense that they already have sharp transition layers
whose profile depends on ". The precise assumptions on g" will appear in (2.10). For the moment,
it is enough to note that �1 6 g" 6 1 and that, for a subsequence " ! 0,

lim
"!0

g" D
(

�1 a.e. in the region enclosed by �0;

C1 a.e. in the region enclosed between @˝ and �0,
(1.9)

where �0 �� ˝ is a given smooth bounded hypersurface without boundary.
Our goal is to investigate the behavior of the solution u" of (1.1), (1.2), (1.3), as " ! 0.

Related works and comments. It is long known that, even for not well-prepared initial data, the
sharp interface limit of the Allen–Cahn equation @tu" D �u" C "�2f .u"/ moves by its mean
curvature. As long as the classical motion by mean curvature exists, it was proved in [12] and an
optimal estimate of the thickness of the transition layers was provided in [2]. Let us also mention
that, recently, the first term of the actual profile of the layers was identified [3]. If the mean curvature
flow develops singularities in finite time, then a generalized motion can be defined via level-set
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methods and viscosity solutions, [18] and [15]. In this framework, the convergence of the Allen–
Cahn equation to generalized motion by mean curvature was proved by Evans, Soner and Souganidis
[17] and a convergence rate was obtained in [1].

The above results rely on the construction of efficient sub- and super-solutions. Nevertheless,
when comparison principle does not hold, a different method exists for well-prepared initial data.
It was used, e.g., by Mottoni and Schatzman [24] for the Allen–Cahn equation (without using the
comparison principle!); Alikakos, Bates and Chen [4] for the convergence of the Cahn–Hilliard
equation

@tu" C�
�
"�u" C 1

"
f .u"/

�
D 0; (1.10)

to the Hele-Shaw problem; Caginalp and Chen [10] for the phase field system . . . The idea is to
first construct a solution u";k of an approximate problem thanks to matched asymptotic expansions.
Next, using the lower bound of a linearized operator around such a constructed solution, an estimate
of the error ku" � u";kkLp is obtained for some p > 2.

Using these technics, Chen, Hilhorst and Logak [14] considered the Allen–Cahn equation with
conservation of the mass

@tu" D �u" C 1

"2

�
f .u"/ � 1

j˝j
Z

˝

f .u"/
�
; (1.11)

proposed by [25] as a model for phase separation in binary mixture. They proved its convergence to
the volume preserving mean curvature flow

Vn D �� C 1

j�t j
Z

�t

� dHn�1 on �t : (1.12)

Here Vn denotes the velocity of each point of �t in the normal exterior direction and � the sum of
the principal curvatures, i.e. N � 1 times the mean curvature. For related results, we also refer the
reader to the works [9] (radial case, energy estimates) and [22] (case of a system).

In a recent work, Brassel and Bretin [8] proposed the mass conserving Allen–Cahn equation
(1.1) as an approximation for mean curvature flow with conservation of the volume (1.12).
According to their formal approach and numerical computations, it seems that “(1.1) has better
volume preservation properties than (1.11)”. In other words, for the approximation of mean
curvature with volume constraint, they numerically observe an O."2/ error for the conservation of
the volume using (1.1), whereas an O."/ error is observed when using (1.11). This is clearly related
to the cancellation of the "-terms in the forthcoming expansions, see (4.17), (5.2) and Remark 1.1.
Let us notice that, as far as the local Allen–Cahn equation is concerned, such an improvement of the
accuracy of phase field solutions, thanks to an adequate perturbation term, was already performed
in [20] or in [11].

In the present paper we prove the convergence of (1.1) to (1.12). Observe that in (1.11) the
conservation of the mass (1.5) is ensured by the Lagrange multiplier � 1

j˝j
R

˝
f .u"/ which is

nonlocal, whereas in the considered equation (1.1) the Lagrange multiplier (1.4) combines nonlocal
and local effects. On the one hand, this will make the outer expansion completely independent of the
inner one, and will cancel the " order terms of all expansions (see Section 4). On the other hand, this
makes the proof of Theorem 2.3 much more delicate since further accurate estimates are needed (see
subsection 6.1). In other words, in the study [14] of (1.11), it turns out that the nonlocal Lagrange
multipliers “disappear” while estimating the error estimate u" � u";k . This will not happen in our
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context and our key point will be the following. Roughly speaking, our estimates of subsection 6.1
will make appear an integral of the error on the limit hypersurface which must be compared with
the L2 norm of the error. If the former is small compared with the latter then the Gronwall’s lemma
is enough. If, as expected, the error concentrates so that the former becomes large compared with
the latter, then the situation is favorable: a “sign minus” intends at decreasing the L2 norm of the
error (see subsection 6.1 and Remark 6.2 for details).

To conclude let us mention the work of Golovaty [21], where a related equation with a nonlocal/
local Lagrange multiplier is considered. The convergence to a weak (via viscosity solutions) volume
preserving motion by mean curvature is proved via energy estimates. The author takes advantage of
the fact that, under the mass constraint, the equation he considers is the gradient flow of the same
energy functional as its local counterpart, namely

R
˝

�
1
2
jruj2 C 1

"2W.u/
�

. The equation (1.1) we
consider here does not have such a property. We therefore use different methods which, moreover,
allow to capture a fine error estimate between the actual solution and the constructed approximate
solution.

2. Statement of the results

The flow (1.12). Let us first recall a few interesting features of the averaged mean curvature flow
(1.12). It is volume preserving, area shrinking and every Euclidian sphere is an equilibrium. The
local in time well posedness in a classical framework is well understood (see Lemma 2.1 for a
statement which is sufficient for our purpose). It is also known that local classical solutions with
convex initial data turn out to be global. Additionally, there exist non-convex hypersurfaces (close
to spheres) whose flow is global. For more details on the averaged mean curvature flow (1.12), we
refer the reader to [19], [23], [16] and the references therein.

LEMMA 2.1 (Volume preserving mean curvature flow) Let ˝0 �� ˝ be a subdomain such that
�0 WD @˝0 is a smooth hypersurface without boundary. Then there is Tmax 2 .0;1� such
that the averaged mean curvature flow (1.12), starting from �0, has a unique smooth solution
[06t<T max .�t � ftg/ such that �t �� ˝ , for all t 2 Œ0; Tmax/.

In the sequel, for �0 as in (1.9), we fix 0 < T < Tmax and work on Œ0; T �. We define

� WD [06t6T

�
�t � ftg�;

and denote by ˝t the region enclosed by �t . Let us define the step function Qu D Qu.x; t/ by

Qu.x; t/ WD
(

�1 in ˝t ;

C1 in ˝ n˝t

for all t 2 Œ0; T �; (2.1)

which represents the sharp interface limit of u" as " ! 0. Let d be the signed distance function to
� defined by

d.x; t/ D
(

�dist.x; �t / for x 2 ˝t ;

dist.x; �t / for x 2 ˝ n˝t :
(2.2)

Main results. Let us notice that, since �1 6 g" 6 1, it follows from the maximum principle that
�1 6 u" 6 1. Also since g" 6� 1 and g" 6� �1, the conservation of the mass implies u" 6� 1 and
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u" 6� �1. This enables to rewrite equation (1.1) as

@tu" ��u" � 1

"2

�
f .u"/ � "�".t/.1 � u"

2/
� D 0 in ˝ � .0;1/; (2.3)

by defining

"�".t/ WD
R

˝ f .u"/R
˝

p
4W.u"/

D
R

˝ u" � u"
3R

˝
1� u"

2
: (2.4)

Our first main result consists in constructing an accurate approximate solution.

THEOREM 2.2 (Approximate solution) Let us fix an arbitrary integer k > max.N; 4/. Then there
exists .u";k.x; t/; �";k.t//x2 N̋ ; 06t6T such that

@tu";k ��u";k � 1

"2

�
f .u";k/ � "�";k.t/.1 � u";k

2/
� D ı";k in ˝ � .0; T /; (2.5)

with
kı";kkL1.˝�.0;T // D O."k/ as " ! 0; (2.6)

and
@u";k

@�
.x; t/ D 0 on @˝ � .0; T /; (2.7)

d

dt

Z
˝

u";k.x; t/ dx D 0 for all t 2 .0; T /: (2.8)

Observe that by integrating (2.5) over˝ and using (2.7) and (2.8), we see that

"�";k.t/ D
R

˝ f .u";k/C O."kC2/R
˝
1� u";k

2
: (2.9)

Then we prove the following estimate, in the L2 norm, on the error between the approximate
solution u";k and the solution u".

THEOREM 2.3 (Error estimate) Let us fix an arbitrary integer k > max.N; 4/. Let u" be the solution
of (1.1), (1.2), (1.3) with the initial conditions satisfying

g".x/ D u";k.x; 0/C �".x/ 2 Œ�1; 1�;
Z

˝

�" D 0; k�"kL2.˝/ D O."k� 1
2 /: (2.10)

Then, there is C > 0 such that, for " > 0 small enough,

sup
06t6T

ku".�; t/ � u";k.�; t/kL2.˝/ 6 C"k� 1
2 :

As it will be clear from our construction in Section 5, the approximate solution satisfies

ku";k � QukL1.f.x;t/W jd.x;t/j>p
"g/ D O."kC2/; as " ! 0;

with Qu the sharp interface limit defined in (2.1) via the volume preserving mean curvature flow
(1.12) starting from �0. We can therefore interpret Theorem 2.3 as a result of convergence of the
mass conserving Allen–Cahn equation (1.1) to the volume preserving mean curvature flow (1.12):

sup
06t6T

ku".�; t/� Qu.�; t/kL2.˝/ D O."1=4/; as " ! 0:
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Organization of the paper. The organization of this paper is as follows. In Section 3 we present
the needed tools which are by now rather classical. In Section 4, we perform formal asymptotic
expansions of the solution .u".x; t/; �".t//. This will enable to construct the approximate solution
.u";k.x; t/; �";k.t//, and so to prove Theorem 2.2, in Section 5. Last we prove the error estimate
of Theorem 2.3 in Section 6. In particular and as mentioned before, a precise understanding of the
error between the actual and the approximate Lagrange multipliers will be necessary (see subsection
6.1).

REMARK 2.4 Through the paper, the notation  " � P
i>0 "

i i represents asymptotic expansion
as " ! 0 and means that, for all integer k,  " D Pk

iD0 "
i i C O."kC1/.

3. Preliminaries

For the present work to be self-contained, we recall here a few properties which are classical in the
works mentioned in the introduction, [4, 10, 11, 14, 22, 24, 25], and the references therein.

3.1 Some related linearized operators

We denote by 	0.
/ WD tanh. �p
2
/ the standing wave solution of

(
	0

00 C f .	0/ D 0 on R;

	0.�1/ D �1; 	0.0/ D 0; 	0.1/ D 1;

which we expect to describe the transition layers of the solution u" observed in the stretched
variable. Note that, for all m 2 N,

Dm
�

�
	0.
/� .˙1/� D O

�
e�p

2j�j� as 
 ! ˙1: (3.1)

We then consider the one-dimensional underlying linearized operator around 	0, acting on
functions depending on the variable 
 by

Lu WD �u�� � f 0.	0.
//u: (3.2)

LEMMA 3.1 (Solvability condition and decay at infinity) Let A.
; s; t/ be a smooth and bounded
function on R�U � Œ0; T �, with U � R

N �1 a compact set. Then, for given .s; t/ 2 U � Œ0; T �, the
problem (

L WD � �� � f 0.	0.
// D A.
; s; t/ on R;

 .0; s; t/ D 0;  .�; s; t/ 2 L1.R/;

has a solution (which is then unique) if and only ifZ
R

A.
; s; t/	0
0.
/ d
 D 0: (3.3)

Under the condition (3.3), assume moreover that there are real constants A˙ and an integer i such
that, for all integersm, n, l ,

Dm
� D

n
sD

l
t ŒA.
; s; t/ � A˙� D O.j
jie�p

2j�j/ as 
 ! ˙1; (3.4)
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uniformly in .s; t/ 2 U � Œ0; T �. Then

Dm
� D

n
s D

l
t Œ .
; s; t/ C A˙

f 0.˙1/ � D O.j
jie�p
2j�j/ as 
 ! ˙1; (3.5)

uniformly in .s; t/ 2 U � Œ0; T �.
Proof. The lemma is rather standard (see [4], [2] among others) and we only give an outline of the
proof. Multiplying the equation by 	0

0 and integrating it by parts, we easily see that the condition
(3.3) is necessary. Conversely, suppose that this condition is satisfied. Then, since 	0

0 is a bounded
positive solution to the homogeneous equation  �� C f 0.	0.
// D 0, one can use the method of
variation of constants to find the above solution  explicitly:

 .
; s; t/ D 	0
0.
/

Z �

0

�
	0

0�2
.�/

Z 1

�

A.�; s; t/	0
0.�/ d�

�
d�:

Using this expression along with the estimates (3.4) and (3.1), one then proves (3.5).

Note also, that after the construction of the approximate solution u";k , we shall need the estimate
of the lower bound of the spectrum of a perturbation of the self-adjoint operator ��� "�2f 0.u";k/

proved in [13]. This will be stated in Section 6.

3.2 Geometrical preliminaries

The following geometrical preliminaries are borrowed from [14], to which we refer for more details
and proofs.

Parametrization around � . As mentioned before, we call � D [06t6T .�t � ftg/ the smooth
solution of the volume preserving mean curvature flow (1.12), starting from �0; we also denote by
˝t the region enclosed by �t . Let d be the signed distance function to � defined by

d.x; t/ D
(

�dist.x; �t / for x 2 ˝t ;

dist.x; �t / for x 2 ˝ n˝t :
(3.6)

We remark that d is smooth in a tubular neighborhood of � , say in

N3ı.�t / WD fx 2 ˝ W jd.x; t/j < 3ıg ;

for some ı > 0. We choose a parametrization of �t by X0.s; t/, with s 2 U � R
N �1. We denote

by n.s; t/ the unit outer normal vector on @˝t D �t . For any 0 6 t 6 T , one can then define a
diffeomorphism from .�3ı; 3ı/ � U onto the tubular neighborhood N3ı.�t / by

X.r; s; t/ D X0.s; t/C rn.s; t/ D x 2 N3ı.�t /;

whose inverse is denoted by r D d.x; t/, s D S.x; t/ WD .S1.x; t/; � � � ; SN �1.x; t//. Then rd
is constant along the normal lines to �t , and the projection S.x; t/ from x on �t is given by
X0.S.x; t/; t/ D x � d.x; t/rd.x; t/. For x D X0.s; t/ 2 �t denote by �i .s; t/ the principal
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curvatures of �t at point x and by V.s; t/ WD .X0/t .s; t/:n.s; t/ the normal velocity of �t at point
x. Then, one can see that

�.s; t/ WD
N �1X
iD1

�i .s; t/ D �d
�
X0.s; t/; t

�
; (3.7)

b1.s; t/ WD �
N �1X
iD1

�i
2.s; t/ D �.rd:r�d/�X0.s; t/; t

�
; (3.8)

V.s; t/ WD .X0/t .s; t/:n.s; t/ D �dt

�
X.r; s; t/; t

�
: (3.9)

In particular, dt .x; t/ is independent of r D d.x; t/ in a small enough tubular neighborhood of �t .
Changing coordinates form .x; t/ to .r; s; t/, to any function �.x; t/ one can associate the function
Q�.r; s; t/ by

Q�.r; s; t/ D �
�
X0.s; t/C rn.s; t/; t

�
or �.x; t/ D Q��

d.x; t/; S.x; t/; t
�
:

The stretched variable. In order to describe the sharp transition layers of the solution u" around
the limit interface, we now introduce a stretched variable. Let us consider a graph over �t of the
form

� "
t D ˚

X.r; s; t/ W r D "h".s; t/ ; s 2 U �
;

which is expected to represent the 0 level set, at time t , of the solution u". We define the stretched
variable 
.x; t/ as “the distance from x to � "

t in the normal direction, divided by "”, namely


.x; t/ WD d.x; t/ � "h".S.x; t/; t/

"
: (3.10)

In the sequel, we use .
; s; t/ as independent variables for the inner expansion. The link between
the old and the new variable is

x D OX.
; s; t/ WD X
�
".
C h".s; t//; s; t

� D X0.s; t/C "
�

C h".s; t/

�
n.s; t/:

Changing coordinates form .x; t/ to .
; s; t/, to any function  .x; t/ one can associate the function
O .
; s; t/ by

O .
; s; t/ D  
�
X0.s; t/C ".
C h".s; t/

�
n.s; t/; t/; (3.11)

or  .x; t/ D O .d.x;t/�"h".S.x;t/;t/
"

; S.x; t/; t/. A computation then yields

"2.@t �� / D � O �� � ".V C�d/ O �

C "2
�
@�

t
O ��� O � .@�

t h" ��� h"/ O �

�
C "2

�
2r� h":r� O � � jr� h"j2 O ��

�
:

(3.12)

where

@�
t WD @t C

N �1X
iD1

S i
t @si ; r� WD

N �1X
iD1

rS i@si ; �
� WD

N �1X
iD1

�S i@si C
N �1X
i;j D1

rS i :rSj @si sj :
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Here �d is evaluated at .x; t/ D .X0.s; t/C ".
C h".s; t//n.s; t/; t/, so that (3.7) and (3.8) imply

�d D �d
�
X0.s; t/C "

�

C h".s; t/

�
n.s; t/; t

�
� �.s; t/ � "

�

C h".s; t/

�
b1.s; t/ �

X
i>2

"i
�

 C h".s; t/

�i
bi .s; t/;

(3.13)

where bi .s; t/ (i > 2) are some given functions only depending on �t .
Last, define

"J ".
; s; t/ WD @ OX.
; s; t/=@.
; s/
the Jacobian of the transformation OX so that, in particular, dx D "J ".
; s; t/ dsd
. Then, for all

 2 R, s 2 U and 0 6 t 6 T , we have

J ".
; s; t/ D
N �1Y
iD1

�
1C ".
C h".s; t//�i .s; t/

�
: (3.14)

4. Formal asymptotic expansions

In this section, we perform formal expansions for the solution u".x; t/ of (2.3). We start by the outer
expansion to represent the solution “far from the limit interface”, then make the inner expansion to
describe the sharp transition layers. Last, the expansion of the nonlocal term �".t/ is performed. In
the meanwhile we shall also discover the expansion of the correction term h".s; t/ defined in (3.10).

We assume that the solution u".x; t/ is of the form

u".x; t/ � u"̇ .t/ WD ˙1C "u1̇ .t/C "2u2̇ .t/C � � � (outer expansion), (4.1)

for x 2 ˝t (corresponding to u�
" .t/), x 2 ˝ n ˝t (corresponding to uC

" .t/), and away from the
interface �t , say in the region where jd.x; t/j >

p
" as we expect the width of the transition layers to

be O."/. Near the interface �t , i.e. in the region where jd.x; t/j 6
p
", we assume that the function

Ou".
; s; t/ – associated with u".x; t/ via the change of variables (3.11) – is written as

Ou".
; s; t/ � u0.
; s; t/C "u1.
; s; t/C "2u2.
; s; t/C � � � (inner expansion). (4.2)

We also require the matching conditions between outer and inner expansions, that is, for all i 2 N,

ui .˙1; s; t/ D ui̇ .t/ (matching conditions); (4.3)

for all .s; t/ 2 U � Œ0; T �. As we expect the set 
 D 0 to be the 0 level set of the solution (see
subsection 3.2) we impose, for all i 2 N,

ui .0; s; t/ D 0 (normalization conditions); (4.4)

for all .s; t/ 2 U � Œ0; T �.
As far as the nonlocal term �".t/ is concerned we assume the expansion

�".t/ � �0.t/C "�1.t/C "2�2.t/C � � � (nonlocal term): (4.5)
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Last, the distance correcting term h".s; t/ is assumed to be described by

"h".s; t/ � "h1.s; t/C "2h2.s; t/C � � � (distance correction term); (4.6)

for all .s; t/ 2 U � Œ0; T �.
In the following, by the (complete) expansion at order 1 we mean

˚
d.x; t/; �0.t/; u1.
; s; t/; u1̇ .t/

�
(expansion at order 1);

and by the (complete) expansion at order i > 2 we mean

˚
hi�1.s; t/; �i�1.t/; ui .
; s; t/; ui̇ .t/

�
(expansion at order i > 2): (4.7)

Let us also recall that we have chosen

f .u/ D u.1 � u2/; W.u/ D 1

4
.1 � u2/2:

4.1 Outer expansion

By plugging the outer expansion (4.1) and the expansion (4.5) into the nonlocal partial differential
equation (2.3), we get

"2
�
u"̇ /

0.t/ D u"̇ .t/ � .u"̇ .t/
�3 � "�".t/

�
1 � .u"̇ .t/

�2
/: (4.8)

Since u"̇ .t/ � P
i>0 "

iui̇ .t/, where u0̇ .t/ D ˙1, an elementary computation yields

�"�".t/
�
1� �

u"̇ .t/
�2

�
�

X
i>1

� X
pCqDi ;q¤0

�p.t/
X

kClDq

u˙
k .t/u

˙
l .t/

�
"iC1;

and
.u"̇ .t//

3 �
X
i>0

� X
pCqDi

uṗ .t/
X

kClDq

u˙
k .t/u

˙
l .t/

�
"i :

Hence, collecting the " terms in (4.8), we discover 0 D u1̇ .t/�3u1̇ .t/.u0̇ .t//
2 so that u1̇ .t/ � 0.

Next, an induction easily shows that

ui̇ .t/ � 0 for all i > 1:

Therefore the outer expansion is already completely known and is trivial:

u"̇ .t/ � ˙1: (4.9)

In other words, thanks to the adequate form of the Lagrange multiplier, the outer expansion is
independent of the expansion of the nonlocal term. This is in contrast with the equation considered
in [14].
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4.2 Inner expansion

It follows from (3.12) that, in the new variables, equation (2.3) is recast as

Ou"�� C Ou" � . Ou"/
3 D "�".t/.1 � . Ou"/

2/� ".V C�d/ Ou"�

C "2Œ@�
t Ou" ��� Ou" � .@�

t h" ��� h"/ Ou"��

C "2Œ2r� h":r� Ou"� � jr� h"j2 Ou"���: (4.10)

The "0 terms. By collecting the "0 terms above and using the normalization and matching
conditions (4.3), (4.4) we discover that u0.
; s; t/ D 	0.
/, with 	0 the standing wave solution
of (

	0
00 C f .	0/ D 0 on R;

	0.�1/ D �1; 	0.0/ D 0; 	0.1/ D 1:
(4.11)

Formally, this solution represents the first approximation of the profile of the transition layers around
the interface observed in the stretched coordinates. Note that since f .u/ D u � u3, one can even
compute 	0.
/ D tanh. �p

2
/.

The "1 terms. Next, since Ou".
; s; t/ � P
i>0 ui .
; s; t/"

i , where u0.
; s; t/ D 	0.
/, an
elementary computation yields

"�".t/
�
1 � . Ou"/

2.
; s; t/
� � �

X
i>0

� X
pCqDi

�p.t/ˇq.
; s; t/
�
"iC1; (4.12)

where

ˇq.
; s; t/ D
(
	0

2.
/ � 1 if q D 0P
kClDq uk.
; s; t/ul .
; s; t/ if q > 1;

and also
. Ou"/

3.
; s; t/ �
X
i>0

� X
pCqDi

up.
; s; t/
X

kClDq

uk.
; s; t/ul .
; s; t/
�
"i : (4.13)

Hence, plugging the expansion (3.13) of �d into (4.10) and collecting the " terms, we discover

Lu1 WD �u1�� � f 0�	0.
/
�
u1 D .V C �/.s; t/	0

0.
/ � �
1 � 	0

2.
/
�
�0.t/: (4.14)

For the above equation to be solvable (see Lemma 3.1 for details) it is necessary that, for all .s; t/ 2
U � Œ0; T �, Z

R

Lu1.
; s; t/	0
0.
/ d
 D 0;

which in turn yields

V.s; t/ D ��.s; t/C �0.t/;  WD
R
R
.1� 	0

2/	0
0R

R
	0

02 : (4.15)

As seen in subsection 3.2 the above equation can be recast as

dt .x; t/ D �d.x; t/ � �0.t/ for x 2 �t : (4.16)
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Now, in view of (4.11), we can write 0 D R z

�1.	0
00 Cf .	0//	0

0 D R z

�1.	0
00 �W 0.	0//	0

0 and find
the relation 1 � 	0

2 D p
2	0

0, so that  D p
2. Plugging this and (4.15) into (4.14) we see that

Lu1 D 0. Therefore, the normalization u1.0; s; t/ D 0 implies

u1.
; s; t/ � 0: (4.17)

Again this is in contrast with the equation considered in [14].

The "i terms (i > 2). Now, taking advantage of u0.
; s; t/ D 	0.
/ and of u1.
; s; t/ � 0 we
identify, for i > 2, the "i terms in all terms appearing in (4.10). In the sequel we omit the arguments
of most of the functions and, by convention, the sum

Pb
a is null if b < a.

Using (4.13) we see that the "i term in Ou"�� C Ou" � . Ou"/
3 is

�Lui � 	0

i�2X
kD2

ukui�k �
i�2X
pD2

up

X
kClDi�p

ukul (term 1): (4.18)

In view of (4.12), the "i term in "�".t/.1 � . Ou"/
2/ is

�i�1.1 � 	0
2/ �

X
pCqDi�1;q¤0

�p

X
kClDq

ukul (term 2): (4.19)

In order to deal with the term �".V C�d/ Ou"�, we first note that (3.13) and (4.6) yield the following
expansion of the Laplacian

�d � � �
X
i>1

.b1hi C ıi / "
i ; (4.20)

with

ıi D ıi .
; s; t/ D
iX

kD0

ck.s; t/

k (4.21)

a polynomial function in 
 of degree lower than i , whose coefficients ck.s; t/ are themselves
polynomial in .h1; : : : ; hi�1/ which are part of the formal expansion at lower orders, and in
.b1; : : : ; bi / which are given functions. Among others, we have ı1.
; s; t/ D b1.s; t/
 and
ı2.
; s; t/ D b2.s; t/.
 C h1.s; t//

2. Combining u"� � 	0
0 C "2u2� C � � � and (4.20), we next

discover that the "i term in �".V C�d/ Ou"� is

b1hi�1	0
0 C ıi�1	0

0 � .V C �/ u.i�1/� C
i�3X
pD1

�
b1hp C ıp

�
u.i�1�p/� (term 3): (4.22)

We see that the "i term in "2Œ@�
t Ou" ��� Ou" � .@�

t h" ��� h"/ Ou"�� is given by

.@�
t ��� /ui�2 � .@�

t ��� /hi�1	0
0 �

i�3X
pD1

.@�
t ��� /hpu.i�1�p/� (term 4): (4.23)

Note that
j"r� h"j2 � "2jr� h1j2 C

X
i>3

�
2r� h1:r� hi�1 C �i

�
"i ;
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where
�i D �i .s; t/ WD

X
pCqDi�2;p¤0;q¤0

r� hpC1.s; t/:r� hqC1.s; t/

depends only on the derivatives of h1, . . . ,hi�2. Combining this with Ou"�� � 	0
00 C "2u2�� C � � � ,

we discover that the "i term in �"2jr� h"j2 Ou"�� is

�ˇi .r� h1:r� hi�1/	0
00 � jr� h1j2u.i�2/�� �

i�3X
kD0

˛kuk�� (term 5); (4.24)

where ˛k D ˛k.s; t/ depends only on the derivatives of h1, . . . ,hi�2 and ˇ2 D 0, ˇi D 2 if i > 3.
Last, since r� Ou"� � "2r� u2� C � � � , we see that the "i term in "2Œ2r� h":r� Ou"�� is

2

i�2X
kD2

r� hi�1�k :r� uk� (term 6): (4.25)

Hence, in view of the six terms appearing in (4.18), (4.19), (4.22), (4.23), (4.24), (4.25), when we
collect the "i term (i > 2) in (4.10) we face up to

Lui D .M� hi�1/	0
0 �.1�	0

2/�i�1 Cˇi .r� h1:r� hi�1/	0
00 Cjr� h1j2u.i�2/�� CRi�1 (4.26)

where M� denotes the linear operator acting on functions h.s; t/ by

M� h WD @�
t h��� h � b1h; (4.27)

and where Ri�1 D Ri�1.
; s; t/ contains all the remaining terms. Observe that, for the solvability
condition for (4.26) to provide the equation (4.33) for hi�1.s; t/, it is important that Ri�1 does not
“contain” hi�1. Therefore, we have to leave the term jr� h1j2u.i�2/�� outside Ri�1 for the case
i D 2, but with a slight abuse of notation we can “insert” jr� h1j2u.i�2/�� in Ri�1 for i > 3. As
an example, for i D 2 we see that

R1.
; s; t/ D �ı1.
; s; t/	0
0.
/ D �b1.s; t/
	0

0.
/; (4.28)

so that we infer that, for all integersm, n, l ,

Dm
� D

n
sD

l
t

�
R1.
; s; t/

� D O
�j
je�p

2j�j� as 
 ! ˙1; (4.29)

uniformly in .s; t/. Now, for i > 3, we isolate the “worst terms” – which are the ıi ’s – in Ri�1 and
write

Ri�1 D �ıi�1	0
0 �

i�3X
pD1

ıpu.i�1�p/� C ri�1; (4.30)

where ri�1 D ri�1.
; s; t/ contains all the remaining terms.

LEMMA 4.1 (Decay of Ri�1) Let i > 2. Assume that, for any 1 6 k 6 i � 1, there holds that, for
all integersm, n, l ,

Dm
� D

n
sD

l
t

�
uk.
; s; t/

� D O
�j
jk�1e�p

2j�j� as 
 ! ˙1; (4.31)
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uniformly in .s; t/ 2 U � Œ0; T �. Then, for all integersm, n, l

Dm
� D

n
sD

l
t

�
Ri�1.
; s; t/

� D O
�j
ji�1e�p

2j�j� as 
 ! ˙1; (4.32)

uniformly in .s; t/ 2 U � Œ0; T �.
Proof. Let us have a look at expression (4.30) ofRi�1. By a tedious but straightforward examination
of the six terms (4.18), (4.19), (4.22), (4.23), (4.24), (4.25), one can write the exact expression of
Ri�1 appearing in (4.26) and, so, that of ri�1 appearing in (4.30). In view of this exact expression
(that we do not write here) and of estimates (4.31), one can see that ri�1.
; s; t/ depends only on
� V.s; t/, �.s; t/, b1.s; t/; : : : ; bi .s; t/ which are bounded given functions
� �0.t/; : : : ; �i�2.t/

� h1.s; t/; : : : ; hi�2.s; t/ and their derivatives w.r.t. s and t
� u0.
; s; t/ which is equal to 	0.
/, u1.
; s; t/ which vanishes, . . . , ui�1.
; s; t/ and their

derivatives w.r.t. 
, s and t
in such a way that it is O.j
ji�2e�p

2j�j/ as 
 ! ˙1. Concerning the term

�ıi�1.
; s; t/	0
0.
/�

i�3X
pD1

ıp.
; s; t/u.i�1�p/�;

the fact that it behaves like (4.32) follows from (4.31) and the fact that ıp.
; s; t/ grows like j
jp,
as seen in (4.21).

Now, in virtue of Lemma 3.1, the solvability condition for equation (4.26) yields, for all .s; t/,

.M� hi�1/.s; t/

Z
R

	0
02 � �i�1.t/

Z
R

.1 � 	0
2/	0

0 C
Z
R

Ri�1.�; s; t/	0
0 D 0: (4.33)

Note that the term �ˇi .r� h1:r� hi�1/	0
00 does not appear above since

R
R
	0

00	0
0 D 0. Note also

that the term �jr� h1j2u.i�2/�� does not appear for the same reason if i D 2, and because it can be
“inserted” in Ri�1 for i > 3 without altering the fact that Ri�1 does not depend on hi�1 (see also
the explanations after (4.27)). The above equality can be recast as

.M� hi�1/.s; t/ D �i�1.t/ � �
Z
R

Ri�1.
; s; t/	0
0.
/ d
; (4.34)

with  defined in (4.15) and � WD
�R

R
	0

02��1

. Note that, thanks to 1 � 	0
2 D p

2	0
0, we have

 D p
2 (as seen before) and also � D 3

4

p
2.

In order to construct the terms ui for i > 2 by induction, let us first examine the case i D 2.
From (4.28) and the fact that

R
R

	0

02.
/ d
 D 0 (odd function), we see that (4.34) reduces to

.M� h1/.s; t/ D �1.t/: (4.35)

Assume that h1 satisfies the above equation. Then since u1 � 0 trivially satisfies (4.31), Lemma
4.1 implies that R1.
; s; t/ together with its derivatives are O.j
je�p

2j�j/ as 
 ! ˙1. It follows
from Lemma 3.1 that

Lu2 D .M� h1/	0
0 � .1 � 	0

2/�1 C jr� h1j2	0
00 CR1; (4.36)



CONVERGENCE OF A MASS CONSERVING ALLEN–CAHN EQUATION 257

admits a unique solution u2.
; s; t/ such that u2.0; s; t/ D 0, which additionally satisfies estimate
Dm

� D
n
sD

l
t Œu2.
; s; t/� D O.j
je�p

2j�j/.
Now, an induction argument straightforwardly concludes the construction of the inner

expansion.

LEMMA 4.2 (Construction by induction) Let i > 2. Assume that, for all 1 6 k 6 i � 1 the term uk

is constructed such that

Dm
� D

n
sD

l
t

�
uk.
; s; t/

� D O
�j
jk�1e�p

2j�j� as 
 ! ˙1; (4.37)

uniformly in .s; t/ 2 U � Œ0; T �. Assume moreover that hi�1.s; t/ satisfies the solvability condition
(4.34). Then one can construct ui .
; s; t/ solution of (4.26) such that ui .0; s; t/ D 0 and

Dm
� D

n
sD

l
t

�
ui .
; s; t/

� D O
�j
ji�1e�p

2j�j� as 
 ! ˙1; (4.38)

uniformly in .s; t/ 2 U � Œ0; T �.

4.3 Expansion of the nonlocal term �".t/ and the distance correction term h".s; t/

By following [14, Subsection 5.4] with
p
" playing the role of ı, we see that an asymptotic expansion

of the conservation of the mass (1.5) yields

0 D d

dt

Z
˝

u".x; t/ dt � I1 C I2 C I3; (4.39)

where I1 D 0, since in our case u"̇ .t/ � ˙1, and

I2 WD
Z

j�j<1=
p

"

@�
t Ou".
; s; t/ "J

".
; s; t/ d
 ds; (4.40)

I3 WD
Z

j�j<1=
p

"

.�V � "@�
t h"/.s; t/ @� Ou".
; s; t/ J

".
; s; t/ d
 ds; (4.41)

Combining @�
t WD @t C PN �1

iD1 S i
t @si with u0.
; s; t/ D 	0.
/ and u1.
; s; t/ � 0, we see that

@�
t Ou".
; s; t/ �

X
i>2

"i
h
@t C

N �1X
kD1

Sk
t @sk

i
ui .
; s; t/:

In view of the above inner expansion, this implies

@�
t Ou".
; s; t/ �

X
i>2

"iO
�j
ji�1e�p

2j�j�;
where O

�
j
ji�1e�p

2j�j
�

depends only on expansions at orders 6 i � 1. By plugging this into
(4.40), we get

I2 �
X
i>3

"i�i�2;
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where �i�2 D �i�2.t/ depends only on expansions at orders 6 i � 2.
We now turn to the term I3. We expand

� � V � "@�
t h"

�
.s; t/ � dt .X0.s; t/; t/ �

X
i>1

"i@�
t hi .s; t/;

and
@� Ou".
; s; t/ � 	0

0.
/C
X
i>2

"i@�ui .
; s; t/:

Expanding the Jacobian (3.14) and using (3.7), we get

J ".
; s; t/ � 1C�d
�
X0.s; t/; t

�
"
�

C h".s; t/

� C
X
i>2

"i�i�1;

where �i�1 D �i�1.
; s; t/ depends only on expansions at orders 6 i � 1. Multiplying the three
above equalities, we see that the integrand in I3 expands as

	0
0dt C "	0

0 ��@�
t h1 C h1dt�d C 
dt�d

� C
X
i>2

"i	0
0.�@�

t hi C hidt�d C �i�1/;

where �i�1 D �i�1.
; s; t/ depends only on expansions at orders 6 i � 1. We integrate this over
s 2 U and j
j < 1=

p
" and, using

R
j�j<1=

p
"
	0

0 � R
R
	0

0.
/ d
 D 2 and
R

j�j<1=
p

"

	0

0.
/ d
 D 0

(odd function), we discover

1

2
I3 �

Z
U

dt .s; t/ ds C "

Z
U

.�@�
t h1 C .dt�d/h1/.s; t/ ds

C
X
i>2

"i
h Z

U

.�@�
t hi C .dt�d/hi /.s; t/ ds C !i�1

i
;

where !i�1 D !i�1.t/ depends only on expansions at orders 6 i � 1. Using (4.16) to substitute dt ,
(4.35) to substitute @�

t h1, (4.34) to substitute @�
t hi , we have

1

2
I3 �

Z
U

.�d � �0/ ds C "

Z
U

.��� h1 � b1h1 � �1 C .dt�d/h1/ ds

C
X
i>2

"i
h Z

U

.��� hi � b1hi � �i C .dt�d/hi / ds C �i�1

i
;

where �i�1 D �i�1.t/ depends only on expansions at orders 6 i � 1.
Last, using

R
U
�� hi ds D 0, we see that I2 C I3 � 0 reduces to

�0.t/ D �d.�; t/ (4.42)

�1.t/ D ��
b1.�; t/� dt .�; t/�d.�; t/

�
h1.�; t/ (4.43)

�i .t/ D ��
b1.�; t/� dt .�; t/�d.�; t/

�
hi .�; t/C�i�1.t/ .i > 2/; (4.44)
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where �.�/ WD 1
jU j

R
U � denotes the average of � over�t (parametrized byU ), and�i�1.t/ depends

only on expansions at orders 6 i�1. Moreover if we plug (4.42), (4.43) and (4.44) into (4.16), (4.35)
and (4.34), we have the following closed system for d , h1, . . . , hi on U � Œ0; T �:

dt D �d ��d.�; t/ (4.45)

@�
t h1 D �� h1 C b1h1 � �

b1.�; t/� dt .�; t/�d.�; t/
�
h1.�; t/ (4.46)

@�
t hi D �� hi C b1hi � �

b1.�; t/ � dt .�; t/�d.�; t/
�
hi .�; t/C�i�1.t/ .i > 2/: (4.47)

5. The approximate solution u";k , �";k

In order to construct our desired approximate solution and prove Theorem 2.2, let us first explain
how the previous section enables to determine, at any order, the outer expansion (4.1), the inner
expansion (4.2), the expansion of the nonlocal term (4.5), and the expansion of the distance
correction term (4.6).

First, as seen before, the outer expansion (4.1) is already completely known since ui̇ .t/ � 0

for all i > 1.
Recall that � D [06t6T .�t � ftg/ denotes the unique smooth evolution of the volume

preserving mean curvature flow (1.12) starting from �0 �� ˝ , to which we associate the signed
distance function d.x; t/. Hence, defining �0.t/ as in (4.42) and u1.
; s; t/ � 0 as in (4.17), we are
equipped with the first order expansion

˚
d.x; t/; �0.t/; u1.
; s; t/ � 0

�
: (5.1)

Next, since �t is a smooth hypersurface without boundary, there is a unique smooth solution h1.s; t/

to the parabolic equation (4.46). Assuming h1.s; 0/ D 0 for s 2 U , we see that h1.s; t/ � 0,
which combined with (4.43) yields �1.t/ � 0. Notice that these cancellations are consistent with
the observation of [8] that “(1.1) has better volume preserving properties than the traditional mass
conserving Allen–Cahn equation (1.11)”. In Section 4, we have defined u2.
; s; t/ as the solution of
(4.36), which now reduces to Lu2 D �b1.s; t/
	0

0.
/. This completes the second order expansion,
namely ˚

h1.s; t/ � 0; �1.t/ � 0; u2.
; s; t/
�
: (5.2)

Now, for i > 2, let us assume that expansions fhk�1.s; t/; �k�1.t/; uk.
; s; t/g are constructed for
all 2 6 k 6 i . Therefore we can construct �i�1.t/ appearing in (4.47). Assuming hi .s; 0/ D 0 for
s 2 U , there is a unique smooth solution hi .s; t/ to the parabolic equation (4.47). This enables to
construct �i .t/ via (4.44). Now, hi .s; t/ satisfies the solvability condition (4.34) at rank i , so that
Lemma 4.2 provides uiC1.
; s; t/, the solution of (4.26) at rank i C 1 with uiC1.0; s; t/ D 0. This
completes the construction of the i C 1-th order expansion fhi .s; t/; �i .t/; uiC1.
; s; t/g.

Note also that, from the above induction argument, we also deduce the behavior (4.38) for all
the ui .
; s; t/’s.
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Proof of Theorem 2.2. We are now in the position to construct the approximate solution as stated
in Theorem 2.2. Let us fix an integer k > max.N; 4/. We define


";k.x; t/ WD 1

"

h
d.x; t/ �

kC2X
iD1

"ihi .S.x; t/; t/
i

D d";k.x; t/

"
;

uin
";k.x; t/ WD 	0

�

";k.x; t/

� C
kC3X
iD1

"iui

�

";k.x; t/; S.x; t/; t

�
;

uout
";k .x; t/ WD Qu.x; t/;

�";k.t/ WD �0.t/C
kC2X
iD1

"i�i .t/;

where Qu is the sharp interface limit defined in (2.1). We introduce a smooth cut-off function �.z/ D
�".z/ such that 8̂<

:̂
�.z/ D 1 if jzj 6

p
";

�.z/ D 0 if jzj > 2
p
";

0 6 z� 0.z/ 6 4 if
p
" 6 jzj 6 2

p
":

For x 2 N̋ and 0 6 t 6 T , we define

u�
";k.x; t/ WD �

�
d.x; t/

�
uin

";k.x; t/C �
1 � ��d.x; t/��

uout
";k .x; t/:

If " > 0 is small enough then the signed distance d.x; t/ is smooth in the tubular neighborhood
N3

p
".� /, and so is uin

";k
.x; t/. This shows that u�

";k
is smooth.

Plugging .u�
";k
.x; t/; �".t// into the left-hand side of (2.5), we find an error term ı�

";k
.x; t/which

is such that
� ı�

";k
.x; t/ D 0 on fjd.x; t/j > 2

p
"g since, then, u�

";k
D uout

";k
D ˙1,

� kı�
";k

kL1 D O."kC2/ on fjd.x; t/j 6
p
"g since, then, u�

";k
D uin

";k
and the expansions of Section

4 were done on this purpose,
� kı�

";k
kL1 D O."k�

/, for any integer k�, on fp" 6 jd.x; t/j 6 2
p
"g since, then, the decaying

estimates (3.1) and (4.38) imply that u�
";k

� uout
";k

D u�
";k

� ˙1 D O.e
�

p
2

2
p

" /, valid also after any
differentiation.

Hence kı�
";k

kL1.˝�.0;T // D O."kC2/, which is even better than (2.5). Also u�
";k

clearly satisfies
(2.7).

Now, to ensure the conservation of the mass of the approximate solution, we add a correcting
term (which depends only on time) and define

u";k.x; t/ WD u�
";k.x; t/C 1

j˝j
Z

˝

�
u�

";k.x; 0/� u�
";k.x; t/

�
dx;

which then satisfies (2.8), and still (2.7). Note also that subsection 4.3 implies that the correcting
term Z

˝

�
u�

";k.x; 0/ � u�
";k.x; t/

�
dx D �

Z
˝

Z t

0

@tu
�
";k.x; �/ d�dx

is O."kC2/ together with its time derivative. Hence, when we plug u";k D u�
";k

C O."kC2/ into the
left-hand side of (2.5), we find a error term ı";k whose L1 norm is O."k/.
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6. Error estimate

We shall here prove the error estimate, namely Theorem 2.3. For ease of notation, we drop most of
the subscripts " and write u, �, uk , �k , ık for u", �", u";k , �";k , ı";k respectively. By k � k, k � k2Cp

we always mean k � kL2.˝/, k � kL2Cp.˝/ respectively. In the sequel, we denote by C various positive
constants which may change from places to places and are independent on " > 0.

Let us define the error
R.x; t/ WD u.x; t/ � uk.x; t/:

Clearly kRkL1 6 3. It follows from the mass conservation properties (1.5), (2.8), and the initial
conditions (2.10) thatZ

˝

R.x; t/ dx D 0 for all 0 6 t 6 T; kR.�; 0/k D O."k� 1
2 /: (6.1)

We successively subtract the approximate equation (2.5) from equation (2.3), multiply by R and
then integrate over˝ . This yields

1

2

d

dt

Z
˝

R2 D �
Z

˝

jrRj2 C 1

"2

Z
˝

f 0.uk/R
2

C 1

"2

Z
˝

.f .u/ � f .uk/ � f 0.uk/R/R �
Z

˝

ıkR � 1

"2
�; (6.2)

where
� D �.t/ WD

Z
˝

Œ"�.1 � u2/R � "�k.1� uk
2/R�: (6.3)

Since .f .u/ � f .uk/ � f 0.uk/R/R D �3ukR
3 � R4 D O.R2Cp/, where p WD min. 4

N
; 1/, we

have ˇ̌̌ 1
"2

Z
˝

.f .u/ � f .uk/ � f 0.uk/R/R
ˇ̌̌

6 1

"2
CkRk2Cp

2Cp 6 1

"2
C1kRkpkrRk2;

where we have used the interpolation result [14, Lemma 1]. We also have
ˇ̌R

˝
ıkR

ˇ̌
6 kıkk1kRk D

O."k/kRk, so that

kRk d
dt

kRk 6 �
Z

˝

jrRj2 C 1

"2

Z
˝

f 0.uk/R
2

C 1

"2
C1kRkpkrRk2 C O."k/kRk � 1

"2
�: (6.4)

We shall estimate � in the following subsection. As mentioned before, this term is the main
difference with the case of a strictly nonlocal Lagrange multiplier: its analogous for equation (1.11)
is ."� � "�k/

R
˝
R which vanishes, see [14].

Since k > max.N; 4/ we have k � 1
2
> 4

p
D 4

min. 4
N ;1/

, so that the second estimate in (6.1)

allows to define t" > 0 by

t" WD sup
˚
t > 0;8 0 6 � 6 t; kR.�; �/k 6 .2C1/

�1=p"4=p
�
: (6.5)

We need to prove that t" D T and that the estimate O."4=p/ is actually improved to O."k� 1
2 /. In

the sequel we work on the time interval Œ0; t"�.
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6.1 Error estimates between the nonlocal/local Lagrange multipliers

It follows from (2.9) that the term � under consideration is recast as

� D A

B
E � Ak

Bk

Ek C O."kC2/

Bk

Ek; (6.6)

where

Ak D Ak.t/ WD
Z

˝

f .uk/; Bk D Bk.t/ WD
Z

˝

1 � uk
2; Ek D Ek.t/ WD

Z
˝

.1 � uk
2/R;

and A, B , E the same quantities with u in place of uk .

LEMMA 6.1 (Some expansions) We have, as " ! 0,

Ak D "2˛ C O."3/; Bk D "ˇ C O."2/;

where

˛ D ˛.t/ WD
Z

U

N �1X
iD1

�i .s; t/ ds

Z
R


f
�
	0.
/

�
d
; ˇ WD 2

p
2jU j;

and
Ek D O.

p
"kRk/:

Proof. We have seen in Section 5 that uk D u�
k

C O."kC2/ so it is enough to deal with A�
k

, B�
k

and
E�

k
. The lemma is then rather clear from the expansions of Section 4. We have

A�
k D

Z
jd.x;t/j62

p
"

f .u�
k/.x; t/ dx D

Z
jd.x;t/j6p

"

f .u�
k/.x; t/ dx C O

�
e

�
p

2

2
p

"
�

D
Z

U

Z
j�j61=

p
"

f
�
	0.
/CO."2/

�
"J ".
; s; t/ dsd
C O

�
e

�
p

2

2
p

"
�
:

Using J ".
; s; t/ D 1C "

PN �1

iD1 �i .s; t/C O."2/ and
R

j�j61=
p

"
f .	0.
// d
 D 0 (odd function),

one obtains the estimate for A�
k

. The estimate for B�
k

follows the same lines and is omitted. Last,
the Hölder inequality yields jEkj 6 .

R
˝
.1 � uk

2/2/1=2kRk D O.
p
"kRk/ since, again, dx D

"J ".
; s; t/ ds d
.

As a first consequence of the above lemma, it follows from (6.6) that

� D A

B
E � Ak

Bk

Ek C O."kC 3
2 /kRk: (6.7)

Next, in view of the above lemma, u D uk C R and kRk D O."4=p/, we can thus perform the
following expansions

A D Ak C
Z

˝

.1 � 3uk
2/R � 3

Z
˝

ukR
2 �

Z
˝

R3

D Ak C 3Ek � 3
Z

˝

ukR
2 C O.kRk2Cp

2Cp/;
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since
R

˝ R D 0,

B�1 D Bk
�1

�
1 � 2

R
˝
ukR

Bk

�
R

˝
R2

Bk

��1

D Bk
�1

�
1C 2

R
˝
ukR

Bk

C
R

˝
R2

Bk

C
�2 R

˝
ukR

Bk

�2 C O
�kRk3

"3

��
;

and
E D Ek � 2

Z
˝

ukR
2 C O.kRk2Cp

2Cp/:

It follows that, using Ek D O.
p
"kRk/ and Ak D O."2/ (see Lemma 6.1),

AE DAkEk � 2Ak

Z
˝

ukR
2 C O."2kRk2Cp

2Cp/C 3Ek
2 � 6Ek

Z
˝

ukR
2

C O.
p
"kRk kRk2Cp

2Cp/� 3Ek

Z
˝

ukR
2 C O.kRk4/C O.kRk2 kRk2Cp

2Cp/

C O.kRk2Cp
2Cp

p
"kRk/C O.kRk2Cp

2Cp kRk2/C O.kRk4C2p
2Cp /

DAkEk C 3Ek
2 � 9Ek

Z
˝

ukR
2 � 2Ak

Z
˝

ukR
2 C O."2kRk2Cp

2Cp/C O.kRk3/;

since kRk2Cp
2Cp D O.kRk2/. Now, using the above expressions, we aim at expanding A

B
E � Ak

Bk
Ek .

For the convenience of the reader let us explain how to handle two of the terms appearing in the
computations: the estimates in Lemma 6.1 yield, as " ! 0,

2
R

˝
ukR

Bk

3Ek
2 D O

	kRk
"



O."kRk2/ D O.kRk3/;

and

2
R

˝ ukR

Bk

.�9/Ek

Z
˝

ukR
2 D O

	kRk
"



O.

p
"kRk kRk2/

D O

	kRk4

p
"



D O.kRk3/;

the last estimate following from the definition of t" in (6.5). Using similar arguments to treat other
terms, we obtain

A

B
E � Ak

Bk

Ek D Bk
�1

h
3Ek

2 � 9Ek

Z
˝

ukR
2 C Ak

Bk

Ek

Z
˝

2ukR

� 2Ak

Z
˝

ukR
2 C O."2kRk2Cp

2Cp/C O.kRk3/
i
;

which in turn implies

A

B
E � Ak

Bk

Ek D 3Ek
2 � 9Ek

R
˝
ukR

2 C Ak

Bk
Ek

R
˝
2ukR

Bk

� Ak

Bk

Z
˝

2ukR
2 C O."kRk2Cp

2Cp/C O."�1kRk3/:



264 M. ALFARO AND P. ALIFRANGIS

Using Lemma 6.1 again, this implies

A

B
E � Ak

Bk

Ek D 3Ek
2 C Ak

Bk
Ek

R
˝ 2ukR

Bk

� Ak

Bk

Z
˝

2ukR
2

C O."kRk2Cp
2Cp/C O."�1kRk3/: (6.8)

The term �Ak

Bk

R
˝
2ukR

2 is harmless since it will be handled by the spectrum estimate Lemma 6.3.
Let us analyze the fraction which is the worst term. For M > 1 to be selected later, define kRkT ,
kRkT c , the L2 norms of R in the tube T WD f.x; t/ W jd.x; t/j 6 M"g, the complement of the tube
respectively:

kRk2
T WD

Z
fjd.x;t/j6M"g

R2.x; t/ dx; kRk2
T c WD

Z
fjd.x;t/j>M"g

R2.x; t/ dx:

Observe that the O."/ size of the tube allows to writeˇ̌̌ Z
T
ukR

ˇ̌̌
6

� Z
T
uk

2
�1=2� Z

T
R2

�1=2

6 C
p
"kRkT :

Hence, using Lemma 6.1, cutting
R

˝
D R

T C R
T c , we getˇ̌̌

ˇAk

Bk

Ek

Z
˝

2ukR

ˇ̌̌
ˇ 6C"jEkj.p"kRkT C kRkT c /

6C"
p
"jEkj kRkT C C"2=5Ek

2 C C"8=5kRk2
T c :

As a result

3Ek
2 C Ak

Bk
Ek

R
˝
2ukR

Bk

> .3 � C"2=5/Ek
2 � C"p"jEkj kRkT

Bk

� C"3=5kRk2
T c

>Ek
2 � C"p"jEkj kRkT

Bk

� C"3=5kRk2
T c ;

(6.9)

for small " > 0. Now, observe that

Ek
2 � C"p"jEkj kRkT >

(
0 if jEkj > C"

p
"kRkT

�C 2"3kRk2
T if jEkj 6 C"

p
"kRkT :

(6.10)

REMARK 6.2 The above inequality is the crucial one. One can interpret it as follows. Following [8,
Proposition 2], we understand that Ek behaves like the integral on the hypersurface �t :

"

Z
d.x;t/D0

R.x; t/ d:

If jEkj D ˇ̌R
˝.1 � uk

2/R
ˇ̌

is large w.r.t. O."
p
"kRkT / then Ek

2 � C"
p
"jEkjkRkT > 0, which

has the good sign to control theL2 norm ofR. In other words, if the error “intends” at concentrating
on the hypersurface, the situation is quite favorable. On the other hand, if jEkj D ˇ̌R

˝
.1 � uk

2/R
ˇ̌

is small w.r.t. O."
p
"kRkT / then we get the negative control �O."2kRk2

T / (after dividing by Bk)
which is enough for the Gronwall’s argument to work.
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Putting together (6.7), (6.8), (6.9), (6.10) and Bk D 2
p
2jU j" C O."2/, we come to the

conclusion that
� > � Ak

Bk

Z
˝

2ukR
2 � C"3=5kRk2

T c � C"2kRk2
T

C O."kC 3
2 /kRk C O."kRk2Cp

2Cp/C O."�1kRk3/:

(6.11)

6.2 Proof of Theorem 2.3

Equipped with the accurate estimate (6.11), we can now conclude the proof of the error estimate
by following the lines of [14]. Combining (6.4) with (6.11) and using the interpolation inequality
kRk2Cp

2Cp 6 CkRkpkrRk2, kRkT 6 kRk and kRk D O."2/ (thanks to the definition of t"), we
discover

kRk d
dt

kRk 6 �
Z

˝

jrRj2 C 1

"2

Z
˝

�
f 0.uk/C Ak

Bk

2uk

�
R2

C 1

"2
2C1kRkpkrRk2 C 1

"2
C"3=5kRk2

T c

C CkRk2 C O."k� 1
2 /kRk:

Since "2
� � R

˝
jrRj2 C 1

"2

R
˝
.f 0.uk/C Ak

Bk
2uk/R

2
�

6 �"2krRk2 C CkRk2, we get

kRk d
dt

kRk 6 .1� "2/
�

�
Z

˝

jrRj2 C 1

"2

Z
˝

�
f 0.uk/C Ak

Bk

2uk

�
R2

�

� "2krRk2 C 1

"2
2C1kRkpkrRk2

C 1

"2
C"3=5kRk2

T c C CkRk2 C O."k� 1
2 /kRk

6 .1� "2/
�

�
Z

˝

jrRj2 C 1

"2

Z
˝

�
f 0.uk/C Ak

Bk

2uk

�
R2

�

C 1

"2
C"3=5kRk2

T c C CkRk2 C O."k� 1
2 /kRk;

(6.12)

in view of the definition of t" in (6.5). In the above inequality, let us write
R

˝
D R

T C R
T c . In the

complement of the tube, observe thatZ
T c

�
f 0.uk/C Ak

Bk

2uk C C"3=5
�
R2 D

Z
fjd.x;t j>M"g

�
f 0.uk/C O."3=5/

�
R2;

is nonpositive ifM > 0 is large enough; this follows from the form of the constructed uk in Section
5 — roughly speaking we have uk.x; t/ D 	0

�
d.x;t/CO."2/

"

�
C O."2/— 	0.˙1/ D ˙1 and

f 0.˙1/ < 0. As a result we collect

kRk d
dt

kRk 6 .1� "2/
�

�
Z

T
jrRj2 C 1

"2

Z
T

�
f 0.uk/C Ak

Bk

2uk

�
R2

�
C CkRk2 C O."k� 1

2 /kRk: (6.13)
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In some sense, the problem now reduces to a local estimate since the linearized operator �� �
"�2.f 0.uk/C Ak

Bk
2uk/ arises when studying the local unbalanced Allen–Cahn equation

@tu" D �u" C 1

"2

�
f .u"/� Ak

Bk

.1 � u"
2/

�
;

whose singular limit is “mean curvature plus a forcing term” (see, among others, [2]). To conclude
we need a spectrum estimate of the unbalanced linearized operator around the approximate solution
uk , namely �� � "�2.f 0.uk/ C Ak

Bk
2uk/. This directly follows from the result of [13] for the

balanced case. For related results on the spectrum of linearized operators for the Allen–Cahn
equation or the Cahn–Hilliard equation, we also refer to [7], [5, 6], [24].

LEMMA 6.3 (Spectrum of the unbalanced linearized operator around uk [13]) There is C � > 0

such that
�

Z
T

jrRj2 C 1

"2

Z
T

�
f 0.uk/C Ak

Bk

2uk

�
R2 6 C �

Z
T
R2;

for all 0 < t 6 T , all 0 < " 6 1, all R 2 H 1.˝/ with
R

˝
R D 0.

Proof. Observe that

uk.x; t/ D
(
	0

�
dk.x;t/

"

� C O."2/ if jd.x; t/j 6
p
";

˙1C O."kC1/ if jd.x; t/j >
p
":

Lemma 6.1 yields Ak

Bk
D "˛.t/

ˇ
C O."2/ so that we can write f 0.uk/C Ak

Bk
2uk D f 0.uk/, for some

uk such that

uk.x; t/ D
(
	0

�
dk.x;t/

"

� � "˛.t/
3ˇ
	1

�
dk.x;t/

"

� C O."2/ if jd.x; t/j 6
p
";

˙1C O."/ if jd.x; t/j >
p
";

where 	1 � 1. In particular
R
R
	1.	0

0/2f 00.	0/ D R
R
.	0

0/2f 00.	0/ D 0 (odd function) so that uk

has the correct shape for [13] to apply: see [4, formula (3.8) and proof of Theorem 5.1], [14, formula
(16)] or [22, Section 4] for very related arguments. Details are omitted.

Combining the above lemma and (6.13), we end up with

d

dt
kRk 6 CkRk C C"k� 1

2 :

The Gronwall’s lemma then implies that, for all 0 6 t 6 t",

kR.�; t/k 6
�kR.�; 0/k C "k� 1

2

�
eC t" D O

�
"k� 1

2

�
;

in view of (6.1). Since k � 1
2
> 4

p
; this shows that t" D T and that the estimate O."4=p/ is actually

improved to O."k� 1
2 /. This completes the proof of Theorem 2.3.
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