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1. Introduction

Shape optimization problems received a particular attention from the mathematical community in

the last years, both for the several applications that require the design of efficient shapes (for instance

in Structural Mechanics and Aerospace Engineering) and for the difficult mathematical problems

that have to be solved in order to obtain the existence of optimal solutions. In a very general form,

shape optimization problems can be written as minimum problems like

min
˚
F.˝/ W ˝ 2 A

	
(1.1)

where A is a suitable family of admissible domains and F is a suitable cost function defined on A.

Problems of this kind arise in many fields, and we quote the recent books [1, 3, 4, 20, 21, 25, 26],

where the reader can find all the necessary details and references.

It is well known that the existence of optimal shapes only occurs in very particular situations,

where either some quite severe geometrical constraints are imposed to the admissible domains of

the class A (like for instance convexity), or where the cost functional satisfies suitable monotonicity

conditions (as it happens in several spectral optimization problems). When the existence of optimal

shape fails, one has to deal with relaxed solutions, that belong to a space much larger than the one

c European Mathematical Society 2012

mailto:dorin.bucur@univ-savoie.fr
mailto:buttazzo@dm.unipi.it
mailto:ulisse.stefanelli@imati.cnr.it


522 D. BUCUR, G. BUTTAZZO AND U. STEFANELLI

of classical domains, and describe efficiently the behaviour of minimizing sequences for problem

(1.1).

In this paper we are interested in problems of the form (1.1) arising in spectral optimization: the

admissible class A is made of domains of R
d and the cost functional F is of one of the following

types.

Integral functionals. Given a right-hand side f we consider the PDE

��u D f in ˝; u 2 H 1
0 .˝/

which provides, for every admissible domain ˝ � R
d , a unique solution u˝ that we assume

extended by zero outside of ˝ . The cost F.˝/ D J.u˝/ is obtained by taking

J.u/ D

Z

Rd

j
�
x; u.x/

�
dx

for a suitable integrand j .

Spectral functionals. For every admissible domain ˝ we consider the Dirichlet Laplacian ��

which, under mild conditions on ˝ , admits a compact resolvent and so a discrete spectrum �.˝/.

The cost is in this case of the form

F.˝/ D ˚
�
�.˝/

�

for a suitable function ˚ . For instance, by taking ˚.�/ D �k we may consider the optimization

problem for the k-th eigenvalue of ��:

min
˚
�k.˝/ W ˝ 2 A

	
:

After having summarized some known facts about the minimization problems above, the focus

of this paper is to deal with the problem of studying the shape evolution ˝.t/, starting from a

given domain ˝0 according to a suitable definition of gradient flow. The theory of gradient flows

in metric spaces has been recently developed in a great generality (see [2]) and it can be adapted to

our purposes in two relevant yet distinct situations.

At first, in Section 3 we deal with the case of relaxed problems. The extra compactness of the

latter problems is of great help for proving the existence of a relaxed flow. In particular, we rephrase

the problem in terms of a flow of capacitary measures and exploit a specific one-to-one relation to

flows in convex sets in L2. The drawback of relaxation is that the flow is made of relaxed domains

(i.e., capacitary measures in our case) and not of classical domains. We will show some examples

in which, even starting from a very smooth initial domain ˝0, the gradient flow quits the original

admissible class A to evolve in the class of relaxed shapes (see [6, 19]).

Secondly, we present in Section 4 some situations in which an evolution ˝.t/ made of

classical domains can be obtained. In particular, this can be achieved for functionals F which

are monotone by set inclusion. Under suitable specifications, this is exactly the case for the above-

mentioned spectral and integral functionals. The monotonicity of the functional entails the necessary

compactness frame in order to pass to limits into incremental minimization schemes. We shall

present a general existence result as well as some properties of the path ˝.t/. Moreover, some

interesting open problems are pointed out.

Let us close this introduction by mentioning that the idea of considering shape flows is somewhat

reminiscent of many classical numerical treatments of (1.1) where an initial (tentative) shape ˝0 is
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iteratively improved towards minimization. A numerical gradient flow perspective has in particular

already been considered in [18, 24] in connection with some applications to image segmentation,

optimal shape design, and surface diffusion.

2. Preliminary tools

Let us start by recording some notation and preliminary results. The intention of this section is to

set the stage for our statements. In particular, we clearly claim no originality here. The material

is basically taken from [4] and [2] to which we refer the interested reader for further details.

Additionally, note that some of this material is included in the survey [8].

2.1 Capacity and quasi-open sets

In the following we use the well-known notion of capacity for a subset E of R
d :

cap.E/ D inf
n Z

Rd

.jruj2 C u2/ dx W u 2 UE

o

where UE is the set of all functions u of the Sobolev space H 1.Rd / such that u > 1 almost

everywhere in a neighborhood of E . If a property P.x/ holds for all x 2 E except for the elements

of a set Z � E with cap.Z/ D 0, we say that P.x/ holds quasi-everywhere (shortly q.e.) on E ,

whereas the expression almost everywhere (shortly a.e.) refers, as usual, to the Lebesgue measure.

A subset ˝ of R
d is said to be quasi-open if for every " > 0 there exists an open subset ˝" of

R
d , such that cap.˝"�˝/ < ", where � denotes the symmetric difference of sets. Actually, in the

definition above we can additionally require that ˝ � ˝". Similarly, we define quasi-closed sets.

The class of all quasi-open subsets of a given set D will be denoted by A.D/. In the following we

always consider subsets ˝ of a bounded open set D � R
d .

A function u W R
d ! R is said to be quasi-continuous (resp. quasi-lower semicontinuous) if for

every " > 0 there exists a continuous (resp. lower semicontinuous) function u" W R
d ! R such that

cap.fu ¤ u"g/ < ". It is well known (see for instance [27]) that every function u 2 H 1.Rd / has a

quasi-continuous representative Qu, which is uniquely defined up to a set of capacity zero, and given

by

Qu.x/ D lim
"!0

1

jB.x; "/j

Z

B.x;"/

u.y/ dy for a.e. x 2 R
d :

In the following we always identify, by an abuse of notation, a Sobolev function u with its quasi-

continuous representative Qu, so that a pointwise condition can be imposed on u.x/ for quasi-every

x. In this way, we have for every subset E of R
d

cap.E/ D min
n Z

Rd

.jruj2 C u2/ dx W u 2 H 1.Rd /; u > 1 q.e. on E
o
:

By the identification above, a set ˝ � R
d is quasi-open if and only if there exists a function

u 2 H 1.Rd / such that ˝ D fu > 0g.

The definition of the Sobolev space H 1
0 .˝/ can be extended for a quasi-open set ˝; it is the

space of all functions u 2 H 1.Rd / such that u D 0 q.e. on R
d n ˝ , with norm

kukH 1
0

.˝/ D kukH 1.Rd /:
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Most of the well-known properties of Sobolev functions on open sets extend to quasi-open sets. In

particular, for every f 2 L2.D/ there exists a unique solution of the PDE formally written as

��u D f in ˝; u 2 H 1
0 .˝/ (2.1)

that we consider extended by zero on D n ˝ . The precise meaning of the equation above has to be

given in the weak form

u 2 H 1
0 .˝/;

Z

D

rurv dx D

Z

D

f v dx 8v 2 H 1
0 .˝/;

which turns out to be equivalent to the minimization problem

min
n Z

D

�1

2
jrvj2 � f v

�
dx W v 2 H 1

0 .˝/
o
:

We denote the unique solution u of the problem above by R˝.f /, which defines in this way the

resolvent operator R˝ .

2.2  -convergence and w -convergence

The class A.D/ of all quasi-open subsets of D can be endowed with a convergence structure, called

 -convergence.

DEFINITION 2.1 We say that a sequence of quasi-open sets .˝n/ in A.D/  -converges to a quasi-

open set ˝ 2 A.D/ if for every f 2 L2.D/ we have that R˝n
.f / converge to R˝.f / weakly in

H 1
0 .D/.

The following facts for the  -convergence can be shown (see for instance [4]).

1. In Definition 2.1 it is equivalent to require the weak H 1
0 .D/ convergence only for f D 1. In

addition, the  -convergence of ˝n to ˝ is equivalent to the � -convergence (see [12]) of the

functionals Z

D

jruj2 dx if u 2 H 1
0 .˝n/; C1 otherwise

to the functional Z

D

jruj2 dx if u 2 H 1
0 .˝/; C1 otherwise

with respect to the L2.D/ topology.

2. It can be proved (see [4]) that if ˝n ! ˝ in the  -convergence, the convergence of the resolvent

operators R˝n
to R˝ is in fact in the L

�
L2.D/

�
operator norm. In particular, the spectrum of

R˝n
converges (componentwise) to the spectrum of R˝ , hence the spectrum of �� on H 1

0 .˝n/

converges (componentwise) to the spectrum of �� on H 1
0 .˝/.

3. The  -convergence is metrizable on A.D/; an equivalent distance to the  -convergence is given

by

d .˝1; ˝2/ D kR˝1
.1/ � R˝2

.1/kL2.D/:

The  -convergence is not compact; indeed it is possible to construct a sequence .˝n/ of domains

such that the corresponding solutions R˝n
.1/ do not converge to a function of the form R˝.1/. An
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example of such a sequence was provided by Cioranescu and Murat in [10] by removing from the

set D a periodic array of balls of equal radius rn ! 0 (see also [23]). If the radius is suitably chosen

they proved that the weak H 1
0 .D/ limit of R˝n

.1/ satisfies the PDE

��u C cu D 1 in D; u 2 H 1
0 .D/

where c > 0 is a constant, and thus the sequence of domains .˝n/ cannot  -converge to any domain

˝ . This is why, in order to study the behaviour of minimizing sequences of domains, a relaxation

procedure is needed.

The relaxed form of a Dirichlet problem like (2.1), has been obtained by Dal Maso and Mosco

in [13] where it is proved that the compactification of the metric space
�
A.D/; d

�
is the set M0.D/

of all nonnegative regular Borel measures � on D, possibly C1 valued, such that

�.B/ D 0 for every Borel set B � D with cap.B/ D 0:

Note that the measures � 2 M0.D/ are not finite, and may take the value C1 on large parts of D.

For instance the measure

1Dn˝.E/ D

(
0 if cap.E n ˝/ D 0;

C1 otherwise

belongs to the class M0.D/.

Given � 2 M0.D/ we consider the space X�.D/ of all functions u 2 H 1
0 .D/ such thatR

D
u2 d� < 1, endowed with the Hilbert norm

kukX�.D/ D
� Z

D

jruj2 dx C

Z

D

u2 d�
�1=2

:

This allows us to consider the relaxed form of a Dirichlet problem, formally written as

��u C �u D f in D; u 2 X�.D/

and whose precise meaning is given in the weak form

u 2 X�.D/;

Z

D

rurv dx C

Z

D

uv d� D

Z

D

f .x/v dx 8v 2 X�.D/:

By the usual Lax-Milgram method we obtain that, for every � 2 M0.D/ and every f 2 L2.D/,

there exists a unique solution u D R�.f / of the equation above, which defines the resolvent

operator R�.

If ˝ 2 A.D/ and � D 1Dn˝ then the space X�.D/ coincides with the Sobolev space H 1
0 .˝/

and R˝.f / D R�.f /. If f > 0, then by maximum principle and [14, Prop. 2.6] we have that both

u > 0 and f C �u > 0 in the distributional sense. Formally we can write � D .f C �u/=u which

gives � once u is known; of course we have � D C1 whenever u D 0. Therefore, working with

the class M0.D/ is in this case equivalent to work with the class of functions fu 2 H 1
0 .D/; u >

0; �u C f > 0g, which is a closed convex subset of the Sobolev space H 1
0 .D/.

The  -convergence can be extended to the relaxed space M0.D/: we have �n ! � in the  -

convergence if for every f 2 L2.D/ (it is equivalent to require it only for f D 1) the solutions

R�n
.f / converge to R�.f / weakly in H 1

0 .D/. The main properties of the  -convergence on the

space M0.D/ are listed below.
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1. By identifying measures �; � 2 M0.D/ such that
R

D u2d� D
R

D u2d� for all u 2 H 1
0 .D/ [11],

the space M0.D/ endowed with the  -convergence is a compact metric space; an equivalent

distance to the  -convergence is

d .�1; �2/ D kR�1
.1/ � R�2

.1/kL2.D/:

2. The class A.D/ is included in M0.D/ via the identification ˝ 7! 1Dn˝ and A.D/ is dense

in M0.D/ for the  -convergence. Actually also the class of all smooth domains ˝ is dense in

M0.D/.

3. The measures of the form a.x/ dx with a 2 L1.D/ belong to M0.D/ and are dense in M0.D/

for the  -convergence. Actually also the class of measures a.x/ dx with a smooth is dense in

M0.D/.

4. If �n ! � for the  -convergence, then the spectrum of the compact resolvent operator R�n

converges to the spectrum of R�; in other words, the eigenvalues of the Schrödinger-like

operators ��C�n defined on X�n
.D/ converge to the corresponding eigenvalues of the operator

�� C �.

Since A.D/ endowed with the  -convergence is not compact, in order to treat shape optimization

problems it is useful to introduce (see [4]) a convergence much weaker than  , that makes the class

A.D/ compact. We call weak  this new convergence and we denote it by w .

DEFINITION 2.2 We say that a sequence .˝n/ of domains in A.D/ w -converges to a domain

˝ 2 A.D/ if the solutions w˝n
D R˝n

.1/ converge weakly in H 1
0 .D/ to a function w 2 H 1

0 .D/

(that we may take quasi-continuous) such that ˝ D fw > 0g.

We list below the main properties of the w -convergence on the space A.D/; for all the related

details we refer the reader to [4].

1. We stress the fact that, in general, the function w in Definition 2.2 does not coincide with the

solution w˝ D R˝.1/; this happens only if ˝n  -converges to ˝ , which in general does not

occur, because  -convergence is not compact on A.D/.

2. The w -convergence is weaker than the  -convergence and, by its definition, it is compact,

since the sequence w˝n
D R˝n

.1/ is bounded in H 1
0 .D/ so it always has a subsequence .˝nk

/

weakly converging to some function w 2 H 1
0 .D/.

3. If f 2 L1.D/ is a nonnegative function, then the mapping ˝ 7!
R

˝
f dx is w -lower

semicontinuous on A.D/.

4. If F W A.D/ ! Œ�1; C1� is a  -lower semicontinuous shape functional which is monotone

decreasing with respect to the set inclusion, then F is w -lower semicontinuous. For instance,

integral functionals like
R

D
j.x; u˝/ dx with j.x; �/ decreasing, where u˝ D R˝.f / and

f > 0, and spectral functionals like ˚
�
�.˝/

�
with ˚ increasing in each variable, are w -lower

semicontinuous.

2.3 Minimizing movements

We recall here some notions and results in the direction of variationally-driven evolutions in metric

spaces. In particular, we shall mention generalized minimizing movements and curves of maximal

slope and their relation with gradient flows whenever a Hilbertian structure is available. In particular,

we summarize concepts and results of interest for our purposes, referring to the seminal paper [15]

and to the recent monograph [2] for further details.
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In all of the following, .X; d/ is a complete metric space, u0 2 X is an initial condition, and

F W X !� � 1; C1� is a given functional defined on X with effective domain D.F / D fx 2 X W

F.x/ < C1g. We assume that F is proper, namely D.F / 6D ;, and let �.d/ denote the topology

in X induced by the metric d .

At first, we shall mention the so-called minimizing movements theory which was introduced by

De Giorgi in [15] in order to study evolution problems with an underlying variational structure. The

framework of the theory is very general and applies both to quasi-static evolutions as well as to

gradient flows, under rather mild assumptions.

For every fixed " > 0 the implicit Euler scheme of time step " and initial condition u0 consists

in constructing a function u".t/ D w.Œt="�/, where Œ�� stands for the integer part function, in the

following way:

w.0/ D u0; w.n C 1/ 2 argmin

(
F.v/ C

d 2
�
v; w.n/

�

2"

)
:

DEFINITION 2.3 (Minimizing movements) We say that u W Œ0; T � ! X is a minimizing movement

associated to the functional F and the topology � , with initial condition u0, and we write u 2

MM.F; �; u0/, if

u".t/
�

! u.t/; 8t 2 Œ0; T �: (2.2)

If the latter convergence holds for a subsequence "n ! 0, we say that u W Œ0; T � ! X is a

generalized minimizing movement and we write u 2 GMM.F; �; u0/.

We say that a trajectory u W Œ0; T � ! X belongs to AC p.0; T I X/, p 2 Œ1; 1�, if there exists

m 2 Lp.0; T / such that

d
�
u.s/; u.t/

�
6

Z t

s

m.r/ dr; for all 0 < s 6 t < T . (2.3)

One can prove that, for all u 2 AC p.0; T I X/, the limit

ju0j.t/ D lim
s!t

d
�
u.s/; u.t/

�

jt � sj

exists for a.e. t 2 .0; T /. This limit is usually referred to as the metric derivative of u at t . In

particular, the map t 7! ju0j.t/ turns out to belong to Lp.0; T / and is minimal within the class of

functions m 2 Lp.0; T / fulfilling (2.3), see [2, Sec. 1.1]. Let us recall [2, Prop. 2.2.3, p. 45] the

following:

THEOREM 2.4 (Existence of generalized minimizing movements) Let the sublevels of F be �-

compact in X . Then, for every initial condition u0 2 D.F / the set GMM.F; �; u0/ is non-empty.

Moreover, we have that GMM.F; �; u0/ � AC 2.0; T I X/.

2.4 Curves of maximal slope

We say that a function g W X ! Œ0; C1� is a strong upper gradient for the functional F if, for

every curve u 2 AC.0; T I X/, the function g ı u is Borel and [2, Def. 1.2.1, p. 27]

ˇ̌
F
�
u.t/

�
� F

�
u.s/

�ˇ̌
6

Z t

s

g
�
u.r/

�
ju0j.r/ dr for all 0 < s 6 t < T : (2.4)
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In particular, if g is a strong upper gradient for the functional F and .g ı u/ju0j 2 L1.0; T / we have

that F ı u is absolutely continuous and

j.F ı u/0j 6 .g ı u/ju0j; a.e. in .0; T /:

DEFINITION 2.5 (Curve of maximal slope) Let g W X ! Œ0; C1� be a strong upper gradient for

F . A trajectory u 2 AC 2
loc.0; T I X/ is said to be a curve of maximal slope for F with respect to its

strong upper gradient g if

� .F ı u/0.t/ D ju0j2.t/ D g2
�
u.t/

�
; for a.e. t 2 .0; T / (2.5)

In particular, F ı u is locally absolutely continuous in .0; T /, g ı u 2 L2
loc.0; T /, and the energy

identity

1

2

Z t

s

ju0j2.r/ dr C
1

2

Z t

s

g2.u.r// dr C F
�
u.t/

�
D F

�
u.s/

�
(2.6)

holds in each interval Œs; t � � .0; T /.

The notion of curve of maximal slope is the natural extension to metric spaces of gradient flows

in the Hilbertian setting. In particular, in case X is a Hilbert space with scalar product h�; �i and norm

k � k and F is, say, Fréchet differentiable one can readily check that

u0 C DF.u/ D 0 ”
1

2
ku0 C DF.u/k2 D 0

”
1

2
ku0k2 C

1

2
kDF.u/k2 C hDF.u/; u0i D 0

” �.F ı u/0 D ku0k2 D kDF.u/k2: (2.7)

Hence, in the case of a smooth functional F the two notions of gradient flow and curve of maximal

slope coincide. More generally, curves of maximal slope in a Hilbert space correspond to gradient

flows whenever some mild assumption is made on the Fréchet subdifferential @F of F . The latter

subdifferential is defined at points u 2 D.F / as

v 2 @F.u/ ” lim inf
w!u

F.w/ �
�
F.u/ C hv; w � ui

�

kw � uk
> 0

with D.@F / D fu 2 D.F / W @F.u/ ¤ ;g. In particular, we have the following [2, Prop. 1.4.1, p.

34].

PROPOSITION 2.6 (Curves of maximal slope D gradient flows) Let .X; d/ be a Hilbert space

endowed with its strong topology. Moreover, assume that @F.u/ is weakly closed for every

u 2 D.@F /. Then, u is a curve of maximal slope for F with respect to v 7! k@ıF.v/k if and

only if (
t 7! F

�
u.t/

�
is a.e. equal to a non-decreasing function,

u0.t/ C @ıF
�
u.t/

�
3 0; for a.e. t 2 .0; T /;

where @ıF.u/ is the subset of elements of minimal norm in @F.u/.
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In the general metric setting the natural candidate for serving as a strong upper gradient for a

convex and lower semicontinuous functional F is the local slope (see [2, 9, 16]) of F defined at

u 2 D.F / as

j@F j.u/ D lim sup
v!u

�
F.u/ � F.v/

�C

d.u; v/
:

Note that indeed the local slope plays the role of the norm of @F (see (2.7)). In particular, in case X

is a Hilbert space and F is Fréchet differentiable at u 2 D.F /, then j@F j.u/ D k@F.u/k.

In general, the function u 7! j@F j.u/ cannot be expected to be lower semicontinuous. On

the other hand, semicontinuity is crucial in order to possibly pass to the limit in (2.6) (or, rather,

in its time-discrete analogue). A way out from this obstruction consists in restricting the analysis

to �-geodesically convex functionals. In particular, we say that a trajectory  W Œ0; 1� ! X is a

constant-speed geodesic if

d
�
.s/; .t/

�
D .t � s/d

�
.0/; .1/

�
; 80 6 s 6 t 6 T

and that a functional F is �-geodesically convex for � 2 R if, for all u0; u1 2 D.F /, there exists a

constant-speed geodesic  with .0/ D u0 and .1/ D u1 such that

F
�
.t/

�
6 .1 � t/F .u0/ C tF .u1/ �

�

2
t.1 � t/d 2.u0; u1/; 8t 2 Œ0; 1�:

In case X has a linear structure, we shall simply (and classically) refer to the latter convexity

condition as �-convexity.

If F is �-geodesically convex and �.d/-lower semicontinuous then [2, Cor. 2.4.10, p. 54] the

local slope j@F j is a strong upper gradient for F and it is �.d/-lower semicontinuous as well. The

same holds if we relax the geodesic convexity assumption above by asking for the weaker property

for all v0; v1 2 D.F / there exists a curve  with .0/ D v0 and .1/ D v1 such that

v 7! ˚."; v0; v/ WD
1

2"
d 2.v; v0/ C F.v/ is ."�1 C �/-convex on  for all 0 < " < 1=�� (2.8)

along with the convention 1=�� D C1 for � > 0.

In particular, this entails the following [2, Thm. 2.3.3, p. 46].

THEOREM 2.7 (GMM are curves of maximal slope) Let F fulfill the convexity assumption (2.8)

being �.d/-lower semicontinuous, and coercive, namely

9"� > 0; u� 2 X W inf ˚."�; u�; �/ > �1:

Then, given u0 2 D.F /, every u 2 GMM.F; �.d/; u0/ is a curve of maximal slope for the

functional F with respect to its strong upper gradient j@F j.

A suitably strengthened version of the convexity assumption (2.8) provides the possibility of

proving a generation result. In particular, we shall be dealing with the following

for all v�; v0; v1 2 D.F / there exists a curve  with .0/ D v0 and .1/ D v1 such that

v 7! ˚."; v�; v/ is ."�1 C �/-convex on  for all 0 < " < 1=��. (2.9)
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Note that property (2.9) is stronger than the former (2.8) for the latter follows as a particular case

with v� D v0. On the other hand, (2.9) combines in a crucial way the geodesic convexity properties

of the functional and of the curvature properties of the underlying metric space [2]. One can in

particular check that (2.9) ensues if, in addition to the �-geodesic convexity of F one requires

v ! d 2.v; v�/ to be convex for all v� 2 D.F /. This is indeed the case of geodesically convex

functionals on non-positively curved metric spaces such as Hilbert spaces [22]. Note that, in the

setting of assumption (2.9), no compactness of the sublevels of F is needed in order to prove the

existence of curves of maximal slope and we have the following [2, Thm. 4.0.4, p. 77].

THEOREM 2.8 (Generation of the evolution semigroup) Let F fulfill the convexity assumption

(2.9) being �.d/-lower semicontinuous and coercive. Then, for any given u0 2 D.F / there exists a

unique u D S.u0/ 2 MM.F; �.d/; u0/. Moreover, u is a locally Lipschitz curve of maximal slope

for F with respect to its strong upper gradient j@F j, u.t/ 2 D.j@F j/ for all t 2 .0; T /, and the map

t 7! S.u0/.t/ is a �-contraction semigroup, namely

d
�
S.u0/.t/; S.v0/.t/

�
6 e��t d.u0; v0/ 8u0; v0 2 D.F /:

3. Curves of maximal slope of capacitary measures

As mentioned above, we shall start by considering some suitable relaxation of the problem.

In particular, in this section we consider the compact metric space .M0.D/; d / of capacitary

measures endowed with the distance d introduced in Section 2.2 and let F W M0.D/ !��1; C1�

be a  -lower semicontinuous (relaxed shape) functional. The compactness of this metric framework

entails the existence of a shape flow. On the other hand, this flow will consists of relaxed shapes,

namely capacitary measures. We shall discuss the possibility of obtaining a flow of classical quasi-

open domains under additional monotonicity assumptions in Section 4.

By Theorem 2.4 for every initial condition �0 2 M0.D/ with �0 2 D.F / there exists � 2

GMM.F; �.d /; �0/ and the discrete implicit Euler scheme reads

�nC1
" 2 argmin

n
F.�/ C

1

2"
d 2

 .�n
" ; �/

o
: (3.1)

The main purpose of this section is to study some properties of the generalized minimizing

movement �.t/ and to see when it happens to be a curve of maximal slope.

There is a natural one-to-one map between M0.D/ and the convex set

X D
˚
w 2 H 1

0 .D/ W w > 0; 1 C �w > 0
	

� L2.D/; (3.2)

given by

� 7! w� WD R�.1/; with inverse w 7! �w WD
1 C �w

w
:

Moreover, the metric structure on M0.D/ and X is the same, since

d .�1; �2/ D kw�1
� w�2

kL2.D/:

Therefore, every functional F W M0.D/ !� � 1; C1� can be identified with a functional J W

L2.D/ !� � 1; C1� with D.J / � X by

F.�/ D J.w�/ or, equivalently, J.w/ D F.�w /:
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The variational flow for F in M0.D/ can be then obtained through the gradient flow of J in L2.D/,

generated by the implicit Euler scheme

wnC1
" 2 argmin

n
J.w/ C

1

2"

Z

D

jw � wn
" j2 dx

o
: (3.3)

THEOREM 3.1 (Monotonicity) Assume that J W X !� � 1; C1� is decreasing, in the sense

w1; w2 2 D.J /; w1 6 w2 a.e. H) J.w1/ > J.w2/: (3.4)

Then, every w 2 GMM.J; �.dL2.D//; w�0
/ is increasing, in the sense that

t1 < t2 H) w.t1/ 6 w.t2/ a.e.

Proof. Let J be monotone in the sense of (3.4). Given wn
" , in the incremental step (3.3) we have to

solve the minimum problem

min
n
J.w/ C

1

2"

Z

D

kw � wn
" k2 dx

o
:

For every w 2 X , the function maxfw; wn
" g still belongs to X , since the maximum of two

subharmonic functions is also subharmonic. Relying on the monotonicity of J we then have that

J.maxfw; wn
" g/ C

1

2"

Z

D

maxfw; wn
" g � wn

"

2
dx 6 J.w/ C

1

2"

Z

D

w � wn
"

2
dx;

the inequality being strict as soon as maxfw; wn
" g ¤ w. Consequently, any minimizer w WD wnC1

"

should satisfy w > wn
" a.e., and thus any discrete flow is increasing. Passing to the limit as the step

size goes to zero, we obtain that any generalized minimizing movement is increasing.

REMARK 3.2 We underline that the monotonicity assumption (3.4) is not equivalent to the

monotonicity of measures. If �1 6 �2 in the classical sense of measures or, weaker, in the sense
Z

D

'2.x/d�1 6

Z

D

'2.x/ d�2; 8' 2 H 1
0 .D/; (3.5)

then w�1
> w�2

q.e. The converse is in general false; here is an example:

�1 D 1bB.0;1/c ; �2 D 1B.0;1/dx C 1bB.0;R/c ;

where R is large enough, such that w�2
> w�1

q.e. Clearly, �1 6> �2.

REMARK 3.3 A typical functional satisfying the monotonicity assumption is a functional depending

on w, of the form

J.w/ D

Z

D

j
�
x; w.x/

�
dx;

where j W D � R ! R is continuous and decreasing in the second variable. In particular, we may

take j.x; w/ D �w which leads to the energy of the system for the constant force f � 1.

REMARK 3.4 If �1 6 �2 in the classical sense of measures, or in the weaker sense (3.5), then it is

easy to see that �k.�1/ 6 �k.�2/. We do not know if this is still true under the weaker (see Remark

3.2) condition that w�1
> w�2

q.e.
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EXAMPLE 3.5 An interesting question is the following: if we consider the generalized minimizing

movement associated to the energy functional J.w/ D �
R

D
w.x/ dx and start from a quasi-open

set, will the flow remain in the family of quasi-open sets?

As we show in the example below, by considering the topology of  -convergence and allowing

relaxation in general this does not happen, at least at the discrete level. This kind of phenomenon

was numerically observed in the framework of quasi-static debonding membranes [6], where the

evolution takes place in the family of relaxed domains.

Let D D B.0; 2/, ˝0 D B.0; 2/ n @B.0; 1/ � R
2 and J.w/ D �

R
D

w.x/ dx. Let us first notice

that the mapping

w 7! J".w/ D �

Z

D

w dx C
1

2"

Z

D

jw � w0j2 dx (3.6)

is strictly convex. We will prove that the solution w minimizing the first incremental step is of

relaxed form, independently of the size of " > 0. For this purpose, we will first show that w is

radially symmetric. It is not clear that the class X in (3.2) is stable by Schwarz rearrangement, in

spite of the fact that we can use the convexity of the mapping above. Indeed, since w0.x/ D u0.jxj/

is radially symmetric, if w is a solution of the incremental step, then any rotation w ı R of w, is

also a solution. Using the strict convexity of (3.6), we conclude that for any rotation R the equality

w D w ı R holds, so w is radially symmetric.

Assume now by contradiction that w corresponds to a non-relaxed domain, i.e. to a radially

symmetric open set. This means that w D w˝ , where ˝ is a union of open annuli, centered at the

origin.

Denoting by A.s; t/ the annulus B.0; t/ n B.0; s/, with s < t , it is easy to see that optimal

domains can only be of the form ˝s D B.0; s/ [ A.s; 2/, which provide the corresponding radial

solutions

ws.x/ D us.jxj/ D

8
ˆ̂<
ˆ̂:

.s2 � jxj2/=4 if 0 6 jxj 6 s

1

4

 
4 � jxj2 C .s2 � 4/

log.jxj=2/

log.s=2/

!
if s 6 jxj 6 2:

In order to prove that relaxation occurs, it is enough to show that it is more effective to relax on

@B.0; 1/ the Dirichlet condition. In particular, given

� D "H
1b@B.0;1/C1b@B.0;2/;

we have that F.�/ is lower than any value F.˝s/. The corresponding solution Qw reads

Qw.x/ D

8
<̂

:̂

" C u0.jxj/ if 0 6 jxj 6 1

"
log.jxj=2/

log.1=2/
C u0.jxj/ if 1 6 jxj 6 2;

and hence relaxation occurs at the first discrete step as soon as we prove that

J". Qw/ < J".ws/; 80 < s < 2: (3.7)

Indeed, by defining f .r/ D minf1; log.r=2/= log.1=2/g, we have that

J". Qw/ D �2�

Z 2

0

u0.r/r dr � 2�"

Z 2

0

f .r/r dr C �"

Z 2

0

f 2.r/r dr:
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Hence, relation (3.7) is equivalent to

Z 2

0

.us � u0/r dr �
1

2"

Z 2

0

jus � u0j2r dr < "

Z 2

0

f r dr �
"

2

Z 2

0

f 2r dr: (3.8)

One can numerically check that the integral in the left-hand side above is non-positive (and indeed

vanishes for s D 1 only). Hence, relation (3.8) follows, as we have that

Z 2

0

�
f �

1

2
f 2

�
r dr > 0:

Note that the latter argument is independent of ". As such, relaxation is expected to happen

instantaneously for any generalized minimizing movement starting from ˝0.

We shall assume that J W L2.D/ !��1; C1� is �-convex, proper, and lower semicontinuous.

For instance, J could be of the form

J.w/ D

Z

D

j
�
x; w.x/

�
dx C IX .w/; (3.9)

where j W D�R ! R is a normal �-convex integrand and IX is the indicator function of X , namely,

IX .w/ D 0 if w 2 X and IX D C1 elsewhere. An example in this class is the torsional rigidity

functional given by j.x; w/ D w. Another example for J is

J.w/ D
1

2

Z

D

jrw.x/j2 dx C

Z

D

j
�
x; w.x/

�
dx C IX.w/:

PROPOSITION 3.6 Let the functionals F W M0.D/ !� � 1; C1� and J W L2.D/ !� � 1; C1�

with D.J / � X be related by J.w/ D F.�w / as above. We have the following

a) F is �-geodesically convex if and only if J is �-convex,

a) F fulfills (2.9) if and only if J fulfills (2.9).

Proof. a) Let F be �-geodesically convex. Given w0; w1 2 D.J / there exists a constant-speed

geodesic � W Œ0; 1� ! M0.D/ such that w�.i/ D wi , i D 0; 1, and

F
�
�.t/

�
6 .1 � t/F

�
�.0/

�
C tF .�.1// �

�

2
t.1 � t/d 2



�
�.0/; �.1/

�
: (3.10)

By defining w.t/ D w�.t/, since

kw.s/ � w.t/kL2.D/ D d

�
�.s/; �.t/

�
D .t � s/d

�
�.0/; �.1/

�
D .t � s/kw0 � w1kL2.D/;

80 6 s 6 t 6 1;

we readily have that w.t/ D .1 � t/w0 C tw1. By using (3.10) we conclude for the �-convexity of

J as

J
�
w.t/

�
D F

�
�.t/

�
6 .1 � t/F

�
�.0/

�
C tF

�
�.1/

�
�

�

2
t.1 � t/d 2



�
�.0/; �.1/

�

D .1 � t/J.w0/ C tJ.w1/ �
�

2
t.1 � t/kw0 � w1k2

L2.D/
: (3.11)
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Assume now J to be �-convex, Fix �0; �1 2 D.F /. By defining wi D w�i
for i D 0; 1 and

w.t/ D .1 � t/w0 C tw1 we get that �.t/ D �w.t/ is a constant-speed geodesic joining �0 and �1

as

d

�
�.s/; �.t/

�
D kw.s/ � w.t/kL2.D/ D .t � s/kw0 � w1kL2.D/ D .t � s/d .�0; �1/;

80 6 s 6 t 6 1:

Hence, by arguing exactly as in (3.11) the �-geodesic convexity of F follows.

b) Let F fulfill (2.9) and w�; w0; w1 2 D.J / be given. Define �� D �w�
, �0 D �w0

, and

�1 D �w1
, and exploit (2.9) in order to find the curve t 7! �.t/ (possibly not a geodesic) joining

�0 and �1 such that

1

2"
d 2

 .�.t/; ��/ C F
�
�.t/

�
6

1 � t

2"
d 2

 .�.0/; ��/ C .1 � t/F .�0/ C
t

2"
d 2

 .�1; ��/ C tF .�1/

�
1 C "�

2"
t.1 � t/d 2

 .�0; �1/: (3.12)

By letting w.t/ D w�.t/ we have that kw.t/ � w�k D d .�.t/; ��/ and kw.t/ � w.s/k D

d .�.t/; �.s// for all s; t 2 Œ0; T �. Hence, relation (3.12) entails that J fulfills (2.9) as well.

On the contrary assume that J fulfills (2.9) and that ��; �0; �1 2 D.F / are given. Define

w� D w��
w0 D w�0

w1 D w�1
and let t 7! w.t/ be the curve whose existence is ensured by

(2.9). Then, by letting �.t/ D �w.t/ and arguing exactly as above we conclude that F fulfills (2.9)

as well.

Proposition 3.6 is based of the fact that the geometry of M0 and L2.D/ coincide. Indeed, M0

is a non-positively curved metric space. As such �-geodesic convexity in M0 implies the convexity

property (2.9). We shall give a direct proof of this fact in the following.

PROPOSITION 3.7 (Geodesic convexity ) (2.9)) If F W M0.D/ !� � 1; C1� is �-geodesically

convex then it fulfills the convexity property (2.9).

Proof. Let ��; �0; �1 2 D.F / be given and define w� D w��
, w0 D w�0

, w1 D w�1
, w.t/ D

.1 � t/w0 C tw1, and �.t/ D �w.t/. As � is a constant-speed geodesic we have that

˚
�
"; ��; �.t/

�
D

1

2"
d 2

 .�.t/; ��/ C F
�
�.t/

�
D

1

2"
kw.t/ � w�k2

L2.D/
C F

�
�.t/

�

6
1 � t

2"
kw0 � w�k2

L2.D/
C

t

2"
kw1 � w�k2

L2.D/
�

t.1 � t/

2"
kw0 � w1k2

L2.D/

C .1 � t/F .�0/ C tF .�1/ �
�

2
t.1 � t/d 2

 .�0; �1/

D .1 � t/˚."; ��; �0/ C t˚."; ��; �1/ �
1 C "�

2"
t.1 � t/d 2

 .�0; �1/

whence the assertion follows.

We shall now come to the existence results for evolution. Again, this can be formulated

equivalently for trajectories of capacitary measures t 7! �.t/ 2 M0.D/ or of their function

representatives t 7! w.t/ 2 X . Let us start from measures. Theorem 2.8 yields the following.
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THEOREM 3.8 (Curves of maximal slope of capacitary measures) Let F W M0.D/ !� � 1; C1�

be proper, d -lower semicontinuous and �-geodesically convex. Then, for any given �0 2 D.F /

there exists a unique � D S.�0/ 2 MM.F; �.d /; �0/. Moreover, � is a locally Lipschitz curve of

maximal slope for F with respect to j@F j, u.t/ 2 D.j@F j/ for all t 2 .0; T /, and

d

�
S.�0/.t/; S.�0/.t/

�
6 d .�0; �0/e��t ; 8�0; �0 2 D.F /:

As for the function representatives w, the situation is that of classical gradient flows in Hilbert

spaces.

THEOREM 3.9 (Gradient flow of subharmonic representatives) Let J W L2.D/ !� � 1; C1�

with D.J / � X be proper, lower semicontinuous and �-convex. Then, for any given w0 2 D.J /

there exists a unique w D S.w0/ 2 MM.J ; �.dL2.D//; w0/. Moreover, w is the unique solution of

gradient flow of the functional J in L2.D/. In particular,

w0 C @J.w/ 3 0 a.e. in .0; T /; w.0/ D w0: (3.13)

Eventually, we have that

S.w0/.t/ � S.v0/.t/


L2.D/
6 e��t kw0 � v0kL2.D/; 8w0; v0 2 D.J /:

Note that, in case J is defined as in (3.9) via a smooth j , the inclusion in (3.13) reads

w0 C @wj.x; w/ C @IX .w/ 3 0

which is equivalent to w.t/ 2 X and

Z

D

�
w0.t/ C @wj

�
�; w.t/

��
.w.t/ � Qw/ dx 6 0 a.e. in .0; T /; 8 Qw 2 X:

More generally, in case J D M C IX where M W L2.D/ !� � 1; C1� is a proper, convex, and

lower semicontinuous functional with int D.M / \ X ¤ ;, the inclusion in (3.13) means w.t/ 2

X \ D.M / and

Z

D

w0.t/.w.t/ � Qw/ dx 6 M. Qw/ � M
�
w.t/

�
a.e. in .0; T /; 8 Qw 2 X \ D.M /:

4. Variational flows of shapes: Spectral optimization problems

In contrast with Section 3, we shall now deal with the possibility of establishing evolution of

classical (non-relaxed) domains. As observed in Example 3.5, this cannot be expected in general.

On the other hand, we prove below that this is the case by restricting to monotone shape functionals.

Note that this monotonicity is readily fulfilled by integral and spectral functionals under fairly

natural assumptions.

After having recalled some material on distances between measurable sets, we state the main

existence result of this section in Theorem 4.1 and then collect some remarks on the properties of

the flow. Moreover, we discuss some open points and possible further developments. Eventually, we

state an existence result for the specific case of flows of convex sets in Subsection 4.2.
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4.1 General shape evolution

In this section, we deal with flows of shapes. There are no “standard” distances on the class A.D/

of quasi-open subsets of D, and several choices will be studied in the sequel. A first natural distance

is given by the Lebesgue measure of the symmetric difference set

dchar .˝1; ˝2/ D j˝1�˝2j:

Since two quasi-open sets may differ for a negligible set (think for instance in R
2 to a disk and a

disk minus a segment), this is not a proper metric in A.D/, so that one should consider equivalence

classes in the family of shapes.

For this purpose, for every measurable set M � D, we define the Sobolev space

QH 1
0 .M / WD

˚
u 2 H 1

0 .D/; u D 0 a.e. on D n M
	
:

We notice that, for a given open set ˝ , the space QH 1
0 .˝/ may not coincide with the usual Sobolev

space H 1
0 .˝/, the latter being possibly smaller, as soon as ˝ is non smooth. Nevertheless, for

every measurable set M � D there exists a unique (up to a zero capacity set) quasi-open set

˝.M / 2 A.D/ such that
QH 1

0 .M / D H 1
0

�
˝.M /

�
:

If M1 � M2 then ˝.M1/ � ˝.M2/ q.e. Consequently, one can define the resolvent of the Laplace

operator with Dirichlet boundary conditions associated to M by setting

RM W L2.D/ ! L2.D/; RM WD R˝.M/;

and one can extend the  distance and the w -convergences to measurable sets, by setting

d.M1; M2/ D d

�
˝.M1/; ˝.M2/

�
; Mn

w
�! M if ˝.Mn/

w
�! ˝.M /:

Working with measurable sets instead of quasi-open sets in shape optimization problems associated

to Sobolev spaces may, in general, severely change the result. Nevertheless, as soon as the functional

F satisfies some monotonicity assumption, the problems become, in a certain sense, equivalent. We

refer the reader to [5] for more details between this equivalence.

So let us denote

M.D/ D fM � D W M measurableg:

Let F W A.D/ !� � 1; C1� be a w -lower semicontinuous functional, monotone decreasing for

set inclusion and consider its extension to a functional on measurable sets given by bF W M.D/ !

� � 1; C1�
bF .M / D F

�
˝.M /

�
:

Functionals of the form

F.˝/ D ˚
�
�1.˝/; : : : ; �k.˝/

�
;

where ˚ W R
k !� � 1; C1� is increasing in each variable and lower semicontinuous are

admissible, since for every k 2 N the k-th eigenvalue of the Dirichlet Laplacian �k.˝/ is decreasing

with respect to the inclusion of measurable sets. As a consequence, bF is monotone decreasing with

respect to set inclusion as well.

In M.D/ the distance dchar is not compact. Nevertheless, relying on the monotonicity

assumption on bF , we have the following result.
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THEOREM 4.1 (Generalized minimizing movements of shapes) Let F W A.D/ !� � 1; C1�

be w -lower semicontinuous, monotone decreasing for set inclusion, and let M0 2 M.D/ such

that ˝.M0/ 2 D.F /. Then, the set GMM.bF ; �w ; M0/ is non-empty. Moreover, every M 2

GMM.bF ; �w ; M0/ is increasing in the sense of set inclusion.

Note that some similar statement was already announced without proof in [8].

Proof. We prove first that every solution of the incremental Euler scheme

M nC1
" 2 argminM2M.D/

n
bF .M / C

1

2"
jM n

" �M j2
o
: (4.1)

is increasing in the sense of inclusions. As a consequence of the monotonicity of bF , we have that

bF .M [ M n
" / C

1

2"

ˇ̌
M n

" �.M [ M n
" /
ˇ̌2

6 bF .M / C
1

2"

ˇ̌
M n

" �M
ˇ̌2

;

the inequality being strict as soon as jM n
" n M j is not zero. Consequently, every solution M of the

incremental problem satisfies, if it exists, M n
" � M .

Let !k D ˝.Mk/ � Mk where .Mk/k is a minimizing sequence of measurable sets, each one

containing M n
" . By the compactness of the w -convergence, up to extracting a subsequence we

have that !k

w
! !. As F.!/ 6 lim infk!1 F.!k/, the measurable set ! [ M n

" is a solution to the

incremental problem (4.1), since

bF .! [ Mk/C
1

2"

ˇ̌
.! [ Mk/�M n

"

ˇ̌2
6 bF .!/ C

1

2"

ˇ̌
.! [ Mk/�M n

"

ˇ̌2

D F.!/ C
1

2"

ˇ̌
.! [ Mk/�M n

"

ˇ̌2
6 lim inf

k!C1

�
F.!k/ C

1

2"

ˇ̌
.!k [ Mk/�M n

"

ˇ̌2�

6 lim inf
k!C1

�
bF .Mk/ C

1

2"

ˇ̌
Mk�M n

"

ˇ̌2�
:

Finally, we set M nC1
" WD ! [ M n

" .

We rewrite the discrete flows in terms of quasi-open piecewise constant sets t 7! !".t/ and

we pass to the limit as " ! 0. We reproduce in this setting the argument of [17, Thm. 3.2]. In

particular, by using the monotonicity of the flows we have that the functions ı".t/ D j!".t/�!0j are

non-decreasing. Hence, by the classical Helly principle, at least for some not relabeled subsequence

we have that ı".t/ ! ı.t/ for all t 2 Œ0; C1/ and some non-decreasing function ı. The function

ı is continuous with the exception of at most a countable set of points N . We shall introduce the

countable set M � Œ0; C1/ in such a way that

0 2 M; M is dense in Œ0; C1/; N � M:

By a diagonal extraction argument and the compactness of the w -topology (still not relabeling)

one can find that !".t/
w
! !.t/ for all t 2 M . Let us now fix t 2 Œ0; C1/ n M , let tn 2 M

such that tn % t , and define !.t/ D [n!.tn/. We shall show that indeed !.t/ coincides with the

w -limit of !".t/. To this aim we exploit again the compactness of the w -topology, and extract a

further (possibly t dependent) subsequence "t
n in such a way that !"t

n
.t/

w
! !�. By using the lower
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semicontinuity of the Lebesgue measure with respect to the w -topology [4, Prop. 5.6.3, p. 125]

We have that

j!.t/�!�j D lim
n!C1

j!.tn/�!�j 6 lim
n!C1

lim inf
k!C1

j!"t
k
.tn/�!"t

k
.t/j

D lim
n!C1

lim inf
k!C1

�
ı"t

k
.t/ � ı"t

k
.tn/

�
D lim

n!C1

�
ı.t/ � ı.tn/

� t 62M
D 0:

Hence !.t/ � !�. In particular, the whole sequence !".t/ w -converges to !.t/ even for t 62 M .

Finally, we have proved that t 7! !.t/ belongs to GMM.F; �w ; ˝.M0//. Correspondingly, M"

has a pointwise limit M . In particular, M belongs to GMM.bF ; �w ; M0/.

EXAMPLE 4.2 Evolution of a ball. Let ˝0 D B.0; R0/. For every " > 0, the discrete movement

associated to �1 consists of balls. This is a consequence of the Schwarz rearrangement procedure.

Consequently, the minimizing movement consists of an increasing evolution of concentric balls.

For every given R > 0 consider the ball B.0; r/, with r > R, which minimizes

�1

�
B.0; r/

�
C

!2
d

.rd � Rd /2

2"
D r�2�1

�
B.0; 1/

�
C

!2
d

.rd � Rd /2

2"
;

where !d denotes the Lebesgue measure of the unit ball in R
d . We obtain

�
2

r3
�1

�
B.0; 1/

�
C

!2
d

"
.rd � Rd /drd�1 D 0

which gives, for " small,

r � R C
2�1

�
B.0; 1/

�

d 2!2
d

R2dC1
":

The radius R.t/ during the evolution then satisfies the differential equation

R0.t/ D
2�1

�
B.0; 1/

�

d 2!2
d

R2dC1

which has the solution

R.t/ D
�
R2dC2

0 C
4.d C 1/�1

�
B.0; 1/

�

d 2!2
d

t
�1=.2dC2/

:

REMARK 4.3 F might be discontinuous. The functional F may be discontinuous on the curve

t 7! !.t/. Indeed, let us consider F.˝/ D �1.˝/ and a generalized minimizing movement starting

from ˝0 D B.0; R0/ [ A.R1; R2/ where A.R1; R2/ stands for the annulus centered at 0 of radii

R0 < R1 < R2. We choose R0, R1 and R2 in such a way that �1.A.R1; R2// > �1.B.0; R0//.

Hence, as the connected component A.R1; R2/ of ˝0 does not contribute to the value F.˝0/ of

the functional, the intuition hint is that the generalized minimizing movement from ˝0 will be

˝.t/ D A.R1; R2/ [ B.0; f .t// with f increasing and discontinuous at f D R1.

Indeed, it is enough to prove that there exists m0 < 1 such that for all 0 < m < m0 every

solution of the problem

minf�1.˝/ W ˝0 � ˝; j˝j D j˝0j C mg (4.2)
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is of the form A.R1; R2/ [ B.0; r.m//. If the solution of (4.2) is disconnected, clearly A.R1; R2/

and B.0; R0/ should belong to different connected components, A.R1; R2/ � ˝1, B.0; R0/ � ˝2.

Then, for m0 small enough, we get �1.˝1/ > �1.˝2/, and so ˝1 D A.R1; R2/ and, by Schwarz

rearrangement, ˝2 D B.0; r.m//.

Let us justify now that if m0 is small, then ˝ has to be disconnected, so that the argument above

applies. Assuming by contradiction that ˝ is connected, then one can find a curve C � ˝ n ˝0

connecting B.0; R0/ and A.R1; R2/. By the density estimates satisfied by the free boundary (see

for instance [7, Lemma 5.11 and Proposition 5.12]), there exists C0 and r0 depending only on ˝0

and the dimension of the space, such that 8y 2 C and for every r 6 r0 with B2r .y/ \ ˝0 D ; we

get Z

Br .y/

R˝.1/dx > C0rN C1:

In particular, this implies that m D j˝ n ˝0j > C 0
0.R1 � R0/N C1, where C 0

0 depends on the same

quantities as C0. For m0 small enough we achieve a contradiction.

An interesting question is whether the evolution is stable in some particular classes of shapes. In

particular, the interest in stability is related to compactness. In two dimensions of space, the class of

simply connected open sets is compact with respect to  -convergence. Moreover, in any dimension

of the space, the class of convex sets is also compact with respect to  -convergence. In the general

case, we shall however remark that stability is not to be expected, as we argue below.

REMARK 4.4 Topological genus is not conserved. Let ˝0 D A.R1; R2/ n C where C is a radial

cut. As �1.˝0/ > �1.A.R1; R2//, any generalized minimizing movement starting from ˝0 will

immediately fill-in the cut so that the simply connected ˝0 gets to be non-simply connected.

An example of an evolution from two simply-connected components to one non-simply-

connected component is that starting from ˝0 D B.0; 1/ [ U , where U is a suitable set, disjoint

from B.0; 1/. Let s D inffr > 1 W B.0; r/ \ U ¤ ;g and assume that �1.U / > �1.B.0; s//.

Since U does not contribute to �1.B.0; r/[U / up to r D s, intuitively any generalized minimizing

movement starting from ˝0 is of the form B.0; f .t//[U with f increasing up to some intersection

time. For suitably chosen sets U , after the intersection time the new set will not be simply connected.

Note nonetheless that, due to the monotonicity of the flow, the number of connected components

is non-increasing during the evolution.

REMARK 4.5 Convex shapes are unstable. Assume ˝0 to be the square Œ0; ��2 � R
2. Consider the

mapping Tt W x 2 @˝0 7! x C tv.x/n.x/ where v is suitably smooth and n.x/ is the outward unit

normal to @˝0 at x and consider ˝t such that @˝t WD Tt .@˝0/. For the sake of definiteness, we

shall normalize
R

@˝0
jvjds D 1. We have that [21, Thm. 5.7.1, p. 209]

d

dt
�1.˝t / D �

Z

@˝0

ˇ̌
ˇ̌@u1

@n

ˇ̌
ˇ̌
2

v ds

where u1 is the first eigenfunction (with unit L2 norm) of the Dirichlet Laplacian on ˝0. Hence, by

fixing a time step " > 0 we can readily compute that the minimum of

t 7! Gv.t/ WD �1.˝t / C
1

2"
j˝t �˝0j2 D � t

Z

@˝0

ˇ̌
ˇ̌@u1

@n

ˇ̌
ˇ̌
2

v ds C �1.˝0/ C
t2

2"

�Z

@˝0

jvjds

�2
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is attained at

tv D "

Z

@˝0

ˇ̌
ˇ̌@u1

@n

ˇ̌
ˇ̌
2

v ds

and corresponds to the value

Gv.tv/ D �
"

2

 Z

@˝0

ˇ̌
ˇ̌@u1

@n

ˇ̌
ˇ̌
2

v ds

!2

C �1.˝0/:

In particular, as we readily compute that u1.x; y/ D sin x sin y, the latter entails that in order to

minimize v 7! Gv.tv/ one would rather have v > 0 and concentrate the mass of v in the middle of

the sides of the square. Hence, we conclude that bumps are likely to develop from midpoints of the

sides of the square so that convexity will be lost.

We can formulate some open questions:

� Assume ˝0 is convex. Under which conditions on ˝0 and m the minimizers of

min
˚
�1.˝/ W ˝0 � ˝; j˝j D m

	
(4.3)

are convex? According to the intuitive argument above, if ˝0 is a square and m is slightly larger

than j˝0j, then the optimal domains should not be convex. In [7] it is proved that for a “thin”

rectangle ˝0 of sizes " and 1, and m < �=4, the solution of the shape optimization problem (4.3)

cannot be convex, provided " is small enough.

� Let ˝0 be a convex set and assume that for every m > j˝0j every solution of the shape

optimization problem (4.3) is convex. Is it true that then ˝0 is a ball?

� Is it true that the generalized minimizing movement associated to �1 in the framework of Theorem

4.1 will converge to a ball (rescaling if necessary)?

� Prove or disprove that the metric derivative of �1 computed at a bounded smooth set ˝ is given

by

j�0
1j.˝/ D max

@˝

ˇ̌
ˇ̌@u1

@n

ˇ̌
ˇ̌
2

:

Precisely, prove that

lim sup
dchar .˝n;˝/!0; ˝�˝n

�1.˝/ � �1.˝n/

j˝n n ˝j
6 max

@˝0

ˇ̌
ˇ@u1

@n

ˇ̌
ˇ
2

:

Constraint on the measure. An alternative evolution, which does not require any rescaling, is to

work in the class of sets with prescribed measure. Let c > 0. We consider only measurable sets

M 2 M.D/ such that jM j D c. The incremental problem is given by:

M nC1
" 2 argminM2M.D/;jM jDc

n
bF .M / C

1

2"
jM n

" �M j2
o
; (4.4)

No monotonicity can occur in this case, unless the flow is constant. The existence of a generalized

minimizing movement associated to the incremental step (4.4) is not clear. Nevertheless, one can

construct discrete solutions of the incremental scheme.
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Indeed, let .Mk/k be a minimizing sequence in (4.4). We associate the quasi open sets !k D

˝.Mk/ and, up to a subsequence, we can assume that !n

w
�! !. If j!j D c, then 1Mk

converges

in L1.D/ to 1! , so that ! is a minimizer.

If j!j < c, we replace ! with ! [ U , where U is chosen such that j! [ U j D c and

jM n
" �Mkj ! jM n

" �.! [ U /j:

Consequently, ! [ U is a solution to the incremental step (4.4).

An alternative way is to replace the measure constraint by adding a penalized term in the

functional, i.e., to replace bF .M / by bF .M / C jM j. In this case, the existence of a solution to

the incremental step relies on the lower semicontinuity of the Lebesgue measure for the w -

convergence.

Perimeter penalization. One can alternatively introduce a penalization on the perimeter. In this

case, the incremental step reads

M nC1
" 2 argminM2M.D/

n
bF .M / C PD.M / C

1

2"
jM n

" �M j2
o
: (4.5)

The topology given by dchar turns out to be compact on the sublevels of bF C PD .

Hausdorff distance. There are several other geometric distances in the family of open sets, but

they are hardly compatible with the  -convergence. Nevertheless some partial observations can be

done.

Let dH c denote the Hausdorff complementary distance in the family of open subsets of D, given

by

dH c .˝1; ˝2/ D max
x2D

ˇ̌
d.x; D n ˝1/ � d.x; D n ˝2/

ˇ̌
:

Assume F is increasing with respect to the set inclusion. Then, there exists a solution of the iteration

step

min
˝�D

F.˝/ C
d 2

H c .˝; ˝0/

2"
;

which is of the form

˝ D D n .˝c
0 C Bh/:

Let ˝ � D be open. Then, ˝ \ ˝0 is open and, as F is increasing with respect to set inclusion and

dH c .˝ \ ˝0; ˝0/ 6 dH c .˝; ˝0/, we have

F.˝ \ ˝0/ C
1

2"
d 2

H c .˝ \ ˝0; ˝0/ 6 F.˝/ C
1

2"
d 2

H c .˝; ˝0/:

Now, define h D d 2
H c .˝ \ ˝0; ˝0/ and observe that D n .˝c

0 C Bh/ � ˝ \ ˝0 and dH c .D n

.˝c
0 C Bh/; ˝0/ D h. Then,

F
�
D n .˝c

0 C Bh/
�

C
1

2"
d 2

H c .D n .˝c
0 C Bh/; ˝0/

6 F.˝ \ ˝0/ C
1

2"
d 2

H c .˝ \ ˝0; ˝0/ 6 F.˝/ C
1

2"
d 2

H c .˝; ˝0/; 8˝ � D open:
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Finally, there exists a generalized minimizing movement associated to F and dH c of the form

t 7! D n .˝c
0 C Bf .t//, where f is continuous and increasing.

The same argument for decreasing functionals F and the Hausdorff distance

dH .F1; F2/ D max
x2D

ˇ̌
d.x; F1/ � d.x; F2/

ˇ̌

can be repeated. The only point which is more delicate is concerned with the fact that the Hausdorff

distance is not a “proper” metric in the family of open sets. Nevertheless, one can prove the existence

of generalized minimizing movement associated to F and dH of the form t 7! int.˝0 C Bf .t//,

where F is continuous and increasing. This solution relies on the equivalence relation in the family

of the open sets: ˝1 � ˝2 if ˝1 D ˝2 and on the redefinition of the Sobolev space

QH 1
0 .˝/ WD

˚
u 2 H 1

0 .D/ W u D 0 a.e. on D n ˝
	
:

4.2 Flows of convex shapes

In this section we deal with the evolution of convex open sets. We introduce the family

K.D/ D
˚
K � D W K open and convex

	
:

There are different possible distances on K which have the same convergent sequences

� the Hausdorff distance;

� d2.K1; K2/ D kbK1
� bK2

kL2.D/, where bK is the oriented distance function, defined by

bK.x/ D �d.x; @K/ for x 2 K and bK.x/ D d.x; @K/ for x 2 D n K;

� the L1 distance of the characteristic functions dchar .K1; K2/ D
R

D
j1K1

� 1K2
j dx.

A slightly different distance, defined on the equivalence classes of homotopic convex sets is the

Fraenkel relative asymmetry, defined by

A.K1; K2/ WD inf
x02Rn

n jK1�.x0 C �K2/j

jK1j

o
; where � WD

jK1j1=n

jK2j1=n
:

Assume that F W K.D/ ! R is a  -lower semicontinuous shape functional which satisfies

F.Kn/ ! C1 as soon as Kn converges to a degenerate set. Since in the class of convex sets, the

w -convergence coincides with the  -convergence, it is useless to require w -lower semicontinuity.

Notice that all previous topologies are compact on sublevels of F . By applying Theorem 2.4 we have

the following.

THEOREM 4.6 (Generalized minimizing movements of convex shapes) For d D dH ; dchar , or d2,

and for every initial convex set K0 2 D.F /, we have that GMM.F; �.d/; K0/ is non-empty.
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