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A numerical method for mean curvature motion in bounded domains with nonlinear Neumann

boundary conditions is proposed and analyzed. It consists of a semi-Lagrangian scheme in the main

part of the domain as proposed by Carlini, Falcone and Ferretti, combined with a finite difference

scheme in small layers near the boundary to cope with the boundary condition. The consistency of

the new scheme is proved for nonstructured triangular meshes in dimension two. The monotonicity

of a regularized version of the scheme with some additional vanishing artificial viscosity is studied.

Details on the implementation are given. Numerical tests are presented.
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1. Introduction

We consider the mean curvature equation

@u

@t
� trace

 �
I � Du ˝ Du

jDuj2
�
D2u

!
D 0; in ˝ � .0; T /; (1)

where ˝ is a bounded domain of R
n with a W 3;1 boundary. The partial differential equation (1)

can also be written

@u

@t
� �u C .D2u Du; Du/

jDuj2 D 0; in ˝ � .0; T /; (2)

or
@u

@t
� div

� Du

jDuj

�
jDuj D 0; in ˝ � .0; T /: (3)

Here, Du stands for the space gradient, D2u for the Hessian matrix of second space derivatives of

u and for any vector p 2 R
n, p

N
p D ppT . The partial differential equation (1) is complemented

with an initial condition

u.x; 0/ D u0.x/; for x 2 ˝; (4)
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and with the nonlinear Neumann condition

@u

@n
D � jDuj on @˝ � .0; T /; (5)

where � is a Lipschitz continuous function with j�.x/j 6 � < 1.

To put our work into perspective, let us recall that Crandall and Lions [13] have developed an

analysis of explicit finite difference schemes for a class of possibly degenerate parabolic equations

of the form:

ut � trace.�.x; Du/�.x; Du/T D2u/ D 0 for t > 0; x 2 R
n: (6)

Here, �.x; p/ is a n � m matrix valued function of .x; p/ 2 R
n � R

n and AT denotes the transpose

of a matrix A. Note that the integer m is arbitrary and the equation is degenerate if �.x; p/ is not

invertible.

Our particular case (1) corresponds to the choice

�.x; p/ D �.p/ D I � p
N

p

jpj2 ; (7)

(where j � j denotes the Euclidean norm). It is well known that in our case � is discontinuous at

p D 0 and degenerate for p ¤ 0. Since �.p/2 D �.p/ and �.p/ D �.p/T , �.p/ is a projection

matrix, which in fact projects the diffusion orthogonally with respect to the gradient.

We will work in the framework of level set methods using the theory of viscosity solutions,

which allows to deal with both singularities of solutions and degeneracies of the parabolic operator

(see [2] and [11] for an introduction to this theory). Existence and uniqueness for the viscosity

solutions to the Cauchy problem in R
n have been proved independently by Evans and Spruck [16]

and by Chen, Giga and Goto [9]. Starting from those pioneering papers, the last years have witnessed

a great development of the theory about curvature related flows, as well as its application to various

fields like phase transitions, image processing, fluid dynamics, material science and crystallography

(see the books [28] and [25] for a review of interesting applications and simulations). We refer the

interested reader to the lecture notes [19], [31] for the theory of viscosity solutions for surface

evolution equations. Viscosity solutions of the boundary value problem (1), (4), (5) have been

studied by Barles [3], see also Ishii and Ishii [21], Giga et al. [20].

Naturally, several attempts have been made to construct reliable approximation schemes.

In particular, Evans [15] and Barles-Georgelin [4] proved the convergence of semi-discrete

approximations (only time is discretized). Finite difference schemes have been proposed by Osher

and Sethian in the late eighties, see [26] but the proof of convergence results for fully discrete

approximation schemes came later with the papers by Catté, Dibos and Koepfler [8], Crandall and

Lions [13] and Oberman [24]. Let us also mention that the approximation of the Mean Curvature

Flow has been also tackled via finite element methods by several authors, although this approach

usually suffers from the degeneracy of the second order operator. The main convergence results

related to this approach which can take into account also the onset of singularities can be found in

the papers by Nochetto and Verdi [23] and Dziuk and Deckelnick [14].

In this work, we aim at modifying the semi-Lagrangian scheme introduced by Carlini et al in

the recent article [7] for (1) with no boundary conditions. The idea is to combine the previously

mentioned scheme with a finite difference scheme for (5) in thin layers near @˝ . Note that a first

version of the semi-Lagrangian scheme had been introduced in [18] where consistency was proved
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assuming that the gradient of the solution could not vanish, i.e., in the nonsingular case. The second

version proposed in [7] can handle the singular case. For the latter, consistency, monotonicity (in

a generalized sense), and thus convergence were proved. The main ingredient of the proof was

a generalization of the result obtained for monotone schemes by Barles and Souganidis in [5]. In

particular, this generalization allows for relaxing the strong monotonicity condition which is usually

required and to prove convergence for a regularized scheme (see Section 2 in [7] for more details

about this relaxation).

In [7], the semi-Lagrangian scheme has only been defined for uniform Cartesian grids. Since

we wish to deal with general domains, we have decided to use triangular meshes adapting the

regularized scheme analyzed in [7]. Hence we need two more ingredients: the use of triangular

meshes to accurately approximate the geometry and a local solver in small regions near @˝ for a

first order Hamilton-Jacobi equation corresponding to the Neumann boundary condition. We will

focus on the two-dimensional case (i.e., n D 2), for simplicity and because it is possible to obtain

a convergence result in this case, but the scheme presented here can be used for three dimensional

problems with tetrahedral meshes. We should mention that relatively few numerical schemes for

Hamilton-Jacobi equation on nonstructured meshes have been proposed in the literature, probably

because the hyperbolic nature of these equations and the link between viscosity solutions and

entropy solutions for conservation laws have supported the use of structured grids and finite

difference schemes: we mention the book of Sethian [28], and [1] in which Abgrall has proved

convergence for a scheme based on triangular meshes for Hamilton-Jacobi equations of the first

order. Note that semi-Lagrangian schemes in the class proposed by Falcone and Ferretti in [17] do

not require structured grids and can be applied also to stationary problems. For example, in [27] a

first order semi-Lagrangian method on unstructured grids is used to solve the first order Hamilton-

Jacobi equation corresponding to the Shape-from-Shading problem. However, we preferred to use

for the implementation of the boundary condition (5) a Godunov type scheme on the triangular

mesh, and, to be more precise, an adaptation of the fast sweeping method for the eikonal equation

on structured meshes originally proposed by Zhao [32].

We will extend some of the theoretical results contained in [7] to deal with the case of an

open bounded domain ˝ with Neumann boundary conditions. The general framework for our

convergence result is the theory of viscosity solutions and, in particular, the results that have been

established by Barles [3] (see also Ishii and Ishii [21]).

The paper is organized as follows: In Section 2 we introduce our notations, present the scheme

and give some hints for the implementation. Section 3 is devoted to the analysis of consistency

and monotonicity; these two basic properties are necessary to establish convergence via the

generalization of Barles-Souganidis abstract theorem proved in [7]. In particular, in ÷ 3.1, we prove

that the scheme is consistent. For the monotonicity, we actually regularize the proposed scheme by

the addition of vanishing artificial viscosity. In ÷ 3.2, we present an analysis of the monotonicity for

a regularization based on the addition of a viscosity term, as well as a a convergence result for this

regularized version of the scheme. In Section 4, we report about some numerical results, obtained

with the proposed scheme, i.e., without the above mentioned regularization.

2. A numerical method in dimension two

An ingredient of the numerical method is the semi-Lagrangian scheme proposed in [7] on a

triangular mesh. The semi-Lagrangian method consists essentially of applying a finite difference

scheme along a characteristic curve. The spatial step used in the semi-Lagrangian method will be of



458 Y. ACHDOU AND M. FALCONE

Y 1

Y 0

Y 3

Y 2

˝ D Y 0n [3
`D1

Y `

FIG. 1. The domains .Y `/`D0;:::;3

the order of ı. Therefore, for a node � whose distance to the boundary is smaller than ı, it is possible

that the points needed by the scheme (the feet of the characteristics) fall out of the domain ˝ . This

is the essential reason why we choose to distinguish thin layers near the boundary (whose width is

of the order of ı) in which we will use a finite difference scheme for the boundary condition (5)

rather than (1).

In ÷ 2.1, we start by carefully defining the geometry, the triangular mesh and the thin layers near

the boundary. We recall some basic facts on finite elements on triangular meshes in ÷ 2.2, and we

present the scheme in ÷ 2.3.

2.1 A nonstructured mesh

2.1.1 The domain ˝ . Consider .Y `/`D0;:::;L, L C 1 simply connected bounded domains of R
2

such that Y ` �� Y 0 if 1 6 ` 6 L and Y ` \ Y j D ; if 1 6 j < ` 6 L, see Figure 1. The sets Y `,

1 6 ` 6 L will be the holes of the domain ˝ defined below.

Call .� `/`D0;:::;L the boundaries of .Y `/`D0;:::;L. The curves � ` are closed, connected and

disjoint. We assume that � ` is parameterized by .�`
1.�/; �`

2.�/ where �`
1 and �`

2 are two smooth

real valued functions defined in T the unit one-dimensional torus. We assume that .�0
1.�/; �0

2.�//

turns counterclockwise as � grows from 0 to 1, and that for 1 6 ` 6 L, .�`
1.�/; �`

2.�// turns

clockwise as � grows from 0 to 1.

Call ˝ D Y 0n [L
`D1

Y `. We have @˝ D [L
`D0

� `.

The curvilinear abscissa s` is given by

s`.0/ D 0 and
ds`

d�
.�/ D

vuut
 

d�`
1

d�
.�/

!2

C
 

d�`
2

d�
.�/

!2

:

Call S` D s`.1/. There exist two smooth S`-periodic real valued functions x`
1 and x`

2 such that
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s ! .x`
1.s/; x`

2.s// is a parametrization of � `. The exterior normal to @˝ at
�
x`

1.s/; x`
2.s/

�
is

n.s/ D
�

dx`
2

ds
.s/; � dx`

1

ds
.s/
�

.

2.1.2 The mesh. Let us consider a family .Th/ of regular and quasiuniform triangular meshes of

˝ . We denote by Nh the number of nodes of Th. More precisely, Th, is a set of triangles such that

� all the nodes lie in ˝.

� the intersection of two distinct triangles is either empty or a common vertex or a whole common

edge of both triangles.

� the diameters of any triangle in Th and of its inscribed circle are both of the order of h.

� We define the open set ˝h such that ˝h D
S

�2Th
� and we call .�i /16i6Nh

the nodes of Th. We

assume that for all i , 1 6 i 6 Nh, �i 2 @˝h if and only if �i 2 @˝ , that for each ` D 0; : : : ; L,

there are nodes of Th lying on � `, and that the Hausdorff distance between @˝ and @˝h is of the

order of h2.

� We assume that @˝h D [L
`D0

� `
h

where � `
h

is a non empty polygonal line whose vertices are the

nodes of Th lying on � `.

2.1.3 Thin layers near @˝ . Consider another positive number ı such that ı=h > N , where N is

fixed positive integer. Let !` be the ring shaped domain defined by

!` WD
˚
x 2 ˝h; d.x; � `/ 6 ı C h

	
: (8)

Since the thickness of !` is of the order of ı, !` � ˝h and !` \ !k D ;, k 6D ` if ı is small

enough. Hereafter, we will take h and ı small enough so that all the geometrical notions can be

defined without ambiguity.

The parameter ı will be the step used in the semi-Lagrangian scheme, in which, for a node

�, one needs to evaluate a function at two points located at a distance ı of � on an approximate

characteristic curve. In !`, this scheme cannot be applied, so we use a finite difference scheme for

(5) instead.

DEFINITION 1 (Internal and boundary nodes) We say that a vertex � of Th is a strongly internal

mesh node if � does not belong to [L
`D0

!`. In the opposite case, we say that � is a boundary node.

Since the Hausdorff distance between @˝ and @˝h is of the order of h2, if ı is small enough,

then for all the strongly internal mesh nodes �,

B.�; ı/ � ˝h: (9)

DEFINITION 2 We define the set of nodes �`
h

by

�`
h WD f�I � is a boundary node lying in !`g:

If � is a boundary node, then there exists a unique `, 0 6 ` 6 L such that � 2 �`
h

.

Hereafter, we assume that ı is small enough such that for any � 2 �`
h

, the projection �`.�/ of �

on � ` is uniquely defined as the point on � ` which minimizes the distance to �. The distance of �

to � ` is then d.�; � `/ D j� � �`.�/j. Similarly, we can extend the definition of the normal vector

to � ` to the nodes in �`
h

by : for all � 2 �`
h

, n`.�/ D n`.�.�//. We can also define s`.�/ as the

curvilinear abscissa of �`.�/.
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In practice, the set of nodes �`
h

and then �`.�/ for � 2 �`
h

can be obtained in different ways.

Without going to far into details, one can

� either solve eikonal equations on a much finer grid (a very fine uniform grid for example).

� or construct triangulations of regions approximating fx 2 ˝; d.x; � `/ 6 ı C hg with a high

resolution in the tangential direction to � `, and perform a search method to see if a node � of Th

belongs to �`
h

, and if yes to compute �`.�/ (by dichotomy for instance).

The pair .d.�; � `/; s`.�// is closed to an orthogonal system of coordinates in !`, and the nodes

� 2 �`
h

can be sorted by ordering either .d.�; � `/; s`.�// or .s`.�/; d.�; � `// lexicographically.

These two kinds of indexing will prove useful for what follows.

As an example, assume that the domain ˝ has a hole, so L D 1; its outer boundary is

parametrized by

x1 D 2 cos.2�t/ C 0:75 cos.4�t/; x2 D 2 sin.2�t/ C 0:75 sin.4�t/;

and its inner boundary is the unit circle of equation jx � .0:5; 0/j D 1. We take h � 0:06 and

ı � 0:3. The mesh and the two layers near the boundaries are displayed in Figure 2: there are two

lines around the layers’ boundaries. Note that we have chosen a large value of ı for the layers to be

visible.

2.2 Piecewise linear finite elements

For what follows, we need to define the space of functions Vh D fv 2 C0.˝h/; vj� is affine; 8� 2
Thg. For i D 1; : : : ; Nh, let �i 2 Vh be the nodal basis function associated to node �i , i.e., �i .�j / D
ıi;j , 8j D 1; : : : ; Nh.

The finite element method for the heat equation in ˝h with Neumann conditions on @˝h

involves the stiffness matrix A 2 R
Nh�Nh and the mass matrix M 2 R

Nh�Nh , which will be

useful below:

Ai;j D
Z

˝h

D�i .x/ � D�j .x/dx; Mi;j D
Z

˝h

�i .x/�j .x/dx: (10)

It is well known that if all the triangles containing a vertex �i have acute angles then Ai;j 6 0, for

all j 6D i . Similarly, if all the triangles in a mesh Th have all acute angles, then the resulting matrix

A is a M-matrix, (there is a discrete maximum principle).

We will sometimes make the following assumption:

ASSUMPTION 1 For all the strongly internal nodes �i , all the triangles containing �i have acute

angles, uniformly bounded away from 0 and �=2. In such a case, if �i 6D �j are two vertices of a

triangle t 2 Th containing a strongly internal node, then

Ai;j 6 �˛; (11)

for a positive constant ˛ uniform w.r.t. t .

REMARK 1 In dimension two, if @˝ is smooth, it is always possible to construct such families of

triangulations, by adding so-called Steiner nodes to the triangulation if necessary.

For what follows, we will need the following definitions:
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FIG. 2. The domain ˝ , the mesh and the two layers near the boundaries

� For a real valued function w defined at the nodes of Th, we call IhŒw� the piecewise affine

interpolation of w.

� For a mesh node �i , let Th;i be the set of triangles � of Th such that �i is a vertex of � , and !�i

be the polygonal domain obtained as the union of the triangles in Th;i . We also define ˙i D fj W
�j is a vertex of !�i

g.

2.3 The scheme

We approximate u.�i ; n�t/, 1 6 i 6 Nh by un
i computed by a discrete numerical scheme. The

proposed schemes differ according to the previously defined regions. At the strongly internal nodes,

we will use the semi-Lagrangian scheme advocated by Carlini et al [7] whereas in the thin regions

near @˝ , namely !`, ` D 0; : : : ; L, we will use a finite difference scheme for the equation

n`.x/ � Du.x/ � �
ˇ̌
Du.x/

ˇ̌
D 0: (12)

Note that the width of that region is controlled by the parameters ı and h according to (8).
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2.3.1 The scheme in !`, ` D 0; : : : ; L. The nonlinear Neumann condition (12) is not only

imposed at the nodes on @˝h, but also at all the boundary nodes in !`. Consider the steady state

Hamilton-Jacobi equation (12), and a monotone and consistent scheme for (12) at the nodes in � `
h

which we write

B`
�
�i ; ui ; Œu�`;

�
Œu�
��

D 0; for all i such that �i 2 �`
h (13)

where

Œu�` D
˚
uj ; 1 6 j 6 Nh; j 6D i; �j 2 �`

h

	
;

�
Œu�
�

D
˚
uj ; 1 6 j 6 Nh; �j is strongly internal

	
:

For example, a first order Godunov like scheme can be used, see ÷ 2.4. Note that such an upwind

scheme written at a given node � 2 �`
h

may involve values at strongly internal mesh nodes.

The values unC1
i , for i such that �i 2 �`

h
are computed by solving the system of nonlinear

equation

B`
�
�i ; unC1

i ; ŒunC1�`;
�
Œun�

��
D 0; for all i such that �i 2 �`

h: (14)

The monotonicity of the scheme implies the existence and uniqueness of a solution, see [10].

System (14) is solved by a fast sweeping method as in [32], which consists of combining

several Gauss-Seidel methods corresponding to different orderings of the nodes in �`
h

introduced in

Definition 2; this is why it is useful to have several lexicographic orderings of the nodes in �`
h

, all

related to a close to orthogonal systems of coordinates (see ÷ 2.1 and ÷ 2.4 for more details on the

implementation).

2.3.2 The scheme at the strongly internal nodes. At the strongly internal nodes, we essentially

use the scheme proposed by Carlini et al [7], with a slight modification due to the unstructured

character of the present mesh.

An important ingredient of the scheme is a linear discrete gradient operator: let �i be an internal

mesh node. We assume that if v is constant, then Dhv D 0 and that the order of the approximation

is q > 0, i.e., if ˚ is a smooth function, then

max
i

ˇ̌
ŒDh˚�.�i / � D˚.�i /

ˇ̌
6 C hq: (15)

We also assume that for any function v whose values at the mesh nodes is known, the discrete

gradient of v at �i is of the form

ŒDhv�.�i / D
 P

j 2˙i
d

j
i;1 v.�j /P

j 2˙i
d

j
i;2 v.�j /

!
; (16)

where the coefficients d
j
i;1 and d

j
i;2 do not depend on v, but only on the mesh. Let us give a possible

construction of Dh.

Example Let v be a continuous function defined on ˝h, such that for all � 2 Th, vj� is affine.

Define the discrete gradient ŒDhv�.�i / by

ŒDhv�.�i / D
X

�2Th;i

j� j
j!�i

jD.vj� /; (17)
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with the notation defined at the end of ÷ 2.2. For a function defined at the mesh nodes, we set

ŒDhv�.�i / D
X

�2Th;i

j� j
j!�i

jD
�
IhŒv�j�

�
: (18)

where Ih is the Lagrange interpolation operator on piecewise affine functions. Note that ŒDhv�.�i /

can also be written

j!�i
jŒDhv�.�i / D

0
BB@

Z

!�i

DIhŒv� � e1

Z

!�i

DIhŒv� � e2

1
CCA D

0
BBB@

X

j 6Di

v.�j /

Z

!�i

D�j � e1

X

j 6Di

v.�j /

Z

!�i

D�j � e2

1
CCCA : (19)

It can be proved that this is a first order approximation, i.e. q D 1 in (15). Moreover, it is well

known that if the mesh is uniform and made with right isocele triangles, then the approximation is

superconvergent, i.e., q D 2.

REMARK 2 In general, it is possible to construct second order approximations of the gradient of

v at �i by linear combinations of the values v.�j /, where �j are the vertices of !�i
. The idea is to

use a third order interpolation operator of v on !�i
(exact on second order polynomials). Such an

interpolation is not unique in general.

For each i D 1; : : : ; Nh, set

Dn
i D ŒDhun�.�i /: (20)

Given two positive numbers C and s, the two sets of indices Jn
1 and Jn

2 are defined as follows:

Jn
1 D fi D 1; : : : ; NhI �i is strongly internal and jDn

i j > C hsg;
Jn

2 D fi D 1; : : : ; NhI �i is strongly internal and jDn
i j < C hsg:

(21)

If i 2 Jn
1 , then we introduce the unit vector �n

i by

�n
i D 1ˇ̌

Dn
i

ˇ̌
�

�.Dn
i /2

.Dn
i /1

�
(22)

and we compute unC1
i by

unC1
i D un

i C �t

ı2

�
IhŒun�.�i C ı�n

i / C IhŒun�.�i � ı�n
i / � 2un

i

�
; i 2 Jn

1; (23)

which is possible thanks to (9).

REMARK 3 It is useful to recall that the mapping � W p 7! 1
jpj

.p2; �p1/T is differentiable in

R
2nf0g and that its Jacobian matrix at p 6D 0 is

D�.p/ D

0
@ � p1p2

jpj3
p2

1

jpj3

� p2
2

jpj3
p1p2

jpj3

1
A ;

so the Frobenius norm of D�.p/ equals 1=jpj.
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REMARK 4 Concerning the implementation of (23), the main difficulty is to locate the triangle

containing the feet of the (generalized) characteristics, namely �i ˙ ı�n
i in order to compute the

value of the solution at that point via a local interpolation operator. Trying to locate z � �i C ı�n
i

for example, one can start from a triangle containing �i and construct inductively a sequence .�m/

of triangles closer and closer to z as follows: if �m contains z, then stop. Else, call .Aj /j D1;2;3 the

vertices of �m and .wj /j D1;2;3 the related barycentric coordinates. Compute the numbers wj .z/. If

there exists only one index j such that wj .z/ < 0, say j D 1, then �mC1 is the triangle sharing the

edge A2A3 with �m. If on the contrary, we have wj .z/ < 0 for two indices j , say j D 1 and j D 2,

then choose �mC1 as one of the two triangles sharing with �m the edges A1A3 or A2A3.

The values unC1
i , i 2 Jn

2 remain to be defined. We set

unC1
i D �

P
j 6Di Aij un

j

Ai i

D
P

j 6Di Aij un
jP

j 6Di Aij

; i 2 Jn
2; (24)

where the matrix A has been defined in (10). We can also write (24) in the following way:

 
NhX

j D1

Mij

!
�
unC1

i � un
i

�
D ��i �t

NhX

j D1

Aij un
j ; (25)

where

�i D
�PNh

j D1 Mij

�

�tAi i

:

We see that unC1
i is found by performing one iteration of an explicit Euler scheme for a parabolic

equation of the form
@w

@t
� �.x/�w D 0; (26)

with mass lumping (we have replaced the mass matrix which is involved in the Galerkin

approximation of (26) by a diagonal matrix whose i th diagonal coefficient is obtained by summing

up all the coefficients of the i th row of the mass matrix M ), and where � is a small (of the order of

h2=�t) variable coefficient.

To summarize, if �i is a strongly internal node,

unC1
i D un

i C �t

ı2

�
IhŒun�.�i C ı�n

i / C IhŒun�.�i � ı�n
i / � 2un

i

�
; if i 2 Jn

1;

unC1
i D �A�1

i i

X

j 6Di

Aij un
j ; if i 2 Jn

2 :
(27)

For a given index i D 1; : : : ; Nh, we write the nonlinear equation describing the scheme at node �i

(i.e. (14) if �i 2 � `
h

/, (27) if �i is a strongly internal node) in the generic form

G�t .i; n; unC1; un/ D 0; i D 1; : : : ; Nh: (28)

REMARK 5 The scheme at strongly inner nodes can be interpreted in various ways: first, the method

introduced in [18] is used as long as jDuj is large enough: the stochastic dynamical system which

is behind the degenerate parabolic operator is discretized and we obtain a system of “generalized
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characteristics” for the degenerate problem. The stochastic problem behind this interpretation has

been introduced and analyzed by Buckdahn, Cardaliaguet and Quincampoix in [6] and Soner and

Touzi in [29, 30]. More recently, Kohn and Serfaty have given in [22] a discrete game interpretation,

in which the degenerate parabolic operator is approximated by a time discretization of min–max

type.

Second, in order to handle the singular case jDuj D 0, the scheme proposed in [18] is modified

by switching to an approximation of the heat equation whenever jDuj is below a given threshold.

2.3.3 Property. Invariance with respect to the addition of constants.

If we write the global scheme in the form

unC1 D S�t .un/;

then it is easy to prove that, for all real number k, we have,

S�t .un C k/ D S�t .un/ C k:

REMARK 6 It is interesting to note that, if Assumption 1 does not hold, then one may wish to use a

scheme different from (24): it is well known that there exists a field of symmetric tensors x ! a.x/

such that ajt is constant for all t 2 Th, and that there exist three positive constants ˛ 6 a < a

independent of h such that for all � 2 R
2,

� a satisfies the uniform continuity and ellipticity properties:

ja.x/�j 6 aj�j; and �T a.x/� > aj�j2I

� the matrix eA 2 R
Nh�Nh : eAi;j D

R
˝h

a.x/D�i .x/ � D�j .x/dx is a M-matrix. Moreover, if

�i 6D �j are two vertices of a same triangle t 2 Th, then eAi;j 6 � ˛
h2 .

Then, instead of (24), one may use

unC1
i D �

P
j 6Di

eAij un
j

eAi i

D
P

j 6Di
eAij un

jP
j 6Di

eAij

; i 2 Jn
2 :

2.4 An example of a Godunov like scheme for (12)

Let �i belong to �`
h

. For simplicity, when writing the scheme, we drop the index accounting for

time. To recover a scheme of the form (14), all the values of u related to boundary nodes should be

taken at time tnC1 and all the values related to strongly internal nodes should be taken at time tn.

If �i 62 � `, the line �i C Rn`.�i / cuts the polygonal line @!�i
at two points �

�;C
i and �

�;�
i , with

.�
�;C
i � �i / � n`.�i / > 0 and .�

�;�
i � �i / � n`.�i / < 0. We use the notation h

�;˙
i D j��;˙

i � �i j.
Similarly, if t`.�i / D .�n`

2.�i /; n`
1.�i //, the line �i C Rt`.�i / cuts the polygonal line @!�i

at two

points �
�;C
i and �

�;�
i , with .�

�;C
i � �i / � t`.�i / > 0 and .�

�;�
i � �i / � t`.�i / < 0. We use the notation

h
�;˙
i D j��;˙

i � �i j. An example is given in Figure 3.

We use the following finite differences:

D
�;C
i u D 1

h
�;C
i

�
IhŒu�.�

�;C
i / � ui

�
; D

�;�
i u D 1

h
�;�
i

�
ui � IhŒu�.�

�;�
i /

�
;

D
�;C
i u D 1

h
�;C
i

�
IhŒu�.�

�;C
i / � ui

�
; D

�;�
i u D 1

h
�;�
i

�
ui � IhŒu�.�

�;�
i /

�
:



466 Y. ACHDOU AND M. FALCONE

@˝

t`.�i /

n`.�i /

�
�;C
i

�
�;�
i

�
�;�
i

�i

�
�;C
i

FIG. 3. The construction of the scheme at �i 2 �`
h

n� `

If � < 0, then the Godunov scheme at �i is:

D
�;�
i u � �

�
min.D

�;C
i u; 0/2 C max.D

�;�
i u; 0/2 C min.D

�;C
i u; 0/2 C max.D

�;�
i u; 0/2

� 1
2 D 0:

If � > 0, then the Godunov scheme at �i is:

D
�;�
i u � �

�
max.D

�;C
i u; 0/2 C min.D

�;�
i u; 0/2 C max.D

�;C
i u; 0/2 C min.D

�;�
i u; 0/2

� 1
2 D 0:

If on the contrary, �i lies on �`, then we define �
�;�
i and h

�;�
i as above, but the nodes �

�;˙
i are now

the two neighbors of �i on �`; we take h
�;˙
i D j��;˙

i � �i j. If � < 0, then the upwind scheme at �i

is:

D
�;�
i u � �

�
min.D

�;C
i u; 0/2 C max.D

�;�
i u; 0/2 C .D

�;�
i u/2

� 1
2 D 0:

If � > 0, then the Godunov scheme at �i is:

D
�;�
i u � �

�
max.D

�;C
i u; 0/2 C min.D

�;�
i u; 0/2 C .D

�;�
i u/2

� 1
2 D 0:

3. Analysis of the scheme

Our goal is to establish the convergence of an approximation scheme obtained by adding an articial

viscosity regularization to (27)–(28), via the abstract result proved in [7] (see Section 2 there for
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more details). The modified scheme will be defined in ÷ 3.2 below, see (47). We will prove that this

scheme is consistent and monotone.

Let us recall, for readers convenience, the definition of viscosity solution for the boundary value

problem. We denote by F .p; X/ and F .p; X/ the lower and upper semicontinuous extensions of

the function F.p; X/ D �trace..I � p˝p

jpj2
/X/ at p D 0. With the notation:

G.x; �; p; X/ D
�

� C F .p; X/ if x 2 ˝;

max.� C F .p; X/; p � n � � jpj/ if x 2 @˝;

G.x; �; p; X/ D
�

� C F .p; X/ if x 2 ˝;

min.� C F .p; X/; p � n � � jpj/ if x 2 @˝;

(29)

and following [11], we say that an upper semicontinuous function u is a subsolution if for all ˚ 2
C1. N̋ � .0; T �/, if .x0; t0/ is a maximum point of u � ˚ then

G
�
x0;

@˚

@t
.x0; t0/; D˚.x0; t0/; D2˚.x0; t0/

�
6 0I (30)

we say that a lower semicontinuous function u is a supersolution if for all ˚ 2 C1. N̋ � .0; T �/, if

.x0; t0/ is a minimum point of u � ˚ then

G
�
x0;

@˚

@t
.x0; t0/; D˚.x0; t0/; D2˚.x0; t0/

�
> 0: (31)

3.1 Consistency

We are going to prove the consistency of the scheme (28). The consistency of the modified scheme

introduced in ÷ 3.2 below is obtained in the same way, since it only differs from the present one by

the addition of a vanishing artificial viscosity. Following Barles and Souganidis [5], we say that the

scheme (28) is consistent if for any smooth function ˚ defined on Œ0; T � � ˝ , we have that for any

t 2 .0; T � and x 2 ˝ , for any sequence of positive mesh parameters .hm; �tm; ım/ tending to 0

with hm D o.ım/, for any sequence �i;m tending to x as m ! 1, �i;m being a mesh node of Thm
,

and for any sequence tnm
D nmhm tending to t as m tends to 1,

G
�
x;

@˚

@t
.x; t/; D˚.x; t/; D2˚.x; t/

�
6 lim inf

m!1
G�t .im; nm; ˚nmC1; ˚nm/

6 lim sup
m!1

G�t .im; nm; ˚nmC1; ˚nm/

6 G
�
x;

@˚

@t
.x; t/; D˚.x; t/; D2˚.x; t/

�
;

(32)

calling ˚n D .˚.�j ; n�t//j D1;:::;Nh
.

PROPOSITION 1 Assume that h2=�t D o.1/, h=ı D o.1/ and hq�s=ı D o.1/. Then the scheme is

consistent.

Proof. Consider a sequence of positive mesh parameters .hm; �tm; ım/ tending to 0 with hm D
o.ım/, a sequence �i;m (tending to x as m ! 1, �i;m being a mesh node of Thm

, and a sequence

tnm
D nmhm tending to t as h tends to 0. For brevity, we will drop the index m when there is no

ambiguity.

We can make out four cases:
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Case 1: x 2 ˝ and D˚.x; t/ 6D 0 In this case, we know that there exists � > 0 and � > 0 such that

the ball B.x; �/ is contained in ˝ and that jD˚.y; s/j > � for all y 2 B.x; �/ and s 2 Œmin.0; t �
�/; max.T; t C �/�. Since ŒDh˚.�; t/� is a consistent approximation of the gradient D˚.�; t/, we

know that if h and �t are small enough, then for all the mesh nodes � contained in e.g. B.x; �=2/,

and for all the discrete times tn 2 Œmin.0; t � �=2/; max.T; t C �=2/�, we have jŒDh˚.�; tn/�.�/j >

C hs , where C and s are the constants used in (21). Moreover, we can choose ı small enough such

that all the mesh nodes contained in B.x; �=2/ are internal mesh nodes. Therefore, for m large

enough, for all the mesh nodes �i contained in the ball B.x; �=2/ and for all the discrete times

tn 2 Œmin.0; t � �=2/; max.T; t C �=2/�,

G�t .i; n; ˚nC1; ˚n/

D ˚.�i ; tnC1/ � ˚.�i ; tn/

�t
C

2˚.�i ; tn/ � IhŒ˚n�.�i C ı�n
i / � IhŒ˚n�.�i � ı�n

i /

ı2
; (33)

where �n
i is given by (22) with Dn

i D ŒDh˚n�.�i /.

Then, using the results contained in Carlini et al [7], we have

lim
m!1

G�t .i; n; ˚nC1; ˚n/ D
�

@˚

@t
� trace

��
I � D˚ ˝ D˚

jD˚ j2
�
D2˚

��
.x; t/; (34)

which yields (32). In fact, following [7], it can be seen that, if D˚.x; t/ 6D 0, then for m large

enough and j�i � xj � h, jt � tnj � �t ,

ˇ̌
ˇ̌G�t .i; n; ˚nC1; ˚n/ �

�
@˚

@t
� trace

��
I � D˚ ˝ D˚

jD˚ j2

�
D2˚

��
.x; t/

ˇ̌
ˇ̌

D O

�
h2

ı2

�
C O

�
hq

ı

�
C O.�t/ C O.ı2/: (35)

Case 2: x 2 ˝ and D˚.x; t/ D 0 a) Let us first suppose that for all m large enough, Dn
i D

ŒDh˚n�.�i / is such that jDn
i j > C hs. If s < q, then for h small enough, D˚.�i ; tn/ 6D 0, because

the discrete gradient is an approximation of order q of the gradient. In this case, we have (33), and

following [7], this implies that

ˇ̌
ˇ̌G�t .i; n; ˚nC1; ˚n/ �

�
@˚

@t
� trace

��
I � D˚ ˝ D˚

jD˚ j2

�
D2˚

��
.�i ; tn/

ˇ̌
ˇ̌

D O

�
h2

ı2

�
C O

�
hq�s

ı

�
C O.�t/ C O.ı2/: (36)

Since hq�s D o.ı/, this implies that

@˚

@t
.x; t/ C F .0; D2˚.x; t// 6 lim inf

m ! 1
G�t .i; n; ˚nC1; ˚n/

6 lim sup

m ! 1
G�t .i; n; ˚nC1; ˚n/

6
@˚

@t
.x; t/ C F

�
0; D2˚.x; t/

�
:

(37)
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b) Let us now suppose that for all m large enough, Dn
i D ŒDh˚n�.�i / is such that jDn

i j < C hs.

Thus,

G�t .i; n; ˚nC1; ˚n/ D 1

�t
.˚nC1

i � ˚n
i / C �i

 
NhX

j D1

Mij

!�1 NhX

j D1

Aij ˚n
j :

where

�i D

�PNh

j D1 Mij

�

�tAi i

:

It is simple to prove that if h2=�t D o.1/ then

lim
m ! 1

G�t .i; n; ˚nC1; ˚n/ D @˚

@t
.x; t/; (38)

which implies (37).

From points a) and b), we easily deduce (32) when D˚.x; t/ D 0.

Case 3: x 2 � ` � @˝ and D˚.x; t/ 6D 0 In this case, we know that there exists � > 0 and � > 0

such that jD˚.y; s/j > � for all y 2 B.x; �/ \ ˝ and s 2 Œmin.0; t � �/; max.T; t C �/�.

a) Suppose that m large enough, �i is a strictly internal mesh node: in this case, we can

replicate the arguments used in Case 1: for m large enough we may assume that �i 2 B.�; h=2/\˝

and obtain that

lim
m!1

G�t .i; n; ˚nC1; ˚n/ D
�

@˚

@t
� trace

��
I � D˚ ˝ D˚

jD˚ j2
�
D2˚

��
.x; t/: (39)

b) Suppose that for m large enough, �i belongs to �`
h

, so

G�t
�
i; n; ˚nC1; ˚n/ D B`.�y ; ˚.�i ; tnC1/; Œ˚nC1�`;

�
Œ˚n�

��
; (40)

see (13) for the notations. Since this scheme is consistent with (12), we see that

lim
m!1

G�t .i; n; ˚nC1; ˚n/ D @˚

@n`
.x; t/ � �

ˇ̌
D˚.x; t/

ˇ̌
: (41)

From the results obtained in points a) and b), it is an easy matter to deduce (32) by extracting

subsequences if necessary.

Case 4: x 2 � ` � @˝ and D˚.x; t/ D 0 We argue as in Case 3, but we now have to consider

three kinds of sequences .�i ; tn/:

a) Suppose that for m large enough, �i is a strictly internal mesh node, and Dn
i D ŒDh˚n�.�i / is

such that jDn
i j > C hs . In this case, we argue as in Case 2:a).

b) Suppose that for m large enough, �i is a strictly internal mesh node, and Dn
i D ŒDh˚n�.�i / is

such that jDn
i j < C hs . In this case, we argue as in Case 2:b).

c) Suppose that for m large enough, �i belongs to �`
h

. We argue as in Case 3:b).

From the points a), b) and c), we deduce (32). ut
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3.2 Monotonicity

To discuss the monotonicity, we suppose that Assumption 1 holds and we restrict ourselves to taking

for ŒDhu� the first order approximation of the gradient defined in (19), so q D 1. Hereafter, we

suppose that

h1�s D o.ı/: (42)

The standard definition of monotonicity is also replaced by a generalized monotonicity assumption

stated as follows.

DEFINITION 3 The scheme S�t is said to be monotone (in the generalized sense) if it satisfies the

following conditions: let .hm; �tm; ım/ and .�jm
; tnm

/ be generic sequences satisfying

.hm; �tm; ım/ ! 0 and .�jm
; tnm

/ ! .�; t/: (43)

Then, for any smooth function �,

if vjm
6 �

nm�1
jm

then S�tm.vI jm/ 6 eS�tm.�nm�1I jm/ C o.�tm/ (44)

if �
nm�1
j 6 vjm

then eS�tm.�nm�1I jm/ 6 S�tm.vI jm/ C o.�tm/; (45)

where v is a set of node values, andeS�t is a (possibly different) scheme consistent in the sense that

it satisfies (32) in .�; t/.

In the sequel, we write the scheme (14), (27) in the following compact form:

unC1
i D S.unI i/: (46)

Following the ideas contained in [12], we will consider a scheme which results from the further

introduction of a vanishing artificial viscosity in (46). The motivation for such an adaptation is the

following. The scheme (23) is monotone only with respect to the nodes involved by the interpolation

operator. On the other hand, the dependence on the values involved in the approximation of the

gradient is more complex, and the introduction of the artificial viscosity term allows to gain

monotonicity with respect to these values.

Therefore, we will prove the generalized monotonicity property for the modified scheme

unC1
i D bS.unI i/: the scheme is not modified at boundary nodes, and if �i is a strongly internal

node, then

bS.unI i/ D S.unI i/ � W
�t

ıhsC1

NhX

j D1

Aij un
j ; if i 2 Jn

1;

D �.Ai i /
�1
X

j 6Di

Aij un
j ; if i 2 Jn

2;

(47)

where W is a suitable positive constant.

REMARK 7 Note that �t
ıhsC1

PNh

j D1 Aij un
j is actually a vanishing viscosity term if h1�s D o.ı/:

indeed, remember that in 1
h2

P
j 6Di Aij un

j can be viewed as a discrete version of the partial

differential operator �� applied to the grid function un at �i . Therefore �t
ıhsC1

PNh

j D1 Aij un
j plays

the role of ��t h1�s

ı
�u.�i ; tn/. The artificial viscosity is thus of the order of h1�sı�1.
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We do not need to consider boundary nodes, because the scheme (13) is monotone (in the

classical sense). We thus focus on strongly internal nodes.

First inequality To check (44), suppose now that for any sequence .�j ; tn/ � .�jm
; tnm

/ verifying

(43), the following inequality holds

un
j 6 'n

j � ˚.�j ; tn/ (48)

where un is the solution of (14) and (27), for test functions ˚ 2 C 1. N̋ � Œ0; T �/. Since the

monotonicity property does not depend on the iteration n, then, with no loss of generality, we can

drop the dependency on t of the test function ˚ . Condition (44) can be recast in the form

bS.unI i/ 6eS.'I i/ C o.�t/; (49)

where the choice ofeS may vary from one subcase to the other. We will often omit the time index,

writing u for un.

The proof discriminates between two main cases.

Case 1 D˚.�/ 6D 0.

a) �i is a strongly internal node and jŒDhu�.�i /j > C hs . Recall that we have denoted by ˙i the sets

of node indices involved in the construction in ŒDhu�.�i /. It is clear that if j … ˙i , then @S.uIi/
@uj

> 0,

from the monotonicity of the piecewise linear Lagrange interpolation operator Ih.

On the other hand, if j 2 ˙i , j 6D i , then calling z˙
i D �i ˙ ı�i , and assuming that z˙

i do not

lie on the boundary of a triangle of Th,

@S.uI i/

@uj

D �t

ı

�
D
�
IhŒu�

�
.zC

i / � D
�
IhŒu�

�
.z�

i /
�@�i

@uj

: (50)

It can be proved that there exists a constant L independent of h such that if jŒDhu�.�i /j > C hs and

j 2 ˙i ,

�L
�t

ıhsC1
6

@S.uI i/

@uj

6 L
�t

ıhsC1
: (51)

Therefore, differentiatingbS.uI i/, we get

@bS.uI i/

@uj

>
�t

ıhsC1
.�L � WAij / >

�t

ıhsC1
.�L C W ˛/; (52)

where ˛ is the constant appearing in (11). Similarly, for a positive constant Na,

@bS.uI i/

@ui

> 1 C 2�t

ı2
� �t

ıhsC1
.L C WAi i/ > 1 C 2�t

ı2
� �t

ıhsC1
.L C W Na/: (53)

Therefore, if the conditions

�L C W ˛ > 0;

1 C 2�t

ı2
� �t

ıhsC1
.L C W Na/ > 0

(54)
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are fulfilled, then
@bS.uIi/

@uj
> 0, for all i such that jŒDhu�.�i /j > C hs and for all j .

Then, we conclude as in [7].

b) jŒDhu�.�i /j 6 C hs. Since ˚ 2 C 1.R2/, by a Taylor expansion we can write:

˚.�/ D ˚.�i / C .� � �i / � D˚.�i / C 1

2
.� � �i / � D2˚.�i /.� � �i / C O.j� � �i j3/:

Therefore

uj 6 ˚.�i / C .�j � �i / � D˚.�i / C 1

2
.�j � �i / � D2˚.�i /.�j � �i / C O.j�j � �i j3/:

On the other hand, we are going to use the special construction of ŒDhu�.�i / given in (19):

j!�i
jŒDhu�.�i / D

0
BBB@

X

j 6Di

uj

Z

!�i

D�j � e1

X

j 6Di

uj

Z

!�i

D�j � e2

1
CCCA :

Therefore, jŒDhu�.�i /j 6 C hs implies that for any constant vector �,

ˇ̌
ˇ̌
ˇ̌
X

j 6Di

uj

Z

!�i

D�j � �

h

ˇ̌
ˇ̌
ˇ̌ 6 C hsC1: (55)

Hence,

�
X

j 6Di

Ai;j uj D �
Z

!�i

DIhŒu� � D�i C ui D�i � D�i

D �
X

j 6Di

uj

Z

!�i

D�j � D�i

6 �
X

j 6Di

uj

Z

!�i

D�j �
�
D�i � �

h

�
C C hsC1:

(56)

Under the assumptions on the mesh, it is always possible to choose � small enough such that

C > �
Z

!�i

D�j �
�
D�i � �

h

�
> c > 0; for all i; j 2 ˙i ; j 6D i: (57)

With such a choice, exploiting the relations between the matrix involved in the artificial viscosity

term and the linear interpolation operator of the gradient, we get

�
X

j 6Di

Ai;j uj 6 �
X

j 6Di

˚.�j /

Z

!�i

D�j �
�
D�i � �

h

�
C C hsC1

D �
X

j 6Di

Kj

Z

!�i

D�j �
�
D�i � �

h

�
C C hsC1;

(58)
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where

Kj D ˚.�i / C .�j � �i / � D˚.�i / C 1

2
.�j � �i / � D2˚.�i /.�j � �i / C O.j�j � �i j3/:

From (58), we deduce that

�
X

j 6Di

Ai;j uj 6 �

0
@X

j 6Di

Ai;j

1
A˚.�i / C

X

j 6Di

.�j � �i / � D˚.�i /

Z

!�i

D�j � �

h

� 1

2

X

j 6Di

.�j � �i / � D2˚.�i /.�j � �i /

Z

!�i

D�j �
�
D�i � �

h

�
C O.hsC1/ (59)

because

�˚.�i /
X

j 6Di

Z

!�i

D�j � �

h
D ˚.�i /

Z

!�i

D�i � �

h
D 0;

and

�
X

j 6Di

.�j � �i / � D˚.�i /

Z

!�i

D�j � D�i D D˚.�i / �
Z

!�i

D�i D 0:

Note also that
X

j 6Di

.�j � �i /

Z

!�i

D�j � �

h
D j!�i

j �

h
:

Hence, choosing now � D �� D˚.�i /
jD˚.�i /j

with � small enough such that (57) holds true yields

�
X

j 6Di

Ai;j un
j 6 �

0
@X

j 6Di

Ai;j

1
A˚.�i / � �jD˚.�i /j

j!�i
j

h

� 1

2

X

j 6Di

.�j � �i / � D2˚.�i /.�j � �i /

Z

!�i

D�j � .D�i � �

h
/ C O.hsC1/: (60)

Next, using the fact that un satisfies (24), we add and subtract �tF.D˚.�/; D2˚.�// (note that

F D F D F , since we are in the case D˚.�/ ¤ 0), obtaining

unC1
j 6 ˚.�i / � �tF

�
D˚.�/; D2˚.�/

�

� 1X

j 6Di

Ai;j

0
BBB@

��jD˚.�i /j
j!�i

j
h

� 1

2

X

j 6Di

.�j � �i / � D2˚.�i /.�j � �i /

Z

!�i

D�j � .D�i � �

h
/

��t
X

j 6Di

Ai;j F
�
D˚.�/; D2˚.�/

�
C O.hsC1/

1
CCCA :

(61)
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Since ˚ 2 C1 and since from (54), �t D o.h/, we have that asymptotically for h ! 0 and

�t ! 0,

0 > ��jD˚.�i /j
j!�i

j
h

� 1

2

X

j 6Di

.�j � �i / � D2˚.�i /.�j � �i /

Z

!�i

D�j �
�
D�i � �

h

�

� �t
X

j 6Di

Ai;j F
�
D˚.�/; D2˚.�/

�
C O.hsC1/;

(62)

hence there exists a �t > 0 such that for every �t < �t :

unC1
i 6 ˚.�i / � �tF

�
D˚.�/; D2˚.�/

�
: (63)

The scheme denoted byeS in (49) may now be chosen as a generic scheme satisfying (32) at �. Since

the test function ˚ does not depend on time, eS.'I i/ verifies:

lim
m!1

'.�im/ �eS.'I im/

�tm
D F

�
D˚.�/; D2˚.�/

�
;

so that we have ˚.�i / �eS.'I i/ D �tF.D˚.�/; D2˚.�// C o.�t/ and we finally get

unC1
i 6 eS.'I i/ C o.�t/:

Case 2 D˚.�/ D 0.

When jŒDhu�.�i /j 6 C hs the scheme is clearly monotone (in the conventional sense) at the node

�i , being a convex combination of node values.

For jŒDhu�.�i /j > C hs , the scheme still satisfies (44) since

unC1
i D bS.unI i/ 6 eS.'I i/ (64)

whereeS.'I i/ has been chosen in the following form,

eS.'I i/ D ˚.�i / C �t

ı2

�
1

2
IhŒ'�.�i C ı�n

i / C 1

2
IhŒ'�.�i � ı�n

i / � ˚.�i /

�

� W�t

ıhsC1

X

j

Ai;j ˚.�j /;

where �n
i is given by (22), i.e., is computed from the values of un. The inequality (64) holds because

the upwind points �i ˙ ı�n
i are the same on the left and right term and the time step �t verifies the

second inequality in (54).

MoreovereS is a consistent scheme, since under condition (42),

˚.�i / �eS.'I i/

�t
D .�n

i /T D2˚.�i /�
n
i C o.1/:

Therefore, following the same arguments used in Case 2a of the consistency proof,

F
�
D˚.�/; D2˚.�/

�
6 lim inf

m!1

˚.�im/ �eS.'I im/

�tm

6 lim sup
m!1

˚.�im/ �eS.'I im/

�tm
6 F

�
D˚.�/; D2˚.�/

�
;

which yields the consistency foreS at �.
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Second inequality We have to check assumption (45). We now assume that, for �t ! 0 and

.�i ; tn/ ! .x; t/:

un
i > ˚.�i /: (65)

We need to prove that

bS.unI i/ > eS.'I i/ C o.�t/ (66)

in which the choice ofeS will follow the same guidelines used in proving (44).

Case 1 D˚.�/ ¤ 0.

As we have seen, for h ! 0, the condition jDj Œ'�j > C hs is asymptotically satisfied.

We consider the same subcases as before:

a) �i is a strongly internal node and jŒDhu�.�i /j > C hs . The result is obtained exactly as the first

inequality in Case 1a).

b) �i is a strongly internal node and jŒDhu�.�i /j 6 C hs. In this case, we use the same argument as

for the first inequality in Case 1b). Indeed, for any constant vector �,

�
X

j 6Di

Ai;j uj D �
Z

!�i

DIhŒu� � D�i C ui D�i � D�i

D �
X

j 6Di

uj

Z

!�i

D�j � D�i

> �
X

j 6Di

uj

Z

!�i

D�j �
�
D�i � �

h

�
� C hsC1;

(67)

and it is always possible to choose � small enough such that (57) holds true. With such a choice,

�
X

j 6Di

Ai;j uj > �.
X

j 6Di

Ai;j /˚.�i / C
X

j 6Di

.�j � �i / � D˚.�i /

Z

!�i

D�j � �

h

� 1

2

X

j 6Di

.�j � �i / � D2˚.�i /.�j � �i /

Z

!�i

D�j �
�
D�i � �

h

�
C O.hsC1/: (68)

Hence, choosing now � D �� D˚.�i /
jD˚.�i /j

with � small enough such that (57) holds true one gets

�
X

j 6Di

Ai;j un
j > �

0
@X

j 6Di

Ai;j

1
A˚.�i / C �jD˚.�i /j

j!�i
j

h

� 1

2

X

j 6Di

.�j � �i / � D2˚.�i /.�j � �i /

Z

!�i

D�j �
�
D�i � �

h

�
C O.hsC1/: (69)

Since un satisfies (24), we add and subtract �tF.D˚.�/; D2˚.�// (note that F D F D F , since
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we are in the case D˚.�/ ¤ 0), obtaining

unC1
j > ˚.�i / � �tF

�
D˚.�/; D2˚.�/

�

� 1X

j 6Di

Ai;j

0
BBB@

�jD˚.�i /j
j!�i

j
h

� 1

2

X

j 6Di

.�j � �i / � D2˚.�i /.�j � �i /

Z

!�i

D�j � .D�i � �

h
/

��t
X

j 6Di

Ai;j F
�
D˚.�/; D2˚.�/

�
C O.hsC1/

1
CCCA ;

(70)

and as for the first inequality, there exists a �t > 0 such that for every �t < �t :

unC1
i > ˚.�i / � �tF

�
D˚.�/; D2˚.�/

�
: (71)

We add and subtract a generic schemeeS satisfying (32) and get

unC1
i > eS.'I i/ C o.�t/:

Case 2 : D˚.�/ D 0.

If �i is a strongly internal node and jŒDhu�.�i /j 6 C hs, then we use the monotonicity of the scheme

(24). Else, if �i is a strongly internal node and jŒDhu�.�i /j > C hs, we have

unC1
i D bS.unI i/ > eS.'I i/; (72)

whereeS is the scheme chosen in the discussion of the first inequality, Case 2.

In conclusion, we have proved the following:

THEOREM 1 Let us suppose that Assumption 1 holds and that ŒDhu� is the first order approximation

of the gradient defined in (19). Under the same assumptions as in Proposition 1 (with q D 1), and

under conditions (42) and (54), the regularized scheme (47) is monotone in the sense given by

Definition 3.

COROLLARY 1 Under the assumptions of Theorem 1, the regularized scheme (47) is a convergent

scheme for problem (1), (4), (5) when h, �t , ı, h2=�t , h1�s=ı tend to zero.

Proof. The monotonicity of the regularized scheme comes from Theorem 1. For the consistency, the

same proof as that of Proposition 1 can be used, see Remark 7. The generalized Barles–Souganidis

theorem can then be applied, thanks to the strong comparison principle stated in [3]. ut

REMARK 8 It was shown in [7] that it was actually possible to find regimes in which the

assumptions of Theorem 1 and of Corollary 1 hold, for example: 0 < s < 1, h D ı ,

�t D ˇı1C.1Cs/ where  is a parameter such that .1 � s/ > 1 and ˇ is a positive number,

small enough such that (54) holds.

REMARK 9 The analysis above has been made only in dimension two, for meshes with acute angles,

in the case when A is given by (10) and the interpolation operator is given by (18). In this case A

and the interpolation operator are closely related to each other and the proof takes advantage of this

relationship. It would be very interesting to generalize the proof to cases when the two operators are

more independent from each other, in particular for the scheme proposed in Remark 6, and also to

dimension three.
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4. Numerical results

Let us examine some numerical tests in dimension two in order to verify the efficiency and accuracy

of the approximation scheme described in ÷ 2 (note that we do not use the modified scheme

mentioned in ÷ 3.2, which uses an artificial viscosity).

4.1 An example proposed by G. Barles

Take for ˝ a ring with inner radius r and outer radius R > r , and set u0.x/ D �.jxj2/. G. Barles

has proved in [3] that the viscosity solution of (1), (4), (5) is

u.x; t/ D �.min.jxj2 C 2t; R2//; in ˝ � .0; C1/;

for any value of � 2 .�1; 1/. The level set u.x; t/ D �.R2/ is the ring x 2 Œmax.
p

R2 � 2t ; r/; R�.

The partial differential equation holds up to the boundary jxj D r , and the boundary condition is

lost there.

4.1.1 Results on a fully structured grid. Here, the domain is a ring with inner radius r D 0:1 and

outer radius R D 0:4, and we have chosen u0.x/ D 16jxj2, so u.x; t/ D min.16.jxj2 C 2t/; 2:56/.

For a large integer N , the grid nodes are

�i;j D .r C i.R � r/=N /
�

cos.2j�=N /; sin.2j�=N /
�

; i D 0; : : : ; N; j D 1; : : : ; N;

and we take �t D .R � r/=.10N / and ı D
p

2�t C 2.R � r/=N .

We have chosen � D 0:5

On such a structured grid, the approximation of the gradient is a centered finite difference

method in polar coordinates, so it is second order. Since the approximation of the gradient is second

order, we choose s D 1. In this case, it is convenient to replace (24) with an explicit Euler scheme

for the equation

@w

@t
� �

�
@2w

@r2
C @2w

@�2

�
D 0

with � � 1
N 2�t

.

In this case, as seen in Table 1, the error seems to decay like N � 1
2 , which agrees with the

estimates on the consistency error in (36).

TABLE 1. kErrork1

N 50 100 200 400

Error 0:116 0:082 0:055 0:041

Rel. Error 4:53% 3:2% 2:14% 1:6%

4.1.2 Results on a nonstructured grid. The domain is a ring with inner radius r D 1 and outer

radius R D 2. We take u0.x/ D jxj2, so the viscosity solution of (1), (4), (5) is u.x; t/ D min.jxj2C
2t; 4/, for all � .
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FIG. 4. h D 0:01: contour lines at t D 0:4; 0:8; 1:2; 1:6. The boundary zones are also presented in the figures.

For a given parameter h, we choose

�t D h=10; ı D
p

2�t C 2h; s D 0:5:

We have chosen � D �0:5. Table 2 contains the errors in maximum norm with respect to the

explicit solution for different vales of h. It can be seen that the error decays to zero like
p

h. The

contour lines of the solution at different times are shown in Figure 4, along with the two circles

representing the boundaries of the layers !1 and !2. We see that the scheme captures correctly

the zones where the solution is constant. The error in maximum norm with respect to the explicit

solution as a function of time is plotted in Figure 5.

TABLE 2. kErrork1

h 0:04 0:02 0:01 0:0064

Error 0:21 0:154 0:114 0:095

Rel. Error 5:3% 3:8% 2:85% 2:37%
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FIG. 5. h D 0:0064: error in max norm vs. time

4.2 Other examples

4.2.1 Test 2. Here, the domain is a ring with inner radius r D 1 and outer radius R D 2, and we

take u0.x/ D sin. 16
25

..x � 0:5/2 C x2
2//. We use an unstructured mesh such that h � 0:02 and take

�t D 0:002. The thickness of the layers near the boundaries is of the order of 0:2.

The contour lines at different times, for � D �0:5, (resp. � D 0:95) are displayed in Figure 6

(resp. 7). In the first (resp. second) case the contour lines make an angle of 30o (resp � 71:8o) with

the normal to the boundary.

4.2.2 Test 3. The domain is constructed as follows. It has a hole. The outer boundary is

parametrized by

x1 D 2 cos.2�t/ C 0:75 cos.4�t/; x2 D 2 sin.2�t/ C 0:75 sin.4�t/;

and the inner boundary is the unit circle of equation jx � .0:5; 0/j D 1. We choose � D �0:5 and

u0.x/ D jx1j=10. We take

h D 0:02; ı D 0:1; �t D 0:001:

Contour lines are displayed in Figure 8. We see that a level set with non empty interior appears.

4.2.3 Test 4. The domain is constructed as follows. It has a hole. The outer boundary is

parametrized by

x1 D 2 cos.2�t/ C 0:75 cos.4�t/; x2 D 2 sin.2�t/ C 0:75 sin.4�t/;

and the inner boundary is the unit circle centered at 0. We choose � D �0:5 and u0.x/ D sin.4jxj/.
We take an unstructured mesh with

h D 0:02; ı D 0:1; �t D 0:001:

Contour lines are displayed in Figure 9.
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FIG. 6. Test 2: � D �0:5, contour lines at t D 0; 0:08; 0:16; 0:24; 0:32; 0:8; 1:2; 2
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FIG. 7. Test 2: � D 0:95, contour lines at t D 0; 0:08; 0:16; 0:24; 0:32; 0:8; 1:2; 2
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FIG. 8. Test 3: Contour lines at t D 0; 0:08; 0:16; 0:24; 0:32; 0:8; 1:2; 2
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FIG. 9. Test 4: Contour lines at t D 0; 0:08; 0:16; 0:24; 0:32; 0:8; 1:2; 2
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