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We analyse the properties of a semi-Lagrangian scheme for the approximation of the Mean
Curvature Motion (MCM). This approximation is obtained by coupling a stochastic method for the
approximation of characteristics (to be understood in a generalized sense) with a local interpolation.
The main features of the scheme are that it can handle degeneracies, it is explicit and it allows for
large time steps. We also propose a modified version of this scheme, for which monotonicity and
consistency can be proved. Then convergence to the viscosity solution of the MCM equation follows
by an extension of the Barles–Souganidis theorem. The scheme is also compared with similar existing
schemes proposed by Crandall and Lions and, more recently, by Kohn and Serfaty. Finally, several
numerical test problems in 2D and 3D are presented.
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1. Introduction

In this paper we analyse the properties of a semi-Lagrangian scheme for the approximation of the
viscosity solutions u(x, t) of the Mean Curvature Flow equationut = trace

((
I −

Du⊗Du

|Du|2

)
D2u

)
= div

(
Du

|Du|

)
|Du| in Rn × (0, T ),

u = u0 on Rn × {t = 0}.
(1)

Here, Du stands for the space gradient, D2u for the Hessian matrix of second space derivatives
of u, and for any vector p ∈ Rn, p ⊗ p = ppT . A first version of this scheme has been introduced
in [18] where consistency was proved assuming that the gradient of the solution does not vanish,
i.e., in the nonsingular case. In the present analysis we drop this assumption and introduce a new
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version of the scheme which can handle the singular case. In order to prove convergence, the
main ingredient is a generalization of the result obtained for monotone schemes by Barles and
Souganidis in [3]. Since a straightforward extension of the scheme in [18] is not monotone (even
in this weaker setting), we add a vanishing artificial viscosity term, as proposed by Crandall and
Lions in [9], and introduce a new discretization parameter to approximate characteristics. For this
version of the scheme we prove consistency and monotonicity (in a generalized sense), and thus
convergence.

To put this paper into perspective, let us recall that Crandall and Lions have developed in [9] an
analysis of explicit finite difference schemes for a class of possibly degenerate parabolic equations
of the form

ut − trace(Θ(x,Du)Θ(x,Du)TD2u) = 0 for t > 0, x ∈ Rn. (2)

Here,Θ(x, p) is anN×M matrix valued function of (x, p) ∈ Rn×Rn andAT denotes the transpose
of a matrix A. Note that the integer M is arbitrary and the equation is degenerate if Θ(x, p) is not
invertible.

Our particular case (1) corresponds to the choice

Θ(x, p) = Θ(p) = I −
p ⊗ p

|p|2
(3)

(where | · | denotes the euclidean norm). It is well known that in our case Θ is discontinuous at
p = 0 and degenerate for p 6= 0. Since Θ(p)2 = Θ(p) and Θ(p) = Θ(p)T , Θ(p) is a projection
matrix, which in fact projects the diffusion orthogonally with respect to the gradient. Thus, (1) is
equivalent to (2) with Θ given by (3).

We will work in the framework of level set methods using the theory of viscosity solutions,
which allows one to deal with both singularities of solutions and degeneracies of the parabolic
operator (see [1] and [8] for an introduction to this theory). Existence and uniqueness for the
viscosity solutions to the Cauchy problem (1) have been proved independently by Evans and
Spruck [15] and by Chen, Giga and Goto [7]. Starting from those pioneering papers, the last
years have witnessed a great development of the theory of curvature related flows, as well as
its application to various fields like phase transitions, image processing, fluid dynamics, material
science and crystallography (see the books [29] and [27] for a review of interesting applications
and simulations). We refer the interested reader to the lecture notes [21], [32] and [13] for the
theory of viscosity solutions in this framework. But, despite the large number of analytical results
concerning well-posedness and qualitative properties of viscosity solutions to this type of equations,
the literature on numerical methods for the solution of (1) is considerably poorer. Following the first
scheme proposed by Osher and Sethian in [28], new (and more efficient) methods, as well as some
theoretical convergence result, have been developed. A general convergence theorem for numerical
schemes for fully nonlinear second order equations was proved by Barles and Souganidis in [3], and
has been applied to prove convergence of finite difference schemes in [9]. Convergence theory for
the so called BMO algorithm [25] in discrete time and continuous space can be found in [12], [2].
For the literature on finite element approximations we refer the reader to [11] and [26]. A more
complete idea of the related literature may be found in the books [29] and [27].

We note that the gap between theory and practice is due to a number of technical difficulties
that make it hard to prove convergence and to determine a priori error bounds for numerical
approximations. Some regularized problems have been introduced to circumvent the singularity
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at p = 0, e.g., in [9] the following standard regularized problem has been proposed:

ut = trace
((
I −

Du⊗Du

|Du|2 + ε

)
D2u

)
. (4)

In [15], it has been proved that convergence of solutions uε of (4) as ε → 0 is locally uniform in
(t, x) as long as u0 ∈ UC(Rn) (where UC(Rn) denotes as usual the space of uniformly continuous
functions on Rn). This is also used in [9] for the proof of convergence, which relies on the abstract
theorem by Barles and Souganidis (see Section 3 for more details). The paper [10] presents global
error estimates on the convergence rate of this scheme (in the discrete sup norm), which clearly
require a delicate coupling between ∆x, ∆t and ε. The search for a corresponding a priori error
estimate for the scheme under consideration would definitely be an interesting issue, but it will not
be addressed in this work.

The scheme presented in this paper will not make use of any regularized continuous problem.
First, the method introduced in [18] is used as long as |Du| is bounded away from zero: the
stochastic dynamical system which is behind the degenerate parabolic operator is discretized and
we obtain a system of “generalized characteristics” for the degenerate problem.

Second, in order to handle the singular case |Du| = 0, the scheme proposed in [18] is modified
by switching to an approximation of the heat equation (cf. (26)) whenever |Du| is below a given
threshold (which will depend on ∆x, for consistency reasons).

The stochastic problem behind this interpretation has been introduced and analysed by
Buckdahn, Cardaliaguet and Quincampoix in [4] and Soner and Touzi in [30] and [31] (see also [20]
for the relations between stochastic processes and viscosity solutions to second order problems).
More recently, Kohn and Serfaty have given in [24] a discrete game interpretation, in which the
degenerate parabolic operator is approximated by a time discretization of min-max type.

The semi-Lagrangian (SL in what follows) scheme under consideration allows for large time
steps since the standard parabolic stability condition∆t/∆x2 6 C, which is typical of explicit finite
difference approximations, is not required. Actually, the proofs in this paper refer to the modified
scheme where a new discretization parameter has been introduced and an artificial viscosity term has
been added. Then a critical balance between all the discretization parameters is required to obtain
at the same time consistency and monotonicity, although such a balance turns out anyway to be less
restrictive than the one required in [9], even if we do not make use of the regularized problem. In
practice, our scheme does not need such a strict tuning to work properly and we obtain an accurate
numerical approximation under much broader conditions for the parameters (see Section 8).

To complete the scenario, we should mention that several results on the approximation of
viscosity solutions via SL schemes can be found in [17] (see also the survey paper [33] for a
general overview of SL schemes). The first experimental results on a SL approximation of the Mean
Curvature flow problem were presented in [34].

The paper is organized as follows. In Section 2 we introduce the semi-Lagrangian scheme. In
Section 3 we present a weaker version of the convergence result by Barles and Souganidis. In the
following two sections, we prove the assumptions needed for the convergence result. In particular, in
Section 4 we prove that the scheme is consistent, including the case in which the continuous gradient
vanishes and/or the discrete gradient is “small”. In Section 5 we present an analysis of monotonicity
for a regularization based on the addition of a viscosity term, and in Section 6 a convergence result
is proved for this regularized version of the scheme. In Section 7, we compare our scheme with the
scheme proposed by Crandall and Lions in [9] and with the approach of Kohn and Serfaty in [24].
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Finally, in Section 8 we present and comment some numerical tests in 2D and 3D. These tests
include the evolution of a front with a saddle point which generates a nonempty interior (fattening),
and the evolution of both a torus and a dumbbell with possible topology changes.

2. Construction of the scheme

In what follows, we will always assume that

u0 is continuous on Rn and constant on Rn ∩ {|x| > S} (5)

for some S > 0. The following result holds true:

THEOREM 2.1 ([15]) Assume that (5) holds. Then there exists a unique viscosity solution of (1)
such that

u is constant on Rn × [0,∞) ∩ {|x| + t > R} (6)

for some R > 0, depending only on S.

The properties of the viscosity solution u of our problem can be found in [15]. We just need to
recall that u ∈ C(Rn × [0,∞)) ∩ L∞(Rn × [0,∞)) and (see [10])

‖u‖W 1,∞ < C. (7)

We will denote by Lu the Lipschitz constant of u, so that

|u(x, t)− u(y, t)| 6 Lu|x − y| for any x, y ∈ Rn, t > 0. (8)

The viscosity solution of (1) satisfies a representation formula proved in [4, 30], which, for regular
solutions and whenever Du 6= 0, can be written as

u(x, t) = E{u0(y(t; x, t))} for any (x, t) ∈ Rn × (0, T ). (9)

E(·) is the probabilistic expectation, y(s; x, t) is the position at time s of the solution trajectory of
the stochastic initial value problem originating at time t from x; more precisely,{

dy(s; x, t) =
√

2P(Du(y(s; x, t), t − s))dW(s),
y(0; x, t) = x,

(10)

where W is an n-dimensional standard Brownian motion and P is an n× n matrix defined by

P(p) = I −
ppT

|p|2
. (11)

It is important to note that the matrix P in (11) is a projection matrix, being symmetric (i.e. P = P T )
and idempotent (i.e. P 2

= P ). Writing the representation formula on the time interval [t, t + ∆t]
gives

u(x, t +∆t) = E{u(y(∆t; x, t +∆t), t)}. (12)

The semi-Lagrangian scheme parallels the representation formula written on a single time step (see
[18] for details). In fact, (9) suggests that solutions of the stochastic differential equation (10) may
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be interpreted as characteristics in a generalized sense, this being the basic idea which is behind the
construction of a SL scheme. We discretize (10) according to the theory of weak convergence for
numerical schemes for stochastic differential equations (SDE). The interested reader can find details
of this theory in [23].

If P is of rank r , then P projects onto the space generated by the eigenvectors νi with eigenvalues
λi = 1, which generate the spectral decomposition (this space coincides with the space orthogonal
to the vector p). The normalized eigenvectors, νi , i = 1, . . . , r , are such that

P =

r∑
i=1

νiν
T
i . (13)

Then there exists an n× (n− 1) matrix σ such that

P = σσ T . (14)

Finding σ is straightforward in the two-dimensional case. It is given by the only eigenvector νT1
with eigenvalue λ1 = 1. We obtain

P = σσ T with σ(Du) =
1
|Du|

(
−ux2

ux1

)
. (15)

Since Section 8 will present some tests in dimension 3, we will also construct the matrix σ in the
three-dimensional case. From the spectral decomposition we find the eigenvectors:

νT1 =

(
−ux3√
u2
x1
+ u2

x3

, 0,
ux1√

u2
x1
+ u2

x3

)
, (16)

νT2 =
1
|Du|

(
−ux1ux2√
u2
x1
+ u2

x3

,

√
u2
x1
+ u2

x3
,
−ux2ux3√
u2
x1
+ u2

x3

)
. (17)

The new form of σ will be written as σ = (ν1, ν2) in the case
√
u2
x1
+ u2

x3
6= 0, and otherwise

σ = (d1, d2), where dT1 = (1, 0, 0) and dT2 = (0, 0, 1). Applying the decomposition (14), we have

PdW = σσ T dW = σ(σ T dW) = σdŴ , (18)

with dŴ the differential of a standard (n − 1)-dimensional Brownian motion. Using (18), we can
write (10) as {

dy(s; x, t) =
√

2σ(Du(y(s; x, t), t − s))dŴ (s),
y(0; x, t) = x.

(19)

We remark that the advantage of considering (19) instead of (10) is that the Brownian motion Ŵ is
one dimension lower than W .

In this paper, (19) will be discretized by a simple stochastic Euler scheme, although more
accurate approximation schemes are available (cf. [23]). This is done to simplify the analysis
of the scheme but the same approach can in principle be applied to higher order schemes (see,
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e.g., [19]). Of course, the application of such techniques to the MCM equation would require
additional investigations. The stochastic Euler scheme reads{

yk+1 = yk +
√

2σ(Du(y(tk; x, t), t − tk))∆Ŵk,

y0 = x,
(20)

where tk = k∆t , k ∈ N, and ∆t is a constant time step. Even if ∆Ŵk should represent a Gaussian
variable with mean 0 and variance∆t , to obtain first order convergence it suffices to have a variable
with 2-point discrete probability density,

P(∆Ŵk = ±
√
∆t) = 1/2, (21)

for the one-dimensional Brownian, and with 4-point discrete probability density,

P
(
(∆Ŵk,1,∆Ŵk,2) = (±

√
∆t,±

√
∆t)

)
= 1/4, (22)

for the two-dimensional Brownian.
For simplicity, we will write the full approximation scheme in R2.
Assumption (5) allows us to drop the analysis of boundary conditions. Setting up a space grid of

step∆x, we will denote by xj the nodes of the lattice G∆x where j = (j1, j2) and xj = (x1,j , x2,j ).
We proceed by introducing some notations. Given w : G∆x → R, we define the approximate

gradient on G∆x using centred finite differences

Dj [w] =
1

2∆x

(
w(x1,j +∆x, x2,j )− w(x1,j −∆x, x2,j )

w(x1,j , x2,j +∆x)− w(x1,j , x2,j −∆x)

)
. (23)

The scheme (introduced in [18]) which results from the above discretization is now written at the
node xj and at the (n+ 1)-th time step:

un+1
j =

1
2

(
I [un](xj + σ nj

√
∆t)+ I [un](xj − σ nj

√
∆t)

)
(24)

where un is identified with the vector of values at the nodes un = (unj )j∈G∆x , I [w](x) is a generic
numerical interpolation (in space) of a function or vector w, and σ nj is defined by

σ nj =

√
2

|Dj [un]|

(
D2,j [un]
−D1,j [un]

)
. (25)

We will possibly use the short notationDnj forDj [un]. We also denote by D(j) the set of indices of
the nodes which appear in the approximation of Dnj , i.e.,

D(j) = {(j1 + 1, j2), (j1 − 1, j2), (j1, j2 − 1), (j1, j2 + 1)}.

In order to deal with the singular case, we now give a modified version of the scheme (24) for the
Cauchy problem (1). This new definition reads

un+1
j ≡


1
2

(
I [un](xj + σ nj

√
∆t)+ I [un](xj − σ nj

√
∆t)

)
if |Dnj | > C∆xs,

1
4

∑
i∈D(j)

uni if |Dnj | 6 C∆xs,
(26)
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and is complemented with the initial condition

u0
j = u0(xj ), (27)

for any j ∈ Z2 and n = 0, . . . , N with N = [T/∆t]. Here, C and s are positive parameters to be
fixed, and σ nj is defined by (25). This modification of the scheme for small gradients is suitable for
the generalized consistency condition, as we will see in Section 4.

We observe that the definition

un+1
j =

1
4

∑
i∈D(j)

uni

might be regarded as a centred difference approximation for the heat equation

ut = ε∆u in R2
× (0, T )

for

ε =
∆x2

4∆t
(28)

as one can easily check by just writing the centred finite difference scheme and imposing the
condition on ε which makes the contributions of the terms on the diagonal disappear.

In what follows, we will write the scheme (26) in compact form as

un+1
j = H(un; j). (29)

3. A general convergence theorem

The scheme (26) is quite simple to implement and gives accurate results also in very degenerate
cases (see Section 8). Unfortunately, in this form it does not satisfy at the same time the
standard requirements of consistency and monotonicity, regardless of the relationship between the
discretization parameters. Hence, it does not fit the framework of Barles–Souganidis convergence
theory [3] which, roughly speaking, states that any monotone, stable and consistent scheme
converges to the exact solution provided there exists a comparison principle for the limiting
equation.

Therefore, in order to develop a convergence theory for the scheme, we will first prove a
weaker form of the Barles–Souganidis theorem, and then work on a modified version of the scheme,
which can satisfy such a generalized setting—in particular, monotonicity will be assumed in a less
restrictive form. In this section we will present the abstract convergence result, and give a sketch of
its proof. For simplicity, the presentation will be given in dimension 2.

The Cauchy problem under consideration is{
ut + F(Du,D

2u) = 0 in R2
× (0, T ),

u = u0 on R2
× {t = 0}.

(30)

The function F : R2
×M2

→ R (where M2 is the space of 2× 2 symmetric matrices) is a locally
bounded Hamiltonian, u : R2

× (0, T )→ R denotes the continuous solution and u0 : R2
→ R the

initial condition (u0 ∈ BUC(R2), the set of bounded uniformly continuous functions).
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The Hamiltonian F is assumed to be elliptic, i.e.

F(p,A) 6 F(p,B) for all p ∈ R2 and A,B ∈ M2 such that A > B, (31)

where A > B is the usual ordering of symmetric matrices (A− B > 0).
It is known that if F is uniformly continuous and u0 ∈ BUC(R2), then (30) has a unique

viscosity solution in BUC(R2
× (0, T )) (see Ishii and Lions [22]).

We will assume that a comparison principle holds true for (30), i.e. if u and v are respectively a
subsolution and a supersolution of (30) on R2

× (0, T ), and u(·, 0) 6 v(·, 0), then u 6 v.
Let us now consider a general scheme that is supposed to approximate (30). Its abstract form on

a lattice will be given by{
un+1
j = S∆t (un; j) for j ∈ Z2, n = 0, . . . , N − 1,
u0
j = u0(xj ) for j ∈ Z2.

(32)

Note that we have highlighted∆t as the discretization parameter, with the convention that the space
discretization step ∆x should be chosen on the basis of the relationship ∆x = C∆tγ , where C
and γ are positive constants.

As in the original theorem in [3], we require the following property of invariance with respect
to the addition of constants:

S∆t (v +K; j) = S∆t (v; j)+K for any K ∈ R and j ∈ Z2, (33)

and the generalized condition for consistency is stated as follows.

DEFINITION 3.1 Let (∆xm,∆tm) be generic sequences of discretization parameters, and let
(xjm , tnm) ∈ G∆xm × {0, . . . , ∆tmN} be generic sequences of nodes such that, for m→∞,

(∆xm,∆tm)→ 0 and (xjm , tnm)→ (x, t). (34)

Let moreover φ ∈ C∞(R2
× (0, T ]) and φnm−1

≡ (φ(xjm , tnm−1))xjm∈G∆xm . Then the scheme S∆t

is said to be consistent if

φt (x, t)+ F(Dφ(x, t),D
2φ(x, t)) 6 lim inf

m→∞

φ(xjm , tnm)− S
∆tm(φnm−1

; jm)

∆tm

6 lim sup
m→∞

φ(xjm , tnm)− S
∆tm(φnm−1

; jm)

∆tm
6 φt (x, t)+ F(Dφ(x, t),D

2φ(x, t)). (35)

Here, the index of the sequence is m, jm and nm denoting the corresponding indices of a node
with respect to the m-th space-time grid. Moreover, we define as usual

F(Dφ(x, t),D2φ(x, t)) = lim inf
(y,s)→(x,t)

F(Dφ(y, s),D2φ(y, s)),

F (Dφ(x, t),D2φ(x, t)) = lim sup
(y,s)→(x,t)

F(Dφ(y, s),D2φ(y, s))

(F and F are respectively the lower and upper semicontinuous envelopes of F ). Note that if F is
continuous, then in (35) the lim inf and lim sup must coincide, and the definition reduces to the usual
definition of consistency.

The standard definition of monotonicity is also replaced by a generalized monotonicity
assumption stated as follows.
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DEFINITION 3.2 Let (∆xm,∆tm) and (xjm , tnm) be generic sequences satisfying (34). Then the
scheme S∆t is said to be monotone (in the generalized sense) if it satisfies the following conditions:

if vjm 6 φ
nm−1
jm

then S∆tm(v; jm) 6 S̃∆tm(φnm−1
; jm)+ o(∆tm), (36)

if φ
nm−1
j 6 vjm then S̃∆tm(φnm−1

; jm) 6 S∆tm(v; jm)+ o(∆tm), (37)

where v : G∆xm → R is a bounded set of node values, and S̃∆t is a (possibly different) scheme
consistent with (30) in (x, t), in the sense that it satisfies (35) in (x, t).

Now, consider un = (unj )j∈Z2 with unj the solution of (32) and its piecewise constant (in time)
interpolation u∆t defined by

u∆t (x, t) =

{
I [un](x) if t ∈ [tn, tn+1),

u0(x) if t ∈ [0,∆t).

Here I [·] is assumed to be a general interpolation operator

I [un](x) =
∑
l∈I(x)

ψl(x)u
n
l , (38)

where {ψl} is a basis of cardinal functions in R2 (which in particular satisfy the condition∑
l ψl(x) ≡ 1), and I(x) is the set of indices involved in interpolating at the point x. We assume

that the corresponding set of nodes is contained in a ball of radius O(∆x) around x.
The interpolation operator also has to verify a relaxed monotonicity property:

if vj 6 ηj for any j ∈ I(x) then I [v](x) 6 I [η](x)+ o(∆t) (39)

with v ∈ B(G∆x) and η = (φ(xj ))xj∈G∆x , where φ(x) is a smooth function and B(A) denotes the
set of bounded functions defined on A. Moreover, I [·] satisfies

|I [η](x)− φ(x)| = o(∆t) for any x ∈ R2. (40)

Note that, once ∆t and ∆x are related according to ∆x = C∆tγ , bounds (39)–(40) (which are
usually written in terms of the space discretization parameter) may also be understood in terms of
∆t . We will come back to this point at the end of Sec. 5.

We can now state an extended version of the convergence result given in [3]:

THEOREM 3.1 Assume (33), (35) and (36)–(40) hold. Let u(x, t) be the unique viscosity solution
of (30). Then u∆t (x, t)→ u(x, t) locally uniformly on R2

× [0, T ] as ∆t → 0.

Proof. Let u, u ∈ B(R2
× [0, T ]) be defined by

u(x, t) = lim sup
(y,s)→(x,t)

∆t→0

u∆t (y, s), u(x, t) = lim inf
(y,s)→(x,t)

∆t→0

u∆t (y, s). (41)

We claim that u(x, t), u(x, t) are respectively a subsolution and a supersolution of (30). Assume for
the moment that the claim is true; then by the comparison principle u(x, t) 6 u(x, t) on R2

×(0, T ].
Since the opposite inequality is obvious by the definition of u(x, t) and u(x, t), we have

u = u = u
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and u is the unique continuous viscosity solution of (30). This fact together with (41) also implies
the locally uniform convergence of u∆t to u.

Let us prove the previous claim. Let (x, t) be a local maximum point of u − φ on R2
× (0, T ]

for some φ ∈ C∞(R2
× (0, T ]). Without any loss of generality, we may assume that (x, t) is a

strict global maximum point for u − φ and that u(x, t) = φ(x, t). Then, by a standard result from
viscosity theory, there exist two sequences∆tm ∈ R+ and (ym, τm) ∈ R2

× [0, T ], which are global
maximum points for u∆tm − φ, and as m→∞,

∆tm→ 0, (ym, τm)→ (x, t), u∆tm(ym, τm)→ u(x, t).

Then for any x and t we have
u∆tm(x, t) 6 φ(x, t)+ ξm (42)

with ξm = (u∆tm − φ)(ym, τm) (note that since u(x, t) = φ(x, t), we have ξm→ 0).
Since, in general, (ym, τm) /∈ G∆xm , we need to reconstruct the value attained by u∆tm at such

points. By the definition of u∆t , there exists a tnm such that τm ∈ [tnm , tnm+1) and u∆tm(ym, τm) =
u∆tm(ym, tnm). Furthermore, by the definition of I [·] in (38), there exists a set of indices I(ym) such
that

I [unm ](ym) =
∑

j∈I(ym)
ψj (ym)u

nm
j . (43)

Next, we apply (42) at t = tnm−1, x = xj with j ∈ I(ym) and deduce, from (33) and the
monotonicity property (36), that

S∆tm(unm−1
; j) 6 S̃∆tm(φnm−1

; j)+ ξm + o(∆tm).

By the definition of unm , we have

u
nm
j 6 S̃∆tm(φnm−1

; j)+ ξm + o(∆tm),

which yields, by applying (38), (39),

u∆tm(ym, τm) 6
∑

j∈I(ym)
ψj (ym)S̃

∆tm(φnm−1
; j)+ ξm + o(∆tm).

Now, recalling the definition of ξm, we get

φ(ym, τm) 6
∑

j∈I(ym)
ψj (ym)S̃

∆tm(φnm−1
; j)+ o(∆tm). (44)

We claim now that φ(ym, τm) = φ(ym, tnm) + O(∆t
2
m). In fact, either τm = tnm (and the

claim obviously holds), or τm ∈ (tnm−1, tnm). In the latter case, since (u∆tm − φ)(ym, ·) has a
maximum at τm and u∆tm is constant in (tnm−1, tnm), it follows that φt (ym, τm) = 0 and we have
φ(ym, τm) = φ(ym, tnm)+O(∆t

2
m).

Using the previous claim in (44), we have

φ(ym, tnm) 6
∑

j∈I(ym)
ψj (ym)S̃

∆tm(φnm−1
; j)+ o(∆tm) (45)
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and, by (40),

φ(ym, tnm) = I [φnm ](ym)+ o(∆tm) =
∑

j∈I(ym)
ψj (ym)φ(xj , tnm)+ o(∆tm). (46)

Now, (45) and (46) imply

lim inf
m→∞

∑
j∈I(ym)

ψj (ym)
φ(xj , tnm)− S̃

∆tm(φnm−1
; j)

∆tm
+ o(1) 6 0.

Finally, by the consistency property (35), we obtain the desired result:

φt (x, t)+ F(Dφ,D
2φ)(x, t) 6 0.

The proof that u is a supersolution follows the same arguments, with (36) replaced by (37). We
leave this adaptation to the reader. 2

REMARK 3.2 Note that the consistency condition (35) might be reformulated so as to avoid any
dependence on the variable t . In fact, adding and subtracting φ(xj , tn−1), we obtain

φ(xj , tn)− S
∆t (φn−1

; j)

∆t
=
φ(xj , tn)− φ(xj , tn−1)

∆t
+
φ(xj , tn−1)− S

∆t (φn−1
; j)

∆t
. (47)

On the right-hand side of (47), the first term necessarily converges to φt (xj , tn), so that (35) is
equivalent to

F(Dφ(x),D2φ(x)) 6 lim inf
m→∞

φ(xjm)− S
∆tm(η; jm)

∆tm

6 lim sup
m→∞

φ(xjm)− S
∆tm(η; jm)

∆tm
6 F(Dφ(x),D2φ(x)), (48)

for a function φ(x) depending on x alone (with η denoting the vector of node values of φ), and
xjm → x.

REMARK 3.3 We conclude with a further remark, crucial for the application of this result to the
scheme under consideration in this paper. When assuming that (x, t) is a strict global maximum
point for u − φ, we can further suppose that the test function φ is globally Lipschitz continuous
whenever the exact solution has this property. In fact, the argument used to pass from a local to a
global extremum requires modifying the test function away from the point (x, t). If the solution has
a Lipschitz constant Lu, this can be accomplished by test functions with a somewhat higher, but still
uniformly bounded, Lipschitz constant (e.g., 2Lu).

4. Consistency

As required by (35), the consistency of the scheme will be proved assuming that the function φ is
smooth enough to allow for all the differentiations we need. Let η be a vector containing the samples
of φ at time tn, so that ηj ≡ φ(xj , tn). We make the following assumptions on the interpolation error
and on the accuracy of the gradient estimation:

‖I [η](·)− φ(·, tn)‖∞ 6 C1∆x
r for any n ∈ N, (49)

|Dj [η]−Dφ(xj , tn)| 6 C2∆x
q for any n ∈ N, xj ∈ G∆x, (50)
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with C1 and C2 positive constants. Typically, (49)–(50) require that

|Diφ(x, t)| < M, i = 1, . . . ,max(r, q + 1). (51)

We also assume that
|φt t (x, t)| < M, (52)

in order to bound the truncation error for the Euler time approximation. In (51)–(52),M is a generic
positive constant.

Although this setting is general enough to allow for different options, our main focus in
developing a convergence theory will be on two specific choices: on one hand, the centred difference
estimation of the gradient, outlined in Section 2, which implies q = 2; on the other hand, the choice
of I [·] as a linear or bilinear interpolation (this would be required in order to achieve monotonicity,
see Section 5), which results in r = 2.

The analysis presented in the following subsections shows that the scheme (26) is consistent (in
the generalized sense of (35)) with the equation (1). At the level of notations, we will identify the
hamiltonian function F with the operator

F(Dφ,D2φ) = − div
(
Dφ

|Dφ|

)
|Dφ| = −σ(Dφ)TD2(φ)σ (Dφ)

since we will present the proofs in R2.
Note that, due to the switching between the two different definitions of the scheme, checking

(35) may require mixing different techniques. If the gradient of the function at (x, t) is bounded
away from zero, then (35) reduces to the standard definition and a local truncation error may be
computed, whereas if Dφ(x, t) = 0, we need to apply condition (35) in its most general setting.

We will first express the function H at a node (xj , tn), respectively above and below the
threshold. Next, this analysis will be applied to check condition (35).

4.1 Discrete gradients above the threshold

In this first subsection, we will assume that |Dj [η]| > C∆xs . Since this condition itself does not
ensure that Dφ(xj , tn) 6= 0, we have to consider this circumstance separately.

CASE 1: Dφ(xj , tn) 6= 0. In this first case, the consistency analysis may be carried out by
essentially standard arguments. First, we need a bound on the Lipschitz constant of σ(p) =
√

2
|p|

(
p2
−p1

)
which will be useful in the following. The Jacobian matrix is

Jσ (p) =


−

√
2p1p2

|p|2|p|

√
2
|p|
−

√
2p2

2
|p|2|p|

−

√
2
|p|
+

√
2p2

1
|p|2|p|

√
2p1p2

|p|2|p|

 ,
with |Jσ (p)|2 = 4/|p|2, computed in the Frobenius norm. On the other hand, from |Dj [η]| > C∆xs

one has

Lσ nj
=

2
C∆xs

(53)
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(we note that it is possible, although less explicit, to compute this Lipschitz constant without
differentiations). In order to get an error bound, we write the elementary block in the scheme (26)
as

I [η](xj + σ(Dj [η])
√
∆t) = I [η](xj + σ(Dj [η])

√
∆t)− φ(xj + σ(Dj [η])

√
∆t, tn)

+φ(xj + σ(Dj [η])
√
∆t, tn)− φ(xj + σ(Dφ(xj , tn))

√
∆t, tn)

+φ(xj + σ(Dφ(xj , tn))
√
∆t, tn). (54)

We now estimate the right-hand side of (54). Note that∣∣I [η](xj + σ(Dj [η])
√
∆t)− φ(xj + σ(Dj [η])

√
∆t, tn)

∣∣ 6 C1∆x
r (55)

and that∣∣φ(xj + σ(Dj [η])
√
∆t, tn)− φ(xj + σ(Dφ(xj , tn))

√
∆t, tn)

∣∣ 6 2
C2M

C
∆xq−s

√
∆t. (56)

Plugging (55) and (56) into (54) gives

I [η](xj + σ(Dj [η])
√
∆t) = φ(xj + σ(Dφ(xj , tn))

√
∆t, tn)+O(∆x

r)+O(∆xq−s
√
∆t).

Using this expression (and the similar expression obtained for I [η](xj − σ(Dj [η])
√
∆t)) into the

scheme (26), we get

H(η; j) =
1
2

(
I [η](xj + σ(Dj [η])

√
∆t)+ I [η](xj − σ(Dj [η])

√
∆t)

)
=

1
2

(
φ(xj + σ(Dφ(xj , tn))

√
∆t, tn)+ φ(xj − σ(Dφ(xj , tn))

√
∆t, tn)

)
+O(∆xr)+O(∆xq−s

√
∆t).

Expressing now the value at points xj ± σ(Dφ(xj , tn))
√
∆t by a third-order Taylor expansion, we

obtain

H(η; j)

=
1
2

(
φ(xj , tn)+

√
∆tσ(Dφ(xj , tn))Dφ(xj , tn)+∆tσ(Dφ(xj , tn))

TD2φ(xj , tn)σ (Dφ(xj , tn))

+ T3
(
∆t3/2σ(Dφ(xj , tn)),D

3φ(xj , tn)
)
+O(∆t2)

)
+

1
2

(
φ(xj , tn)−

√
∆tσ(Dφ(xj , tn))Dφ(xj , tn)+∆tσ(Dφ(xj , tn))

TD2φ(xj , tn)σ (Dφ(xj , tn))

− T3
(
∆t3/2σ(Dφ(xj , tn)),D

3φ(xj , tn)
)
+O(∆t2)

)
+O(∆xr)+O(∆xq−s

√
∆t)

= φ(xj , tn)+∆t div
(
Dφ(xj , tn)

|Dφ(xj , tn)|

)
|Dφ(xj , tn)| +O(∆x

r)+O(∆xq−s
√
∆t)+O(∆t2). (57)

In the Taylor expansions we have not written the third term T3 explicitly since all odd terms (so
in particular the terms in ∆t1/2 and ∆t3/2) cancel due to the symmetry of the two points xj ±
σ(Dj [η])

√
∆t .
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Note that since for a smooth solution u (in particular, with ut t bounded),

u(xj , tn+1) = u(xj , tn)+∆t div
(
Du(xj , tn)

|Du(xj , tn)|

)
|Du(xj , tn)| +O(∆t

2),

(58) would imply an explicit bound for the local truncation error of the scheme (26) in the form

T∆x,∆t (xj , tn) = O
(
∆xr

∆t

)
+O

(
∆xq−s

∆t1/2

)
+O(∆t), (58)

but this expression would only hold in the “large gradient” case. It should also be noted that
in general we expect the points xj ± σ(Dj [η])

√
∆t to be “far” from xj . In fact, the feet of

the generalized characteristics starting at xj will belong to the neighbouring cells (i.e., the cells
having xj as a common vertex) under the parabolic-type CFL condition

√
∆t

∆x
|σ |max 6 1. (59)

However, when the reconstruction I [·] is piecewise linear or bilinear, we have r = 2 so that the
∆t/∆x relationship (59) would result in a nonconsistent scheme.

CASE 2: Dφ(xj , tn) = 0. In this second case, the computations above can be repeated, but we
cannot state the convergence of σ(Dj [η]) to σ(Dφ(xj , tn)) since the latter is not defined. Therefore,
any reference to σ(Dφ(xj , tn)) should be avoided. In particular, we have

I [η](xj + σ(Dj [η])
√
∆t) = φ(xj + σ(Dj [η])

√
∆t, tn)+O(∆x

r).

Using this expression and the expression obtained for the symmetric point, we obtain

H(η; j) =
1
2

(
φ(xj + σ(Dj [η])

√
∆t, tn)+ φ(xj − σ(Dj [η])

√
∆t, tn)

)
+O(∆xr).

Expressing the value at the points xj ± σ(Dj [η])
√
∆t by a third-order Taylor expansion, and

cancelling symmetric odd terms, we finally replace (57) by

H(η; j) = φ(xj , tn)+∆tσ(Dj [η])TD2φ(xj , tn)σ (Dj [η])+O(∆t2)+O(∆xr). (60)

4.2 Discrete gradients below the threshold

In this subsection we assume that the discrete gradient satisfies the condition |Dj [η]| < C∆xs .
Here, H(η; j) = 1

4
∑
i∈D(j) ηi and we have shown in Section 2 that the scheme amounts to a

discretization of the Laplacian. We have therefore

H(η; j) = φ(xj , tn)+∆tε∆φ(xj , tn)+O(∆t
2), (61)

with ε = ∆x2/(4∆t). Note that, in this framework, the scheme appears to be a discretization of first
order with respect to ∆t . In fact, this is not a limitation in treating the degenerate case.



MEAN CURVATURE MOTION 423

4.3 Checking the generalized consistency condition

In order to apply the definition of generalized consistency, we consider in the x, t space a sequence
of nodes (xjm , tnm)→ (x, t). As in Section 3, the indexm refers to the space-time grid, and (jm, nm)
have the same meaning as in (34). Accordingly, η contains the samples of a smooth function φ at
time tnm .

We again split the proof according to the value of Dφ(x, t).

CASE 1: Dφ(x, t) 6= 0. In this case, there exists a neighbourhood of (x, t) on which the gradient
Dφ is bounded away from zero, so that, at least asymptotically, |Dφ(xjm , tnm)| > C∆xs and we can
just work with the form of the scheme used above the threshold. Then by (57) we get, at (xjm , tnm),

|φ(xjm , tnm+1)−H(η; jm)|

∆t
= φt (xjm , tnm)+ F(Dφ(xjm , tnm),D

2φ(xjm , tnm))

+O

(
∆xr

∆t

)
+O

(
∆xq−s

∆t1/2

)
+O(∆t),

which clearly holds also for (xjm , tnm) → (x, t), and satisfies (35) (in a classical form) provided
∆x = o(∆t1/r), ∆xq−s = o(∆t1/2).

CASE 2: Dφ(x, t) = 0. In this situation, sequences converging to (x, t) may have subsequences
of nodes both above and below the threshold. We single out two different cases.

CASE 2A: Dφ(x, t) = 0, |Dφ(xjm , tnm)| > C∆xs . By (60), we have

φ(xjm , tnm+1)−H(η; jm)

∆t
=
φ(xjm , tnm+1)− φ(xjm , tnm)

∆t

− σ(Djm [η])TD2φ(xjm , tnm)σ (Djm [η])+O(∆t)+O
(
∆xr

∆t

)
.

Note that, in the limit, the term σ(Djm [η])TD2φ(xjm , tnm)σ (Djm [η]) may only be bounded by its
lim inf and lim sup so that we obtain

F(Dφ(xjm , tnm),D
2φ(xjm , tnm))+ o(1) 6 −σ(Djm [η])TD2φ(xjm , tnm)σ (Djm [η])

6 F(Dφ(xjm , tnm),D
2φ(xjm , tnm))+ o(1)

and, under the condition ∆xr = o(∆t), (35) is satisfied.

CASE 2B: Dφ(x, t) = 0, |Dφ(xjm , tnm)| < C∆xs . In this case, (61) implies

φ(xjm , tnm+1)−H(η; jm)

∆t
=
φ(xjm , tnm+1)− φ(xjm , tnm)

∆t
− ε∆φ(xjm , tnm)+O(∆t). (62)

Under the condition ∆x2
= o(∆t), we have ε → 0 for ∆t → 0, so that asymptotically

F(Dφ(x, t),D2φ(x, t)) 6 ε∆φ(xjm , tnm) 6 F(Dφ(x, t),D2φ(x, t)) (63)

and the generalized consistency condition is satisfied again.
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Conclusions. This section can be summarized in the following

THEOREM 4.1 Assume (49)–(52) hold. Assume moreover that

∆xmin(2,r)
= o(∆t) and ∆xq−s = o(∆t1/2) (64)

for ∆t → 0. Then the scheme (26) satisfies the generalized consistency condition (35).

5. Monotonicity

Since consistency has been proved in the previous section, and (33) is trivially satisfied, in order to
apply the Barles–Souganidis theorem (in the version given in Section 3), generalized monotonicity
should now be checked for the scheme under consideration. In general, we expect that any form
of monotonicity of the scheme would require the reconstruction I [·] to be performed for a basis of
positive functions; therefore in what follows we will assume that the reconstruction is bilinear, i.e.
of the form

I [un](x) =
∑

j∈I(x)
ψj (x)u

n
j =

∑
j∈I(x)

ψj1(x1)ψj2(x2)u
n
j , (65)

where j = (j1, j2) and ψji (·) is the one-dimensional P1 basis function centred at ji∆x (recall that
this is a nonnegative function).

However, the scheme (26) (as stated) is not yet monotone, even with a bilinear reconstruction
and in the generalized form of (36)–(37). Therefore, we must modify the scheme to meet such
assumptions. A first modification consists in introducing a new discretization step to approximate
the stochastic trajectory. In particular, the scheme is modified when |Dnj | > C∆xs , by introducing
a new parameter ρ. We have

un+1
j = Hρ(u

n
; j) (66)

where Hρ(un; j) is defined as

Hρ(u
n
; j)

≡


unj +∆t

1
ρ2

(
1
2
I [un](xj + σ nj ρ)+

1
2
I [un](xj − σ nj ρ)− u

n
j

)
if |Dnj | > C∆xs,

1
4

∑
i∈D(j)

uni if |Dnj | 6 C∆xs .
(67)

Following the ideas contained in [9], we will consider a scheme Ĥρ which results from the further
introduction of a vanishing artificial viscosity in the scheme Hρ . The motivation for such an
adaptation is the following. The scheme (66) is monotone with respect to the nodes used only by the
interpolation operator. On the other hand, the dependence on the values related to indices in D(j) is
more complex, and the introduction of the artificial viscosity term allows one to regain a monotone
relationship.

Therefore, we will prove the generalized monotonicity property for the modified scheme

un+1
j = Ĥρ(u

n
; j) (68)
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where

Ĥρ(u
n
; j) ≡


Hρ(u

n
; j)+∆t

W∆x

ρ∆xs

∑
i∈D(j) u

n
i − 4unj

∆x2 if |Dnj | > C∆xs,

1
4

∑
i∈D(j)

uni if |Dnj | 6 C∆xs,
(69)

with W a positive constant. We make the standing assumption that

∆x1−s

ρ
→ 0, (70)

which together with (49), (50), (51), (64) ensures that Ĥρ(η; j) is consistent with (30) (see
Section 6).

We are now ready to check conditions (36)–(37).

First inequality. To check (36), suppose now that for any sequence (xj , tn) ≡ (xjm , tnm) satisfying
(34), the following inequality holds:

unj 6 ηnj (71)

where un ∈ B(G∆x) is the solution of (66), and η = (φ(xj , tn))xj∈G∆x , n∈N with a set of test
functions φ ∈ C∞(R2

× (0, T )), and uniformly Lipschitz continuous, with Lipschitz constant
Lφ > Lu (see the remark after Theorem 3.1). Since the monotonicity property does not depend
on the iteration n, with no loss of generality we can drop the dependence on t of the test function φ
(and consequently of η). Condition (36) can be recast in the form

Ĥρ(u
n
; j) 6 H̃ρ(η; j)+ o(∆t), (72)

where the choice of H̃ρ may vary from one subcase to the other.
The proof discriminates between two main cases.

CASE 1: Dφ(x) 6= 0. In this case, for ∆x → 0, the condition |Dj [η]| > C∆xs is asymptotically
satisfied.
We further consider two different possibilities:

CASE 1A: |Dnj | > C∆xs . Writing the definition of Ĥρ(un, j) as

Ĥρ(u
n
; j) = Hρ(u

n
; j)+

W∆t∆x1−s

ρ

(
−

4unj
∆x2

)
+
W∆t∆x1−s

ρ∆x2

∑
i∈D(j)

uni , (73)

we split the right-hand side into two parts and start by observing that, by the definitions ofHρ and η,

Hρ(u
n
; j)+

W∆t∆x1−s

ρ

(
−

4unj
∆x2

)
6 ηj +

∆t

ρ2

(
1
2
I [η](xj + σ nj ρ)+

1
2
I [η](xj − σ nj ρ)− ηj

)
+
W∆t∆x1−s

ρ

(
−

4ηj
∆x2

)
(74)

where the inequality holds provided

1−
∆t

ρ2 −
4W∆t
ρ∆x1+s > 0. (75)
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Adding and subtracting the same quantity, we can write (72) as

Ĥρ(u
n
; j) 6 Ĥρ(η; j)+

∆t

2ρ2

(
I [η](xj + ρσ nj )+ I [η](xj − ρσ nj )

)
−
∆t

2ρ2

(
I [η](xj + ρσ nj )+ I [η](xj − ρσ nj )

)
+ o(∆t). (76)

Then, by (74), we find that (76) holds if and only if

W∆t

ρ∆x1+s

∑
i∈D(j)

(ηi − u
n
i ) > −

∆t

2ρ2

(
I [η](xj + ρσ(Dj [η]))+ I [η](xj − ρσ(Dj [η]))

)
+
∆t

2ρ2

(
I [η](xj + ρσ nj )+ I [η](xj − ρσ nj )

)
+ o(∆t). (77)

In order to prove (77), we observe that (53) holds and by assumption (64) we can bound by o(∆t)
the interpolation error for the (smooth) function φ. Then the following estimate holds:

∆t

2ρ2 |I [η](xj ± ρσ(Dj [η]))− I [η](xj ± ρσ nj )| 6
∆t

2ρ
Lφ |σ(Dj [η])− σ nj |

6
∆t

2ρ
LφC

∆xs
|Dj [η]−Dnj |

6
∆t

2ρ

√
2LφC
∆x1+s max

i∈D(j)
(ηi − u

n
i )

where Lφ denotes the Lipschitz constant of the test function φ (which coincides with η on the
nodes). Now, if we assume that

W >
√

2CLφ,

we get in turn

∆tW

ρ∆x1+s

∑
i∈D(j)

(ηi − u
n
i ) >

∆t
√

2CLφ
ρ∆x1+s max

i∈D(j)
(ηi − u

n
i )

> −
∆t

2ρ2

(
I [η](xj + ρσ(Dj [η]))− I [η](xj + ρσ nj )

+ I [η](xj − ρσ(Dj [η]))− I [η](xj − ρσ nj )
)
.

This proves (77), and therefore (72).
We conclude that Ĥρ(un; j) satisfies the first generalized monotonicity condition (36) if the

assumptions of Theorem 4.1 are complemented with the following conditions:1−
∆t

ρ2 −
4W∆t
ρ∆x1+s > 0,

W >
√

2CLφ .
(78)

CASE 1B: |Dnj | 6 C∆xs . In this case, Dnj being a centred difference, we have

unj+ei = u
n
j−ei
+O(∆xs+1), i = 1, 2, (79)
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where ei is the canonical base in R2. Since φ ∈ C∞(R2), by a Taylor expansion we can write

φ(x) = φ(xj )+ (x − xj )Dφ(xj )+
1
2
(x − xj )

TD2φ(xj )(x − xj )+O(|x − xj |
3).

By (71), we get

unj±ei 6 φ(xj ± ei∆x) = φ(xj )±∆xeiDφ(xj )+
∆x2

2
eTi D

2φ(xj )ei +O(∆x
3). (80)

Our aim is to express the values unj±ei using a negative first-order term from (80). To this end, we
first consider the case in which eiDφ(xj ) < 0. Then (80) may be rewritten as

unj+ei 6 φ(xj + ei∆x) = φ(xj )−∆x|eiDφ(xj )| +
∆x2

2
eTi D

2φ(xj )ei +O(∆x
3), (81)

while, using (79), we also have

unj−ei +O(∆x
s+1) 6 φ(xj )−∆x|eiDφ(xj )| +

∆x2

2
eTi D

2φ(xj )ei +O(∆x
3), (82)

and therefore, plugging these estimates into (69), we get

1
4

∑
i=1,2

(unj+ei + u
n
j−ei

) 6 φ(xj )−
∆x

2
(|e1Dφ(xj )| + |e2Dφ(xj )|)+∆x

2∆φ(xj )+O(∆x
s+1).

Note that if instead eiDφ(xj ) > 0, (81) should be written for unj−ei and (82) for unj+ei , the final
result being equivalent.

Next, using the fact that un satisfies (69), we add and subtract ∆tF(Dφ(x),D2φ(x)) (note that
F = F = F , since we are in the case Dφ(x) 6= 0), obtaining

un+1
j 6 −

∆x

2
(|e1Dφ(xj )| + |e2Dφ(xj )|)+∆x

2∆φ(xj )+∆tF(Dφ(x),D
2φ(x))+O(∆xs+1)

+φ(xj )−∆tF(Dφ(x),D
2φ(x)).

Now, since F(Dφ(x),Dφ2(x)) is bounded for φ ∈ C∞ and∆t = o(∆x) from (78), asymptotically
for ∆x → 0 and ∆t → 0, the following inequality holds:

−
∆x

2
|e1Dφ(xj )| +O(∆x

s+1)+∆x2∆φ(xj )+∆tF(Dφ(x),D
2φ(x)) 6 0,

and hence there exists a ∆t such that for every ∆t < ∆t ,

un+1
j 6 φ(xj )−∆tF(Dφ(x),D

2φ(x)). (83)

The scheme denoted by H̃ρ(η; j) in (72) may now be chosen as a generic scheme satisfying (35)
at x. Since the test function φ does not depend on time, H̃ρ(η; j) satisfies

lim
m→∞

φ(xjm)− H̃ρm(η; jm)

∆tm
= F(Dφ(x),D2φ(x)),
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so that φ(xj )− H̃ρ(η; j) = ∆tF(Dφ(x),D2φ(x))+ o(∆t) and we finally get

un+1
j 6 H̃ρ(η; j)+ o(∆t).

CASE 2 : Dφ(x) = 0. When |Dnj | 6 C∆xs the scheme is clearly monotone (in the conventional
sense) at the node xj , being a convex combination of node values. For |Dnj | > C∆xs , the scheme
still satisfies (36) since

un+1
j = Ĥρ(u

n
; j) 6 H̃ρ(η; j) (84)

where H̃ρ(η; j) has been chosen in the form

H̃ρ(η; j) = φ(xj )+
∆t

ρ2

(
1
2
I [η](xj + σ nj ρ)+

1
2
I [η](xj − σ nj ρ)− φ(xj )

)
+∆t

W∆x

ρ∆xs

∑
i∈D(j) φ(xi)− 4φ(xj )

∆x2 .

The inequality (84) holds because the upwind points xj ± σ nj ρ are the same on the left and right
term and the time step ∆t satisfies the first inequality in (78). Moreover H̃ρ is a consistent scheme,
since under condition (70),

φ(xj )− H̃ρ(η; j)

∆t
= (σ nj )

TD2φ(xj )σ
n
j + o(∆t).

Therefore, following the same arguments used in Case 2a of the consistency proof,

F(Dφ(x),D2φ(x)) 6 lim inf
m→∞

φ(xjm)− H̃ρm(η; jm)

∆tm

6 lim sup
m→∞

φ(xjm)− H̃ρm(η; jm)

∆tm
6 F(Dφ(x),D2φ(x)),

and then (35) is satisfied by H̃ρ .

Second inequality. In the second step, we have to check assumption (37). We assume now that, for
∆t → 0 and (xj , tn)→ (x, t),

unj > ηj . (85)

We need to prove that the scheme Ĥρ satisfies (37), and more precisely

Ĥρ(u
n
; j) > H̃ρ(η; j)+ o(∆t), (86)

in which the choice of H̃ρ will follow the same guidelines used in proving (36).

CASE 3: Dφ(x) 6= 0. As we have seen, for ∆x → 0, the condition |Dj [η]| > C∆xs is
asymptotically satisfied.

We consider the same subcases as before:
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CASE 3A: |Dnj | > C∆xs . This case follows directly from the proof of Case 1a. In fact, provided
(75) holds, in the same way we find that Ĥρ satisfies (86) if and only if

W∆t

ρ∆x1+s

∑
i∈D(j)

(uni − ηi) >
∆t

2ρ2

(
I [η](xj + ρσ(Dj [η]))+ I [η](xj − ρσ(Dj [η]))

)
−
∆t

2ρ2

(
I [η](xj + ρσ nj )+ I [η](xj − ρσ nj )

)
, (87)

and this is satisfied if (78) holds.

CASE 3B: |Dnj | 6 C∆xs . In this case, following the same arguments of Case 1b, we have, by
(85),

1
4

∑
i=1,2

(unj+ei + u
n
j−ei

) > φ(xj )+
∆x

2
(|e1Dφ(xj )| + |e2Dφ(xj )|)+∆x

2∆φ(xj )+O(∆x
s+1).

Next, we add and subtract ∆tF(Dφ,D2φ)(x), obtaining

Ĥρ(u
n
; j) >

∆x

2
(|e1Dφ(xj )| + |e2Dφ(xj )|)+∆x

2∆φ(xj )+∆tF(Dφ(x),D
2φ(x))+O(∆xs+1)

+φ(xj )−∆tF(Dφ(x),D
2φ(x)).

Now, since F(Dφ(x),Dφ2(x)) is bounded for φ ∈ C∞, and∆t = o(∆x) from (78), asymptotically
for ∆x → 0 and ∆t → 0, the following inequality holds:

∆x

2
(|e1Dφ(xj )| +O(∆x

s+1)+∆x2∆φ(xj )+∆tF(Dφ(x),D
2φ(x)) > 0,

and hence there exists a ∆t such that for every ∆t < ∆t ,

Ĥρ(u
n
; j) > φ(xj )−∆tF(Dφ(x),D

2φ(x)). (88)

As in Case 1b, we add and subtract a generic scheme H̃ρ(η; j) satisfying (35) in x, and we finally
get

Ĥρ(u
n
; j) > H̃ρ(η; j)+ o(∆t).

CASE 4 : Dφ(x) = 0. As already remarked, if |Dnj | 6 C∆xs the scheme is monotone at xj by
definition.

If |Dnj | > C∆xs , the scheme satisfies (37) since

Ĥρ(u
n
; j) > H̃ρ(η; j)

with H̃ρ(η; j) chosen as in Case 2.

Conclusions. This section can be summarized in the following

THEOREM 5.1 Let (49), (64), (70) and (78) hold true. Then the scheme (69) is monotone in the
sense that it satisfies (36), (37).
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6. Convergence

In order to establish convergence for the regularized scheme (69) we have to show that the scheme
is consistent and monotone in the generalized sense.

In fact, in the case |Dnj | > C∆xs the regularized scheme (69) is consistent with (1) only if both
the diffusion term tends to zero (this is true if (70) holds) and the local truncation error for large
gradients vanishes for vanishing ∆x, ∆t and ρ. By arguments similar to the one used in Theorem
4.1, it is easy to see that

Tρ,∆x,∆t (xj , tn) = O
(
∆x2

ρ2

)
+O

(
∆x2−s

ρ

)
+O(ρ)+O(∆t)+O

(
∆x1−s

ρ

)
(89)

(note that, of the two termsO(∆x2−s/ρ) andO(∆x1−s/ρ), only the latter is relevant). We can now
apply Theorem 3.1, obtaining the following

THEOREM 6.1 If (78) holds true and

Tρ,∆x,∆t (xj , tn)→ 0

for (ρ,∆x,∆t)→ 0, then the scheme (69) is convergent to the unique viscosity solution of (1).

It remains to show that conditions (78), (70) and (89) can actually be satisfied at the same time.
Let us define ∆x = ρα for α ∈ R+. Then, examining the first two terms in the truncation error, we
infer that α and s should satisfy α > 1 and 0 6 s 6 1.

It is interesting to tune the parameters in order to optimize the performances of the
approximation scheme (69). From the first inequality in (78), we obtain

∆t =
ρ∆x1+s

∆x1+s

ρ
+ 4W

and since ∆x1+s/ρ → 0, we can choose a ∆t such that ∆t ' ρ∆x1+s

4W , for instance

∆t = ρ1+α(1+s).

Finally, from the requirement (70), we have α > 1/(1− s). To sum up, we can choose ∆t,∆x as a
function of ρ, with α and s such that 0 < s < 1, and

α >
1

1− s
.

Note that even in this monotonic version of the scheme, the parabolic CFL condition (59) is violated.
In fact, taking into account the parameter balance just obtained, we have

∆x2

∆t
= ρ2α−1−α(1+s)

= ρα(1−s)−1

so that this ratio vanishes as ρ → 0.
In practice, the numerical tests have been carried out with the nonmonotonic version (26), which

works properly under even weaker conditions (e.g., the relationship which optimizes the consistency
rate (58)).
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7. Comparison with existing schemes

In this section we compare the scheme with existing methods which rely on similar techniques. In
particular, we discuss in detail the relationship with the schemes proposed by Crandall–Lions (see
[9]) and by Kohn–Serfaty (see [24]). We also note that the latter was first proposed in a slightly
different form by Catté, Dibos and Koepfler in [6].

This comparison will focus on two main points: on one hand, the technique used to detect the
correct direction for the diffusion, and on the other, the way to treat the singular case in which
Du = 0. To better compare the various approaches, the truncation errors of the schemes will also
be considered.

7.1 Comparison with the Crandall–Lions (CL) scheme

First, we compare the SL scheme with the scheme proposed by Crandall and Lions in [9]. We treat
the two-dimensional case for simplicity, although the same arguments still hold in any dimension.

The main difference between the two schemes consists in the treatment of both singularity and
degeneracy of the MCM operator. More precisely, in the CL scheme such problems are avoided by
replacing the matrix Θ (given by (3) in the equation of MCM) by the following one:

Θε(p) = I −
p ⊗ p

|p|2 + ε
,

with ε > 0. Denoting by ej (j = 1, 2) the canonical base of R2, we can write the CL scheme as

un+1
j = HCL(u

n
; j) (90)

where

HCL(u
n
; j) = unj +

∆t

ρ2

(
I [un](xj + ρΘε(Dj [un])e1)+ I [un](xj + ρΘε(Dj [un])e2)

+ I [un](xj − ρΘε(Dj [un])e1)+ I [un](xj − ρΘε(Dj [un])e2)− u
n
j

)
.

The scheme for which convergence is proved is

un+1
j = HCL(u

n
; j)+

∆tK

ρ∆x

( ∑
i∈D(j)

uni − 4unj
)
. (91)

It should be noted that the addition of ε makes the problem nonsingular and adds an isotropic
viscosity. The comparison between the schemes (90) and (26) shows that, in the CL scheme, the
choice of avoiding degeneracy and singularity by replacing (3) with the full-rank matrixΘε results in
using four points to discretize the second order term. Instead, the SL scheme exploits the degeneracy,
as explained in Sec. 2, so that only the two points xj±ρσ nj are used and undesired isotropic diffusion
is avoided as much as possible. Of course, the need to treat the singular case persists, and this leads
to the branching in (26).

Another difference is in the tuning of the discretization parameters. In [9], it is required that

∆x

ρ2 → 0 as ∆x, ρ → 0, (92)
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whereas, as we have shown in the previous section, the SL scheme has to satisfy the weaker
condition

∆x

ρ
→ 0 as ∆x, ρ → 0

(this is due to a sharper use of the estimate (55), with r = 2 instead of r = 1, as used for (90)).
Convergence requires therefore a different balance of the parameters: while in the CL scheme the
balance is

∆t = O(
√
ερ3g(ρ)), ∆x = O(ρ2g(ρ))

where g(ρ)→ 0 as ρ → 0, in the SL scheme the parameters are tuned according to

∆t = O(ρ1+α(1+s)), ∆x = O(ρα) (93)

with 0 < s < 1 and α > 1/(1− s).
Choosing s < 1/4 we can set α = 4/3 and then we get

∆t = O(ρ1+ 4
3 (1+s))), ∆x = O(ρ4/3).

Since 1+ 4
3 (1+s) < 3, the conclusion is that, given the discretization parameter ρ, the requirements

on both ∆x and ∆t are more restrictive for (90) than for (26).

7.2 Comparison with the Kohn–Serfaty (KS) scheme

First, we note that, as proved in [30], we can write

div
(
Du(x, t)

|Du(x, t)|

)
|Du(x, t)| = min

a∈S1, a·Du=0
{aTD2u(x, t)a}, (94)

and in turn, the right-hand side of (94) can be rewritten as

min
a∈S1, a·Du=0

{aTD2u(x, t)a} = min
a∈S1

max{aTD2u(x, t)a − a ·Du, aTD2u(x, t)a + a ·Du}

= a∗(x)TD2u(x, t)a∗(x), (95)

where we have denoted by a∗(x) the minimizer (note that since a ∈ S1, both a∗ and −a∗ are
minimizers and the choice of the sign is irrelevant). Here and below, we keep the assumption (49)
on the interpolation error and make use of the fact that if two functions f1(a) and f2(a) depend
continuously on a and span the same set, their max is minimized when they attain the same value.

For the Kohn–Serfaty scheme, un+1
j = HKS(u

n
; j), where HKS(w; j) is defined by

HKS(w; j) = min
a∈S1

max{I [w](xj +
√

2∆t a), I [w](xj −
√

2∆t a)}. (96)

Note that in order to have computable quantities, the reconstruction I [·] has been introduced in the
scheme (the original scheme was set up only in time-discrete form), and the consistency analysis is
developed accordingly. Let now w be again a vector containing the samples of a smooth solution at
time tn, so that wj = u(xj , tn). Denoting by āj the minimizer in (96), we have

HKS(w; j) = I [w](xj +
√

2∆t āj ). (97)
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The values within the max can be expressed as

I [w](xj ±
√

2∆t a) = u(xj ±
√

2∆t a, tn)+O(∆xr)

= u(xj , tn)±
√

2∆t Du(xj , tn) · a +∆taTD2u(xj , tn)a

+O(∆t3/2)+O(∆xr). (98)

The max of I [w](xj ±
√

2∆t a) is minimized when the two values coincide, so that

u(xj , tn)+
√

2∆t Du(xj , tn) · āj +∆tāTj D
2u(xj , tn)āj +O(∆t

3/2)+O(∆xr)

= u(xj , tn)−
√

2∆t Du(xj , tn) · āj +∆tāTj D
2u(xj , tn)āj +O(∆t

3/2)+O(∆xr) (99)

and therefore
√

2∆t Du(xj , tn) · āj = O(∆t3/2)+O(∆xr). (100)

Note that (100) shows that the min-max operation replaces the finite difference estimation in
selecting the direction orthogonal to the gradient. However, the accuracy of this estimate is lower,
and this affects the overall consistency rate, as shown by the truncation error:

T∆x,∆t (xj , tn) 6 O(∆t1/2)+O

(
∆xr

∆t

)
.

In turn, this choice has the definite advantage of giving a monotone scheme, at the price of a higher
computational complexity (the finite difference computation of the approximate gradient is replaced
by a minmax).

Moreover, the minmax formulation does not make use of the gradient, thus allowing one to avoid
any special caution in treating the singular case.

8. Numerical tests

In this section we analyse the performances of the algorithm in terms of its accuracy and capability
to treat singular cases, by means of some examples in two and three space dimensions. The scheme
has been used in the version (26), so that in particular no artificial viscosity has been added. For the
first test we can also compute numerical errors, since the exact solution is known.

TEST 1: Two-dimensional circle evolution. We consider the problem (1) with initial condition

u0(x) =


(R2
− |x|2)4

R8 if |x|2 < R2,

0 elsewhere,

with R = 3, whose exact solution, for t < 1/2, is

u(x, t) =


(R2
− 2t − |x|2)4

R8 if |x|2 < R2
− 2t,

0 elsewhere.
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We recall that this classical benchmark describes the shrinking of a circle in R2. Tables 1 and 2 refer
to the approximate solution computed at the final time T = 0.16, on a domain given by the square
[−4, 4]2. The errors are obtained by comparison with the exact solution on the grid nodes. We have
used ‖ · ‖∞ and ‖ · ‖1 discrete norms, which represent respectively

‖u(·, T )− uN· ‖∞ =
maxj∈G∆x |u(xj , T )− u

N
j |

maxj∈G∆x |u(xj , T )|
,

‖u(·, T )− uN· ‖1 =

∑
j∈G∆x |u(xj , T )− u

N
j |∑

j∈G∆x |u(xj , T )|
.

We have chosen ∆t and the parameter s according to the truncation errors evaluation and the
constant C in (26) has been set at C = 0.1. The estimate (58) suggests, as a possible balance
scale between parameters, the relationship

∆t = O(∆x), s = 1,

so that the order of consistency would be 1/2. Following such a rule, we have obtained in this test
(see Table 1) a convergence rate that goes well beyond the theoretical value.

For a comparison, we also include (see Table 2) errors and CPU times for the min–max (Kohn–
Serfaty) scheme. The minimum has been evaluated by a bisection method. The tolerance for the
bisection method and the relation between the time and the space steps have been chosen such that
the accuracies of the two schemes are comparable.

TABLE 1
Errors for Test 1 obtained by the SL scheme

∆x ∆t ‖ · ‖∞ ‖ · ‖1 L∞-order L1-order CPU

0.078 0.08 6.06 · 10−2 9.07 · 10−3 0.10s
0.039 0.04 3.18 · 10−2 4.40 · 10−3 0.93 1.04 0.53s
0.019 0.02 1.66 · 10−2 2.07 · 10−3 0.93 0.99 2.85s

9.8 · 10−3 0.01 8.32 · 10−3 1.03 · 10−3 0.99 1.00 21.85s

TABLE 2
Errors for Test 1 obtained by the min–max scheme

∆x ∆t ‖ · ‖∞ ‖ · ‖1 L∞-order L1-order CPU

0.078 0.16 6.30 · 10−2 6.52 · 10−3 0.67s
0.039 0.08 3.80 · 10−2 3.73 · 10−3 0.72 0.80 7.09s
0.019 0.04 2.03 · 10−2 2.12 · 10−3 0.90 0.81 57.5s

9.8 · 10−3 0.02 7.80 · 10−3 1.26 · 10−3 1.37 0.75 8m4s

TEST 2: Development of a nonempty interior. In the second test, we have used as initial condition
the function

u0(x, y) = a
4x4
− a2x2

+ b2y2
+ 1,

which represents a saddle point at the origin (located at the critical level u = 1). Figure 1 confirms
a known feature of viscosity solutions of (1), predicted by the analysis in [14]. When a saddle point
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FIG. 1. Fattening: evolution of level curves around the critical value u = 1.
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FIG. 2. The torus evolving into a sphere.
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FIG. 3. The torus collapsing in a circle.
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FIG. 4. Dumbbell: topology change in R3.

exists, the evolution associated to the critical level curve (which is not well-defined in the classical
sense, since the level curve has a multiple point) develops an interior. At a numerical level, it is not
reasonable to expect the existence of a region with a strictly constant value of the numerical solution,
but the plot of the two level curves u = 1 ± 0.05 in Figure 1 shows that an almost constant region
of the solution is propagating (we must say that in this example we have chosen ∆t = ∆x3/2 in
order to treat the very strong degeneracy). Moreover, changing the parameters a and b it is possible
to interchange the roles of acute and obtuse angles at the double point, as shown in the two columns
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of Figure 1. Then the plots of the level curve u = 1 show that the scheme tends to break the double
point by keeping acute angles connected (this is supposed to be the physical behaviour).

TEST 3: Three-dimensional torus evolution. Let us consider the problem (1) in [−2, 2]3
⊂ R3

with initial condition

u0(x, y, z) =
(√
x2 + y2 − R2

)
+ z2
− r2.

This test describes the collapse of a torus in R3. Simulations are performed using a cubic
interpolation with ∆x = 0.04; the time step is ∆t = 0.01 in the first test and ∆t = 0.005 in
the second one.

The evolution of a torus may have two different behaviours depending on the ratio between the
main and the secondary radius of the torus. This is shown in Figures 2 and 3.

Figure 2 represents the evolution starting from a torus with main radius R = 0.5 and secondary
radius r = 0.3. The pictures are plotted at time t = 0, 0.01, 0.02, 0.03, 0.04, 0.05. As expected for
this case, the torus changes topology and collapses to a sphere.

Figure 3 represents the evolution starting from a torus with main radius R = 1 and secondary
radius r = 0.5. The pictures are plotted at time t = 0, 0.03, 0.06, 0.09, 0.12, 0.15. In this case the
different relationship between the main curvatures make the front collapse by shrinking to a circle,
and without any topology change.

TEST 4: Three-dimensional dumbbell evolution. We lastly consider problem (1) in [−2, 2]3 with
an initial condition describing a dumbbell. The test is performed using a cubic interpolation for
∆t = 0.001 and ∆x = 0.08.

Figure 4 shows the evolution of the surface corresponding to t = 0, 0.04, 0.06, 0.08, 0.09, 0.1.
This is a typical situation in which a change in topology occurs. We see that the scheme follows the
breaking of the dumbbell accurately and without spurious oscillations.
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