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Traveling waves for the Keller–Segel system
with Fisher birth terms
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We consider the traveling wave problem for the one-dimensional Keller–Segel system with a birth
term of either a Fisher/KPP type or with a truncation for small population densities. We prove that
there exists a solution under some stability conditions on the coefficients which enforce an upper
bound on the solution and Ḣ 1(R) estimates. Solutions in the KPP case are built as a limit of traveling
waves for the truncated birth rates (similar to ignition temperature in combustion theory).

We also discuss some general bounds and long time convergence for the solution of the Cauchy
problem and in particular linear and nonlinear stability of the nonzero steady state.
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1. The main result

The growth of bacterial colonies undergoes complex biomechanical processes which underly the
variety of interfaces exhibited by the colonies occupancy region. Usually cells divide and undergo
active motion resulting in fronts of bacteria that are propagating and delimit a free boundary between
the colonized and uncolonized areas. These fronts may be unstable leading to various patterns that
have been studied for a long time, such as, for instance, spiral waves [17], aggregates [19] and
dendrites [1, 11]. At least three elementary biophysical processes play commonly a central role in
these patterns, and have been used in all modeling: (i) cell division which induces the growth of
the colony, (ii) random cell motion—for instance, bacteria can swim in a liquid medium thanks
to flagella, and (iii) chemoattraction through different molecules that the cells may release in their
environment and that diffuse, leading to some kind of (possibly long distance) communication. Our
purpose here is to study the existence of traveling waves and the linear and nonlinear stability of the
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steady states for a simple model combining these three effects. The macroscopic model describes the
density of bacteria, denoted by u(t, x) below, and the chemoattractant concentration v(t, x) in the
medium. It is a variant of the Keller–Segel system that has been widely studied in various contexts
(see [5, 13, 20, 21, 7] and references therein).

We consider the one-dimensional Keller–Segel system with a Fisher–KPP birth term (we will
refer to it as the Keller–Segel–Fisher system){

ut − uxx + χ(uvx)x = u(1− u),
−dvxx + v = u.

(1)

Here the notation ut or ux means time or space derivatives. The boundary conditions for u and v are

v(−∞) = u(−∞) = 1, v(+∞) = u(+∞) = 0, (2)

that is, there are no bacteria on the right. The two parameters χ and d are, respectively, the sensitivity
of the cells to chemoattraction, and the diffusion coefficient of the chemoattractant. The traveling
wave solutions moving with a speed c (which becomes a new unknown of the problem) for (1) are
special solutions of the form u(x − ct) and v(x − ct) that satisfy{

−cu′ − u′′ + χ(uv′)′ = u(1− u),
−dv′′ + v = u,

(3)

together with the boundary conditions (2). We prove the following result.

THEOREM 1.1 Let χ > 0 and d > 0 satisfy

χ < min(1, d). (4)

Then there exists a traveling wave solution (c∗, u, v) of (3) with the boundary conditions (2) and a
constant K(d, χ) such that the functions u(x) and v(x) and the speed c∗ satisfy

0 < u(x), v(x) 6

(
1−

χ

d

)−1

, (5)∫
u(x)(1− u(x))2 dx +

∫
|u′(x)|2 dx +

∫
|v′(x)|2 dx 6 K(d, χ), (6)

2 6 c∗ 6 2+
χ
√
d

d − χ
. (7)

Writing the second equation as a convolution v = Kd ? u, one may view this system as a
Fisher equation with a nonlocal drift. Reaction-diffusion with nonlocal reaction or diffusion terms
has recently been investigated (see [4, 8, 10, 12]), but, as far as we know, not for a nonlocal drift
term. Nonlocal terms may make the homogeneous positive state unstable and then create periodic
stable patterns. In this paper, we need some conditions on the coefficients, such as (4), that imply
the stability of the state u = v ≡ 1.

Other situations where traveling waves appear in chemotaxis have been considered in the
literature. For instance, [14] considers a source term for the chemoattractant in the equation on v, and
[9] considers existence of traveling fronts by a linearization analysis (for small bacterial diffusion).
There are also other related models of biological interest: see for instance the case of haptotaxis in
[18]. We also refer to these papers for further references on fronts and waves for cell populations as
well as to [22, 23] for the general theory of traveling waves.
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Our strategy for the proof of Theorem 1.1 is as follows. We introduce a smooth monotonic
cut-off function g0(u) such that g0(u) = 0 for u 6 1 and g0(u) = 1 for u > 2 and set g(u) =
g0((u− θ0)/θ0)—this function has a cut-off θ0 ∈ (0, 1). Consider a regularized system{

−cu′ − u′′ + χ(g(u)uv′)′ = g(u)u(1− u),
−dv′′ + v = u,

(8)

with the same boundary conditions (2). The system with the cut-off is of independent interest—the
cut-off means that bacteria feel the chemoattractant and reproduce only if their density exceeds a
critical threshold value. Mathematically, the role of the cut-off is very similar to that of the ignition
temperature in combustion theory [15]. The first step in the proof of Theorem 1.1 is to construct a
traveling wave solution (c(θ0), u(x; θ0), v(x; θ0)) of (8) for θ0 > 0—as we have mentioned, this
result is of independent interest. We do this for θ0 > 0 sufficiently small and also obtain (uniform
in θ0) bounds on c(θ0) and u(x; θ0), v(x; θ0).

PROPOSITION 1.2 Let χ > 0 and d > 0 satisfy

1
χ
>

1
d
+ 1. (9)

Then there exists α0 > 0 such that for all θ0 ∈ (0, α0) there exists a traveling wave solution
(c(θ0), u(x; θ0), v(x; θ0)) of (8), (2). In addition, there exists a constant K > 0 which does not
depend on θ0 such that we have the following uniform bounds:

0 < u(x; θ0), v(x; θ0) 6 (1− χ/d)−1, 0 < 1/K 6 c(θ0) 6 K <∞,∫
g(u(x; θ0))u(x; θ0)(1− u(x; θ0))

2 dx +
∫
|u′(x; θ0)|

2 dx +
∫
|v′(x; θ0)|

2 dx 6 K.
(10)

Here and throughout the paper we denote by C and K generic constants which may depend on χ
and d but not on the cut-off θ0 or the size a of the approximating finite interval which appears later
in the proof. We recall that in the case of a single equation with no chemoatractant coupling (χ = 0)
the speed c(θ0) is unique for θ0 > 0 [15].

In this general framework it seems difficult to relax the size condition (9) and to achieve the more
general condition (4) that we use in Theorem 1.1. This is possible if we introduce two modifications
in the above procedure. First, we consider another regularization of the system:{

−cu′ − u′′ + χ(g(u)uv′)′ = g(u)u(1− u),
−dv′′ + v = g(u)u,

(11)

that is, the chemoattractant source also now has a small density cut-off. Second, we tune the
truncation function appropriately—we now choose it with the following properties:

g(u) = 0 for u 6 θ0, g′ > 0, g(u) = 1 for u > 1,
g(u)+ ug′(u) 6 1+ α(θ0) with α(θ0) −−→

θ0→0
0,

g(u) increases to 1 for u ∈ (0, 1) as θ0 → 0.

(12)

The reader can easily check that these conditions are satisfied by the function

g(u) = 1+ 2α(1+ ln(u)− u)

with α(θ0) normalized so that g(θ0) = 0.
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PROPOSITION 1.3 Assume that the cut-off g has the properties (12) and that χ and d satisfy the
condition (4). Then there exists α0 > 0 such that for all θ0 ∈ (0, α0) there exists a traveling
wave solution (c(θ0), u(x; θ0), v(x; θ0)) of (11) with the boundary conditions (2) which satisfies
the estimates (5), (10) and

K 6 c(θ0) 6 2+ (1+ α)
χ
√
d

d − χ
, (13)

with a constant K > 0 which does not depend on θ0 ∈ (0, α0).

This proposition allows us to pass to the limit θ0 → 0 and obtain a traveling wave solution of
the original problem (3) without a cut-off as stated in Theorem 1.1 and with the smallness condition
(4) on the chemotaxis. The traveling waves for a positive cut-off θ0 > 0 in Propositions 1.2 and 1.3
are constructed by first building an approximate solution on a finite interval −a 6 x 6 a and then
letting a→+∞, the strategy originated in [3].

This method enables us to find one speed c(θ0) for a traveling wave. This is what we expect when
there is a positive cut-off θ0 since there is a unique speed of propagation for the Fisher equation
with ignition type nonlinearity. In the case of the Fisher equation with positive nonlinearity, it is
well-known that there exists a half-line [c∗,∞) of speeds associated with traveling waves. The
minimal speed gives the only stable wave, since the solution of the Cauchy problem with compactly
supported initial data converges to this wave. In this paper we only prove that there exists at least
one speed associated with a traveling wave for the Keller–Segel–Fisher equation. We do not know
if this speed is minimal and if there exist any traveling waves with higher speeds.

By construction, the traveling wave solutions in Theorem 1.1 have a nonlinear stability property
with respect to the perturbations of the birth term, under condition (4). This condition arises several
times in our proof but we do not know if it is sharp: it implies the less restrictive condition χ < d

which provides us with the maximum principle for u, but it is also instrumental in deriving the other
fundamental a priori estimates in (10). It is interesting that the linear stability condition of the steady
state solutions (1, 1) of (1) is much weaker than (4). To see that, we linearize the problem in the
neighborhood of (1, 1) and write

u = 1+ U, v = 1+ V, where U,V � 1.

One finds the linearized equations {
Ut − Uxx + χVxx = −U,

−dVxx + V = U.
(14)

Taking the Fourier transform we obtain{
Ût + k

2Û − χk2V̂ = −Û ,

dk2V̂ + V̂ = Û ,

and since V̂ can be explicitly computed in terms of Û , we reduce it to

Ût +

[
k2
+ 1−

χk2

1+ dk2

]
Û = 0.

This equation is linearly stable if and only if

k2
+ 1−

χk2

1+ dk2 > 0 for all k ∈ R.
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Setting X = k2 > 0, we find the equivalent condition 1 + X(d + 1 − χ) + dX2 > 0 for X > 0,
which in turn is equivalent to

χ 6 (1+
√
d)2. (15)

In this case the steady state (1, 1) is linearly stable. When this condition is violated as in [9] unstable
patterns arise. Condition (4) is of course stronger than (15) and even the sufficient condition χ < d

for the uniform upper bound on u and v in (10) is still stronger than (15). This leaves open the
question of the optimal condition for the existence of traveling waves.

The organization of this paper is as follows. We first consider the problem with cut-off on an
interval [−a, a] and prove the existence by a homotopy argument in Section 2. We also establish the
main estimates in that section. In Section 3 we remove the cut-off and let the interval length a tend
to infinity, the main difficulty being to show that the states (1, 1) and (0, 0) are indeed connected by
the solution obtained by this procedure. In the last section we establish some general bounds on the
solution of the Cauchy problem and prove that the homogeneous solution is stable as soon as it is
linearly stable.

2. The problem on a finite interval [−a, a]

Our approach follows the traditional methods (see [3] and [23], for instance), which we adapt to
our specific situation. In particular, as usual, specific difficulties arise in showing that the speed c is
controlled from below and above, and that the states u = 1 and u = 0 are indeed reached at infinity
(see [2, 6, 16] for an example where this question is left open in the construction of travelling waves
for a reactive Boussinesq system).

The finite interval approximation

In order to prove Proposition 1.2, we first construct an approximation (ca, ua, va) (we drop θ0 in
the notation for the traveling wave for the moment) on a finite interval −a 6 x 6 a:{

−cau
′
a − u

′′
a + χ(g(ua)uav

′
a)
′
= g(ua)ua(1− ua),

−dv′′a + va = ua .
(16)

The boundary conditions for ua are

ua(−a) = 1, ua(a) = 0. (17)

Instead of imposing the boundary conditions for va at x = ±a, we extend ua to the whole real line
as

ūa(x) =

 1, x < −a,

ua(x), −a 6 x 6 a,

0, x > a,

(18)

and then we set

va(x) =

∫
∞

−∞

Kd(|x − ξ |)ūa(ξ) dξ, Kd(ξ) =
e−|ξ |/

√
d

2
√
d

,

∫
Kd(ξ) dξ = 1. (19)
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The function va(x) is defined for all x ∈ R and satisfies

−dv′′a + va = ūa, va(−∞) = 1, va(+∞) = 0. (20)

Three consequences of the representation formula (19) are the bounds

|va(x)| 6 ‖ua‖∞,

|v′a(x)| =
1

2d

∣∣∣∣∫ e−|x−ξ |/
√
d sgn(ξ − x)ua(ξ) dξ

∣∣∣∣ 6
1
√
d
‖ua‖∞, (21)

|v′′a (x)| 6
C

d
‖ua‖∞,

which we frequently use.
In order to ensure that the solution ua has a nontrivial limit as a→+∞, we normalize it so that

max
x>0

ua(x) = θ0. (22)

This constraint indirectly fixes the speed ca . It follows from the maximum principle and (22) that
ua(0) = θ0 and thus ua satisfies the boundary value problem on [0, a]:

−cau
′
a(x)− u

′′
a(x) = 0, 0 6 x 6 a, ua(0) = θ0, ua(a) = 0.

PROPOSITION 2.1 With the assumption (9), there exists a solution (ca, ua, va) of (16), (17), (19),
(22) with nonnegative functions ua and va , which in addition satisfies the uniform bounds (10).

The rest of this section is devoted to the proof of this proposition, which uses a homotopy
argument. Accordingly, we introduce the homotopy parameter τ ∈ [0, 1] and consider a family of
problems {

−cτ,au
′
τ,a − u

′′
τ,a + χτ(g(uτ,a)uτ,av

′
τ,a)
′
= τg(uτ,a)uτ,a(1− uτ,a),

−dv′′τ,a + vτ,a = τuτ,a,
(23)

together with the boundary conditions (17), the first relation (19) (with the right side multiplied by
the factor τ ) and normalization (22). To simplify the notation we drop the subscript τ below.

A uniform upper bound for the traveling speed

We begin with an upper bound for the speed.

LEMMA 2.2 If d > χ , then any solution of (17), (19), (22), (23) satisfies

0 6 ua(x), va(x) 6 (1− χ/d)−1, |v′a(x)| 6 C, (24)

with the constant C > 0 which depends only on d and χ . In addition, there exists a constant
a0(θ0) > 0, and a constant K > 0 which depends only on d and χ but not on a, τ ∈ [0, 1], or
θ0 ∈ (0, 1), such that for all a > a0(θ0) we have

ca 6 K <∞. (25)
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Proof. Let us rewrite the equation (23) for ua as

−cau
′
a − u

′′
a + τχg(ua)v

′
au
′
a + τχg

′(ua)uav
′
au
′
a = τg(ua)ua(1− ua)−

τχ

d
g(ua)ua(va − ua)

= τg(ua)ua

(
1− ua +

χ

d
ua −

χ

d
va

)
6 τg(ua)ua

(
1− ua +

χ

d
ua

)
. (26)

The last inequality holds if va > 0. As g(u) = 0 for u 6 0, it follows that ua cannot attain an
interior negative minimum on (−a, a) and thus ua > 0, which, in turn, implies that va > 0 and (26)
indeed holds. It also follows from (26) that ua cannot attain an interior maximum at a point where
ua > (1− χ/d)−1. Therefore, 0 6 ua 6 (1− χ/d)−1 and hence the same bound holds for va . The
bound for |v′a(x)| in (24) is then a consequence of (21).

Next, we show that the speed ca is uniformly bounded from above by using a supersolution
argument. The function ua(x) satisfies the inequality

−cau
′
a − u

′′
a + τχ [g(ua)+ g′(ua)ua]v′au

′
a 6 τua,

which follows from (26) and the condition χ/d < 1. Let us set ψM(x) = Me−x . Then the function
ψM satisfies

−caψ
′

M − ψ
′′

M + τχ [g(ua)+ g′(ua)ua]v′aψ
′

M = (ca − 1− τχg(ua)v′a − τχg
′(ua)uav

′
a)ψM

> (ca − 1−K0)ψM ,

with the constant K0 = K0(χ, d), which is uniformly bounded in a, τ and θ0, chosen so that (using
(21))

χ [g(ua)+ g′(ua)ua]|v′a| 6
χ
√
d
‖g(σ )+ g′(σ )σ‖∞‖ua‖∞ 6 K0. (27)

This is possible because of the uniform bounds in (24) and since for u /∈ (θ0, 2θ0) we have
g′(u) = 0, while for u ∈ (θ0, 2θ0) the following estimate holds:

|g′(u)u| =
u

θ0
g′0

(
u− θ0

θ0

)
6 2 max

16u62
|g′0(u)|.

Now, suppose by contradiction that
ca > 2+K0. (28)

Then ψM satisfies

−caψ
′

M − ψ
′′

M + τχ [g(ua)+ g′(ua)ua]v′aψ
′

M > ψM > τψM .

Note that the upper bound on ua(x) in (24) implies that ψM(x) > ua(x) for M > ea/(1− χ/d).
Let us define

M0 = inf{M : ψM(x) > ua(x) for all x ∈ [−a, a]}.

Then M0 > 0 and, in addition, ψM0(x) > ua(x) for all x ∈ [−a, a] and there exists x0 ∈ [−a, a]
such that ψM0(x0) = ua(x0). However, the difference ψM0(x) − ua(x) may not attain an interior
minimum at x0 and ψM0(a) > 0 = ua(a). Therefore, x0 = −a and thus M0 = e−a . As a
consequence, θ0 = ua(0) 6 ψM0(0) = e−a , which is a contradiction if a is sufficiently large.
We conclude that (28) is impossible and thus (25) holds with K = 2+K0. 2
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A lower bound for the traveling speed

Now, we need a lower bound for ca and an upper bound for ‖u′a‖2.

LEMMA 2.3 With the assumptions of Lemma 2.2 and (9), there exists a constant a0(θ0) > 0 and
K > 0 which depends only on d and χ but not on a > a0, θ0 ∈ (0, 1) and τ ∈ [0, 1], such that for
all a > a0 and θ0 < 1/3 we have

ca >

√
τ

K
−
Kθ0

a
, (29)

τ

∫ a

−a

g(ua)ua(1− ua)2 dx +
∫ a

−a

|u′a(x)|
2 dx +

∫ a

−a

|v′a(x)|
2 dx 6 K. (30)

Proof. Start with

−cau
′
a − u

′′
a + τχ(g(ua)uav

′
a)
′
= τg(ua)ua(1− ua), (31)

and integrate on [−a, a]:

ca − u
′
a(a)+ u

′
a(−a)− τχv

′
a(−a) = τ

∫
g(ua)ua(1− ua). (32)

Now, multiply (31) by ua and integrate:

ca

2
+ u′a(−a)+

∫ a

−a

|u′a|
2
− τχv′a(−a)− τχ

∫ a

−a

g(ua)uau
′
av
′
a = τ

∫ a

−a

g(ua)u
2
a(1− ua).

Combining the last two equalities, we get

ca

2
− u′a(a)−

∫ a

−a

|u′a|
2
+ τχ

∫
g(ua)uau

′
av
′
a = τ

∫ a

−a

g(ua)(ua − u
2
a)(1− ua).

This can be written as

τ

∫ a

−a

g(ua)ua(1− ua)2 +
∫ a

−a

|u′a|
2
+ u′a(a) =

ca

2
+ τχ

∫ a

−a

g(ua)uau
′
av
′
a . (33)

However, on the interval (0, a) we have g(ua) = 0, and we can find ua explicitly:

ua(x) = θ0
e−cax − e−caa

1− e−caa
, (34)

so that

u′a(a) = −
caθ0e

−caa

1− e−caa
.

Note that for ca > 0 we have

0 6
ca

ecaa − 1
6

1
a
,

while for ca < 0 we have

0 6
ca

ecaa − 1
=

a|ca|

a(1− e−|ca |a)
6

1+ |ca|a
a

=
1
a
+ |ca|.
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Therefore, for all ca ∈ R we have

|u′a(a)| 6
θ0

a
+ |ca|θ0. (35)

We note that the special case ca = 0 that we did not treat above can be easily considered separately.
We may use the representation formula (19) for v to obtain

v′ = τKd ∗ ū
′, ‖v′‖L2 6 τ‖ū′‖L2 6 τ‖u′‖L2 . (36)

Using this in (33) we obtain

τ

∫ a

−a

g(ua)ua(1− ua)2 +
∫ a

−a

|u′a|
2 6

ca

2
− u′a(a)+

χτ

1− χ/d

∫ a

−a

|u′a|
2. (37)

It follows that for 0 6 τ 6 1 we have, thanks to (35),

τ

∫ a

−a

g(ua)ua(1− ua)2 +M
∫ a

−a

|u′a|
2 6

ca

2
+ |u′a(a)| 6

ca

2
+
θ0

a
+ θ0|ca|, (38)

with, according to condition (9),

M = 1−
χ

1− χ/d
> 0.

In addition, as ua(−a) = 1 and ua(0) = θ0, there exists a constant K > 0 which does not depend
on θ0 ∈ (0, 1/3) such that (∫

g(ua)ua(1− ua)2
)(∫

|u′a|
2
)

> K.

Therefore, provided that a > a0 and θ0 ∈ (0, 1/3), we have a lower bound for ca :

ca > c0
√
τ −

Cθ0

a
,

with the constants c0 > 0 and C > 0 which do not depend on the cut-off θ0. This is the bound in
(29), while the bounds in (30) follow from the upper bound (25) for the speed, (36) and (38). 2

The homotopy argument

We may now finish the proof of Proposition 2.1 using a homotopy argument. The a priori bounds
obtained in Lemmas 2.2 and 2.3 allow us to use the Leray–Schauder topological degree argument
to prove existence of solutions to the problem (16), (17), (19) with the normalization (22) on the
bounded intervalDa = (−a, a). This method of construction of traveling wave solutions goes back
to [3]. We introduce a map (we suppress the subscript a now, resurrecting the subscript τ for the
homotopy parameter)

Kτ : (c, u, v)→ (θτ , Uτ , Vτ )

as the solution operator of the linear system{
−cU ′τ − U

′′
τ + τχ(g(u)Uτv

′)′ = τg(u)u(1− u),
−dV ′′τ + Vτ = τ ū.

(39)
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The boundary conditions for Uτ are as in (17):

Uτ (−a) = 1, Uτ (a) = 0, (40)

while Vτ is given explicitly as before by

Vτ (x) = τ

∫
∞

−∞

Kd(|x − ξ |)ū(ξ) dξ, Kd(ξ) =
e−|ξ |/

√
d

2
√
d

, (41)

where ū(x) is again the extension of u(x) to the whole real line as in (18).
The number θτ is defined by

θτ = θ0 −max
x>0

u(x)+ c.

The operator Kτ is a mapping of the Banach space X = R × C1,α(Da) × C
2,α(Da), equipped

with the norm ‖(c, u, v)‖X = max(|c|, ‖u‖C1,α(Da)
, ‖v‖C1,α(Da)

), onto itself. A solution sτ =
(cτ , uτ , vτ ) of the finite interval problem (16), (17), (19), (22) is a fixed point of Kτ and satisfies
Kτ sτ = sτ , and vice versa: a fixed point of Kτ provides a solution. Hence, in order to establish
the existence of a solution to (16), (17), (19) together with the normalization (22), it suffices
to show that the kernel of the operator Fτ = Id − Kτ is not trivial. The standard elliptic
regularity theory implies that the operatorKτ is compact and depends continuously on the parameter
τ ∈ [0, 1]. Thus we may apply the Leray–Schauder topological degree theory. Let us introduce a
ball BM = {‖(c, u, v)‖X 6 M}. Then Lemmas 2.2 and 2.3 show that the operator Fτ does not
vanish on the boundary ∂BM with M sufficiently large for any τ ∈ [0, 1]. It remains to show that
the degree deg(F1, BM , 0) in B̄M is not zero. However, the homotopy invariance property of the
degree implies that deg(Fτ , BM , 0) = deg(F0, BM , 0) for all τ ∈ [0, 1]. Moreover, the degree at
τ = 0 can be computed explicitly as the operator F0 is given by

F0(c, u, v) = (max
x>0

u(x)− θ0, u− u
c
0, v).

Here the function uc0(x) solves

d2uc0
dx2 + c

duc0
dx
= 0, uc0(−a) = 1, uc0(a) = 0,

and is given by

uc0(x) =
e−cx − e−ca

eca − e−ca
.

The mapping F0 is homotopic to

Φ(c, u, v) = (max
x>0

uc0(x)− θ0, u− u
c
0, v),

which in turn is homotopic to

Φ̃(c, u, v) = (uc0(0)− θ0, u− u
c0
∗

0 , v),

where c0
∗ is the unique number so that uc∗0 (0) = θ0. The degree of the mapping Φ̃ is the product of

the degrees of each component. The last two have degree 1, and the first −1, as the function uc0(0)
is decreasing in c. Thus degF0 = −1 and hence degF1 = −1 so that the kernel of Id − K1 is not
empty. This finishes the proof of Proposition 2.1. 2
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3. Identification of the limit as a→+∞

In this section we first let a → +∞ constructing traveling waves with a positive cut-off θ0 > 0. In
the second step we remove the cut-off and obtain traveling waves for the Fisher–KPP birth rate. At
this stage we only prove a loose lower bound on c∗; the more precise bound stated in Theorem 1.1
is proved in Section 4.

Passage to the whole line with a cut-off

We now prove Proposition 1.2. Having established the existence of a solution (ca, ua, va) of (16),
(17), (19), (22) on a finite interval we now let a → +∞ and show that (ca, ua, va) converges to a
traveling wave (c, u, v). The L2-bound for u′(x) and v′(x) in Lemma 2.3 together with the uniform
bounds in Lemma 2.2 and the elliptic regularity imply that there exists a sequence an → +∞ so
that cn = can converges to a limit c∗(θ0) and the functions un = uan and vn = van converge locally
uniformly together with their derivatives to the limits u(x; θ0) and v(x; θ0). The functions u(x) and
v(x) satisfy (we drop the dependence on θ0 in the notation){

−c∗u
′
− u′′ + χ(g(u)uv′)′ = g(u)u(1− u),

−dv′′ + v = u,
(42)

and

v(x) =

∫
∞

−∞

Kd(|x − ξ |)u(ξ) dξ, Kd(ξ) =
e−|ξ |/

√
d

2
√
d

. (43)

Furthermore, the lower bound of Lemma 2.3 yields c∗(θ0) > 1/K , where K is a positive
constant that only depends on d and χ . In particular, c∗ is positive.

It remains to prove that u(x) and v(x) satisfy the boundary conditions (2) and, because of (43),
it is sufficient to verify them for the function u(x) only. The L2-bound for the gradient of u in
Lemma 2.3 and elliptic regularity imply that the function u(x) has limits as x →±∞:

ul = lim
x→−∞

u(x), ur = lim
x→+∞

u(x).

The functions ua(x) are given by an explicit expression (34) on the interval 0 6 x 6 a. Therefore,
the limit u(x) is given by

u(x) = θ0e
−c∗x for all x > 0. (44)

As c∗ > 0, it follows that ur = 0.
Next, we show that ul = 1 when θ0 is sufficiently small. We first note that according to the

maximum principle the function ua cannot attain a minimum at a point x where ua(x) 6 θ0.
Therefore, ua > θ0 for x ∈ (−a, 0) and thus ul > θ0. On the other hand, the uniform bound∫ a

−a

g(ua)ua(1− ua)2 dx 6 K

in Lemma 2.3 implies that the limit u(x) satisfies∫
∞

−∞

g(u)u(1− u)2 dx 6 K. (45)
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Therefore, either ul = 1 or ul ∈ [0, θ0]. The previous argument implies that the only two
possibilities are ul = θ0 and ul = 1. Let us assume that ul = θ0 and find a contradiction when
θ0 is sufficiently small. With this assumption we integrate the first equation in (42) once to get

c∗θ0 =

∫
∞

−∞

g(u)u(1− u) dx. (46)

Multiplying the same equation by u and integrating leads to

c∗θ
2
0

2
+

∫
∞

−∞

|u′|2 dx − χ
∫
∞

−∞

g(u)uu′v′ dx =
∫
∞

−∞

g(u)u2(1− u) dx

= c∗θ0 −

∫
∞

−∞

g(u)u(1− u)2 dx. (47)

Using the L∞-bound for u and since ‖v′‖2 6 ‖u′‖2 we get, still using condition (9),

c∗θ
2
0

2
+K

∫
∞

−∞

|u′|2 dx +
∫
∞

−∞

g(u)u(1− u)2 dx 6 c∗θ0, (48)

with K > 0, as in the computation leading to (38). Note that since ul = u(0) = θ0 and u(x)
cannot attain a local minimum at a value below θ0, the function u(x) attains its maximum at some
point xM—otherwise, g(u) ≡ 0 and c∗ = 0, which would be a contradiction. For the same reason,
uM = u(xM) > θ0 since the integral on the right side of (46) is positive because c∗ > 0. Observe
that if uM > 1/2 and ul = θ0 < 1/3, then there exists K1 > 0 which does not depend on θ0 so that∫

∞

−∞

|u′|2 +

∫
∞

−∞

g(u)u(1− u)2 > K1.

Therefore, as c∗ is bounded from above, it follows from (48) that there exists α0 > 0 so that if
θ0 ∈ (0, α0) then θ0 < uM < 1/2.

Next, assume that θ0 ∈ (0, α0) and integrate the first equation in (42) between −∞ and xM to
get

−c∗(uM − θ0)+ χg(uM)uMv
′(uM) =

∫ xM

−∞

g(u)u(1− u) dx. (49)

As uM < 1/2, the right side above is positive. In addition, we have ‖v′‖L∞ 6 C‖u‖∞ = CuM and

g(u) = g0

(
u− θ0

θ0

)
6
C(u− θ0)

θ0

for u > θ0. Then (49) implies

−c∗(uM − θ0)+
Cχ(uM − θ0)u

2
M

θ0
> 0.

Therefore, as c∗ > 0 and uM > θ0, we have

u2
M > Kθ0 with K > 0. (50)
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In particular, uM > 2θ0 when θ0 is sufficiently small. Let x0 be the first point to the left of xM
such that u(x0) = uM/2, that is, u(x) ∈ [uM/2, uM ] for all x ∈ (x0, xM) and g(u(x)) = 1 on this
interval. Set L = xM − x0. Then we have, using (48),

c∗θ0 > K

∫ xM

x0

|u′|2 +

∫ xM

x0

g(u)u(1− u)2 > C

[
u2
M

L
+ uML

]
> Cu

3/2
M .

It follows that uM 6 Cθ
2/3
0 , which contradicts (50). This contradiction shows that ul = θ0

is impossible when θ0 is sufficiently small. Therefore, ul = 1. This finishes the proof of
Proposition 1.2. 2

Proof of Proposition 1.3. We now indicate the additional arguments necessary to arrive at the
statement of Proposition 1.3, that is, how existence of traveling waves can be deduced under the
weaker restriction (4) on the chemotaxis parameter χ .

The entire proof above of Proposition 1.2 goes through with the general assumption (12) on g.
We now indicate how we can take advantage of the property

g + σg′ 6 1+ α. (51)

First, the upper bound on c∗ in (7) follows clearly from the value K0 computed in (27).
Now, we prove gradient and “reaction” bounds in (6). To do that we use equation (33), and the

key point is to handle the right hand side more carefully with the help of (51): we split the integral
as

χ

∫ a

−a

τg(ua)uau
′
av
′
a = χτ

∫ a

−a

[g(ua)ua − 1]u′av
′
a + χτ

∫ a

−a

u′av
′
a .

We treat separately the two terms on the right side.
Using the equation on v in (11), which now also has the small density cut-off, we have

(
χτ

∫ a

−a

u′av
′
a

)2

6 χ2
∫ a

−a

(u′a)
2
∫ a

−a

(v′a)
2 6 χ2

∫ a

−a

(u′a)
2
∫ a

−a

[(τg(ua)+ uaτg′(ua))u′a]2

6 χ2(1+ α)2
(∫ a

−a

(u′a)
2
)2

.

This term is nicely absorbed for χ < 1 and α (or, equivalently, θ0) small enough by the
corresponding term on the left hand side of (33).

For the other term, we introduce the function

h(u) =

∫ u

1
[g(σ )σ − 1] dσ for 0 6 u 6 1

and with h(u) = 0 for u > 1. Note that

0 6 h(u) 6 1
2 (1− u)

2, h(1) = 0.
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We write

χτ

∫ a

−a

[g(ua)ua − 1]u′av
′
a = χτ

∫ a

−a

h(ua)
′v′a

= χτ

∫ a

−a

h(ua)(−va)
′′
+ χτh(ua)v

′
a|x=a − χτh(ua)v

′
a|x=−a

6
χτ

d

∫ a

−a

h(ua)(g(ua)ua − va) 6 τ
χ

2d

∫ a

−a

(1− ua)2g(ua)ua,

because v′a(a) = (K
′

d ∗ ūa)(a) 6 0 for a sufficiently large. Consequently,

τ

∫ a

−a

g(ua)ua(1− ua)2 +
∫ a

−a

|u′a|
2
+ u′a(a) =

ca

2
+ τχ

∫ a

−a

g(ua)uau
′
av
′
a

6
ca

2
+ χ(1+ α)

∫ a

−a

(u′a)
2
+ τ

χ

2d

∫ a

−a

(1− ua)2g(ua)ua . (52)

It follows that

τ

(
1−

χ

2d

)∫ a

−a

g(ua)ua(1− ua)2 + (1− χ(1+ α))
∫ a

−a

|u′a|
2
+ u′a(a) 6

ca

2
, (53)

and u′a(a) is still bounded by (35).
Thus if χ < min(1, d) (recall the upper control by d is needed for the L∞ bound) and θ0 is

small enough such that χ(1 + α) < 1, the quantities of the left hand side are controlled by that of
the right hand side and we can go on with the proof and conclude as before. 2

4. Removal of the cut-off

Here we remove the cut-off, letting the parameter θ0 vanish, and prove Theorem 1.1. The traveling
waves (c(θ0), u(x; θ0), v(x; θ0)), constructed in Proposition 1.3 for θ0 > 0, are translationally
invariant and have the left and right limits ul = vl = 1, ur = vr = 0. Therefore, we may translate
them and fix the shift so that u(0; θ0) = 1/2. The uniform estimates in the same proposition allow
us to let θ0,n→ 0 along a subsequence, so that the traveling wave speeds cn = c∗(θ0,n) converge to
a limit c∗ > 0, and the functions u(x; θ0,n) and v(x; θ0,n) converge to u(x) and v(x). We also have
g(un)→ Ψ (x) with Ψ (x) ≡ 1 on the set {u(x) 6= 0}. In addition, the limits satisfy the system (3):

− c∗u
′
− u′′ + χ(Ψ (x)uv′)′ = Ψ (x)u(1− u),

− dv′′ + v = Ψ (x)u,
(54)

and the functions u and v are still related by (43). Moreover, as the function p(u) = g(u)u is
globally Lipschitz, the functions u(x; θ0,n) and v(x; θ0,n) are uniformly bounded in C2,α(R) and
thus so are the limits u and v. Therefore, we have u > 0 and thus Ψ (x) ≡ 1 and u and v actually
satisfy the system (3):

− c∗u
′
− u′′ + χ(uv′)′ = u(1− u),

− dv′′ + v = u.
(55)
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It remains to verify that u and v satisfy the boundary conditions (2) at infinity. As in the case with
θ0 > 0 it suffices to ensure that u(x) has the left and right limits ul = 1 and ur = 0, respectively.
Once again, existence of the limits at infinity follows from the L2-bound on the gradient∫

∞

−∞

|u′(x)|2 dx 6 K,

and standard elliptic regularity estimates. Moreover, in the limit θ0 → 0 the estimate (45) becomes∫
∞

−∞

u(1− u)2 dx 6 K <∞.

As a consequence, the only possible values for ul and ur are 0 and 1, hence in order to show that
ul = 1 and ur = 0 it suffices to show that ul > ur . Integrating the first equation in (55) we obtain

c∗(ul − ur) =

∫
u(1− u),

while multiplying the same equation by u and integrating leads to

c∗(u
2
l − u

2
r )

2
+

∫
|u′|2 − χ

∫
uu′v′ =

∫
u2(1− u) = c∗(ul − ur)−

∫
u(1− u)2.

As before, we conclude that

c∗(u
2
l − u

2
r )

2
+

∫
u(1− u)2 +M

∫
|u′|2 6 c∗(ul − ur),

which may be rewritten as∫
u(1− u)2 +M

∫
|u′|2 6 c∗(ul − ur)

(
1−

ul + ur

2

)
.

As u(0) = 1/2 the left side is strictly positive. Moreover, c∗ > 0 and (ul + ur)/2 6 1. As a
consequence, ul > ur , thus ul = 1, ur = 0, and the proof of the existence part of Theorem 1.1 is
complete.

A lower bound for the traveling speed

We now obtain a more precise lower bound for the propagation speed c∗ in Theorem 1.1. To do so,
we consider a more general birth term f (u) in place of u(1− u) in equation (3). We do not expect
more difficulties in the proof of the existence part of Theorem 1.1 as long as f (u) is of the KPP
type:

f (0) = f (1) = 0, f (u) > 0 for 0 6 u 6 1, f (u) < 0 for u > 1 and f ′(0) = sup
u>0

f (u)

u
> 0.

(56)
Then we have
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PROPOSITION 4.1 Any traveling wave solution of (2)–(3) in Ḣ 1(R) with the nonlinearity f

satisfying (56) and such that u, v > 0, and∫
u(1− u)2 dx <∞, (57)

satisfies c > 2
√
f ′(0).

Proof. Consider a traveling wave (c, u, v) and choose a sequence xn that increases to∞ as n→∞.
Note that u(x + xn) → 0 uniformly in x ∈ [R,∞) for all R ∈ R as n → ∞. Indeed, choosing
A > 0 large enough so that u(x) 6 1/2 for x > A, we deduce from (57) that u ∈ L1(A,∞) and
thus we may write

u2(x) = −2
∫
∞

x

u′ 6 2
(∫
∞

A

u2
)1/2(∫ ∞

A

u′2
)1/2

−−→
θ0→0

0,

so that in particular u(xn)→ 0 as n→∞.
Next, set un(x) = u(x + xn)/u(xn) and vn(x) = v(x + xn). These functions satisfy{

−u′′n − cu
′
n + χ(v

′
nun)

′
= f (u(xn)un)/u(xn),

−dv′′n + vn = u(x + xn).
(58)

The right side in the equation on un in (58) is bounded by f ′(0)un. Therefore we use elliptic
regularity and, up to extracting a subsequence, we know that un → u∞ and vn → v∞ as n→ ∞
in C2

loc(R). These functions satisfy{
−u′′∞ − cu

′
∞ + χ(v

′
∞u∞)

′
= f ′(0)u∞,

−dv′′∞ + v∞ = 0.
(59)

As v∞ is nonnegative and bounded, we necessarily have v∞ ≡ 0.
Furthermore, as u∞(0) = 1 and u∞ > 0, the maximum principle yields u∞ > 0. Thus we can

explicitly solve the first equation and the solution can only be of the exponential type: u∞(x) =
µe−λx . Inserting such a λ in the equation for u∞ we find−λ2

+ cλ = f ′(0). Hence we have proved
that necessarily c > 2

√
f ′(0). 2

5. Time evolution problem

We now consider the problem
ut − uxx + χ(uvx)x = u(1− u),
−dvxx + v = u,

u(t = 0) = u0, with compact support, 0 6 u0(x) 6 (1− χ/d)−1.

(60)

The maximum principle, as already used earlier, implies that we have the uniform bounds

0 6 u(x), v(x) 6
d

d − χ
, |vx(t, x)|, |vxx(t, x)| 6 K.

Our goal in this section is to prove two kinds of results on this problem. First, we assume that χ
satisfies the conditions of existence of traveling waves. Then we derive some bounds expressing that
in the long time limit, the solution converges to 1 on compact sets. Secondly, we show that, under
the (weaker) linear stability condition on χ , the state 1 is in fact nonlinearly asymptotically stable.
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5.1 The long time limit of u(t, x)

We have the following

THEOREM 5.1 Assume χ 6 min(1, d). There exist C > 0 and ε0 > 0 such that for any ε ∈ (0, ε0)

there exists a time t0 such that for all T > t0 the following holds. There exists a set B ⊂ [T , 2T ]
of exceptional times with |B| 6 C/ε such that for all nonexceptional t ∈ [T , 2T ] ∩ Bc and all
p ∈ [0, 1) we have

|{x : u(t, x)|1− u(t, x)|2 > εp}| 6 Cε1−p
∫
u(t, x) dx. (61)

The constant C > 0 in Theorem 5.1 does not depend on the time T . Therefore, the total set B of
“bad” times between a (large) time T and 2T is bounded independent of T . The right side of (61)
may be loosely interpreted as the size of the support of the function u(t, x) (disregarding the fact
that u(t, x) has an infinite support). Thus, (61) may be interpreted as saying that for large times the
fraction of the support of u(t, x) where u(t, x) is far from 1 is negligible, except for a (relatively)
small set of bad times.

We first prove the following proposition.

PROPOSITION 5.2 Assume that (4) holds and let the initial data u0(x) 6≡ 0 be compactly
supported, with 0 6 u0(x) 6 1. There exist two constants K1 and K2 which do not depend on
the initial data, and a time t0 such that

K1(t − t0) 6
∫
u(t, x) dx 6 K2(t0 + t).

Proof. First, let u and v be solutions of (60) and consider the function ψ(t, x) = Me−λ(x−ξ t). It
satisfies the inequality

ψt − ψxx + χvxψx + χvxxψ − ψ(1− ψ) > ψt − ψxx + χvxψx −
χ

d
(u− v)ψ − ψ

> ψt − ψxx −K|ψx | −Kψ = (λξψ − λ
2
−K −Kλ)ψ > 0.

This last inequality holds provided that ξ is sufficiently large and λ is chosen appropriately.
Therefore, we may also take M large enough so that ψM(t, x) is a supersolution for u(t, x).
Similarly, φM(t, x) = Meλ(x+ξ t) is a supersolution for u. Therefore,

u(t, x) 6 min(Me−λ(x−ξ t),Meλ(x+ξ t)),

and integrating in x gives ∫
R
u(t, x) dx 6 C(t + t0). (62)

Thus the upper bound of the proposition is proved.
To obtain a lower bound on ‖u(t)‖L1 we proceed as in the traveling wave case. We have

d
dt

∫
(u− u2/2) =

∫
u2
x +

∫
u(1− u)2 − χ

∫
uxvxu. (63)
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The last integral on the right side may be split as

χ

∫
uuxvx dx = χ

∫
(u− 1)uxvx dx + χ

∫
uxvx dx.

The second term is bounded as(∫
uxvx dx

)2

6
∫
u2
x dx

∫
v2
x dx 6

(∫
u2
x dx

)2

,

while the first one satisfies

χ

∫
(u− 1)uxvx dx =

χ

2

∫
((u− 1)2)xvx dx =

χ

2d

∫
(u− 1)2(u− v) dx 6

χ

2d

∫
(u− 1)2u dx.

Using the last two inequalities in (63) leads to

d
dt

∫
(u− u2/2) >

∫
u2
x +

∫
u(1− u)2 − χ

∫
u2
x −

χ

2d

∫
(u− 1)2u dx

> M

∫
u2
x +M

∫
u(1− u)2. (64)

Integrating in time and combining this with the upper bound in (62) we obtain∫ T

0

∫
u2
x +

∫ T

0

∫
u(1− u)2 6

1
M

[∫
u(T , x) dx −

∫
(u0 − u

2
0/2)

]
6 C(1+ T ). (65)

Note that if at some time t ∈ [0, T ] there exists x0 such that u(t, x0) > 1/2 then

M

∫
u2
x(t, x) dx +M

∫
u(t, x)(1− u(t, x))2 dx > K.

On the other hand, if 0 6 u(t, x) 6 1/2 for all x ∈ R then∫
u(t, x)(1− u(t, x))2 dx >

1
4

∫
u(t, x) dx.

Let AT = {t ∈ [0, T ] : 0 6 u(t, x) 6 1/2 for all x ∈ R}. It follows from the above that there exists
a constant K > 0 so that∫

u(T , x) >
∫
AcT
K dx +K

∫
AT

(∫
u(t, x) dx

)
dt. (66)

As a consequence, the function

W(t) =

∫
u(t, x) dx

satisfies

W(T ) >
∫
AcT
K dx +K

∫
AT
W(t) dt > K

∫ T

0
min(1,W(t)) dt (67)
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for all T > 0. In addition, W(t) is locally Lipschitz in time:

|Wt (t)| =

∣∣∣∣∫ u(t, x)(1− u(t, x)) dx
∣∣∣∣ 6 M

∫
u(t, x) dx 6 C(1+ t).

Therefore, in particular, there exists τ0 so that W(t) > W(0)/2 > 0 for 0 6 t 6 τ0 and thus there
exists k0 > 0 (which depends on the initial data) such that for T > τ0,

W(T ) > K

∫ T

0
min(1,W(t)) dt > K

∫ τ0

0
min(1,W(t)) dt > k0.

Going back to (66) we see that

W(T ) > K|AcT | + k0K|AT | > k0KT.

In order to get rid of the dependence on the initial data observe that, as a consequence, W(T ) > 1
for all T > t0 (the time t0 does depend on the initial data). Hence, the second inequality in (67)
yields

W(T ) > K

∫ T

0
min(1,W(t)) dt > K(T − t0). (68)

This finishes the proof of Proposition 5.2. 2

Proof of Theorem 5.1. Theorem 5.1 is an easy consequence of Proposition 5.2 and its proof. Let
us start with the inequality (64),

d
dt

∫
(u− u2/2) dx > M

∫
u2
x dx +M

∫
u(1− u)2 dx. (69)

Consider the set B ⊂ [T , 2T ] of times t ∈ [T , 2T ] such that

M

∫
u(t, x)(1− u(t, x))2 dx > ε

∫
(u(t, x)− u2(t, x)/2) dx.

Let us set
Q(t) =

∫
(u(t, x)− u2(t, x)/2) dx.

Exactly as in the proof of Proposition 5.2 we deduce that

C1(t − t0) 6 Q(t) 6 C2(t0 + t). (70)

As Q(t) is increasing in time, integrating (69) over B we obtain

Q(2T ) > Q(T )eε|B|.

For T > 10t0 it follows that
4C2T > C1T e

ε|B|,

so that |B| 6 K/ε with the constantK independent of T > t0. On the other hand, for t ∈ [T , 2T ]∩
Bc we have

εp|{x : u(t, x)|1− u(t, x)|2 > εp}| 6 C

∫
u(t, x)(1− u(t, x))2 dx 6 Cε

∫
u(t, x) dx,

and (61) follows. 2
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5.2 Nonlinear asymptotic stability of the homogeneous state (1, 1)

In this section, we consider the Keller–Segel–Fisher system and we consider the stability of the state
(1, 1) as discussed in the introduction (see (14)–(15)). Therefore, we set u = 1+U and v = 1+ V
and the system (60) reads

Ut − Uxx + χ(VxU)x = −U(1+ U)− χVxx,
−dVxx + V = U,

U(t = 0, x) = U0(x) := u0
− 1, x ∈ R.

(71)

We prove that the linear stability of the homogeneous equilibrium state (u = 1, v = 1) implies
its nonlinear asymptotic stability. More precisely

THEOREM 5.3 For χ < (1+
√
d)2, there is a positive constant δ > 0 such that for any initial data

u0 = 1 + U0 with
∫
R U

2
0 < δ, the solution u of the Cauchy problem (60) converges to 1 in the L2

norm with an exponential rate:∫
R
(u(t, x)− 1)2 dx → 0 as t →+∞. (72)

Proof of Theorem 5.3. For (t, x) ∈ R+ ×R, we set U(t, x) := u(t, x)− 1, V (t, x) := v(t, x)− 1
and λ := (1+

√
d)2 − χ > 0. Multiplying equation (71) by U and integrating over R, we find

1
2

d
dt

∫
R
U2 dx +

∫
R
(U2

x − χUxVx + U
2)

= −

∫
R
U3
+ χ

∫
R
UUxVx = −

∫
R
U3
−
χ

2

∫
R
U2Vxx

=

(
χ

2d
− 1

)∫
U3
−
χ

2d

∫
R
U2V 6

∣∣∣∣ χ2d − 1
∣∣∣∣ ∫ |U |3 + χ

2d

∫
R
U2
|V |. (73)

The second term on the left side of (73) can be written as∫
R
(U2

x − χUxVx + U
2) dx =

∫
R

(
ξ2
+ 1−

χξ2

1+ dξ2

)
|Û (ξ)|2 dξ

=

∫
R

P(ξ)

(1+ dξ2)(1+ ξ2)
(1+ ξ2)|Û (ξ)|2 dξ,

where P is a fourth order poynomial function which is positive since χ < (1+
√
d)2.

As p(ξ) = (1 + dξ2)(1 + ξ2) is also a positive fourth order polynomial function, the quotient
P(ξ)/[(1+ dξ2)(1+ ξ2)] has a positive infimum λ > 0. This gives∫

R
[|Ux |2 − χUxVx + U2] dx > λ

∫
R
(1+ ξ2)|Û (ξ)|2 dξ > λ

∫
R
(U2

x + U
2) dx. (74)

Next, set I (t) =
∫
R U

2 dx. The above computation yields

1
2

d
dt
I (t)+ λI (t)+ λ

∫
R
U2
x 6

∣∣∣∣ χ2d − 1
∣∣∣∣ ∫ |U |3 + χ

2d

∫
R
U2
|V |. (75)
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We treat the two terms of the right side separately using Gagliardo–Nirenberg–Sobolev type
inequalities:∫

R
|U |3 6 C

(∫
R
U2
x

)1/4(∫
R
U2
)5/4

6
λ

2|χ/(2d)− 1|

∫
R
U2
x +M

(∫
R
U2
)5/3

(76)

(the second inequality follows from the Minkowski inequality). In the same way we obtain∫
R
|U |2|V | 6

(∫
R
|U |4

∫
R
V 2
)1/2

6 C1

(∫
R
U2
x

)1/4(∫
R
U2
)3/4(∫

R
U2
)1/2

6
λd

χ

∫
R
U2
x +M

′

(∫
R
U2
)5/3

,

where M ′ is a constant that only depends on C1, χ, d and λ. This finally gives

1
2

d
dt
I (t)+ λI (t)+ λ

∫
R
U2
x 6 λ

∫
R
U2
x + (M +M

′)I 5/3(t), (77)

and thus for some constant M ′′ we have

1
2

d
dt
I (t)+ λI (t) 6 M ′′I 5/3(t). (78)

Set now δ = (λ/M ′′)3/2. Then, for I (0) < δ, the differential inequality (78) implies that t 7→
I (t) decreases. As it is a nonnegative function, it converges to the equilibrium state I ≡ 0. Also,
there is an exponential decay (with rate as close to 2λ as we wish), and the proof is complete. 2
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