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Abstract. We establish new results concerning boundary Harnack inequalities and the Martin
boundary problem, for non-negative solutions to equations of p-Laplace type with variable co-
efficients. The key novelty is that we consider solutions which vanish only on a low-dimensional
set 6 in Rn, unlike the more traditional setting of boundary value problems set in the geomet-
rical situation of a bounded domain in Rn having a boundary with (Hausdorff) dimension in the
range [n − 1, n). We establish our quantitative and scale-invariant estimates in the context of low-
dimensional Reifenberg flat sets.

Keywords. Boundary Harnack inequality, p-harmonic function,A-harmonic function, variable co-
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1. Introduction

Let D ⊂ Rn, n ≥ 2, be a bounded domain, i.e., a bounded, open and connected set, and
let K be a compact subset of D. Let � := D \ K , and let p with 1 < p < ∞ be fixed.
Given D and K , the p-capacity of K relative to D, Capp(K,D) for short, is defined as

Capp(K,D) = inf
{∫

D

|∇φ|p dy : φ ∈ C∞0 (D), φ ≥ 1 in K
}
. (1.1)

If Capp(K,D) > 0, then the setK is not removable for the p-Laplace equation and given
f ∈ W 1,p(Rn)∩C(�̄) there exists a unique p-harmonic function u in� satisfying u = f
on ∂� in the weak sense. Furthermore, if all points on ∂� are regular in the Dirichlet
problem for the p-Laplace operator, then u ∈ C(�̄) and hence u = f continuously
on ∂�. In particular, assuming that Capp(K,D) > 0, and that all points on ∂� are
regular, one can conclude that there exists, given a non-negative function f ∈ C(∂D)
which is not identically zero, a unique positive p-harmonic function u in � such that
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u = f on ∂D and u = 0 on ∂K . A sufficient condition for w ∈ ∂� being regular in this
Dirichlet problem is that Rn \� is p-thick at w in the sense that∫ 1

0

[Capp((Rn \�) ∩ B(w, t), B(w, 2t))

Capp(B(w, t), B(w, 2t))

]1/(p−1)
dt

t
= ∞. (1.2)

It is well known that if p > n then the p-capacity of a point is positive and for 1 < p ≤ n,
conditions on the setK which imply Capp(K,D) = 0 can be formulated using Hausdorff
measure and Hausdorff dimension. In particular, if p = 2, n ≥ 3, and if the Hausdorff
dimension ofK ism, then the only cases which are non-trivial occur whenm ∈ (n−2, n].
Hence, if we focus on sets with integer dimension, the only non-trivial low-dimensional
case is m = n − 1. For more general p we see, assuming that the Hausdorff dimension
of K is m, that given K the set-up is interesting whenever p > n − m. In particular, all
low-dimensional cases are interesting as long as we consider p large enough. Phrased in
another way, while the Laplace operator cannot be used as a vehicle for the extension of a
function from a set of dimension n−2 or lower to neighborhoods of the set, the p-Laplace
operator, for p sufficiently large, can always achieve such an extension. The conclusion
is that the p-Laplacian, and p-harmonic functions, can be studied in many interesting
geometrical situations beyond the traditional set-up of a bounded domain in Rn having an
(n− 1)-dimensional boundary.

The purpose of this paper is to pursue the line of thought outlined above in one di-
rection by establishing certain refined boundary Harnack estimates for non-negative so-
lutions to operators of p-Laplace type, assuming that the set K is well approximated by
m-dimensional hyperplanes in the Hausdorff sense. To further put our work in perspec-
tive we recall that in [LN1]–[LN3] (see also [LN4]), a number of results concerning the
boundary behavior of positive p-harmonic functions, 1 < p <∞, in a bounded Lipschitz
domain � ⊂ Rn were proved. In particular, the boundary Harnack inequality and Hölder
continuity for ratios of positive p-harmonic functions, 1 < p < ∞, vanishing on a por-
tion of ∂� were established. Furthermore, the p-Martin boundary problem at w ∈ ∂�
was resolved under the assumption that � is either convex, C1-regular or a Lipschitz do-
main with small constant. Also, in [LN5] these questions were resolved for p-harmonic
functions vanishing on a portion of certain Reifenberg flat and Ahlfors regular NTA-
domains. The results and techniques developed in [LN1]–[LN5] concerning p-harmonic
functions have also been used and further developed in [LN6], [LN7], in the context of
free boundary regularity in general two-phase free boundary problems for the p-Laplace
operator, and in [LN8] in the context of regularity and free boundary regularity, below
the continuous threshold, for the p-Laplace equation in Reifenberg flat and Ahlfors regu-
lar NTA-domains. In addition, in [LLuN] boundary Harnack inequalities and the Martin
boundary problem were studied for more general operators of p-Laplace type with vari-
able coefficients in Reifenberg flat domains. Further generalizations and applications can
also be found in [ALuN1], [ALuN2], [AN].

All papers mentioned above are set in the traditional geometrical situation of a
bounded domain in Rn having a boundary with dimension in the range [n− 1, n). In this
paper we begin the development of the corresponding results in the rich low-dimensional
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geometrical setting outlined above. This paper can be seen as a novel generalization of
[LLuN] to the setting of non-negative solutions, to equations of p-Laplace type, vanish-
ing on low-dimensional Reifenberg flat sets in Rn. To our knowledge this paper is the first
serious attack on problems of this type.

1.1. A-harmonic functions

Points in Euclidean n-space Rn will be denoted by y = (y1, . . . , yn) or (y′, yn) where
y′ = (y1, . . . , yn−1) ∈ Rn−1; Sk will denote the unit sphere in Rk . We let Ē, ∂E, diamE

be the closure, boundary and diameter of the set E ⊂ Rn, and we define d(y,E) to equal
the distance from y ∈ Rn to E. Further, 〈·, ·〉 denotes the standard inner product on Rn
and we let |y| = 〈y, y〉1/2 be the Euclidean norm of y; B(y, r) = {z ∈ Rn : |z− y| < r}

for y ∈ Rn, r > 0; and dy denotes Lebesgue n-measure on Rn. Let

h(E, F ) = max
(
sup{d(y,E) : y ∈ F }, sup{d(y, F ) : y ∈ E}

)
be the Hausdorff distance between the sets E,F ⊂ Rn. If O ⊂ Rn is open and 1 ≤
q ≤ ∞, then we denote byW 1,q(O) the space of equivalence classes of functions f with
distributional gradient ∇f = (fy1 , . . . , fyn), both of which are qth power integrable
on O. Let ‖f ‖1,q = ‖f ‖q + ‖ |∇f | ‖q be the norm in W 1,q(O) where ‖ · ‖q denotes
the usual Lebesgue norm in O. Next let C∞0 (O) be the set of infinitely differentiable
functions with compact support in O and let W 1,q

0 (O) be the closure of C∞0 (O) in the
norm of W 1,q(O). By ∇· we denote the divergence operator.

Definition 1.1. Let p, β, α ∈ (1,∞) and γ ∈ (0, 1). Let A = (A1, . . . , An) : Rn × Rn
→ Rn, assume that A = A(y, η) is continuous in Rn × (Rn \ {0}) and that A(y, η), for
fixed y ∈ Rn, is continuously differentiable in ηk , for every k ∈ {1, . . . , n}, whenever
η ∈ Rn \ {0}. We say that the function A belongs to the classMp(α, β, γ ) if the following
conditions are satisfied whenever y, x, ξ ∈ Rn and η ∈ Rn \ {0}:

(i) α−1
|η|p−2

|ξ |2 ≤

n∑
i,j=1

∂Ai

∂ηj
(y, η)ξiξj and

( n∑
i,j=1

∣∣∣∣∂Ai∂ηj
(y, η)

∣∣∣∣2)1/2

≤ α|η|p−2,

(ii) |A(x, η)− A(y, η)| ≤ β|x − y|γ |η|p−1,

(iii) A(y, η) = |η|p−1A(y, η/|η|).

For short, we write Mp(α) for the class Mp(α, 0, γ ).

Definition 1.2. Let p ∈ (1,∞) and let A ∈ Mp(α, β, γ ) for some (α, β, γ ). Given a
bounded domain G we say that u is A-harmonic in G provided u ∈ W 1,p(G) and∫

〈A(y,∇u(y)),∇θ(y)〉 dy = 0 (1.3)

whenever θ ∈ W 1,p
0 (G).We say that u ∈ W 1,p(G) is anA-subsolution [A-supersolution]

in G if (1.3) holds with = replaced by ≤ [≥] whenever θ ∈ W
1,p
0 (G), θ ≥ 0. If



1692 John L. Lewis, Kaj Nyström

A(y, η) = |η|p−2(η1, . . . , ηn), and u is a function satisfying (1.3), then u is said to
be p-harmonic in G. As a short notation for (1.3) we write ∇ · A(y,∇u) = 0 in G.
Finally, an A-subharmonic function [A-superharmonic function] is a function which is
upper [lower] semicontinuous and which satisfies the standard comparison principle with
respect to A-harmonic functions.

Remark 1.3. Let G ⊂ Rn be an open set, suppose that p > 1 is given and let A ∈
Mp(α, β, γ ) for some (α, β, γ ). Let F : Rn → Rn be the composition of a translation,
a rotation and a dilation z 7→ rz, r ∈ (0, 1]. Suppose that u is A-harmonic in G and
define û(z) = u(F (z)) whenever F(z) ∈ G. Then û is Â-harmonic in F−1(G) and
Â ∈ Mp(α, β, γ ). For a proof, see [LLuN, Lemma 2.15].

1.2. Geometry: low-dimensional Reifenberg flat sets

Definition 1.4. Let n, m be integers such that 1 ≤ m ≤ n − 1. Given w ∈ Rn we let
3m(w) denote the set of all m-dimensional hyperplanes which pass through w.

Definition 1.5. Let n, m be integers such that 1 ≤ m ≤ n − 1. Let 6 ⊂ Rn be a closed
set and let r0, δ > 0 be given. We say that 6 is (m, r0, δ)-Reifenberg flat (in Rn) if there
exists, whenever w ∈ 6 and 0 < r < r0, a hyperplane 3 = 3m(w, r) ∈ 3m(w) such
that

h(6 ∩ B(w, r),3 ∩ B(w, r)) ≤ δr.

Definition 1.6. Let 6 be (m, r0, δ)-Reifenberg flat (in Rn) for some r0, δ > 0 and sup-
pose w ∈ 6 and 0 < r < r0. We say that6∩B(w, r) ism-Reifenberg flat with vanishing
constant if, for each ε > 0, there exists r̃ = r̃(ε) > 0 with the following property. If
x ∈ 6∩B(w, r) and 0 < ρ < r̃, then there exists a hyperplane3′ = 3′m(x, ρ) ∈ 3m(x)
such that

h(6 ∩ B(x, ρ),3′ ∩ B(x, ρ)) ≤ ερ.

Remark 1.7. For our purposes the (m, r0, δ)-Reifenberg flat sets form a rich class of sets.
However, the literature devoted to this type of sets seems very limited. We are only aware
of one paper [PTT] where analytic questions are considered in the same framework as
ours. In particular, in [PTT] the authors are concerned with the quantity

Rt (w, r) =
µ(B(w, tr))

µ(B(w, r))
− tm, (1.4)

where w ∈ 6, r > 0, t ∈ (0, 1], and µ is a measure supported on 6. The authors prove
results concerning the relation between the regularity and flatness of6 and the asymptotic
behavior of Rt (w, r) as r → 0.

Remark 1.8. In [LLuN] all theorems were established for A-harmonic functions and in
the context of (n − 1, r0, δ)-Reifenberg flat domains in Rn. Consequently, in the present
paper we will only consider the case when6 is (m, r0, δ)-Reifenberg flat (in Rn) for some
m with 1 ≤ m ≤ n− 2.
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1.3. Main results

We here state the main results established in the paper; in light of Remark 1.8 we consider
A-harmonic functions, A ∈ Mp(α, β, γ ), and we assume that 6 is (m, r0, δ)-Reifenberg
flat for some m with 1 ≤ m ≤ n − 2. It turns out that for m = 1 we are able to establish
a complete analog of the results in [LLuN], while for 2 ≤ m ≤ n− 2 we have to impose
additional assumptions on A. We first prove the following two theorems.

Theorem 1.9. Let m = 1, n ≥ 3, and let p > n − 1 be given. Let 6 be a closed
(1, r0, δ)-Reifenberg flat set in Rn for some r0, δ > 0. Let A ∈ Mp(α, β, γ ) for some
(α, β, γ ). Let w ∈ 6 and 0 < r < r0. Assume that u, v are positive A-harmonic func-
tions in B(w, 4r) \ 6, continuous on B(w, 4r) and with u = 0 = v on 6 ∩ B(w, 4r).
Then there exist δ̃ = δ̃(p, n,m, α, β, γ ) > 0, c = c(p, n,m, α, β, γ ) ≥ 1 and σ =
σ(p, n,m, α, β, γ ) > 0 such that if 0 < δ < δ̃, then∣∣∣∣log

u(y1)

v(y1)
− log

u(y2)

v(y2)

∣∣∣∣ ≤ c( |y1 − y2|

r

)σ
whenever y1, y2 ∈ B(w, r/c) \6.

Theorem 1.10. Let n, m be integers such that 2 ≤ m ≤ n − 2 and let p > n − m

be given. Let 6 be a closed (m, r0, δ)-Reifenberg flat set in Rn for some r0, δ > 0. Let
A ∈ Mp(α, β, γ ) for some (α, β, γ ), and assume in addition that A satisfies one of the
following conditions:

(a) There exists 0 < λ < ∞ such that
∣∣ ∂Ai
∂ηj
(y, η) −

∂Ai
∂ηj
(y, η′)

∣∣ ≤ λ|η − η′| |η|p−3

whenever y ∈ Rn, 1 ≤ i, j ≤ n and η, η′ ∈ Rn \ {0} with 1
2 |η| ≤ |η

′
| ≤ 2|η|.

(b) A(y, η) = κ(y, η)|〈C(y)η, η〉|p/2−1C(y)η for all y ∈ Rn and η ∈ Rn \ {0}, where
C(y) is a linear transformation of Rn and κ(y, ·) is homogeneous of degree 0 in η
whenever y ∈ Rn.

Let w ∈ 6, 0 < r < r0 and let u, v be as in Theorem 1.9 (relative to 6). Then the
conclusion of Theorem 1.9 holds with the only difference that in the case of (a), the
constants may also depend on λ.

Let n, m be integers such that 1 ≤ m ≤ n − 2 and let p > n − m. Let 6 be a closed
(m, r0, δ)-Reifenberg flat set in Rn for some r0, δ > 0. Let A ∈ Mp(α, β, γ ) for some
(α, β, γ ). Let w ∈ 6, r and u, v be as in Theorem 1.9 (relative to 6). Then (see Lemma
3.7 below) there exist positive Borel measures µ and ν on Rn, with support contained in
6 ∩ B(w, 4r), such that∫

〈A(y,∇u),∇φ〉 dx = −

∫
φ dµ,

∫
〈A(y,∇v),∇φ〉 dx = −

∫
φ dν (1.5)

for all φ ∈ C∞0 (B(w, 4r)).We deduce the following corollaries to Theorems 1.9 and 1.10.
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Corollary 1.11. Let n, m, p, 6, r0, A be as above. Let w ∈ 6, r and u, v be as in
Theorem 1.9 or 1.10 (relative to 6). Let µ and ν be measures associated to u, v in the
sense of (1.5). Let σ be as in the conclusion of Theorems 1.9 and 1.10. Then dµ = kdν
for some k ∈ L1(6 ∩ B(w, 2r), dν), and there exists c ≥ 1, depending at most on p, n,
m, α, β, γ , λ, such that

|log k(y1)− log k(y2)| ≤ c(|y1 − y2|/r)
σ (1.6)

whenever y1, y2 ∈ 6 ∩ B(w, r/c).

Corollary 1.12. Let n, m, p, 6, r0, A, w, u, µ be as in Corollary 1.11, and suppose in
addition that 6 ∩ B(w, 4r) is m-Reifenberg flat with vanishing constant. Then

lim
r→0

µ(B(x, tr))

µ(B(x, r))
= tm uniformly for x ∈ 6 ∩ B(w, r) and t ∈ [1/2, 1].

We note that in the language of [PTT], a measure µ is said to be asymptotically optimally
doubling on 6 ∩ B(w, r) if the conclusion of Corollary 1.12 holds.

Finally, we prove a theorem which implies that the Martin boundary of B(w, 4r) \6
agrees with the topological boundary of this set when 6 ∩ B(w, 4r) is (m, r0, δ)-Reifen-
berg flat.

Theorem 1.13. Let n, m be integers such that 1 ≤ m ≤ n − 2 and let p > n − m

be given. Let 6 ⊂ Rn be a closed set and assume that 6 ∩ B(w, 4r) is (m, r0, δ)-
Reifenberg flat. Let A ∈ Mp(α, β, γ ) for some (α, β, γ ), and assume in addition that
either (a) or (b) of Theorem 1.10 holds in the case 2 ≤ m ≤ n − 2. Then there exists
δ∗ = δ∗(p,m, n, α, β, γ ), or δ∗ = δ∗(p,m, n, α, β, γ, λ), such that the following is true
whenever 0 < δ < δ∗, w ∈ 6 and 0 < r < r0. Suppose that û, v̂ are positive A-
harmonic functions in B(w, 4r) \ 6, continuous on B(w, 4r) \ {w} and with û = 0 = v̂
on ∂(B(w, 4r) \ 6) \ {w}. If 0 < δ < δ∗, then û(y) = τ v̂(y) for all y ∈ B(w, 4r) \ 6
and for some constant τ .

Remark 1.14. We emphasize that Theorems 1.9–1.13 are completely new and there is
currently essentially no competing literature. Theorems 1.9, 1.10, 1.13 are proved in
[LLuN] in the setting of (n − 1, r0, δ)-Reifenberg flat domains in Rn, assuming only
that A ∈ Mp(α, β, γ ) for some (α, β, γ ).

Remark 1.15. Theorem 1.10 applies in the case A(y, η) = |η|p−2(η1, . . . , ηn), i.e., in
the case of the p-Laplace operator. In particular, using [LN5], or [LLuN], and Theorems
1.9–1.13, we can show that the conclusions of Theorems 1.9–1.13 hold in the context of
p-harmonic functions whenever 1 ≤ m ≤ n− 1 and n−m < p <∞.

Remark 1.16. Condition (a) in Theorem 1.10 is an additional regularity condition on
A = A(y, η) in the η-variables. Condition (b) in Theorem 1.10 is a structural restriction
on A. In particular, if

∇ · A(y,∇u) = ∇ ·
(
(A(y)∇u · ∇u)p/2−1A(y)∇u

)
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and A ∈ Mp(α, β, γ ), then (b) holds. The class Mp(α, β, γ ) is invariant with respect to
translations, rotations and dilations z 7→ rz, r ∈ (0, 1], as discussed in Remark 1.3. The
same applies to the classes of A’s defined by conditions (a) and (b) in Theorem 1.10.

Remark 1.17. As discussed below, in the case 2 ≤ m ≤ n − 2, p > n − m, and in
the proof of Theorem 1.10, the additional assumption on A beyond A ∈ Mp(α, β, γ )—
condition (a) or (b) in Theorem 1.10—is only used in one crucial estimate. Indeed, con-
sider the geometrical baseline configuration for our results

6 = {y = (y′, y′′) : y′ = (y1, . . . , ym), y
′′
= (ym+1, . . . , yn) = 0}, (1.7)

and let Cr(0) = {y = (y′, y′′) : |y′|, |y′′| < r} for r > 0. Let A ∈ Mp(α), i.e., A has
constant coefficients, and assume that u is a positive A-harmonic function in C4(0) \ 6,
continuous on C4(0), with u = 0 on 6 ∩ C4(0). Assume that u(0, y′′) = 1 for some
|y′′| = 1. We then need to prove that there exists c ≥ 1, depending only on the data, such
that

c−1
|y′′|ξ ≤ u(y′, y′′) whenever y ∈ C1(0) \6, (1.8)

and where ξ = (p − n + m)/(p − 1). In particular, the function |y′′|ξ gives a lower
bound of the growth away from the low-dimensional set 6 in analogy with the linear
growth established in the casem = n−1 in the corresponding baseline configuration (see
[LLuN, Lemma 2.8]). The estimate in (1.8) is the only place where we have been unable
to push our arguments through in the same generality as in [LLuN], and it is in the proof
of (1.8) that (a) and (b) of Theorem 1.10 are used.

1.4. Outline of proofs and organization of the paper

As mentioned in Remark 1.14, Theorems 1.9, 1.10, and 1.13 are proved in [LLuN] in
the more traditional setting of (n − 1, r0, δ)-Reifenberg flat domains � in Rn. In the
introduction in [LLuN] some effort is made to explain the key steps in the proof, stated as
Steps A–D. The proofs of our main results, in particular Theorems 1.9 and 1.10, proceed,
structurally, also along the lines of these steps but details are considerably more involved
and often require some ingenuity.

Sections 2 and 3 are motivated by the fact that many of the basic estimates used in
[LLuN] have to be derived in the low-dimensional case. For example, if δ is small enough,
then a δ-Reifenberg flat domain� in Rn is an NTA-domain in the sense of [JK]. In partic-
ular, from the outer corkscrew condition it then immediately follows that Rn\� satisfies a
uniform capacity density condition at every point w ∈ ∂�, from which one can conclude
that the continuous Dirchlet problem for A-harmonic functions is uniquely solvable and
weak solutions with continuous boundary data are Hölder continuous up to the boundary.
In our case, we first have to find a substitute for this argument, due to the lack of comple-
ment, and in Lemma 2.9 we prove that, for n,m, p,6 as in Theorem 1.9 or Theorem 1.10,
there exists δ̂ = δ̂(p, n,m) such that if 0 < δ < δ̂, then 6 ∩ B(w, 4r) is uniformly p-
thick with constant η = η(p, n,m) > 0 (see Definition 2.8) whenever w ∈ 6. Using this
result we can then establish (see Lemmas 3.2 and 3.3) Hölder continuity for A-harmonic
functions up to 6.
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In Section 4 we consider solutions to elliptic PDEs whose degeneracy is given in terms
of an A2-weight λ (see (4.1)). In case λ = (|∇u| + |∇v|)p−2, where u, v are A-harmonic
and A ∈ Mp(α, β, γ ), in Lemma 4.7 we prove the existence of δ̄ = δ̄(p, n,m, α, β, γ )
> 0 and c = c(n,m) ≥ 1 such that if 0 < δ < δ̄ and r̃ = r/c, then 6 ∩ B(w, 4r̃) is uni-
formly (2, λ)-thick (see Definition 4.3) for some constant η = η(p, n,m, α, β, γ ) > 0.
Using results in [FJK1] we can then guarantee Hölder continuity of solutions to these
degenerate elliptic PDEs up to 6. We also prove (Lemma 4.10) that if n,m, p, u, v,6
are as in Theorem 1.9 or 1.10, and (a|∇u|+b|∇v|)p−2 is an A2-weight with A2-constant
independent of a, b ∈ [0,∞), then the conclusion of Theorem 1.9 or 1.10 is valid. In Sub-
section 4.2 we also list several other assumptions and prove that they imply the conclusios
of Theorems 1.9 and 1.10 when 6 is an m-dimensional hyperplane.

In Section 5 we prove, for A ∈ Mp(α) and Ã with Ãj = Am+j , 1 ≤ j ≤ n − m,
and p > n − m, the existence and uniqueness of a ‘fundamental solution’, say ũ, to
∇ · Ã(∇ũ) = 0 with pole at 0 in Rn−m. It turns out that

ũ(z) = |z|ξ ũ(z/|z|), z ∈ Rn−m \ {0}, |∇ũ|(z) ≈ ũ(z)/|z| ≈ |z|ξ−1, (1.9)

where ξ = (p − n+m)/(p − 1) and ≈ means the ratio of the two quantities is bounded
above and below by constants depending only on the data, i.e., the structure constants in
Definition 1.1 and n,m, p. Let ū(y) = ũ(π(y)) when y ∈ Rn, where π(y) denotes the
projection of y onto Rn−m. Then ū is an A-harmonic function on Rn = Rm × Rn−m,
vanishing on Rm × {0} ∈ Rm × Rn−m. In our arguments, ū plays the same role as the
function yn does in [LLuN].

In Section 6 we prove Theorems 1.9 and 1.10 in the special case whenA ∈ Mp(α) and
6 is as stated in (1.7) in Remark 1.17. Indeed, let u, v be positive A-harmonic functions
in B(0, 4) \ 6, continuous on B(0, 4) and with u = 0 = v on 6 ∩ B(0, 4). Assume that
u(0, y′′) ≈ v(0, y′′) ≈ 1 for some |y′′| = 1. The crucial estimate is to prove there exists
c ≥ 1 (depending only on the data) such that

c−1
≤ u(y)/v(y) ≤ c whenever y ∈ C1(0) \6, (1.10)

where the sets C·(0) were introduced in Remark 1.17. To prove (1.10) in the case m = 1
we use an argument from [BL]. In fact (see Remark 6.3 below), this argument is also
applicable in the case of the p-Laplace operator in the full range 1 ≤ m ≤ n − 2, but
the proof in this case relies heavily on the p-Laplacian being invariant under rotations.
For general A ∈ Mp(α), in the case 2 ≤ m ≤ n − 2, we first note, in view of (1.9),
that to prove (1.10) it suffices to establish it with v = ū, and in particular to establish the
existence of c ≥ 1, depending only on the data, such that

c−1
|y′′|ξ ≤ u(y′, y′′) ≤ c|y′′|ξ whenever (y′, y′′) ∈ C1(0) \6. (1.11)

To get the upper estimate in (1.11) we consider the function u′ which is defined to
be A-harmonic in B(0, 8) \ (6 ∩ B(0, 4)) with continuous boundary values u′ ≡ 1 on
∂B(0, 8) and u′ ≡ 0 on 6 ∩B(0, 4). Then, using Harnack’s inequality, we have u ≤ cu′,
and we prove (see (6.9)) that u′ satisfies the fundamental inequality

c−1 u′(y)

d(y,6)
≤ |∇u′(y)| ≤ c

u′(y)

d(y,6)
(1.12)
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whenever y ∈ C1(0) \ 6, where c ≥ 1 depends only on the data. Using (1.12) and (1.9)
we then conclude from our work in Section 4 that (1.10) holds with u = u′ and v = ū,
which implies the upper bound in (1.11).

To get the lower bound in (1.11), for a general A as in Definition 1.1, turns out to be
a more difficult problem and, as discussed in Remark 1.17, for 2 ≤ m ≤ n− 2 this is the
only place in the proof of Theorem 1.10 where we require (a) and (b) of Theorem 1.10.
Our proof of the lower estimate in (1.11) is based on the construction of appropriate
A-subsolutions (barriers). The constructions are rather subtle and make essential use of
(1.9), and the ū introduced above. In particular, in the cases (a) and (b) of Theorem 1.10,
both the constructions rely on the function

f (y) = f (y′, y′′) = (1− |y′|2)(eū(y) − 1) = (1− |y′|2)(eū(0,y
′′)
− 1). (1.13)

Note that f has a product structure, which facilitates computations.
In Section 7 we prove Theorems 1.9 and 1.10 in general, as well as Corollaries 1.11

and 1.12. Theorems 1.9 and 1.10, for A ∈ Mp(α, β, γ ) and 6 as in (1.7), follow from
the corresponding results established in Section 6 in the baseline configuration and by
a technique which can loosely be described as ‘freezing the coefficients’. Indeed, given
our results from Section 6, as well as our preliminary work in Sections 2–5, at this stage
we can invoke the A-harmonic machine developed in [LLuN] (with modifications). In
particular, exploiting the validity of Theorems 1.9 and 1.10 when 6 is as in (1.7), we can
prove, for u, v,6,m, n, p, δ, δ̃ as in Theorems 1.9 and 1.10, that (1.12) holds with u′

replaced by u, v in B(w, r/c) \ 6, with c ≥ 1 depending only on the data, provided
δ̃ > 0 is small enough. We then use this result to prove that (|∇u| + |∇v|)p−2 is an
A2-weight with A2-constant bounded independently of u, v. In view of this fact we can
once again invoke boundary Harnack and Hölder continuity results from [FJK2] to deduce
Theorems 1.9 and 1.10 based on our work in Section 4. Finally, in Section 7 we easily
obtain Corollaries 1.11 and 1.12 as consequences of Theorems 1.9 and 1.10. In the proof
of Corollary 1.12 we also use a compactness and blow-up type argument for A-harmonic
functions.

In Section 8 we prove Theorem 1.13. To do this we first prove it in the baseline case
when 6 = Rm ∪ {0}. Once this is done, we can use Theorems 1.9, 1.10, and Theorem
1.13 in the baseline case, to argue as earlier in order to eventually obtain Theorem 1.13.

2. Geometry of (m, r0, δ)-Reifenberg flat sets in Rn

In this section we develop a number of results concerning the geometry of (m, r0, δ)-
Reifenberg flat sets in Rn. In particular, we assume 1 ≤ m ≤ n − 2 and we let 6 ⊂ Rn
be a closed set which is (m, r0, δ)-Reifenberg flat for some r0, δ > 0. Given w ∈ Rn
and 3m(w) we can always introduce coordinates y = (y′, y′′), y′ ∈ Rm, y′′ ∈ Rn−m,
such that

3m(w) = {y = (y
′
+ w′, y′′ + w′′) ∈ Rm × Rn−m : y′′ = 0},
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where w = (w′, w′′). Using this coordinate system and r > 0, we let

a3(w, r) = (a
′
3(w, r), a

′′
3(w, r))

be any point satisfying a′3(w, r) = w
′ and |a′′3(w, r)− w

′′
| = r .

Lemma 2.1. Let 1 ≤ m ≤ n− 2 and suppose 6 ⊂ Rn is a closed set which is (m, r0, δ)-
Reifenberg flat for some r0, δ > 0. Then there exist δ0 = δ0(n,m) > 0 and M =
M(n,m) ≥ 2 such that the following is true whenever 0 < δ < δ0. Given w ∈ 6 and
0 < r < r0, there is a point ar(w) ∈ Rn \6 such that

d(ar(w),6) > M−1r , M−1r < |ar(w)− w| ≤ r .

Proof. Consider w ∈ 6 and 0 < r < r0. Then using Definition 1.5 we see that there
exists 3 = 3m(w, r) ∈ 3m(w) such that

h(6 ∩ B(w, r),3 ∩ B(w, r)) ≤ δr.

For η ∈ (1/4, 1) fixed we now let, using coordinates with respect to 3 = 3m(w, r) as
introduced above,

ar(w) := a3(w, ηr). (2.1)

It then immediately follows that there exist δ0 = δ0(n,m) > 0 and M = M(n,m) such
that the conclusion of the lemma holds whenever 0 < δ < δ0. ut

Lemma 2.2. Assume 1 ≤ m ≤ n− 2 and let 6 be a closed (m, r0, δ)-Reifenberg flat set
in Rn for some r0, δ > 0. Then there exists δ0 = δ0(n,m) > 0 such that the following is
true whenever 0 < δ < δ0 and 0 < r < r0/2. There exists c = c(n,m) ≥ 1 such that

(i) h
(
3m(w, r) ∩ B(w, 1),3m(w, r/2) ∩ B(w, 1)

)
≤ cδ,

(ii) h
(
3m(w̃, r) ∩ B(w̃, 1),3m(w̃, r) ∩ B(w̃, 1)

)
≤ cδ,

(2.2)

whenever w, ŵ, w̃ ∈ 6 and r/2 ≤ |ŵ − w̃| ≤ 2r .

Proof. Let w ∈ 6. Then using Definition 1.5 we see that

(i′) h
(
6 ∩ B(w, r),3m(w, r) ∩ B(w, r)

)
≤ δr,

(ii′) h
(
6 ∩ B(w, r/2),3m(w, r/2) ∩ B(w, r/2)

)
≤ δr/2.

(2.3)

Hence, using (2.3) we find that

h
(
3m(w, r) ∩ B(w, r/2),3m(w, r/2) ∩ B(w, r/2)

)
≤ 2δr. (2.4)

(2.2)(i) now follows from (2.4) by scaling and elementary geometry. To prove (2.2)(ii)
we first note, using the definitions and the assumption r/2 ≤ |ŵ − w̃| ≤ 2r , ŵ, w̃ ∈ 6,
that

(i′′) h
(
6 ∩ B

(
ŵ, 4r),3m(ŵ, 4r) ∩ B(ŵ, 4r)

)
≤ 4δr,

(ii′′) h
(
6 ∩ B(w̃, r),3m(w̃, r) ∩ B(w̃, r)

)
≤ δr.

(2.5)

Since B(w̃, r) ⊂ B(ŵ, 4r), we conclude from (2.5) that

h
(
3m(ŵ, 4r) ∩ B(w̃, r),3m(w̃, r) ∩ B(w̃, r)

)
≤ 5δr. (2.6)

(2.2)(ii) follows from this observation, (2.2)(i), and scaling. ut
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Definition 2.3. Let 6 ⊂ Rn be a closed set. Given M ≥ 2, we say that a ball B(y, r),
y ∈ Rn, r > 0, is an M-non-tangential ball (in Rn and with respect to 6) if

M−1r < d(B(y, r),6) < Mr.

Furthermore, given y, y′ ∈ Rn \ 6 we say that a sequence of M-non-tangential balls
(in Rn and with respect to 6), B(y1, r1), . . . , B(yp, rp), is an M-Harnack chain of
length p (in Rn and with respect to 6), joining y to y′, if y ∈ B(y1, r1), y′ ∈ B(yp, rp),
and B(yi, ri) ∩ B(yi+1, ri+1) 6= ∅ for i ∈ {1, . . . , p − 1}.

Lemma 2.4. Assume 1 ≤ m ≤ n− 2 and let 6 be a closed (m, r0, δ)-Reifenberg flat set
in Rn for some r0, δ > 0. Then there exist δ0 = δ0(n,m) > 0 and M = M(n,m) ≥ 2
such that the following is true. Assume 0 < δ < δ0, w ∈ 6, and 0 < r < r̃0, where
r̃0 = r0/M . Consider y ∈ B(w, r) \ 6, let ε = d(y,6), and let ŷ ∈ 6 be such that
ε = d(y, ŷ). Then y, aε(ŷ), and a2ε(ŷ) can all be joined by M-Harnack chains (in Rn
and with respect to 6) which are contained in B(ŷ,Mε) \6 and have length depending
only on n, m.

Proof. This can be proved by using Lemma 2.2 and elementary observations. ut

Lemma 2.5. Assume 1 ≤ m ≤ n− 2 and let 6 be a closed (m, r0, δ)-Reifenberg flat set
in Rn for some r0, δ > 0. Then there exist δ0 = δ0(n,m) > 0 and M = M(n,m) ≥ 2
such that the following is true. Assume 0 < δ < δ0, w ∈ 6, 0 < r < r̃0, and r̃0 = r0/M .
Consider y, y′ ∈ B(w, r) \ 6 such that d(y,6) ≥ ε, d(y′, 6) ≥ ε, and d(y, y′) ≤ Cε,
for some ε > 0 andC ≥ 1. Then there exists anM-Harnack chain (in Rn and with respect
to 6), joining y and y′, which is contained in B(w,Mr) \ 6 and has length depending
only on C,M , i.e., only on C, n,m.

Proof. This can be proved by proceeding along the lines of the proof in [KT] of the
corresponding statements in the more traditional setting of Reifenberg flat domains in Rn.

ut

Remark 2.6. Let 1 ≤ m ≤ n−2 be given. Throughout the paper we will always assume,
given an (m, r0, δ)-Reifenberg flat set 6 ⊂ Rn, that 0 < δ < δ0 with δ0 = δ0(n,m) > 0,
so that Lemmas 2.1, 2.4, and 2.5 are all valid. We will sometimes refer to M , r0 as pa-
rameters defining (i) non-tangential approach regions to6 as well as (ii) the connectivity
of Rn \6.

2.1. An estimate of p-capacity

Definition 2.7. Let O ⊂ Rn be open and let K be a compact subset of O. Given p > 1,
we let

Capp(K,O) = inf
{∫

O

|∇φ|p dy : φ ∈ C∞0 (O), φ ≥ 1 in K
}
.

Capp(K,O) is referred to as the p-capacity of K relative to O. The p-capacity of an
arbitrary set E ⊂ O is defined by

Capp(E,O) = inf
E⊂G⊂O,G open

sup
K⊂G,K compact

Capp(K,O). (2.7)
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Definition 2.8. Let6 ⊂ Rn be a closed set and let w ∈ 6 and r > 0. Let p > 0 be given
and assume that there exists a constant η > 0 such that

Capp(6 ∩ B(ŵ, r̂), B(ŵ, 2r̂))

Capp(B(ŵ, r̂), B(ŵ, 2r̂))
≥ η

whenever ŵ ∈ 6 ∩B(w, 4r) and 0 < r̂ < r . We then say that 6 ∩B(w, 4r) is uniformly
p-thick with constant η.

Lemma 2.9. Assume 1 ≤ m ≤ n−2 and let6 be a closed (m, r0, δ)-Reifenberg flat set in
Rn for some r0, δ > 0. Let p > n−m be given. Then there exists δ̂ = δ̂(p, n,m) such that
if 0 < δ < δ̂, then 6 ∩ B(w, 4r) is uniformly p-thick for some constant η = η(p, n,m)
whenever w ∈ 6 and 0 < r < r0/4.

Proof. Let ŵ ∈ 6∩B(w, 4r) and 0 < r̂ < r , let δ̂ = δ̂(p, n,m) be a degree of freedom to
be chosen and consider 0 < δ < δ̂. As uniform p-thickness is invariant under translation
and dilation, we may assume that ŵ = 0 and r̂ = 1. We may also assume that p is fixed
and n − m < p < n − m/2, as Lemma 2.9 for other values of p follows from this case
and inclusion relations for Riesz capacities (see [AH, Theorem 5.51]).

To start the argument we note that there exists a hyperplane 3 = 3m(0, 1) such that

h(6 ∩ B(0, 1),3 ∩ B(0, 1)) ≤ δ ≤ δ̂. (2.8)

In the following argument we let N := δ̂−m/(1010A), where A ≥ 1 is a large but fixed
degree of freedom, depending on m, and to be chosen. Using (2.8) we find, for A large
enough, that B(0, 1/8) contains at least Ñ ≥ N disjoint balls of radius δ̂, {B(yi, δ̂)}Ñi=1,
with yi ∈ 6 ∩ B(0, 1). Let 01 denote a subcollection of these balls consisting of exactly
N balls. In particular, 01 = {B(zi, δ̂)}

N
i=1 for some {z1, . . . , zN } ⊂ {y1, . . . , yÑ }. Given a

ball B(zi, δ̂) in 01 we can now repeat this construction with B(0, 1), B(0, 1/8), replaced
by B(zi, δ̂), B(zi, δ̂/8). Doing this for every ball in 01 gives a new collection, denoted 02,
of N2 balls of radius δ̂2. Inductively we can in this way construct {0l}∞l=1 where 0l is a
collection of N l disjoint balls of radius δ̂l such that each ball in 0l+1 is contained in a
ball in 0l . Furthermore, for δ̂ small enough, the closure of any ball in 0l is contained in
B(0, 1/4).

Next let
El := {y ∈ Rn : d(y,6) ≤ δ̂l} ∩ B(0, 1),

let l0 be a large but fixed integer, and let νl0 denote the n-dimensional Lebesgue measure
restricted to the balls in 0l0 . Then

νl0(El0 ∩ B(0, 1)) = N l0 δ̂nl0γ (n), (2.9)

where γ (n) is the volume of the unit ball in Rn. Let ν̃l0 = νl0/νl0(El0 ∩ B(0, 1)) and let

W
ν̃l0
1,p(y) =

∫
∞

0

(
ν̃l0(B(y, t))

tn−p

)1/(p−1)
dt

t
, y ∈ Rn, (2.10)



Quasi-linear PDEs and low-dimensional sets 1701

denote the Wolff potential associated to ν̃l0 . We intend to prove, for some small fixed
δ̂ = δ̂(p, n,m) > 0, that

W
ν̃l0
1,p(y) ≤ c whenever y ∈ Rn, (2.11)

where c = c(p, n,m), 1 ≤ c <∞. Using (2.11), the dual formulation of capacity proved
in [AH, Theorem 2.2.7], as well as [AH, Theorem 4.5.4], we conclude that

Capp(El0 ∩ B(0, 1), B(0, 2)) ≥ ĉ−1

for yet another ĉ = ĉ(p, n,m) ≥ 1. In particular, letting l0 →∞ we deduce that

Capp(6 ∩ B(0, 1), B(0, 2)) ≥ ĉ−1/2.

Furthermore, since Capp(B(0, 1), B(0, 2)) ≈ 1, we see that Lemma 2.9, for n − m <

p < n−m/2, follows immediately once (2.11) is proved.
To start the proof of (2.11) we first note that

W
ν̃l0
1,p(y) ≤

∫
∞

1

(
ν̃l0(B(y, t))

tn−p

)1/(p−1)
dt

t
+

∫ 1

δ̂l0

(
ν̃l0(B(y, t))

tn−p

)1/(p−1)
dt

t

+

∫ δ̂l0

0

(
ν̃l0(B(y, t))

tn−p

)1/(p−1)
dt

t

:= I1(y)+ I2(y)+ I3(y). (2.12)

Using ν̃l0(Rn) = 1 and integrating we obtain I1(y) ≤ c, since n − m < p < n − m/2.
Next, consider l ≤ l0 and δ̂l ≤ t < δ̂l−1, and note that, for y ∈ Rn, if ν̃l0(B(y, t)) 6= 0,
then B(y, t) intersects at most c(n) balls in 0l−1. Moreover, each of these balls has νl0
measure at most N l0−l+2δ̂nl0γ (n). Hence, using (2.9), we see that

ν̃l0(B(y, t)) ≤ c(n)N
−l+2
= c(n)δ̂m(l−2)(1010A)l−2

≤
(1010A)l−2

δ̂3m
tm (2.13)

whenever δ̂l ≤ t < δ̂l−1, provided δ̂ is small enough. Furthermore, given ε ∈ (0, 1) it
follows from (2.13) that there exist δ̂ = δ̂(n,m, ε) and c = c(n,m, ε) ≥ 1 such that

ν̃l0(B(ŷ, t)) ≤ ct
mε whenever δ̂l0 ≤ t ≤ 1. (2.14)

Let ε = (1+ (n− p)/m)/2 ∈ (0, 1) and fix δ̂ = δ̂(p, n,m) > 0 to be the largest number
such that the above inequalities hold. Then using (2.14) we see that

I2(y) ≤

∫ 1

δ̂l0
t (mε+p−n)/(p−1) dt

t
≤ c(p, n,m).

Finally, using the trivial estimate νl0(B(y, t)) ≤ γ (n)t
n whenever 0 < t < δ̂l0 , we get

I3(y) ≤ c(N
l0 δ̂nl0γ (n))1/(1−p)

∫ δ̂l0

0
tp/(p−1) dt

t
≤ c(p, n,m)

whenever n − m < p < n − m/2. Putting together the estimates for I1(y), I2(y), I3(y)

we obtain (2.11) in the case n − m < p < n − m/2. From our earlier remarks we now
conclude Lemma 2.9. ut
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3. A-harmonic functions

In this section we first prove some fundamental estimates for non-negative A-harmonic
functions. Throughout the section we assume, unless otherwise stated, that

(i) p > n−m, 1 ≤ m ≤ n− 2,
(ii) 6 ⊂ Rn is a closed (m, r0, δ)-Reifenberg flat set,
(iii) A ∈ Mp(α, β, γ ) or A ∈ Mp(α) for some (α, β, γ ).

(3.1)

Furthermore, assuming (3.1) we let δ̄ = min{δ0, δ̂} where δ0 is as in Lemmas 2.1, 2.4,
and 2.5, and δ̂ is as in Lemma 2.9. Then δ̄ = δ̄(p, n,m). In particular, when we assume
(3.1) and 0 < δ < δ̄, then we ensure that

(i) Lemmas 2.1, 2.4, and 2.5 are valid for some M = M(n,m) ≥ 2,
(ii) there exists η = η(p, n,m) > 0 such that 6 ∩ B(w, 4r) is uniformly

p-thick with constant η whenever w ∈ 6 and 0 < r < r0/4.
(3.2)

Concerning constants, unless otherwise stated, c will denote a positive constant ≥ 1, not
necessarily the same at each occurrence, depending at most on p, n,m, α, β, γ, λ, which
sometimes we refer to as depending on the data. In general, c(a1, . . . , am) denotes a pos-
itive constant≥ 1, which may depend at most on the data and a1, . . . , am, not necessarily
the same at each occurrence. If A ≈ B then A/B is bounded from above and below by
constants which, unless otherwise stated, depend at most on the data. Moreover, we let
maxB(z,s) u,minB(z,s) u be the essential supremum and infimum of u on B(z, s) ⊂ Rn
whenever u is defined on B(z, s).

3.1. Basic estimates

Lemma 3.1. Given p > 1, assume that A ∈ Mp(α, β, γ ) for some (α, β, γ ). Let u be a
positive A-harmonic function in B(w, 2r). Then

(i) rp−n
∫
B(w,r/2)

|∇u|p dy ≤ c
(

max
B(w,r)

u
)p
,

(ii) max
B(w,r)

u ≤ c min
B(w,r)

u.

Furthermore, there exists σ = σ(p, n, α, β, γ ) ∈ (0, 1) such that if x, y ∈ B(w, r), then

(iii) |u(x)− u(y)| ≤ c(|x − y|/r)σ max
B(w,2r)

u.

Lemma 3.2. Assume (3.1) and 0 < δ < δ̄. Let w ∈ 6 and consider 0 < r < r0.
Then, given f ∈ W 1,p(B(w, 4r)), there exists a unique A-harmonic function u ∈

W 1,p(B(w, 4r) \ 6) such that u − f ∈ W 1,p
0 (B(w, 4r) \ 6). Furthermore, let u, v ∈

W
1,p
loc (B(w, 4r) \ 6) be an A-superharmonic function and an A-subharmonic function

in�, respectively. If inf{u−v, 0} ∈ W 1,p
0 (B(w, 4r)\6), then u ≥ v a.e. in B(w, 4r)\6.

Finally, every point ŵ ∈ 6 ∩ B(w, 4r) is regular for the continuous Dirichlet problem
for ∇ · A(x,∇u) = 0.
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Proof. The first part of the lemma is a standard maximum principle, so we only prove
the statement that every point ŵ ∈ 6 ∩ B(w, 4r) is regular in the continuous Dirichlet
problem for ∇ · A(x,∇u) = 0, and to prove this we use results established in [HKM,
Section 6]. Indeed, given ŵ ∈ 6∩B(w, 4r), from (3.1) and the assumption that 0 < δ < δ̄

we know (see (3.2)) that there exist rŵ > 0 and η = η(p, n,m) > 0 such that

Capp(6 ∩ B(ŵ, ρ), B(ŵ, 2ρ))

Capp(B(ŵ, ρ), B(ŵ, 2ρ))
≥ η

whenever 0 < ρ < rŵ/2. In particular,∫ rŵ/2

0

[Capp(6 ∩ B(ŵ, ρ), B(ŵ, 2ρ))

Capp(B(ŵ, ρ), B(ŵ, 2ρ))

]1/(p−1)
dρ

ρ
= ∞,

and hence ŵ is regular in the Dirichlet problem for ∇ · A(x,∇u) = 0. ut

Lemma 3.3. Assume (3.1), 0 < δ < δ̄, and w ∈ 6. Assume also that u is a posi-
tive A-harmonic function in B(w, 4r) \ 6, continuous on B(w, 4r) and with u = 0 on
6 ∩ B(w, 4r). Then

(i) rp−n
∫
B(w,r/2)

|∇u|p dy ≤ c
(

max
B(w,r)

u
)p
.

Furthermore, there exists σ = σ(p, n,m, α, β, γ ) ∈ (0, 1) such that if x, y ∈ B(w, r),
then

(ii) |u(x)− u(y)| ≤ c(|x − y|/r)σ max
B(w,2r)

u.

Proof. (i) is a standard Caccioppoli inequality, so we only prove (ii). We note that, using
Lemma 3.1, the triangle inequality and elementary arguments, it suffices to prove that
there exist c ≥ 1 and σ ∈ (0, 1), depending only on the data, such that

max
B(w,ρ)

u ≤ c(ρ/r)σ max
B(w,r)

u whenever 0 < ρ ≤ r . (3.3)

To prove (3.3) we again use results established in [HKM, Section 6]. Indeed, using [HKM,
Theorem 6.18] we immediately see that there exists a constant c > 0, depending only on
the data, such that

max
B(w,ρ)

u ≤ exp
(
−c

∫ r

ρ

[Capp(6 ∩ B(w, t), B(w, 2t))

Capp(B(w, t), B(w, 2t))

]1/(p−1)
dt

t

)
max
B(w,r)

u.

Furthermore, using (3.1) and the assumption that 0 < δ < δ̄, we have

exp
(
−c

∫ r

ρ

[Capp(6 ∩ B(w, t), B(w, 2t))

Capp(B(w, t), B(w, 2t))

]1/(p−1)
dt

t

)
≤ exp(−ĉ ln(r/ρ)).

Putting these inequalities together we obtain (3.3). ut
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Lemma 3.4. Assume (3.1) and 0 < δ < δ̄. Assume also that u is a positive A-harmonic
function in B(w, 4r) \6. There exists c = c(p, n,m) ≥ 1 such that if r̃ = r/c, w1, w2 ∈

B(w, r̃) \6, min{d(w1, 6), d(w2, 6)} > ε and |w1 − w2| ≤ Cε, for some ε > 0, then

u(w1) ≤ ĉu(w2) for some ĉ ≥ 1 depending only on the data and C.

Proof. The lemma is elementary and follows from Lemmas 2.5 and 3.1. ut

Lemma 3.5. Assume (3.1) and 0 < δ < δ̄. Assume also that u is a positive A-harmonic
function in B(w, 4r)\6, continuous on B(w, 4r) and with u = 0 on6∩B(w, 4r). There
exists c ≥ 1, depending only on the data, such that if r̃ = r/c, then

max
B(w,r̃)

u ≤ cu(ar̃(w)).

Proof. A proof for linear elliptic PDEs can be found in [CFMS]. The proof uses only
analogues of Lemmas 3.1, 3.3 and 3.4 for linear PDEs; in particular, it also applies in our
situation. ut

Lemma 3.6. Assume (3.1) and 0 < δ < δ̄. Let w ∈ 6 and 0 < r < r0, and suppose
that u is a non-negative A-harmonic function in B(w, 4r) \ 6, continuous on B(w, 4r),
and u = 0 on 6 ∩B(w, 4r). Then u has a representative inW 1,p(B(w, 4r)) with Hölder
continuous partial derivatives in B(w, 4r) \ 6. Furthermore, there exists σ̂ ∈ (0, 1],
depending only on p, n, m, α, β, γ , such that if x, y ∈ B(ŵ, r̂/2) and B(ŵ, 4r̂) ⊂
B(w, 4r) \6, then

(i) c−1
|∇u(x)−∇u(y)| ≤ (|x − y|/r̂)σ̂ max

B(ŵ,r̂)
|∇u| ≤ cr̂−1(|x − y|/r̂)σ̂ max

B(ŵ,2r̂)
u.

Furthermore, if A ∈ Mp(α), then

u(y)/d(y,6) ≈ |∇u|(y), y ∈ B(ŵ, 3r̂),

and if A also satisfies condition (a) of Theorem 1.10, then u has continuous second
derivatives in B(ŵ, 3r̂), and there exists c̄ ≥ 1, depending only on the data, such that

(ii) max
B(ŵ,r̂/2)

n∑
i,j=1

|ûyiyj | ≤ c̄

(
r̂−n

∫
B(ŵ,r̂)

n∑
i,j=1

|ûyiyj |
2 dy

)1/2

≤ c̄2û(w̄)/d(w̄,6)2.

Proof. A proof of (i) can be found in [T1]; (ii) follows from the first display, the added
assumptions, and Schauder type estimates (see [GT]). ut

Lemma 3.7. Assume (3.1) and 0 < δ < δ̄. Let w ∈ 6 and 0 < r < r0, and suppose that
u is a non-negative A-harmonic function in B(w, 4r) \ 6, continuous on B(w, 4r), and
u = 0 on6∩B(w, 4r). There exists a unique finite positive Borel measure µ on Rn, with
support in 6 ∩ B(w, 4r), such that whenever φ ∈ C∞0 (B(w, 4r)),

(i)
∫
〈A(y,∇u(y)),∇φ(y)〉 dy = −

∫
φ dµ.

Moreover, there exists c = c(p, n,m, α, β, γ ) ≥ 1 such that if r̃ = r/c, then

(ii) c−1rp−nµ(6 ∩ B(w, r̃)) ≤ u(ar̃(w))
p−1
≤ crp−nµ(6 ∩ B(w, r̃/2)).

Proof. See [KZ]. ut
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3.2. Technical lemmas

Assume that 1 ≤ m ≤ n− 2. For 0 ∈ Rm × Rn−m and 0 < r1, r2 <∞, we let

Cr1,r2(0) = {y = (y
′, y′′) : |y′| < r1, |y

′′
| < r2}.

If r1 = r2 = r we simply write Cr(0). Given w ∈ Rm × Rn−m we assume that 6 =
3m(w). Let T be the composition of a translation and a rotation which maps 0 ∈ Rn to
w and {(y′, y′′) ∈ Rm × Rn−m : y′′ = 0} to 6. Making use of T we let

Cr1,r2(w) = T (Cr1,r2(0)), Cr(w) = T (Cr(0)). (3.4)

Furthermore, we let, whenever 0 < r1 <∞,

6r1(w) = T ({y = (y
′, y′′) : |y′| < r1, y

′′
= 0}). (3.5)

Lemma 3.8. Let p > n−m and 1 ≤ m ≤ n−2, and assume that A1, A2 ∈ Mp(α, β, γ )

with

|A1(y, η)− A2(y, η)| ≤ ε|η|
p−1 whenever y ∈ C1(0),

for some 0 < ε < 1/2. Let u2 be a non-negative A2-harmonic function in C1(0) \61(0),
continuous on the closure of C1(0) \61(0), and with u2 = 0 on 61(0). Furthermore, let
u1 be the A1-harmonic function in C1/2(0) \ 61/2(0) which is continuous on the closure
of C1/2(0) \ 61/2(0) and which coincides with u2 on ∂(C1/2(0) \ 61/2(0)). Then given
ρ ∈ (0, 1/16), there exist c, c̃, θ , and τ , all depending only on p, n, α, β, γ , such that

|u2(y)−u1(y)| ≤ cε
θu2(a1/2(w)) ≤ c̃ε

θρ−τu2(y) whenever y ∈ C1/4(0)\C1/4,ρ(0).

Proof. The statement and its proof are similar to those of [LLuN, Lemma 3.1] but we
include a proof for completeness. To start with, we observe that the existence and unique-
ness of u1, as stated in the lemma and given u2, follows from Lemma 3.2. Next we note
that if y, λ ∈ Rn, ξ ∈ Rn \ {0}, and A ∈ Mp(α, β, γ ), then

Ai(y, λ)− Ai(y, ξ) =

n∑
j=1

(λj − ξj )

∫ 1

0

∂Ai

∂ηj
(y, tλ+ (1− t)ξ) dt (3.6)

for i ∈ {1, . . . , n}. Using (3.6) and Definition 1.1 we see that

c−1(|λ|+|ξ |)p−2
|λ−ξ |2 ≤ 〈A(y, λ)−A(y, ξ), λ−ξ〉 ≤ c(|λ|+|ξ |)p−2

|λ−ξ |2. (3.7)

In particular, using (3.7) we deduce that if

I =

∫
C1/2(0)\61/2(0)

|∇u2 −∇u1|
pdy,

then

I ≤ cJ,

J :=

∫
C1/2(0)\61/2(0)

〈A1(y,∇u1(y))− A1(y,∇u2(y)),∇u2(y)−∇u1(y)〉 dy,
(3.8)
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since p ≥ 2. As ∇ ·(A1(y,∇u1(y))) = 0 = ∇ ·(A2(y,∇u2(y))) whenever y ∈ C1/2(0)\
61/2(0), and as θ = u2 − u1 ∈ W

1,p
0 (C1/2(0) \61/2(0)), we see from the definition of J

in (3.8) that

J =

∫
C1/2(0)\61/2(0)

〈A2(y,∇u2(y))− A1(y,∇u2(y)),∇u2(y)−∇u1(y)〉 dy. (3.9)

Hence, using (3.8), (3.9), the assumption on the difference |A1(y, η) − A2(y, η)| stated
in the lemma and Hölder’s inequality, we can conclude that

I ≤ cε

∫
C1/2(0)\61/2(0)

(|∇u1|
p
+ |∇u2|

p) dx. (3.10)

Now from the observation above (3.9), (3.7) with ξ = 0, and Hölder’s inequality we see
that∫
C1/2(0)\61/2(0)

|∇u1|
p dy ≤ c

∫
C1/2(0)\61/2(0)

〈A1(y,∇u1(y)),∇u2(y)〉 dy

≤
1
2

∫
C1/2(0)\61/2(0)

|∇u1|
p dy + c

∫
C1/2(0)\61/2(0)

|∇u2|
p dy.

Thus, ∫
C1/2(0)\61/2(0)

|∇u1|
p dy ≤ c

∫
C1/2(0)\61/2(0)

|∇u2|
p dy. (3.11)

In particular, using (3.11) in (3.10), and Lemmas 3.1, 3.3, 3.5 for u2, we obtain

I ≤ cεu2(en/2)p. (3.12)

Next using the Poincáre inequality for functions in C1/2(0) \ 61/2(0)) we deduce from
(3.12) that∫

C1/2(0)\61/2(0)
|u2 − u1|

p dy ≤ c

∫
C1/2(0)\61/2(0)

|∇u2 −∇u1|
p dy

≤ cεu2(en/2)p. (3.13)

In the following we let η = 1/(p + 2) and we introduce the sets

E = {y ∈ C1/2(0) : |u2(y)− u1(y)| ≤ ε
ηu2(en/2)}, F = C1/2(0) \ E. (3.14)

Moreover, for a measurable function f defined on C1/2(0) we introduce, for y ∈ C1/2(0),
the Hardy–Littlewood maximal function

M(f )(y) := sup
{r>0 :Cr (y)⊂C1/2(0)\61/2(0)}

1
|Cr(y)|

∫
Cr (y)

|f (z)| dz. (3.15)
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Let

G = {y ∈ C1/2(0) : M(χF )(y) ≤ εη}, (3.16)

where χF is the indicator function for the set F . Then using weak (1, 1)-estimates for the
Hardy–Littlewood maximal function, (3.13) and (3.14), we see that

|C1/2(0) \G| ≤ cε−η|F | ≤ cε−ηε−pηε = cεη, (3.17)

by our choice of η. Also, using continuity of u2(y)− u1(y) we find for y ∈ G that

|u2(y)− u1(y)| = lim
r→0

1
|B(y, r)|

∫
B(y,r)

|u2(z)− u1(z)| dz ≤ cε
ηu2(en/2). (3.18)

If y ∈ C1/4(0) \G, then from (3.17) we see that there exists ŷ ∈ G such that |y − ŷ| ≤
c(n)εη/n. Using Lemmas 3.1 and 3.3 we hence get

|u2(y)− u1(y)| ≤ |u2(ŷ)− u1(ŷ)| + |u2(y)− u2(ŷ)| + |u1(y)− u1(ŷ)|

≤ c(εη + εση/n)u2(en/2). (3.19)

This completes the proof of the first inequality stated in Lemma 3.8. Finally, using the
Harnack inequality we see that there exists τ ≥ 1, depending only on the data, such that
u2(en/2) ≤ cρ−τu2(y) whenever y ∈ C1/4(0) \ C1/4,ρ(0). ut

Lemma 3.9. Let O ⊂ Rn be an open set and suppose that p > 1 and A1, A2 ∈

Mp(α, β, γ ). Also, suppose that û1, û2 are non-negative functions in O, û1 is A1-har-
monic in O, and û2 is A2-harmonic in O. Let ã ≥ 1 and y ∈ O, and assume that

1
ã

û1(y)

d(y, ∂O)
≤ |∇û1(y)| ≤ ã

û1(y)

d(y, ∂O)
.

Let ε̃−1
= (cã)(1+σ̂ )/σ̂ , where σ̂ is as in Lemma 3.6. If

(1− ε̃)L̂ ≤ û2/û1 ≤ (1+ ε̃)L̂ in B
(
y, 1

100d(y, ∂O)
)

for some L̂ > 0, then for c = c(p, n, α, β, γ ) suitably large,

1
cã

û2(y)

d(y, ∂O)
≤ |∇û2(y)| ≤ cã

û2(y)

d(y, ∂O)
.

Proof. This is [LLuN, Lemma 3.18] ut

4. Linear degenerate elliptic equations

Let w ∈ Rn and r > 0, and let λ be a real valued, non-negative, Lebesgue measurable
function defined almost everywhere on B(w, 2r). Then λ is said to belong to the class
A2(B(w, r)) if there exists a constant 0 such that

r̃−2n
∫
B(w̃,r̃)

λ dy ·

∫
B(w̃,r̃)

λ−1dy ≤ 0 (4.1)

whenever w̃ ∈ B(w, r) and 0 < r̃ ≤ r . If λ ∈ A2(B(w, r)) then λ is referred to as an
A2(B(w, r))-weight. The smallest 0 such that (4.1) holds is the constant of the weight.



1708 John L. Lewis, Kaj Nyström

Throughout the section we assume that

(i) 1 ≤ m ≤ n− 2,
(ii) 6 is a closed (m, r0, δ)-Reifenberg flat set in Rn for some r0, δ > 0,
(iii) 0 < δ < δ0 where δ0 is as in Lemmas 2.1, 2.4, and 2.5.

(4.2)

We let w ∈ 6 and 0 < r < r0, and we consider the operator

L̂ =

n∑
i,j=1

∂

∂yi

(
âij (y)

∂

∂yj

)
(4.3)

in B(w, 16r) \6. We assume that the coefficients âij are bounded, Lebesgue measurable
functions defined almost everywhere in B(w, 16r) and

c−1λ(y)|ξ |2 ≤

n∑
i,j=1

âij (y)ξiξj ≤ cλ(y)|ξ |
2 (4.4)

for almost every y ∈ B(w, 16r), where λ ∈ A2(B(w, 8r)). By definition L̂ is a degen-
erate elliptic operator (in divergence form) in B(w, 8r) with ellipticity measured by the
function λ and c. If O ⊂ B(w, 8r) \ 6 is open, then we let W̃ 1,2(O) be the weighted
Sobolev space of equivalence classes of functions v with distributional gradient ∇v and
norm

‖v‖̃21,2 =

∫
O

v2λ dy +

∫
O

|∇v|2λ dy <∞. (4.5)

Let W̃ 1,2
0 (O) be the closure of C∞0 (O) in the W̃ 1,2(O) norm. We say that v is a weak

solution to L̂v = 0 in O if v ∈ W̃ 1,2(O) and∫
O

∑
i,j

âijvyiφyj dy = 0 (4.6)

for all φ ∈ C∞0 (O); u ∈ W̃
1,2(O) is called a subsolution of L̂ if (4.6) holds with =

replaced by ≤ for all φ ∈ W̃ 1,2(O) such that φ ≥ 0; and u is called a supersolution if −u
is a subsolution.

For the proof of the following lemma we refer to [FKS].

Lemma 4.1. Let w ∈ 6 and 0 < r < r0, and let λ be an A2(B(w, 8r))-weight with
constant 0. Suppose that v is a positive weak solution to Lv = 0 in B(w, 4r) \ 6. Then
there exists a constant c = c(n, 0) ≥ 1 such that if ŵ ∈ Rn, r̂ > 1, and B(ŵ, 2r̂) ⊂
B(w, 4r) \6, then

(i) r̂2
∫
B(ŵ,r̂/2)

|∇v|2λ dy ≤ c

∫
B(ŵ,r̂)

|v|2λ dy,

(ii) max
B(ŵ,r̂)

v ≤ c min
B(ŵ,r̂)

v.

Furthermore, there exists α = α(n, 0) ∈ (0, 1) such that if x, y ∈ B(ŵ, r̂), then

(iii) |v(x)− v(y)| ≤ c(|x − y|/r̂)α max
B(ŵ,2r̂)

v.
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Definition 4.2. Let w ∈ Rn and 0 < r < r0, let O ⊂ B(w, 8r) be open, let K be a com-
pact subset of O, and assume that λ is a real valued, non-negative, Lebesgue measurable
function defined almost everywhere on B(w, 8r). We define

Cap2,λ(K,O) = inf
{∫

O

|∇φ|2λ dy : φ ∈ C∞0 (O), φ ≥ 1 in K
}
.

Then Cap2,λ(K,O) is referred to as the (2, λ)-capacity of K relative to O. The (2, λ)-
capacity of an arbitrary set E ⊆ O is defined by

Cap2,λ(E,O) = inf
E⊂G⊂O,G open

sup
K⊂G,K compact

Cap2,λ(K,O). (4.7)

Definition 4.3. Let 6 ⊂ Rn be a closed set, let w ∈ 6 and 0 < r < ∞, and assume
that λ is a real valued, non-negative, Lebesgue measurable function defined almost every-
where on B(w, 8r). Also assume there exists a constant η > 0 such that

Cap2,λ(6 ∩ B(ŵ, r̂), B(ŵ, 2r̂))
Cap2,λ(B(ŵ, r̂), B(ŵ, 2r̂))

≥ η

whenever ŵ ∈ 6 ∩B(w, 4r) and 0 < r̂ < r . We then say that 6 ∩B(w, 4r) is uniformly
(2, λ)-thick with constant η.

Lemma 4.4. Let w ∈ 6 and 0 < r < r0, and suppose that λ is an A2(B(w, 8r))-weight.
Furthermore, assume that (4.2) holds and6∩B(w, 4r) is uniformly (2, λ)-thick for some
constant η > 0. Then, given f ∈ W̃ 1,2(B(w, 4r)), there exists a unique weak solution
u ∈ W̃ 1,2(B(w, 4r)\6) to L̂u = 0 inB(w, 4r)\6 such that u−f ∈ W̃ 1,2

0 (B(w, 4r)\6).
Furthermore, let u, v ∈ W̃ 1,2

loc (B(w, 4r)\6) be an L̂-supersolution and an L̂-subsolution
in B(w, 4r) \ 6, respectively. If inf{u − v, 0} ∈ W̃ 1,2

0 (B(w, 4r) \ 6), then u ≥ v a.e.
in B(w, 4r) \ 6. Finally, every point ŵ ∈ 6 ∩ B(w, 4r) is regular for the continuous
Dirichlet problem for L̂u = 0.

Proof. The proof is essentially identical to the proof of Lemma 3.2; see also [FJK1]. ut

Lemmas 4.5 and 4.6 below are tailored to our situation and based on results in [FKS],
[FJK1] and [FJK2]. We note that these authors assumed that L̂ is symmetric, i.e., âij = âji
for 1 ≤ i, j ≤ n, but, as pointed out in [LLuN], this assumption was not needed in the
proof of these lemmas.

Lemma 4.5. Let w ∈ 6 and 0 < r < r0, and suppose that λ is an A2(B(w, 8r))-weight.
Let v be a positive solution to L̂v = 0 in B(w, 2r) \ 6, continuous on B(w, 2r) and
with v = 0 on 6 ∩ B(w, 2r). Furthermore, assume that (4.2) holds and 6 ∩ B(w, 4r) is
uniformly (2, λ)-thick for some constant η > 0. Then there exists c = c(n, 0, η) ≥ 1 such
that the following holds with r̃ = r/c:

(i) r2
∫
B(w,r/2)

|∇v|2λ dy ≤ c

∫
B(w,r)

|v|2λ dy,

(ii) max
B(w,r̃)

v ≤ cv(ar̃(w)).
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Moreover, there exists α = α(n, 0, η) ∈ (0, 1) such that if x, y ∈ B(w, r̃), then

(iii) |v(x)− v(y)| ≤ c(|x − y|/r)α max
B(w,2r̃)

v.

Lemma 4.6. Let w ∈ 6 and 0 < r < r0, and suppose that λ is an A2(B(w, 8r))-
weight. Also let v1, v2 be two positive solutions to L̂v = 0 in B(w, 2r) \ 6, continuous
on B(w, 2r) and with v1 = 0 = v2 on 6 ∩ B(w, 2r). Furthermore, assume that (4.2)
holds and 6 ∩ B(w, 4r) is uniformly (2, λ)-thick for some constant η > 0. Then there
exist c = c(n, 0, η) ≥ 1 and α = α(n, 0, η) ∈ (0, 1) such that∣∣∣∣log

v1(y1)

v2(y1)
− log

v1(y2)

v2(y2)

∣∣∣∣ ≤ c( |y1 − y2|

r

)α
whenever y1, y2 ∈ B(w, r/c) \6.

4.1. A-harmonic functions: linearization and weighted capacity

Recall that we are assuming (3.1) and 0 < δ < δ̄ so that also (3.2) holds (see (4.2)).
Assume that û, v̂ are two positive A-harmonic functions in B(w, 4r) \ 6, continuous on
B(w, 4r) and satisfying û = 0 = v̂ on 6 ∩ B(w, 4r). We define

e(y) = û(y)− v̂(y) whenever y ∈ B(w, 2r), (4.8)
u(y, τ ) = τ û(y)+ (1− τ)v̂(y) whenever y ∈ B(w, 2r) and τ ∈ [0, 1]. (4.9)

Clearly, e(y) = u(y, 1)− u(y, 0) and it follows from (3.6) that e is a weak solution to

L̂e :=

n∑
i,j=1

∂

∂yi

(
âij (y)

∂

∂yj

)
= 0 in B(w, 2r) \6, (4.10)

where, for y ∈ B(w, 2r) \6 and 1 ≤ i, j ≤ n,

âij (y) =

∫ 1

0
aij (y, τ ) dτ, aij (y, τ ) =

∂Ai

∂ηj
(∇u(y, τ )). (4.11)

In particular, using the structure assumptions in Definition 1.1, we observe from (4.10)
and (4.11) that e = û− v̂ is a solution to a divergence form PDE with ellipticity constant,
at y ∈ B(w, 2r) \6, estimated by

min{p − 1, 1}|ξ |2λ(y) ≤
n∑

i,j=1

âij (y)ξiξj ≤ max{p − 1, 1}|ξ |2λ(y) (4.12)

whenever ξ ∈ Rn. Here,

λ(y) =

∫ 1

0
|∇u(y, τ )|p−2 dτ ≈ (|∇û(y)| + |∇v̂(y)|)p−2 (4.13)

whenever y ∈ B(w, 2r) \ 6. In (4.13), ≈ means that the implied constants only depend
on p, n, α. We prove the following lemma.
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Lemma 4.7. Assume (3.1) and 0 < δ < δ̄. Also suppose that û, v̂ are two positive A-
harmonic functions in B(w, 4r) \ 6, continuous on B(w, 4r) and satisfying û = 0 = v̂
on 6 ∩ B(w, 4r). Let λ̂ = λ̂(y) = (|∇û(y)| + |∇v̂(y)|)p−2 and suppose that λ̂ 6= 0
almost everywhere in B(w, 4r). There exists c = c(n,m) ≥ 1 such that if r̃ = r/c then
6 ∩ B(w, 4r̃) is uniformly (2, λ̂)-thick for some constant η = η(p, n,m, α, β, γ ) > 0.

Proof. In the following we simply choose c = c(n,m) ≥ 1 and r̃ = r/c such that if
ŵ ∈ 6 ∩B(w, 4r̃) and 0 < r̂ < r̃ , then ar̂(ŵ) and the point realizing supB(ŵ,4r̂) û can be
joined by a Harnack chain contained in B(w, r) and of length independent of ŵ, r̂ . Using
this choice for r̃ we want to prove, for r̃ and η as stated, that

Cap2,λ̂(6 ∩ B(ŵ, r̂), B(ŵ, 2r̂))

Cap2,λ̂(B(ŵ, r̂), B(ŵ, 2r̂))
≥ η

whenever ŵ ∈ 6 ∩ B(w, 4r̃) and 0 < r̂ < r̃ . By scaling we can assume that ŵ = 0 and
r̂ = 1, and hence we want to bound the quotient

Cap2,λ̂(6 ∩ B(0, 1), B(0, 2))

Cap2,λ(B(0, 1), B(0, 2))
(4.14)

from below with a positive constant depending at most on p, n,m, α, β, γ . Furthermore,
we can, without loss of generality, assume that

max{û(a1(0)), v̂(a1(0))} = û(a1(0)).

Let now φ ∈ C∞0 (B(0, 2)), with φ ≥ 1 on 6 ∩ B(0, 1), be an admissible test function in
the definition of Cap2,λ̂(6 ∩ B(0, 1), B(0, 2)). Let µ̂ be the measure corresponding to û
as in Lemma 3.7. Then∫

〈A(y,∇û(y)),∇φ(y)〉 dy = −

∫
φ dµ̂. (4.15)

In particular,

µ̂(B(0, 1)) ≤
∫
|〈A(y,∇û(y)),∇φ(y)〉| dy ≤ c

∫
|∇û|p−1

|∇φ| dy, (4.16)

and hence, simply using the Hölder inequality, we find that

µ̂(B(0, 1)) ≤ c
(∫
|∇φ|2λ̂(y) dy

)1/2(∫
B(0,2)

|∇û|p dy

)1/2

.

Next, applying Lemma 3.1, the Harnack inequality and Lemma 3.5, we have(∫
B(0,2)

|∇û|p dy

)1/2

≤ û(a1(0))p/2.
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Furthermore, using Lemma 3.7(ii) and arguing as above we see that µ̂(B(0, 1)) ≈
û(a1(0))p−1. In particular, using this fact and the above displays we deduce that

û(a1(0))p−2
≤ c

(∫
|∇φ|2λ̂(y) dy

)
. (4.17)

As φ is an arbitrary admissible test function used in the definition of Cap2,λ̂(6 ∩

B(0, 1), B(0, 2)), we conclude that

û(a1(0))p−2
≤ cCap2,λ̂(6 ∩ B(0, 1), B(0, 2)), (4.18)

and this is a lower bound for Cap2,λ̂(B(0, 1), B(0, 2)).
To establish an upper bound we simply note that∫

B(0,2)
|∇φ|2λ̂(y) dy =

∫
B(0,2)

|∇φ|2(|∇û| + |∇v̂|)p−2 dy

≤ c

(∫
B(0,2)

(|∇û| + |∇v̂|)p dy

)1−2/p(∫
B(0,2)

|∇φ|p dy

)2/p

. (4.19)

Choosing φ as the p-capacitary function for B(0, 2) \ B(0, 1) we can therefore conclude
that

Cap2,λ̂(B(0, 1), B(0, 2)) ≤ c
(∫

B(0,2)
(|∇û| + |∇v̂|)pdy

)1−2/p

≤ c
(
max{û(a1(0)), v̂(a1(0))}

)p−2
= cû(a1(0))p−2. (4.20)

(4.18) and (4.20) now give the bound from below for the quotient in (4.14), and hence the
proof of Lemma 4.7 is complete. ut

4.2. A-harmonic functions: estimates based on linearization

In the following we again assume (3.1) and 0 < δ < δ̄, so that also (3.2) holds. We also
set

θ̃ = 1 when m = 1, and θ̃ = λ, as in Theorem 1.10, when 2 ≤ m ≤ n− 2. (4.21)

Let û, v̂, and λ̂ = λ̂û,v̂ be as in the statement of Lemma 4.7. Then, by Lemma 4.7 , there
exists c = c(n,m) ≥ 1 such that if %0 = r/c, then 6 ∩ B(w, 4%0) is uniformly (2, λ̂)-
thick for some constant η = η(p, n,m, α, β, γ ) > 0. The analysis in this subsection is
based on the following assumption.

Assumption 1. There exists c1 = c1(p, n,m, α, β, γ, θ̃) ≥ 1 such that if %1 = %0/c1,
a, b ∈ [0,∞), and û, v̂ are as above, then λ̂(y) := λ̂(y, a, b, û, v̂) = (a|∇û(y)| +

b|∇v̂(y)|)p−2 is an A2(B(w, 4%1))-weight with constant 0 = 0(p, n,m, α, β, γ, θ̃).



Quasi-linear PDEs and low-dimensional sets 1713

Lemma 4.8. Assume (3.1), 0 < δ < δ̄, and Assumption 1. Let û, v̂, and %1 be as in
Lemma 4.7 with v̂ ≤ û. There exists c = c(p, n,m, α, β, γ, 0) ≥ 1 such that if %2 =

%1/c, then

c−1 û(a%2(w))− v̂(a%2(w))

v̂(a%2(w))
≤
û(y)− v̂(y)

v̂(y)
≤ c

û(a%2(w))− v̂(a%2(w))

v̂(a%2(w))

whenever y ∈ B(w, %2) \6.

Proof. We first prove the left hand inequality. To do so we show the existence of T , c ≥ 1
such that if %2 = %1/ĉ, and if

e(y) = T

(
û(y)− v̂(y)

û(a%1(w))− v̂(a%1(w))

)
−

v̂(y)

v̂(a%1(w))
(4.22)

for y ∈ B(w, %1) \6, then

e(y) ≥ 0 whenever y ∈ B(w, 2%2) \6. (4.23)

To do this, we initially allow T , ĉ ≥ 1 in (4.22) to vary, and we fix them near the end of
the argument. Set

u′(y) =
T û(y)

û(a%1(w))− v̂(a%1(w))
, v′(y) =

T v̂(y)

û(a%1(w))− v̂(a%1(w))
+

v̂(y)

v̂(a%1(w))
.

Observe from (4.22) that e = u′ − v′. Let L be defined as in (4.10) using u′, v′ instead of
û, v̂, and let e1, e2 be the solutions to Lei = 0, i = 1, 2, in B(w, %1)\6, with continuous
boundary values

e1(y) =
û(y)− v̂(y)

û(a%1(w))− v̂(a%1(w))
, e2(y) =

v̂(y)

v̂(a%1(w))
(4.24)

for y ∈ ∂(B(w, %1) \ 6). Note that by construction, and by Lemmas 4.7 and 4.4, e1, e2
are well defined. Furthermore, using Assumption 1 we see that Lemma 4.6 can be applied
and we get, for some c+ ≥ 1 and r+ = %1/c+,

c−1
+

e1(ar+(w))

e2(ar+(w))
≤
e1(y)

e2(y)
≤ c+

e1(ar+(w))

e2(ar+(w))
(4.25)

whenever y ∈ B(w, 2r+) \6. We now set

ĉ = c+, %2 = r+, T = ĉ
e2(a%2(w))

e1(a%2(w))
,

and we observe from (4.25) that

T e1(y)− e2(y) ≥ 0 whenever y ∈ B(w, 2%2) \6. (4.26)

Let ê = T e1 − e2 and note from linearity of L that ê, e both satisfy the same linear
locally uniformly elliptic subelliptic PDE in B(w, %1) \ 6, and also they have the same
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continuous boundary values on ∂(B(w, %1)\6). Hence, from the maximum principle for
the operator L, it follows that e = ê and then, by (4.26), e(y) ≥ 0 in B(w, 2%2) \6.

To complete the proof of the left hand inequality in Lemma 4.8 we prove that

T ≤ c(p, n,m, α, β, γ, 0) = c(p, n,m, α, β, γ, θ̃). (4.27)

To do this, let L̂ denote the operator corresponding to û− v̂ and defined as in (4.10). Then
from the Harnack inequality in Lemma 4.1(ii) for L̂, applied to û− v̂, and the definition
of %2, we deduce the existence of ζ ∈ ∂B(w, %1) \ 6 with d(ζ,6) ≥ r/c and such
that e1 ≥ c

−1 on ∂B(w, %1) ∩ B(ζ, d(ζ,6)/4). Using this we find, essentially just using
Lemma 4.5(iii) and the Harnack inequality in Lemma 4.1 applied to the function e1, that
e1(a%2(w)) ≥ c̄

−1. Also from Lemma 3.5 and the Harnack inequality applied to v̂ we get
e2(a%2(w)) ≤ c̄ for some c̄ = c̄(p, n,m, α, β, γ, 0). Thus (4.27) is true and the proof of
the left hand inequality in Lemma 4.8 is complete.

To prove the right hand inequality in Lemma 4.8, one can proceed similarly and in this
case one needs to prove, for e1, e2 as above, that e1(a%2(w)) ≤ c̄ and e2(a%2(w)) ≥ c̄. The
second inequality follows, as above, essentially from Lemma 4.5(iii) and the Harnack in-
equality in Lemma 4.1 applied to e2. The first inequality follows from Lemma 4.5(iii)(ii)
for L̂, applied to û− v̂, and the Harnack inequality. ut

Lemma 4.9. Assume (3.1), 0 < δ < δ̄, and Assumption 1. Let û, v̂, and %1 be as in
Lemma 4.7. There exists c = c(p, n,m, α, β, γ, θ̃ , 0) ≥ 1 such that if %2 = %1/c, then

c−1 û(a%2(w))

v̂(a%2(w))
≤
û(y)

v̂(y)
≤ c

û(a%2(w))

v̂(a%2(w))
whenever y ∈ B(w, %2) \6.

Proof. Note that we are not assuming v̂ ≤ û. The proof is similar to the proof of Lemma
4.8. To prove the left hand inequality, we set

e(y) =
T û(y)

û(a%1(w))
−

v̂(y)

v̂(a%1(w))
for y ∈ B(w, %1) \6, (4.28)

and show that

e(y) ≥ 0 whenever y ∈ B(w, 2%2) \6, (4.29)

where T , ĉ, %2 are as in Lemma 4.9. In this case we let

u′(y) =
T û(y)

û(a%1(w))
and v′(y) =

v̂(y)

v̂(a%1(w))
.

Set e = u′− v′ and let L be defined as in (4.10) relative to u′, v′. Repeating the argument
in Lemma 4.8 from above (4.24), through the discussion below (4.27), we get the left
hand inequality in Lemma 4.9. To prove the right hand inequality we argue as above with
û, v̂ interchanged. ut
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Lemma 4.10. Assume (3.1), 0 < δ < δ̄, and Assumption 1. Let û, v̂ be as in Lemma 4.7
and let %2 be as in Lemma 4.8. Then there exist c = c(p, n,m, α, β, γ, θ̃ , 0) ≥ 1 and
σ = σ(p, n,m, α, β, θ̃ , γ, 0) ∈ (0, 1) such that if %3 = %2/c, then∣∣∣∣log

û(y1)

v̂(y1)
− log

û(y2)

v̂(y2)

∣∣∣∣ ≤ c(d(y1, y2)

r

)σ
whenever y1, y2 ∈ B(w, %3) \6.

Proof. From Lemma 4.9, we have

c−1 û(a%2(w))

v̂(a%2(w))
≤
û(y)

v̂(y)
≤ c

û(a%2(w))

v̂(a%2(w))
whenever y ∈ B(w, %2) \6.

Using this inequality we see that

û(y1)

v̂(y1)
≤ c

û(y2)

v̂(y2)
whenever y1, y2 ∈ B(w, %2) \6. (4.30)

Next if ŵ ∈ B(w, %2/8) ∩6, then we let

M(ρ) = sup
B(ŵ,ρ)

û

v̂
and m(ρ) = inf

B(ŵ,ρ)

û

v̂
,

for 0 < ρ < %2/2. We also let osc(ρ) := M(ρ) − m(ρ) for 0 < ρ < %2/2. Then, if ρ
is fixed we can apply Lemma 4.8 with m(ρ)v̂ replacing v̂ in B(w, ρ) \ 6 to find that if
c∗ ≥ 1 is large enough and ρ̃ = ρ/c∗, then

M(ρ̃)−m(ρ) ≤ c∗(m(ρ̃)−m(ρ)).

Likewise, applying Lemma 4.8 with M(ρ)v̂, û playing the roles of û, v̂ respectively we
find after multiplication by û/v̂ in view of (4.30) that

M(ρ)−m(ρ̃) ≤ c∗(M(ρ)−M(ρ̃)).

Adding these inequalities we obtain, after some arithmetic,

osc(ρ̃) ≤
c∗ − 1
c∗ + 1

osc(ρ) (4.31)

where c∗ has the same dependence as c in Lemma 4.10. Iterating (4.31) we conclude that

osc(s) ≤ c(s/t)φosc(t) whenever 0 < s < t ≤ %2/2, (4.32)

for some φ > 0 and c ≥ 1. For slightly more details in the proof of (4.32), see [LLuN,
(6.16)–(6.20)]. Now (4.32), (4.30), the arbitrariness of ŵ ∈ B(w, %2/8) ∩ 6 and the
interior Hölder continuity-Harnack inequalities in Lemma 3.1, applied to û, v̂, are easily
seen to imply Lemma 4.10. ut

Next we consider the following alternative assumptions to Assumption 1.
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Assumption 1′. Let û, v̂ be as in Lemma 4.7. There exists ĉ1 = ĉ1(p, n,m, α, β, γ, θ̃)

≥ 1 such that if %̂1 = %0/ĉ1, then for y ∈ B(w, 4%̂1) \6,

ĉ−1
1

ũ(y)

d(y,6)
≤ |∇ũ(y)| ≤ ĉ1

ũ(y)

d(y,6)
for ũ ∈ {û, v̂}.

Assumption 1′′. Let û, v̂ be as in Lemma 4.7. There exists c̆1 = c̆1(p, n,m, α, β, γ, θ̃)

≥ 1 such that if %̃1 = %0/c̆1, then for y ∈ B(w, 4%̃1) \6,

(i) c̆−1
1
û(a%1(w))

v̂(a%1(w))
≤
û(y)

v̂(y)
≤ c̆1

û(a%1(w))

v̂(a%1(w))
,

(ii) c̆−1
1

û(y)

d(y,6)
≤ |∇û(y)| ≤ c̆1

û(y)

d(y,6)
.

We end the section by proving that Assumption 1′ as well as Assumption 1′′ imply As-
sumption 1 when 6 is an m-dimensional hyperplane and A ∈ Mp(α). Thus, in this par-
ticular case Lemma 4.10 is valid under either assumption.

Lemma 4.11. Assume that (3.1) holds, A ∈ Mp(α), and 6 is an m-dimensional hyper-
plane. Assume either Assumption 1′ or Assumption 1′′. Then Assumption 1 holds for some
c1, 0, depending only on the data and either ĉ1 or c̆1.

Proof. We first prove that Assumption 1′ implies Assumption 1. To do so, let x ∈
B(w, %̂1) \6 and consider 0 < ρ ≤ c−1

∗ %̂1 where c∗ ≥ 100 will eventually be chosen to
depend only on the data. If ρ ≤ 3d(x,6)/4, then from Assumption 1′, Lemma 2.4, and
Harnack’s inequality in Lemma 3.1 applied to û, v̂, we see that λ = (a|∇û| + b|∇v̂|)p−2

satisfies∫
B(x,ρ)

λt dy ≈

(
aû(x)+ bv̂(x)

d(x,6)

)t (p−2)

ρn whenever a, b ∈ [0,∞) and t = ±1.

(4.33)

If ρ ≥ 3d(x,6)/4 let z ∈ 6 with |x−z| = d(x,6) and set ρ̄ = c∗ρ. Let P be an (n−1)-
dimensional hyperplane with z ∈ P and 6 ⊂ P. Let � be the component of B(z, ρ̄) \ P
containing x and let�′ = B(z, ρ̄) \ �̄ be the other component. Choose y ∈ �∩ ∂B(z, ρ̄)
and y′ ∈ �′ ∩ ∂B(z, ρ̄) with ũ(y′) ≈ ũ(aρ̄(z)) ≈ ũ(y) whenever ũ ∈ {û, v̂}. Also
choose ρ̂ ≈ ρ with B(y, 2ρ̂) ⊂ � and B(y′, 2ρ̂) ⊂ �′. Existence of y, y′, ρ̂ follows
from elementary geometry and Harnack’s inequality in Lemma 3.1 applied to û, v̂. Let
u′, v′ be the A-harmonic functions in B(z, ρ̄) \ [P ∪B(y, ρ̂)∪B(y′, ρ̂)] with continuous
boundary values u′ = v′ = 0 on P ∪ ∂B(z, ρ̄), while u′ = û(aρ̄(z)) and v′ = v̂(aρ̄(z))
on ∂B(y, ρ̂) ∪ ∂B(y′, ρ̂).

We remark that linear functions areA-harmonic whenA ∈ Mp(α).Using this remark,
and either [LLuN, Lemma 2.8] or just the barrier argument in that lemma, we deduce,
for c∗ large enough, that

u′(ŷ)/d(ŷ, P ) ≥ c−1û(aρ̄(z))/ρ̄ whenever ŷ ∈ B(z, 4ρ) \ P, (4.34)



Quasi-linear PDEs and low-dimensional sets 1717

where c depends only on p, n, α. With c∗ now fixed we use (4.34) and the maximum
principle for A-harmonic functions to find that

û(ŷ) ≥ u′(ŷ) ≥ c−1d(y, P )û(aρ̄(z))/ρ̄

≥ c−2 d(y, P )ũ(aρ(z))/ρ for ŷ ∈ B(z, 4ρ) \ P. (4.35)

Note that (4.34), (4.35) are also valid with û, u′ replaced by v̂, v′. Let

E = E(P ) =
{
ŷ ∈ B(z, 4ρ) \ P : d(ŷ, P ) ≥ 1

4d(ŷ, 6)
}
.

Using (4.35), Assumption 1′ and the fact that p > 2, we see that∫
E

λ−1dx ≤ c

(
aû(aρ(z))+ bv̂(aρ(z))

ρ

)2−p

ρn. (4.36)

From basic geometry we can choose (n−1)-dimensional hyperplanes P1, . . . , PN ,where
N = N(n), so that B(z, 4ρ)\6 ⊂

⋃N
i=1 E(Pi).Using this fact, and B(x, ρ) ⊂ B(z, 4ρ),

we conclude from (4.36) that∫
B(x,ρ)

λ−1 dy ≤ c′
(
aû(aρ(z))+ bv̂(aρ(z))

ρ

)2−p

ρn, (4.37)

where c′ depends only on ĉ1 and the data. Finally, observe from Lemmas 3.3, 3.5 for û, v̂
and Hölder’s inequality that∫

B(x,ρ)

λ dy ≤

∫
B(z,4ρ)

λ dy ≤ c′′
(
aû(aρ(z))+ bv̂(aρ(z))

ρ

)p−2

ρn, (4.38)

where c′′ has the same dependence as c′. Combining (4.37) and (4.38) we find, in view
of (4.33) and the arbitrariness of x, that the conclusion of Lemma 4.11 is true when
Assumption 1′ holds.

To prove the conclusion under Assumption 1′′ we assume, as we may, that

û(a%̃1(w)) = v̂(a%̃1(w)) = 1, (4.39)

since otherwise we can multiply û, v̂ by appropriate constants to get (4.39) and then
observe that the resulting functions satisfy the same PDE as û, v̂. From (4.39) and As-
sumption 1′′ we see that

c−1
+ ≤ û(y)/v̂(y) ≤ c+ in B(w, ρ̃1) \6, (4.40)

where c+ ≥ 1 depends only on c̆1 in Assumption 1′′. Hence, if 2c+ū = û, then

ū ≤ v̂/2 ≤ c2
+ū. (4.41)

Let now {u(·, τ )}, 0 ≤ τ ≤ 1, be the sequence of A-harmonic functions in
B(w, %̃1) \6 with continuous boundary values,

u(y, τ ) = τ v̂(y)+ (1− τ)ū(y) for y ∈ ∂(B(w, %̃1) \6), 0 ≤ τ ≤ 1. (4.42)
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Existence of u(·, τ ), τ ∈ (0, 1), is a consequence of Lemma 3.2. Also using the maximum
principle for A-harmonic functions in Lemma 3.2, Assumption 1′′, (4.41), and (4.42), we
find for some c̃, depending on c̆1 and the data, that

c̃−1u(·, τ1) ≤
u(·, τ2)− u(·, τ1)

τ2 − τ1
≤ c̃u(·, τ1) (4.43)

on B(w, ρ̃1) \6 whenever 0 ≤ τ1 < τ2 ≤ 1. Let ε0 = ε̃ where ε̃ is as in Lemma 3.9 with
ã replaced by c̆1. From (4.43) we get the existence of ε′0 with 0 < ε′0 ≤ ε0, with the same
dependence as ε0, such that if |τ2 − τ1| ≤ ε

′

0, then

1− ε0/2 ≤
u(·, τ2)

u(·, τ1)
≤ 1+ ε0/2 in B(w, ρ1) \6. (4.44)

Let ξ1 = 0 < ξ2 < · · · < ξl = 1 and consider [0,1] divided into {[ξk, ξk+1]}, 1 ≤ k ≤
l − 1. We assume that all of these intervals have length ε′0/2, except possibly the interval
containing ξl = 1 which is of length ≤ ε′0/2.

Using Assumption 1′′, u(·, ξ1) = ū = (2c+)−1û, and (4.44) we see that Lemma 3.9
can be applied with û1 = u(·, ξ1) and û2 = u(·, ξ2). Doing this we first find, for some
c− ≥ 1 depending only on c̆1 and the data, that

c−1
−

u(y, ξ2)

d(y,6)
≤ |∇u(y, ξ2)| ≤ c−

u(y, ξ2)

d(y,6)
(4.45)

whenever y ∈ B(w, ρ̃1/200)\6. Hence Assumption 1′ applies to u(·, ξ1), u(·, ξ2)with %̂1
replaced by ρ̃1/200. Second, from the first part of our proof it follows that Assumption 1
is satisfied for these functions, so we can use Lemma 4.10 to conclude that∣∣∣∣log

(
u(y1, ξ2)

u(y1, ξ1)

)
− log

(
u(y2, ξ2)

u(y2, ξ1)

)∣∣∣∣ ≤ c( |y1 − y2|

ρ̃

)σ
for y1, y2 ∈ B(w, ρ̃/c),

(4.46)

where c depends on p, n,m, α, θ̃ , c̆1. We can now continue by induction, as in [LN2,
proof of (4.24)–(4.28) in Theorem 2] to eventually obtain (see [LN2, Lemma 4.28]) that
(4.45) holds with u(·, ξ2) replaced by u(·, ξl) = v̂ whenever y ∈ B(w, ρ̃/c̄). Here c̄ de-
pends only on c̆1 and the data. Thus û, v̂ satisfy the hypotheses of Assumption 1′, and so
Assumption 1 is also valid. The proof of Lemma 4.11 is now complete. ut

5. Existence and uniqueness of fundamental solutions

Let n, m be integers such that 1 ≤ m ≤ n − 2 and let p > n − m be given. In this
section we assume that A ∈ Mp(α) for some α ∈ [1,∞), i.e., we consider operators with
constant coefficients. Furthermore, we consider coordinates y = (y′, y′′) ∈ Rm × Rn−m,
and let6 = {y = (y′, y′′) ∈ Rm×Rn−m : y′′ = 0}. We are here interested in constructing
u = un−m defined on Rn such that u ∈ W 1,p

loc (R
n
\ 6), u is continuous on Rn, u = 0

on 6, u > 0 on Rn \ 6, and u is a weak solution to ∇ · A(∇u) = 0 in Rn \ 6. To start
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the construction we let k = n − m and we define Ã = (Ã1, . . . , Ãk) : Rk → Rk by
setting Ãj (η) = Am+j (0, η) for η ∈ Rk and j ∈ {1, . . . , k}. Then also Ã ∈ Mp(α) in the
sense of Definition 1.1, but with Rn replaced by Rk . Points in Rk will be denoted by z =
(z1, . . . , zk). We now say that ũ is a fundamental solution to the equation ∇ · Ã(∇ũ) = 0
in Rk , with pole at 0 ∈ Rk , if

(i) ũ ∈ W
1,p
loc (R

k), ũ is continuous in Rk , ũ(0) = 0, ũ > 0 in Rk \ {0},

(ii)
∫
〈Ã(∇ũ(z)),∇θ(z)〉 dz = −θ(0) for all θ ∈ C∞0 (R

k).
(5.1)

Note that (5.1)(ii) implies that ũ is a weak solution to ∇ · Ã(∇ũ) = 0 in Rk \ {0}. We first
prove the following lemma.

Lemma 5.1. Let k ≥ 2 be an integer and let p > k. Let ξ = (p − k)/(p − 1). Assume
that Ã ∈ Mp(α) for some α ∈ [1,∞) with Rk as the underlying space. Then there exists
a fundamental solution ũ to the equation ∇ · Ã(∇ũ) = 0 in Rk , with pole at 0 ∈ Rk , in
the sense of (5.1), and a constant c = c(p, k, α) ≥ 1 such that

(i′) c−1
|z|ξ ≤ ũ(z) ≤ c|z|ξ ,

(ii′) c−1
|z|ξ−1

≤ |∇ũ(z)| ≤ c|z|ξ−1,
(5.2)

whenever z ∈ Rk \ {0}.
Proof. Assume that ũ is a fundamental solution to the equation ∇ · Ã(∇ũ) = 0 in Rk ,
with pole at 0, i.e., ũ is an Ã-harmonic function in Rk \ {0} satisfying (5.1). Using p > k

and ũ(0) = 0, we find as in Lemma 3.7 with 6 replaced by {0} that there exists a unique
finite positive Borel measure µ̃ on Rk , with support at {0}, such that∫

〈Ã(∇ũ(z)),∇θ(z)〉 dz = −

∫
θ dµ̃ (5.3)

for all θ ∈ C∞0 (R
k). In particular, from uniqueness and (5.1)(ii) we see that µ̃(Rk) = 1.

Also using Lemma 3.7 we immediately deduce that ũ satisfies (5.2)(i′).
Hence, it suffices to prove the existence of a ũ satisfying (5.1) and (5.2)(ii′). In the

following all balls B(0, %) are standard Euclidean k-dimensional balls. To start the proof
of the existence of ũ we let, for ε > 0 given and small,

Ã(η, ε) =

∫
Rk
Ã(η − ζ )θε(ζ ) dζ for all η ∈ Rk, (5.4)

where θ ∈ C∞0 (B(0, 1)) with
∫
Rk θ dζ = 1 and θε(ζ ) = ε−kθ(ζ/ε) for all ζ ∈ Rk.

Using the definition of the class Mp(α) and standard properties of approximations to the
identity, we deduce that for some c = c(p, k) ≥ 1,

(i) (cα)−1(ε + |η|)p−2
|ξ |2 ≤

k∑
i,j=1

∂Ãi

∂ηj
(η, ε)ξiξj ,

(ii)
∣∣∣∣∂Ãi∂ηj

(η, ε)

∣∣∣∣ ≤ cα(ε + |η|)p−2, 1 ≤ i, j ≤ k,

(5.5)
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for all η, ξ ∈ Rk . Moreover, Ã(·, ε) is, for fixed ε, infinitely differentiable. We now let
w(·, ε) be the unique solution to∇·(Ã(∇w(z, ε), ε)) = 0 inB(0, 1)\{0}which is continu-
ous on the closure of B(0, 1) and satisfiesw(·, ε) = 1 on ∂B(0, 1), andw(0, ε) = 0. Note
that, using [T1], [T2], [Li], we find that w(·, ε) is in C1,σ̂ (B(0, 1) \ {0}) for some σ̂ > 0
with constants independent of ε. Letting ε → 0, using the definition of the class Mp(α),
one can prove that subsequences of {w(·, ε)}, {∇w(·, ε)} converge pointwise tow, ∇w on
B(0, 1) and B(0, 1)\{0}, respectively, wherew is the unique solution to ∇ ·(Ã(∇w)) = 0
in B(0, 1) \ {0} which is continuous on the closure of B(0, 1) and satisfies w = 1 on
∂B(0, 1) and w(0) = 0. To proceed we let

Ã∗ij (z, ε) =
1
2 (ε + |∇w(z, ε)|)

2−p
[
∂Ãi

∂ηj
(∇w(z, ε), ε)+

∂Ãj

∂ηi
(∇w(z, ε), ε)

]
for z ∈ B(0, 1) \ {0} and 1 ≤ i, j ≤ k. From (5.5)(ii) and Schauder type estimates we see
that w(·, ε) is a classical solution to the non-divergence form uniformly elliptic equation

L∗ζ =

n∑
i,j=1

Ã∗ij (z, ε)ζzizj = 0 (5.6)

for z ∈ B(0, 1) \ {0}. Note also from (5.5) that the ellipticity constant for (Ã∗ij (z, ε))

and the L∞-norm of Ã∗ij (z, ε), 1 ≤ i, j ≤ k, in B(0, 1) \ {0}, depend only on p, k, α.
To continue we again note that it follows from the assumption p > k that points are
uniformly p-thick. In particular, using the Harnack inequality and Lemmas 3.3 and 3.5,
we immediately see that

c(1− w(z, ε)) ≥ 1 whenever z ∈ B(0, 1/2), (5.7)

for some c = c(p, k, α) ≥ 1. We now let

ψ(z) =
e−N |z|

2
− e−N

e−N/4 − e−N
(5.8)

for z ∈ B(0, 1) \ B(0, 1/2), where N is a non-negative integer. Then ψ is a subsolution
to L∗ in B(0, 1) \ B(0, 1/2) if N = N(p, n, α) is sufficiently large, and ψ ≡ 1 on
∂B(0, 1/2), while ψ ≡ 0 on ∂B(0, 1). Hence, using the comparison principle we see that

c(1− w(z, ε)) ≥ ψ(z) on B(0, 1) \ B(0, 1/2), (5.9)

where c is independent of ε. Furthermore, it is easily seen that

cψ(z) ≥ 1− |z| on B(0, 1) \ B(0, 3/4), (5.10)

for some c = c(p, k, α). We can therefore conclude that

ĉ(1− w(z, ε)) ≥ 1− |z| on B(0, 1) \ B(0, 3/4), (5.11)

for some ĉ = ĉ(p, k, α). Furthermore, letting ε → 0 we also have, by the above argument,

ĉ(1− w(z)) ≥ 1− |z| on B(0, 1) \ B(0, 3/4). (5.12)
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Next, given R ≥ 1 let w̃R be the unique solution to ∇ · (Ã(∇w̃R)) = 0 in B(0, R) \ {0}
which is continuous on the closure of B(0, R) and satisfies w̃R = 1 on ∂B(0, R) and
w̃R(0) = 0. We observe, using Definition 1.1(iii) for Ã, and the maximum principle in
Lemma 3.2, thatw(z/R) = w̃R(z) for z ∈ B(0, R). Thus we can apply (5.12) to conclude
that

ĉ(1− w̃R(z)) ≥
R − |z|

R
on B(0, R) \ B(0, 3R/4). (5.13)

Using (5.13) and the comparison principle we find, for λ > 1 given, that

w̃R(λz)− w̃R(z)

λ− 1
≥ c−1w̃R(z), (5.14)

in B(0, R/λ) \ {0} for some constant c which can be chosen independent of λ whenever
1 < λ < 9/8. Next, letting λ→ 1 in (5.14) we obtain

|z|〈∇w̃R(z), z/|z|〉 ≥ c
−1w̃R(z) whenever z ∈ B(0, R) \ {0}. (5.15)

Let ŵR = w̃R/w̃R(1, 0, . . . , 0). From Harnack’s inequality and Hölder 1−k/p continuity
of Sobolev functions in W 1,p when p > k, as well as the basic estimates of Section 3,
we see that a subsequence of (ŵR) converges uniformly on compact subsets of Rk to u′

satisfying (5.1)(i) and ∇ · Ã(∇u′) = 0 weakly in Rk \ {0}. Arguing as in (5.3) we now
deduce that ũ = cu′ satisfies (5.1) for some c = c(p, k, α). Also the lower bound in
(5.2)(ii′) is a consequence of (5.15). The upper bound follows immediately from (5.2)(i′)
and interior regularity (see Lemma 3.6). This completes the proof of Lemma 5.1. ut

Lemma 5.2. Let k ≥ 2 be an integer, and let p > k be given. Let ξ = (p − k)/(p − 1).
Assume that Ã ∈ Mp(α) for some α ∈ [1,∞) with Rk as the underlying space. Then
there exists a unique fundamental solution ũ to the equation ∇ · Ã(∇ũ) = 0 in Rk , with
pole at 0 ∈ Rk , in the sense of (5.1). Furthermore, there exist σ = σ(p, k, α) ∈ (0, 1)
and ψ ∈ C1,σ (Sk) such that u(z) = |z|ξψ(z/|z|) whenever z ∈ Rk \ {0}.
Proof. By Lemma 5.1 we have the existence of a fundamental solution ũ to the equation
∇ · Ã(∇ũ) = 0 in Rk , with pole at 0 ∈ Rk , in the sense of (5.1), satisfying also (5.2). We
want to prove that ũ is the unique fundamental solution in the sense of (5.1). To do this
let ṽ be another fundamental solution to ∇ · Ã(∇ṽ) = 0 in Rk , with pole at 0 ∈ Rk , in the
sense of (5.1). Then, as in the proof of Lemma 5.1 we see that ṽ also satisfies (5.2)(i′).
In particular, ũ ≈ ṽ in Rk. From this fact and (5.2)(ii′) for ũ we observe that ũ, ṽ satisfy
the hypotheses of Assumption 1′′ in Rk \ {0}. Using this observation and arguing as in
the proof of Lemma 4.11 we deduce first that ṽ also satisfies (5.2)(ii′), with constants
depending only on the data, and thereupon that λ(·, a, b, u, v) = (a|∇ũ| + b|∇ṽ|)p−2 is
an A2-weight on Rk with constants independent of a, b ∈ [0,∞). Now arguing as earlier,
we find that Lemma 4.10 holds on Rk\{0}with û, v̂ replaced by ũ, ṽ. Exponentiating both
sides of the inequality in that lemma we conclude the existence of c = c(p, k, α) ≥ 1
and σ = σ(p, k, α) ∈ (0, 1) such that∣∣∣∣ ũ(z′′)ṽ(z′′)

−
ũ(z′)

ṽ(z′)

∣∣∣∣ ≤ c(|z′′ − z′|/R)σ max
∂B(0,R)

ũ

ṽ
≤ c2(|z′′ − z′|/R)σ (5.16)
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whenever z′, z′′ ∈ B(0, R/4)\{0}. In particular, letting R→∞we see that ũ ≡ ṽ on Rk ,
and this completes the proof of uniqueness.

To prove the structural statement, let ũ be as in the statement, and let ṽ(z) = ũ(tz)

for some t > 0. Then, again using homogeneity in Definition 1.1(iii), we check that
∇ · Ã(∇ṽ) = 0 weakly in Rk \ {0}, and also we easily deduce, for fixed t ∈ (0,∞), that
t−ξ ũ(tz) satisfies both conditions in (5.1). Hence, by uniqueness we have ũ(tz) = tξ ũ(z)
whenever z ∈ Rk \ {0}, or equivalently

ũ(z) = |z|ξ ũ(z/|z|) whenever z ∈ Rk \ {0}. (5.17)

The proof of Lemma 5.2 is now complete. ut

Lemma 5.3. Let n, m be integers such that 1 ≤ m ≤ n− 2 and let p > n−m be given.
Let ξ = (p − n + m)/(p − 1). Assume that A ∈ Mp(α) for some α ∈ [1,∞), consider
coordinates y = (y′, y′′) ∈ Rm × Rn−m and let 6 = {y = (y′, y′′) ∈ Rm × Rn−m :
y′′ = 0}. Then there exists a function ū = un−m, defined on Rn, which satisfies

(i) ū ∈ W
1,p
loc (R

n
\6), ū is continuous on Rn,

(ii) ū = 0 on 6, ū > 0 on Rn \6,
(iii) ū is a weak solution to ∇ · A(∇ū) = 0 in Rn \6,

(5.18)

and the quantitative estimates

(i′) c−1
|y′′|ξ ≤ ū(y) ≤ c|y′′|ξ ,

(ii′) c−1
|y′′|ξ−1

≤ |∇ū(y)| ≤ c|y′′|ξ−1,
(5.19)

for some constant c = c(p, n,m, α) ≥ 1, whenever y ∈ Rn \ 6. Moreover, ū(y) =
|y′′|ξψ(y′′/|y′′|) for all y ∈ Rn \ 6, where σ = σ(p, n,m, α) ∈ (0, 1) and ψ ∈
C1,σ (Sn−m).
Proof. To construct ū = un−m we simply let

ū(y) = ū(y′, y′′) := ũ(y′′) for y ∈ Rn \6,

where ũ is as in Lemma 5.2. Then obviously ū satisfies (5.18) and (5.19). Also the last
statement of the lemma follows from Lemma 5.2. ut

6. Proof of Theorems 1.9 and 1.10 in the baseline case

In this section we prove Theorems 1.9 and 1.10 in the special case when 6 is an m-
dimensional hyperplane passing through 0, and A ∈ Mp(α), i.e., we consider only oper-
ators with constant coefficients. We note that if h is a weak solution to ∇ · A(∇h) = 0
in Rn \ 6, and T is a rotation of Rn = Rm × Rn−m which maps Rm × {0} onto 6,
then, as follows by straightforward calculation, h̃(x) = h(T x) is a weak solution to a
PDE, ∇ · Ã(∇h̃) = 0, in Rn \ (Rm × {0}), with Ã ∈ Mp(α). Thus, we can assume
that 6 = Rm × {0} since otherwise we can change coordinate systems. As usual we
write y = (y′, y′′) for y ∈ Rn with y′ ∈ Rm and y′′ ∈ Rn−m. Furthermore, given
w = (w′, w′′) ∈ Rn and 0 < r1, r2 < ∞, we let Cr1,r2(w) be as defined in (3.4), and if
r1 = r2 = r , we write Cr(w).
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Lemma 6.1. Let n, m be integers such that 1 ≤ m ≤ n − 2 and let p > n − m. Let
6 = Rm × {0} and 0 < r < ∞, and assume that A ∈ Mp(α). Let u, v be positive A-
harmonic functions in C4r(0) \6, continuous on C4r(0), with u = 0 = v on 6 ∩C4r(0).
If m = 1, then there exists c = c(p, n,m, α) ≥ 1 such that

c−1 u(ar(0))
v(ar(0))

≤
u(y)

v(y)
≤ c

u(ar(0))
v(ar(0))

whenever y ∈ Cr(0) \6. (6.1)

If 2 ≤ m ≤ n − 2, and if condition (a) or (b) of Theorem 1.10 holds, then there exists
c ≥ 1, depending at most on p, n,m, α, λ, such that (6.1) holds.

Lemma 6.2. Theorems 1.9 and 1.10 are valid for p, n,m,A, u, v as in Lemma 6.1.

Proof. Theorems 1.9 and 1.10 in this baseline case follow immediately from Lemmas
6.1, 5.3, 4.11, and 4.10. ut

Below we give the proof of Lemma 6.1 divided into cases. As the PDEs satisfied by u, v
are invariant under dilation and scaling, we may assume that

r = 1, u(a1(0)) = 1 = v(a1(0)). (6.2)

Hence, we want to prove that there exists c ≥ 1, depending only on the data, such that

c−1
≤ u(y)/v(y) ≤ c whenever y ∈ C1(0) \6. (6.3)

In light of Lemma 5.3 it is sufficient to prove (6.3) with v replaced by ū = un−m. Equiva-
lently, it suffices to establish the existence of c ≥ 1, depending only on the data, such that

c−1
|y′′|ξ ≤ u(y) ≤ c|y′′|ξ whenever y ∈ C1(0) \6. (6.4)

6.1. The case m = 1

In this case we need not use the explicit structure of v = ū. Indeed, to estimate u/v,
suppose u/v ≥ ζ on ∂C1(0) for some large ζ > 0. Let s ∈ (1, 3); from Harnack’s
inequality for A-harmonic functions, for ζ large enough, we have u/v > ζ at some point
in ∂Cs(0) with y′ = ±s. This implies there exists a closed interval I ⊂ [1, 3] ∪ [−3,−1]
of length 1 such that for all t ∈ I there exists y′′ = y′′(t)with |y′′| ≤ 1 and (u/v)(t, y′′) >
ζ. Indeed, if for some z′ ∈ (1, 2) ∪ (−2,−1) we have (u/v)(z′, z′′) ≤ ζ whenever
|z′′| ≤ 2, then we can apply the above analysis to cylinders of radius 2 whose boundary
contains {(z′, z′′) : |z′′| ≤ 2} in order to conclude the existence of I ⊂ [2, 3] ∪ [−3,−2].
Otherwise we choose I = [1, 2].

Let µ, ν be the measures corresponding to u, v as in Lemma 3.7. Note, from Lemma
3.7(ii), and Harnack’s inequality for u, v, that µ, ν are doubling measures in the sense
that

θ(B(y, 2s)) ≤ cθ(B(y, s)) whenever y = (y′, 0) with |y′| + 4s < 4 and θ ∈ {µ, ν}.
(6.5)
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Given t ∈ I , choose y′′(t) as above and set ρ(t) = |y′′(t)| and τ = (t, 0). Using Lem-
ma 3.7(ii) we deduce, for some c ≥ 1 depending only on p, n, α, that

ζp−1
≤

(
u(t, y′′(t))

v(t, y′′(t))

)p−1

≤ c
µ(B(τ, ρ(t))

ν(B(τ, ρ(t)))
. (6.6)

Using a standard covering lemma we see there exists {tj }, 0 < tj < 1/2, for which (6.6)
holds with t, y′′(t), ρ(t), τ replaced by tj , y′′(tj ), ρ(tj ), τj . Also

I ⊂
⋃
j

B(τj , ρj ) and B(τk, ρk/5) ∩ B(τl, ρl/5) = ∅ when k 6= l. (6.7)

From (6.5)–(6.7) and Lemma 3.7 it follows, for some c̃ ≥ 1 depending only on the data,
that

1 ≈ ν(B(0, 7/2)) ≤ c̃ν
(⋃
j

B(τj , ρj )
)
≤ c̃2ζ 1−pµ

(⋃
j

B(τj , ρj/5)
)

≤ c̃2ζ 1−pµ(B(0, 7/2)) ≈ ζ 1−p. (6.8)

Thus ζ cannot be too big (depending on the data). This completes the proof of Lemma 6.1
when m = 1.

Remark 6.3. We remark that Lemma 6.1 can be proved, using the above argument, also
when u, v are solutions to the p-Laplace equation and 1 ≤ m ≤ n − 2. Indeed, in
this case one can construct p-harmonic ṽ, ũ that are rotationally symmetric in y′, y′′ and
satisfy u ≤ cũ and ṽ ≤ cv. Then, using the two-dimensional character of ũ, ṽ, one can
essentially repeat the above argument to get the conclusion of Lemma 6.1 for ũ, ṽ, and so
also for u, v. We emphasize that this argument heavily uses the fact that the p-Laplacian
is invariant under rotations.

For another proof of Lemma 6.1 when u, v are p-harmonic, see [Lu].

6.2. The upper bound in (6.4) for 1 ≤ m ≤ n− 2

For 1 ≤ m ≤ n − 2, and A ∈ Mp(α), let u′ be the A-harmonic function in B(0, 8) \
(6 ∩ B(0, 4)) with continuous boundary values u′ ≡ 1 on ∂B(0, 8) and u′ ≡ 0 on
6 ∩ B(0, 4). We will first prove, for some c̆ = c̆(p, n,m, α), that

c̆−1 u
′(y)

|y′′|
≤ |∇u′|(y) ≤ c̆

u′(y)

|y′′|
when y ∈ C4(0) \6. (6.9)

In order to prove (6.9) we observe, from Lemma 3.3 and Harnack’s inequality applied
to 1 − u′, that 1 − u′ ≥ c−1 in B(0, 6). Using this fact, and a barrier argument as in
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(5.7)–(5.12), we obtain

1− u′(y) ≥ c̄−1d(y, ∂B(0, 8)) when y ∈ B(0, 8) \ B(0, 6). (6.10)

Given x̂ ∈ 6 ∩ B(0, 4), set u+(y) = u′(x̂ + y) when y ∈ � := {z : z + x̂ ∈ B(0, 8)}.
Let 6′ = {z : z + x̂ ∈ 6 ∩ B(0, 4)}. Since A-harmonic functions, for A ∈ Mp(α), are
invariant under translation and dilation, it follows first that u+ is A-harmonic in � \ 6′,
and second that if s > 1, then the function y 7→ u+(sy) is A-harmonic in �(s) where
�(s) = {y ∈ � : sy ∈ � \6′}. Using (6.10) and comparing boundary values we deduce,
for 1 < s < 1.01, that

u+(sy)− u+(y)

s − 1
≥ c−1u+(y) when y ∈ ∂�(s), (6.11)

where c depends on p, n,m, α. From the maximum principle for A-harmonic functions
we see that (6.11) holds in �(s). Letting s → 1 and using Lemma 3.6 we find that

〈∇u′(y), y − x̂〉 ≥ c−1u′(y) for y ∈ B(0, 8) \6 . (6.12)

From arbitrariness of x̂ ∈ 6 ∩ B(0, 4), (6.12), and the fact that |y′′| = d(y,6), we
deduce that the left hand inequality in (6.9) is valid. The right hand inequality follows
from Lemma 3.6.

Next, let ξ be as in Lemma 5.3 and let ū = un−m denote the A-harmonic function
in that lemma. Then u′, ū satisfy the hypotheses of Assumption 1′ of Section 4. Hence,
using Lemmas 4.10 and 4.11, we have

c−1
∗ ≤ u

′(y)/|y′′|ξ ≤ c∗ (6.13)

whenever y ∈ C1/ĉ(0) for some c∗ depending only on p, n,m, α.Repeating this argument
with C1(0) replaced by C1(w) where w ∈ 6 ∩ B(0, 1), and using Harnack’s inequality
again, we see that (6.13) holds for y ∈ C1(0), with c∗ replaced by a larger constant also
depending only on the data. Moreover, if u is as in (6.3), then u ≤ cu′ in C4(0), so the
right hand inequality in (6.13) holds with u′ replaced by u. In particular, we get the upper
bound in (6.4) for 1 ≤ m ≤ n− 2.

6.3. The lower bound in (6.4): A as in (a) of Theorem 1.10

Let 2 ≤ m ≤ n−2 and A ∈ Mp(α), and assume that A satisfies condition (a) of Theorem
1.10. We here prove the lower bound in (6.4), i.e., assuming (6.2) we prove that

|y′′|ξ ≤ cu on C1(0) \6. (6.14)

This completes the proof of Lemma 6.1 in the case considered. To prove (6.14) we first
observe, by the same argument as in (4.34), (4.35), that

d(y,6) = |y′′| ≤ c̃1u(y) when y ∈ C1(0) \6, (6.15)

for some c̃1 = c̃1(p, n,m, α) ≥ 1. Let ū = un−m be as in Lemma 5.3, and set

f (y) = (1− |y′|2)(eū(y) − 1) for y ∈ C1(0). (6.16)

We claim that
f ≤ c̃2u on C1(0) \6 (6.17)
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for some c̃2 = c̃2(p, n,m, λ) ≥ 1. To prove this claim we first observe that f ≤ cu

on ∂(C1(0) \ 6), as follows from u(a1(0)) = 1 and f (y) ≡ 0 when |y′| = 1 or y ∈
6 ∩B(0, 1). Hence, using (6.15), the maximum principle and Lemma 3.6, we see that in
order to prove (6.17) it suffices to show, for some c̃3 = c̃3(p, n,m, α, λ), that if

y ∈ C1(0) \6 and f (y) ≥ c̃3|y
′′
|, (6.18)

then
∇ · A(∇f )(y) ≥ 0, (6.19)

where the latter inequality is taken in the strong or classical sense. In order to prove that
(6.18) implies (6.19) we let c̃3 be a degree of freedom to be fixed and depending only on
p, n, m, α, λ.

Let

∇
′f (y) =

(
∂f

∂y1
, . . . ,

∂f

∂ym

)
(y), ∇

′′f (y) =

(
∂f

∂ym+1
, . . . ,

∂f

∂yn

)
(y), (6.20)

for y ∈ C1(0) \6. We write ∇f (y) = (∇ ′f (y),∇ ′′f (y)). Note that

∇ · A(∇f )(y) =

n∑
i,j=1

∂Ai

∂ηj
(∇f (y))fyiyj = T1 + T2 + T3, (6.21)

where

T1 :=
∑̂
i,j

∂Ai

∂ηj
(∇f (y))fyiyj ,

T2 :=
∑

m+1≤i,j≤n

(
∂Ai

∂ηj
(∇f (y))−

∂Ai

∂ηj
(0,∇ ′′f (y))

)
fyiyj ,

T3 :=
∑

m+1≤i,j≤n

∂Ai

∂ηj
(0,∇ ′′f (y))fyiyj , (6.22)

where the sum
∑̂
i,j is taken over all i, j for which i ≤ m or j ≤ m. To estimate T1 we

note that if i ≤ m or j ≤ m, then Lemma 5.3 shows that

|fyiyj | ≤ c|y
′′
|
ξ−1 when y ∈ C1(0) \6. (6.23)

Hence, from (6.23) and Definition 1.1(i) it follows that

|T1| ≤ c|y
′′
|
ξ−1
|∇f (y)|p−2. (6.24)

We next estimate T2 and T3. From the definition of f , Lemma 5.3, and (6.18) we see
that

1− |y′|2 ≥ c−1c̃3|y
′′
|
1−ξ , (6.25)

where c ≥ 1 depends only on p, n,m, α. From (6.25) and Lemma 5.3 we observe that

|∇
′f (y)| ≤ c′|y′′|ξ and |∇

′′f (y)| ≥ c̃3/c
′, (6.26)

where c′ has the same dependence as c in (6.25). From (6.26) and condition (a) in Theo-
rem 1.10, with η = (∇ ′f (y),∇ ′′f (y)) and η′ = (0,∇ ′′f (y)), we see that if c̃3 is large
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enough, then∣∣∣∣∂Ai∂ηj
(∇f (y))−

∂Ai

∂ηj
(0,∇ ′′f (y))

∣∣∣∣ ≤ λ|∇ ′f (y)| |∇f (y)|p−3

≤ λ(c∗/c̃3)|y
′′
|
ξ
|∇f (y)|p−2 (6.27)

where again c∗ depends only on p, n,m, α. Note that

fyiyj = e
ū(1− |y′|2)(ūyi ūyj + ūyiyj ) (6.28)

whenever y ∈ C1(0) \ 6 and m + 1 ≤ i, j ≤ n. Using Lemma 3.6, (6.28), and Lemma
5.3 we find that

|fyiyj | ≤ c|y
′′
|
ξ−2(1− |y′|2) when y ∈ C1(0) \6 and m+ 1 ≤ i, j ≤ n. (6.29)

Hence, using (6.27) and (6.29) we see that

|T2| ≤ (c/c̃3)(1− |y′|2)|y′′|2ξ−2
|∇f (y)|p−2. (6.30)

To estimate T3 we first deduce, using (6.28), Lemmas 5.2 and 5.3, as well as (p − 2)-
homogeneity of derivatives of A, that

T3 = (1− |y′|2)eū
∑

m+1≤i,j≤n

∂Ai

∂ηj
(0,∇ ′′f )ūyi ūyj . (6.31)

Now, from Definition 1.1(i), Lemma 5.3, (6.26), and the above equality it follows, for
some c = c(p, n,m, α, λ) ≥ 1, that

T3 ≥ c
−1(1−|y′|2)|∇ū(y)|2|∇ ′′f (y)|p−2

≥ c−2(1−|y′|2)|y′′|2ξ−2
|∇f (y)|p−2. (6.32)

In view of (6.30), (6.32), and (6.25) we see, for c̃3 large enough, depending on
p, n,m, α, λ, that∑

m+1≤i,j≤n

∂Ai

∂ηj
(∇f (y))fyiyj = T2 + T3 ≥ c

−1(1− |y′|2)|y′′|2ξ−2
|∇f (y)|p−2

≥ c̃3c
−2
|y′′|ξ−1

|∇f (y)|p−2. (6.33)

Combining (6.24) and (6.33) we conclude that if c̃3 is sufficiently large, depending only
on p, n,m, α, λ, then (6.19) holds. As a consequence, (6.17) is valid. (6.17) implies
(6.14).

6.4. The lower bound in (6.4): A as in (b) of Theorem 1.10

Let 2 ≤ m ≤ n − 2, A ∈ Mp(α), and assume that A ∈ Mp(α) satisfies condition (b)
of Theorem 1.10. To complete the proof of Lemma 6.1 in this case we again have to
prove (6.14). Since A now has constant coefficients in the y variable, we write C for
C(y) and κ for κ(y, ·). In the proof we assume, as we may, that C is a symmetric linear
transformation, since otherwise we can replace C by (C + Ct )/2, where Ct denotes the
transpose of C, and note that the weak formulation of solutions is unchanged. Also since
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rotations preserve Mp(α) and functions homogeneous of degree 0, we may assume that
C has a representation in the standard basis as a diagonal matrix. Finally, observe that
dilations in the coordinate directions change Mp(α) into Mp(α̃) with α̃ ≈ α, while κ
remains homogeneous of degree 0. Thus we assume, as we may, that C is the identity
transformation, so that

A(η) = κ(η)|η|p−2η and ∇ · (κ(∇v)|∇v|p−2
∇v) = 0 weakly in C4(0) \6.

(6.34)

Let ũ(y′′) = |y′′|ξ . Since this function is also a solution to the p-Laplace equation in
Rn−m \ {0}, we see from (6.34) that

∇ · (κ(∇ũ)|∇ũ|p−2
∇ũ) = 〈∇κ(∇ũ),∇ũ〉|∇ũ|p−2 at y′′ ∈ Rn−m \ {0}. (6.35)

Moreover, using the degree zero homogeneity of κ , and Euler’s equation, shows that

〈∇κ(∇ũ),∇ũ〉|∇ũ|p−2
= ξ |y′′|(ξ−2)

〈∇κ(y′′), y′′〉|∇ũ|p−2
= 0 at y′′ ∈ Rn−m \ {0}.

(6.36)

In particular, ũ is A-harmonic in Rn−m \ {0} and we can conclude, by uniqueness in
Lemma 5.2, that if un−m is the fundamental solution on Rn−m in Lemma 5.3, relative to
the A in (6.34), then

un−m(y
′′) = c|y′′|ξ , y′′ ∈ Rn−m, (6.37)

for some c = c(n,m, p).
We now proceed as in the proof of the lower bound in (6.4) in the case of condition

(a) of Theorem 1.10. Indeed, in this case we let, in view of (6.37), ū(y) = |y′′|ξ and
we define f as in (6.16) using this ū. Again we prove (6.17), for sufficiently large c3 =

c3(p, n,m, α), by proving that (6.19) is valid for A as in (6.34). In this case we let, using
(6.28),

∇ · A(∇f )(y) =

n∑
i,j=1

∂Ai

∂ηj
(∇f (y))fyiyj = S1 + S2 + S3, (6.38)

where now

S1 :=
∑̂
i,j

∂Ai

∂ηj
(∇f (y))fyiyj ,

S2 := (1− |y′|2)eū
∑

m+1≤i,j≤n

∂Ai

∂ηj
(∇f (y))ūyiyj , (6.39)

S3 := (1− |y′|2)eū
∑

m+1≤i,j≤n

∂Ai

∂ηj
(∇f (y))ūyi ūyj ,

where again
∑̂
i,j is taken over all i, j for which i ≤ m or j ≤ m. Arguing as in the

proofs of (6.24) and (6.32), we see that

|S1| ≤ c|y
′′
|
ξ−1
|∇f (y)|p−2, (6.40)

S3 ≥ c
−1(1− |y′|2)|y′′|2ξ−2

|∇f (y)|p−2, (6.41)

at y ∈ C1(0) \6.
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To estimate S2 we note, for 1 ≤ i, j ≤ n, that ∂Ai
∂ηj
(∇f (y)) = bij (y)+ cij (y), where

at y,
bij = κ(∇f )|∇f |

p−4
[(p − 2)fyifyj + δij |∇f |

2
],

cij = |∇f |
p−2κηj (∇f )fyi .

(6.42)

In (6.42), δij denotes the Kronecker delta. We write, at y ∈ C1(0) \6,

S2 = (1− |y′|2)eū
∑

m+1≤i,j≤n

bij ūyiyj + (1− |y
′
|
2)eū

∑
m+1≤i,j≤n

cij ūyiyj =: S21 + S22.

(6.43)

Since ū is also a solution to the p-Laplace equation, it follows that, at y ∈ C1(0) \6,

S21 = (1− |y′|2)eū|∇ ′f |2|∇f |p−4
∑

m+1≤i,j≤n

ūyiyi , (6.44)

where ∇ ′f was defined in (6.20). Using (6.26) and (6.29) in (6.44) we obtain, for y in
C1(0) \6,

|S21(y)| ≤ (c/c3)
2(1− |y′|2)|∇f |p−2

|y′′|3ξ−2. (6.45)

To estimate S22 we first observe, for m+ 1 ≤ i, j ≤ n, that

ūyi = ξyi |y
′′
|
ξ−2 and ūyiyj = ξ(ξ − 2)yiyj |y′′|ξ−4

+ ξδij |y
′′
|
ξ−2. (6.46)

We rewrite (6.46) as

ūyiyj = e
−2ū(y)(1− 2/ξ)(1− |y′|2)−2

|y′′|−ξfyifyj + ξδij |y
′′
|
ξ−2. (6.47)

Putting this expression for ūyiyj into S22, and using the definition of cij , we get

S22 = |∇f |
p−2e−ū(y)(1− 2/ξ)(1− |y′|2)−1

|y′′|−ξ
∑

m+1≤i,j≤n

κηj (∇f )f
2
yi
fyj

+|∇f |p−2eū(y)ξ(1− |y′|2)|y′′|ξ−2
n∑

i=m+1

κηi (∇f )fyi (6.48)

whenever y ∈ C1(0) \6. Now using Definition 1.1(i) it is not difficult to show that

|k(η)| + |η|

n∑
i=1

|κηi | ≤ c

where c depends only on p, n,m, α. From this fact, 0-homogeneity of κ, and (6.26) we
see that ∣∣∣ n∑

i=m+1

κηi (∇f )fyi

∣∣∣ = ∣∣∣ m∑
i=1

κηi (∇f )fyi

∣∣∣ ≤ (c/c3)|y
′′
|
ξ . (6.49)

Using (6.49) in (6.48) we arrive at

|S22| ≤ (c/c3)|(1− |y′|2)|y′′|2ξ−2
|∇f |p−2 for y ∈ C1(0) \6. (6.50)

Putting (6.50) and (6.45) into (6.4) we find (6.50) holds with S22 replaced by S2. We
can now complete the proof as in the proof of the lower bound in (6.4) in the case of
condition (a) of Theorem 1.10. We omit further details.
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Remark 6.4. Note that if A, for fixed y, satisfies condition (b) of Theorem 1.10, then
A does not in general give rise to a rotationally symmetric solution in y′, y′′ even when
C(y) = I = the identity transformation. However, as explored in the proof, the funda-
mental solution in Lemma 5.2 for C(y) = I is a radial solution having an extension to Rn
that is symmetric in y′, y′′.

7. Proof of Theorems 1.9, 1.10 and Corollaries 1.11, 1.12

In this section we prove Theorems 1.9 and 1.10 and Corollaries 1.11 and 1.12. As in
Section 4, we will use the convention that

θ̃ = 1 when m = 1, θ̃ = λ when 2 ≤ m ≤ n− 2,

where λ is the constant appearing in (a) of Theorem 1.10. The proofs of Theorems 1.9
and 1.10 are based on the following two lemmas:

Lemma 7.1. Assume (3.1) and 0 < δ < δ̄ so that also (3.2) holds. If 2 ≤ m ≤ n − 2,
assume in addition that either (a) or (b) of Theorem 1.10 holds. Let w ∈ 6, 0 < r < r0.
Assume that u is a positiveA-harmonic function in B(w, 4r)\6, continuous on B(w, 4r)
and with u = 0 on 6 ∩ B(w, 4r). Then there exist δ̂ = δ̂(p, n,m, α, β, γ, θ̃), ĉ =
ĉ(p, n,m, α, β, γ, θ̃) and λ̄ = λ̄(p, n,m, α, β, γ, θ̃) such that if 0 < δ ≤ δ̂, then

λ̄−1 u(y)

d(y,6)
≤ |∇u(y)| ≤ λ̄

u(y)

d(y,6)
whenever y ∈ B(w, r/ĉ) \6.

Lemma 7.2. Assume (3.1) and 0 < δ < δ̄ so that also (3.2) holds. If 2 ≤ m ≤ n − 2,
assume in addition that either (a) or (b) of Theorem 1.10 holds. Let w ∈ 6 and 0 <
r < min{r0, 1}. Assume that u, v are positive A-harmonic functions in B(w, 4r) \ 6,
continuous on B(w, 4r) and with u = 0 = v on 6 ∩ B(w, 4r). Then there exist δ′ =
δ′(p, n,m, α, β, γ, θ̃) and c = c(p, n,m, α, β, γ, θ̃) ≥ 1 such that if 0 < δ < δ′ and r̂ =
r/c, then λ̂u,v := (|∇u| + |∇v|)p−2 is an A2(B(w, r̂))-weight with constant depending
only on p, n,m, α, β, γ, θ̃ .

7.1. Non-degeneracy of |∇u|: proof of Lemma 7.1

Given w = (w′, w′′) ∈ Rn and 0 < r1, r2 < ∞, recall the notation introduced in (3.4)
and (3.5). Using Lemmas 3.8 and 3.9 we first prove the following lemma in the baseline
case.

Lemma 7.3. Assume p > n−m and 1 ≤ m ≤ n− 2. Assume that A ∈ Mp(α, β, γ ) for
some (α, β, γ ). If 2 ≤ m ≤ n − 2, assume in addition that either (a) or (b) of Theorem
1.10 holds. Let 6 = Rm × {0} and suppose that u is a positive A-harmonic function in
C1(0) \ 6, continuous on the closure of C1(0) \ 6, and u = 0 on 6. Then there exist
ĉ = ĉ(p, n,m, α, β, γ, θ̃) and λ̄ = λ̄(p, n,m, α, β, γ, θ̃) such that

λ̄−1 u(y)

d(y,6)
≤ |∇u(y)| ≤ λ̄

u(y)

d(y,6)
whenever y ∈ C1/ĉ(0) \6.
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Proof. Let A = A(y, η) ∈ Mp(α, β, γ ) be as in the statement. Set A2(y, η) = A(y, η)

and A1(η) = A(0, η). Clearly, A1, A2 ∈ Mp(α, β, γ ). We first note that Lemma 7.3
holds for the operator A1. Indeed, assume that u is a positive A1-harmonic function in
C1(0) \ 6, continuous on the closure of C1(0) \ 6, and u = 0 on 6. Let û1(y

′, y′′) =

ū(y′, y′′) = un−m(y
′, y′′) be as in Lemma 5.3. Then û1 is A1-harmonic in C1(0) \6 and

û1 = 0 on 6. Let û2 = u. Then, by Lemma 6.2 applied to the pair û1, û2,∣∣∣∣log
(
û1(y1)

û2(y1)

)
− log

(
û1(y2)

û2(y2)

)∣∣∣∣ ≤ c|y1 − y2|
σ (7.1)

whenever y1, y2 ∈ C1/16(0) \6. Exponentiation yields the equivalent inequality∣∣∣∣ û1(y1)

û2(y1)
−
û1(y2)

û2(y2)

∣∣∣∣ ≤ c′ û1(y2)

û2(y2)
|y1 − y2|

σ (7.2)

whenever y1, y2 ∈ C1/16(0) \ 6, for some c′ depending at most on p, n,m, α, θ̃ . Let
O = C1/16(0) \6 and note that if y2 ∈ C1/32(0) \6 then (see Lemma 5.3)

1
ã

û1(y2)

d(y2, ∂O)
≤ |∇û1(y2)| ≤ ã

û1(y2)

d(y2, ∂O)
(7.3)

for some ã = ã(p, n,m, α). Let r be defined through the relation c′rσ = 1
2 ε̃ where ε̃ is

as in Lemma 3.9. Using (7.2) we then see that

(1− ε̃/2)
û1(y2)

û2(y2)
≤
û1(y1)

û2(y1)
≤ (1+ ε̃/2)

û1(y2)

û2(y2)
(7.4)

whenever y1 ∈ B(y2, r). From (7.3), (7.4), and Lemma 3.9 we conclude that Lemma 7.3
holds for the operator A1.

We now establish Lemma 7.3 forA2 using comparison principles. We let %∈(0, 1/16)
and %̄ ∈ (0, 1/8) be degrees of freedom to be chosen below. Let û1 be the A1-harmonic
function in C%̄/2(0) \ 6 which is continuous on the closure of C%̄/2(0) \ 6 and which
satisfies û1 = u on ∂(C%̄/2(0) \ 6). Then, using Lemma 7.3 for A1, we see that there
exist λ1 = λ1(p, n,m, α, θ̃) and ĉ1 = ĉ1(p, n,m, α, θ̃) ≥ 1 such that

λ−1
1

û1(y)

d(y,6)
≤ |∇û1(y)| ≤ λ1

û1(y)

d(y,6)
whenever y ∈ C%̄/ĉ1(0) \6. (7.5)

Moreover, using Definition 1.1(iii) we have

|A2(y, η)− A1(y, η)| ≤ ε|η|
p−2 whenever y ∈ C%̄(0), ε = 2β%̄γ . (7.6)

Let û2 = u. Using Lemma 3.8 we see that there exist c′, θ, τ, each depending only on
p, n,m, α, β, θ̃ , such that

|û2(y)− û1(y)| ≤ c
′εθ%−τ û2(y) whenever y ∈ C%̄/4(0) \ C%̄/4,%%̄(0). (7.7)
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Let ε̃ be as in the statement of Lemma 3.9 relative to λ1 and set % = 1/(32ĉ1). Fix %̄ sub-
ject to c′εθ%−τ = c′(2β%̄γ )θ%−τ =min{ε̃/2, 10−8

}. In particular, %̄= %̄(p, n,m, α, β, θ̃).
Then from (7.7) we see that

1− ε̃ ≤
û2(y)

û1(y)
≤ 1+ ε̃ whenever y ∈ C%̄/4(0) \ C%̄/4,%%̄(0). (7.8)

Using (7.5), (7.8), and Lemma 3.9 we therefore conclude that

λ−1
2

û2(y)

d(y,61(0))
≤ |∇û2(y)| ≤ λ2

û2(y)

d(y,61(0))
(7.9)

whenever y ∈ C%̄/ĉ1(0) \ Cρ̄/ĉ1,2%%̄(0), for some λ2 = λ2(p, n,m, α, β, γ, θ̃). Moreover,
if y ∈ C%̄/ĉ1,2%%̄(0), then we can also prove that (7.9) is valid at y by essentially repeating
the previous argument and by making use of the invariance of the class Mp(α, β, θ̃),
as well as of conditions (a) and (b) in Theorem 1.10, with respect to translations and
dilations. ut

Proof of Lemma 7.1. Let A = A(y, η) ∈ Mp(α, β, γ ) be as in the statement. Let w ∈ 6
and 0 < r < r0, and suppose that u is a positive A-harmonic function in B(w, 4r) \ 6,
continuous on B(w, 4r), and u = 0 on 6 ∩ B(w, 4r). We use Lemmas 7.3 and 3.8.
Let c1 = ĉ be as in Lemma 7.3 and choose c′ ≥ 100c1 so that if ŷ ∈ B(w, r/c′) \ 6,
s = 4c1d(ŷ, 6), and z ∈ 6 with |ŷ − z| = d(ŷ, 6), then

max
B(z,4s)

u ≤ cu(ŷ) (7.10)

for some c = c(p, n,m, α, β, γ ). Using Definition 1.5 with w, r replaced by z, 4s, we
see that there exists an m-dimensional hyperplane 3 = 3m(z, 4s), z ∈ 3, such that

h
(
6 ∩ B(z, 4s),3 ∩ B(z, 4s)

)
≤ 4δs. (7.11)

For the moment we allow δ̂ in the statement of the lemma to vary but shall later fix
it as a number satisfying several conditions. First, since the class Mp(α, β, γ ), as well
as conditions (a) and (b) in Theorem 1.10, are invariant under rotations, we may again
assume that z = 0 and 3 = {(y′, y′′) ∈ Rm × Rn−m : y′′ = 0}. Thus if s′ is largest such
that C4s′(0) ⊂ B(0, 4s) then

h(6 ∩ C4s′(0),3 ∩ C4s′(0)) ≤ 4c′δs (7.12)

for some harmless constant c′. Next, we let v be a non-negative A-harmonic function
in C4s′(0) with continuous boundary values on ∂(C4s′(0) \ 3) defined as follows. We
construct v such that v = 0 on C4s′(0) ∩3,

v(y) =

{
u(y) for y ∈ ∂C4s′(0) \ ∂C4s′,30c′δs(0),
0 for y ∈ ∂C4s′(0) ∩ ∂C4s′,20c′δs(0),

and
v ≤ u on ∂C4s′(0) ∩ (∂C4s′,30c′δs(0) \ ∂C4s′,20c′δs(0)).
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Then, by construction, using Lemma 3.3, we see that

u ≤ v + cδσu(ŷ) on ∂(C4s′(0) \ C4s′,20c′δs(0)), (7.13)

and hence the same holds, again by the maximum principle for A-harmonic functions, in
C4s′(0) \ C4s′,20c′δs(0). Similarly,

v ≤ u+ cδσu(ŷ) on C4s′(0) \ C4s′,20c′δs(0). (7.14)

In particular, using the Harnack inequality we conclude that

(1+ cδσ )−1
≤
u(y)

v(y)
≤ (1− cδσ )−1 whenever y ∈ B(ŷ, d(ŷ, 6)/4). (7.15)

Furthermore, using Lemma 7.3 and the construction, we have

λ̂−1 v(ŷ)

d(ŷ, 6)
≤ |∇v(ŷ)| ≤ λ̂

v(ŷ)

d(ŷ, 6)
(7.16)

for some λ̂ = λ̂(p, n,m, α, β, γ, θ̃). In particular, from (7.15), (7.16), we see, if 0 <

δ < δ̂ and if we fix δ̂ = δ̂(p, n,m, α, β, γ ) to be small enough, that the hypotheses of
Lemma 3.9 are satisfied with O = B(ŷ, d(ŷ, 6)/4) and ã = λ̂. Now, using Lemma 3.9
we conclude that

λ̄−1
1

u(ŷ)

d(ŷ, 6)
≤ |∇u(ŷ)| ≤ λ̄1

u(ŷ)

d(ŷ, 6)

for some λ̄1 = λ̄1(p, n,m, α, β, γ, θ̃). As ŷ ∈ B(w, r/c′) \ 6 is arbitrary, the proof of
Lemma 7.1 is complete. ut

7.2. (|∇u| + |∇v|)p−2 is an A2-weight: proof of Lemma 7.2

Our proof of Lemma 7.2 is based on the following lemma.

Lemma 7.4. Assume (3.1) and 0 < δ < δ̄ so that also (3.2) holds. If 2 ≤ m ≤ n − 2,
assume in addition that either (a) or (b) of Theorem 1.10 holds. Let w ∈ 6 and 0 <

r < r0. Assume that u is a positive A-harmonic function in B(w, 4r) \ 6, continuous
on B(w, 4r), and u = 0 on 6 ∩ B(w, 4r). Then there exist, for ε∗ > 0 given, δ̂ =
δ̂(p, n,m, α, β, γ, θ̃ , ε∗) ∈ (0, δ̄) and c = c(p, n,m, α, β, γ, θ̃ , ε∗) ≥ 1 such that

c−1
(
r̂

r

)ξ(1+ε∗)
≤
u(ar̂(w))

u(ar(w))
≤ c

(
r̂

r

)ξ(1−ε∗)
whenever 0 < δ ≤ δ̂ and 0 < r̂ < r/4, where ξ = (p − n+m)/(p − 1).

Proof. In the more traditional setting of Reifenberg flat domains in Rn a version of
Lemma 7.4 is proved in [LLuN, Lemma 4.8]. The proof is based on some rather straight-
forward, but still delicate, comparisons of non-negative solutions. Let A = A(y, η) ∈

Mp(α, β, γ ) be as in the statement. Set A2(y, η) = A(y, η) and A1(η) = A(w, η). Then
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A1, A2 ∈ Mp(α, β, γ ). Let u be an A2-harmonic function as in the statement. Observe,
using Definition 1.5, that it suffices to prove the lemma for δ = δ̂. Moreover, we can
assume that r = 4, w = 0 and u(a1(0)) = 1. In the following we let δ̌ ≤ δ̂ and % be
small constants to be chosen below. In particular, δ̌, % will be fixed to depend only on
p, n,m, α, β, γ, θ̃ . For % fixed we can again also assume that

h
(
6 ∩ B(0, 4%),3 ∩ B(0, 4%)

)
≤ 4δ̌%,

where 3 = {(y′, y′′) ∈ Rm × Rn−m : y′′ = 0}. In particular, we see that it suffices to
prove that

c−1r̂ξ(1+ε
∗)
≤ u(ar̂(0)) ≤ cr̂

ξ(1−ε∗) whenever 0 < r̂ < %. (7.17)

To begin, we introduce an auxiliary function u+. We let u+ be A2-harmonic in C%(0) \3
with continuous boundary values on ∂(C%(0) \3), defined as follows. We let u+ = 0 on
C%(0) ∩3,

u+(y) =

{
u(y) if y ∈ ∂(C%(0)) \ ∂(C%,16δ̌%(0)),

0 if y ∈ ∂(C%(0)) ∩ ∂(C%,8δ̌%(0)).

Furthermore, on ∂(C%(0))∩ (∂(C%,16δ̌%(0)) \ ∂(C%,8δ̌%(0))) we define u+ so that u+ ≤ u.
Now, arguing as in the proof of (7.13) and (7.14), we see that

u ≤ u++cδ̌σu(a%/4(0)), u+ ≤ u+cδ̌σu(a%/4(0)) on C%(0) \ C%,8δ̌%(0), (7.18)

for some σ = σ(p, n,m, α, β, γ ) ∈ (0, 1). Using Definition 1.5(iii) we next note that

|A2(y, η)− A1(y, η)| ≤ ε|η|
p−1 whenever y ∈ C%(0), ε = 2β%γ . (7.19)

To proceed, we let ū+ be the A1-harmonic function in C%/2(0) \ 3 which is continuous
on the closure of C%/2(0)\3 and coincides with u+ on ∂(C%/2(0)\3). Finally, we define
v+(y) := |y′′|ξ for all y ∈ Rn.

To prove the right hand inequality in (7.17), we first see, using (7.19) and Lemma 3.8,
that

u+(y) ≤ (1− c̃εθ δ̌−τ )−1ū+(y) for y ∈ C%/4(0) \ C%/4,4δ̌%(0), (7.20)

for some constants c̃, θ , τ , depending only on p, n,m, α, β, γ . Then, by Lemmas 6.2 and
5.3 (see (6.4)), there exists a constant c̄ = c̄(p, n,m, α, θ̃) ≥ 1 such that

u+(y) ≤ (1− c̃εθ δ̌−τ )−1ū+(y) ≤ c(1− c̃εθ δ̌−τ )−1ū+(a%/4(0))
v+(y)

%ξ
(7.21)

whenever y ∈ C%/c̄(0) \ C%/c̄,4δ̌%(0). In particular, using (7.18), (7.21) and the Harnack
inequality we see that

u(y) ≤ c(1− c̃εθ δ̌−τ )−1ū+(a%/8(0))
v+(y)

%ξ
+ cδ̌σu(a%/8(0)) (7.22)
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whenever y ∈ C%/c̄(0) \ C%/c̄,4δ̌%(0). We now let δ̃ be defined through the relation

δ̃ξ = max{δ̌ξ , δ̌σ }. (7.23)

Note that δ̃ ≥ δ̌; moreover, applying (7.22) for y = a8δ̃%(0) we see, as long as

a8δ̃%(0) ∈ C%/c̄(0) \ C%/c̄,4δ̌%(0), (7.24)

that

u(a8δ̃%(0)) ≤ c(1− c̃ε
θ δ̌−τ )−1ū+(a%/8(0))(8δ̃)ξ + cδ̌σu(a%/8(0))

≤
(
c(1− c̃εθ δ̌−τ )−1(8δ̃)ξ + cδ̃ξ

)
u(a%/8(0)), (7.25)

where we have also used ū+(a%/8(0)) ≈ u(a%/8(0)). In particular, simply using the Har-
nack inequality once more, and the normalization u(a1(0)) = 1, we see that

u(aδ̃%(0)) ≤ c(1− c̃ε
θ δ̌−τ )−1(8δ̃)ξ + cδ̃ξ . (7.26)

Next, let δ̌ < 1/(16c̄) and let % be defined through the relation

1/2 = c̃εθ δ̌−τ = c̃(2β%γ )θ δ̌−τ . (7.27)

Then % = %(p, n,m, α, β, γ, θ̃ , δ̌) = %(p, n,m, α, β, γ, θ̃ , δ̃) and

u(aδ̃%(0)) ≤ ĉδ̃
ξ . (7.28)

We now proceed by induction and we suppose that we have shown, for some k∈{1, 2, . . . },
that

u(aδ̃k%(0)) ≤ (ĉδ̃
ξ )k (7.29)

for some ĉ depending at most on p, n,m, α, β, γ, θ̃ . Then, again using Definition 1.5 we
see there exists 3′ ∈ 3m(0) such that

h
(
6 ∩ B(0, 4δ̃k%),3′ ∩ B(0, 4δ̃k%)

)
≤ 4δ̌δ̃k%.

We can now repeat the above argument with 3 replaced by 3′ and 4 replaced by 4δ̃k and
with cylinders of size defined by δ̃k% instead of %. As a result,

u(aδ̃k+1%(0)) ≤ ĉδ̃
ξu(aδ̃k%(0)) ≤ (ĉδ̃

ξ )k+1, (7.30)

by the induction hypothesis. In particular, by induction, (7.29) is true for all positive
integers k. Next we fix δ̃ through the relation

δ̃−ξε
∗

= ĉ, (7.31)

where ĉ is the constant in (7.30). Then δ̃, as well as ρ, depend only on p, n,m, α, β, γ, θ̃
and ε∗. Moreover, given 0 < r̂ < %, let k be the smallest integer such that δ̃k% ≤ r̂ .
Then, simply using the Harnack inequality, (7.29), and our choice of δ̃ in (7.31) we see
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that u(ar̂(0)) ≤ cr̂ξ(1−ε
∗) for some c = c(p, n,m, α, β, γ, θ̃ , ε∗), and hence the proof of

the right hand inequality in (7.17) is complete.
To prove the left hand inequality we argue in a similar manner. Indeed, in this case we

first see that

u(y) ≥ u+(y)− cδ̌σu(a%/4(0)) ≥ (1+ c̃εθ δ̌−τ )−1ū+(y)− cδ̌σu(a%/4(0)) (7.32)

for y ∈ C%(0) \ C%,8δ̌%(0), and then, again as a consequence Lemmas 6.2 and 5.3 (see
(6.4)), and familiar arguments, we deduce that

u(a32δ̃%(0)) ≥ ĉ
−1δ̃ξ (7.33)

for some ĉ depending only on p, n,m, α, β, γ, θ̃ . The left hand inequality in (7.17) then
follows as above by induction. We omit further details. ut

Proof of Lemma 7.2. Assume (3.1) and 0 < δ < δ̄ so that also (3.2) holds. Letw ∈ 6 and
0 < r < min{r0, 1}. Assume that u, v are positive A-harmonic functions in B(w, 4r)\6,
continuous on B(w, 4r), and u = 0 = v on 6 ∩ B(w, 4r). We want to prove that there
exist δ′ > 0 and c ≥ 1 depending only on the data (i.e., p, n,m, α, β, γ, θ̃ ) such that if
0 < δ < δ′ and r̂ = r/c, then λ̂u,v(y) := (|∇u(y)| + |∇v(y)|)p−2 is an A2(B(w, r̂))-
weight with constant depending only on the data. We first see, using Lemma 7.1, that
there exist δ̂, ĉ and λ̄, depending on the data, such that if 0 < δ ≤ δ̂, then

λ̄−1λ̃u,v ≤ λ̂u,v ≤ λ̄λ̃u,v whenever y ∈ B(w, r/ĉ) \6, (7.34)

where

λ̃u,v(y) :=

(
u(y)

d(y,6)
+

v(y)

d(y,6)

)p−2

. (7.35)

We now simply let r̂ = r/(100ĉ2) and we consider w̃ ∈ B(w, r̂) and r̃ ≤ r̂ . We want to
prove

0(w̃, r̃) := r̃−2n
∫
B(w̃,r̃)

λ̂u,v dy ·

∫
B(w̃,r̃)

λ̂−1
u,v dy ≤ c

∗, (7.36)

where c∗ depends only on the data. To do this we first note from Harnack’s inequality
that if d(w̃,6) ≥ 2r̃ , then 0(w̃, r̃) ≤ c, and hence we can assume that d(w̃,6) ≤ 2r̃ . In
the latter case we let ŵ ∈ 6 be such that |w̃ − ŵ| = d(w̃,6). Now, from the definition
of λ̂u,v , Lemmas 3.1–3.5, and Hölder’s inequality, it follows that∫

B(w̃,r̃)

λ̂u,v dy ≤ cÃr̃
n+2−p, (7.37)

where Ã := u(ar̃(ŵ))p−2
+ v(ar̃(ŵ))

p−2. Next, we let

η = min{1, (n−m+ (1− ξ)(p − 2))/(ξ(p − 2))}/20.
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Then, using Lemma 7.4 we see, for δ̂ small enough, that

cũ(y) ≥ ũ(ar̃(ŵ))(d(y,6)/r̃)
ξ(1+η), ũ ∈ {u, v}, (7.38)

whenever y ∈ B(ŵ, 50r̃) \6. Using (7.38) and (7.34), we deduce that∫
B(w̃,r̃)

λ̂−1
u,v dy ≤ cr̃

ξ(1+η)(p−2)Ã−1
∫
B(ŵ,50r̃)

d(y,6)(1−ξ(1+η))(p−2) dy. (7.39)

In particular, from (7.36) and (7.37), we see that

0(w̃, r̃) ≤ cr̃−2nr̃n+2−p r̃ξ(1+η)(p−2)
∫
B(ŵ,50r̃)

d(y,6)(1−ξ(1+η))(p−2) dy. (7.40)

To complete the estimate in (7.40) we define

I (z, s) =

∫
B(z,s)

d(y,6)(1−ξ(1+η))(p−2) dy

for z ∈ 6 ∩ B(w, r/100) and 0 < s < r/100. Let

Ek = B(z, s) ∩ {y : d(y, ∂�) ≤ δ
ks} for k = 1, 2, . . . ,

and recall that 1 ≤ m ≤ n − 2 and 6 is a closed (m, r0, δ)-Reifenberg flat set in Rn for
some r0, δ > 0. We prove that ∫

Ek

dy ≤ ck+δ
(n−m)ksn (7.41)

for k = 1, 2, . . . . Indeed, since 6 is (m, r0, δ)-Reifenberg flat, E1 can be covered by at
most c/δm balls of radius 100δs and with centers in6∩B(z, s), and hence (7.41) follows
readily for k = 1. One can then repeat this argument in each of the balls to find that (7.41)
holds for E2. Arguing by induction, we get (7.41) for all positive integers k. Using (7.41)
and writing I (z, s) as a sum over Ek \ Ek+1, k = 1, 2, . . . , we get

I (z, s) ≤ csn+(1−ξ(1+η))(p−2)
+

∞∑
k=1

(ck+δ
(n−m)ksn)(δks)(1−ξ(1+η))(p−2)

≤ c̃sn+(1−ξ(1+η))(p−2), (7.42)

where c̃ = c̃(p, n,m), provided δ′ is small enough by the choice of η. Using this estimate
with s = r̃ , we can continue our calculation in (7.40) and conclude that

0(w̃, r̃) ≤ cr̃−2nr̃n+2−p r̃ξ(1+η)(p−2)r̃n+(1−ξ(1+η))(p−2)
≤ c. (7.43)

The proof of Lemma 7.2 is now complete. ut

7.3. The final proof of Theorems 1.9 and 1.10

Assuming (3.1) and 0 < δ < δ̄, and using Lemma 7.2, we see that Theorems 1.9 and 1.10
follow immediately from Lemma 4.10.
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7.4. Proof of Corollary 1.11

Let u, v, n,m, p,6,w, r0, A, σ be as in Theorem 1.9 or 1.10, and let µ, ν be the corre-
sponding measures as in (1.5). If z ∈ B(w, 2r) \ 6, then from these theorems, with w
replaced by z, we see that∣∣∣∣u(x)v(x)

−
u(y)

v(y)

∣∣∣∣ ≤ cu(x)v(x)

(
|x − y|

r

)σ
(7.44)

whenever x, y ∈ B(z, r/c) \6. From (7.44) we deduce that

0 < f (z) = lim
y→z

u(y)

v(y)
exists,

and (7.44) holds with u(y)/v(y) replaced by f (z). Hence there exists c′, depending only
on the data, such that if 0 < s < r/c and x ∈ B(z, s) \6, then

u(x)(1− c′(s/r)σ ) < f (z)v(x) < u(x)(1+ c′(s/r)σ ). (7.45)

Set
τ1 =

f (z)

(1+ c′(s/r)σ )
, ṽ = τ1v, h = u− ṽ > 0 in B(z, s) \6.

Given ψ ∈C∞0 (B(z, s)) and small positive numbers θ1, θ2, we set φ=max{h−θ1, 0}θ2ψ.

Arguing as in (3.8) we see that

0 ≤
∫
〈A(x,∇u)− A(x,∇ṽ),∇(max{h− θ1, 0}θ2)〉ψ dx. (7.46)

Also from the usual limiting argument we find that φ can be used as a test function in
the weak formulation of A-harmonicity for both u, ṽ. Doing this, using (7.46), and letting
first θ1 → 0, and then θ2 → 0, we conclude from (7.46) and (1.5) that∫

ψ (τ
p−1
1 dν − dµ) ≤

∫
B(z,s)

〈A(x,∇u)− A(x,∇ṽ),∇ψ〉 dx ≤ 0, (7.47)

where we have also used (p − 1)-homogeneity of A in Definition 1.1(iii) to deduce the
measure corresponding to ṽ. From arbitrariness of ψ it follows that τp−1

1 ν ≤ µ on
B(z, s) ∩ 6. Similarly if τ2 = f (z)/(1− c′(s/r)σ ) then µ ≤ τ

p−1
2 ν on B(z, s) ∩ 6.

From this discussion we see that µ, ν are mutually absolutely continuous on B(w, 4r0),
and if dµ = kdν, then

τ
p−1
1 ≤ k(ẑ) ≤ τ

p−1
2 when ẑ ∈ B(z, s) ∩6 and k(z) = f (z)p−1. (7.48)

Taking logarithms yields

c−1(s/r)σ ≤ |log(k(ẑ)/k(z))| ≤ c(s/r)σ (7.49)

for some c ≥ 1 depending only on the data. From (7.49) and arbitrariness of s, z we
conclude that Corollary 1.11 is valid.
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7.5. Proof of Corollary 1.12

If Corollary 1.12 is false, there exist ε > 0 and tj ∈ [1/2, 1], xj ∈ 6 ∩B(w, r), 0 < rj ≤

10−j r, for j = 1, 2, . . . , such that

ε ≤

∣∣∣∣µ(B(xj , tj rj ))µ(B(xj , rj ))
− tmj

∣∣∣∣. (7.50)

We may assume that tj → t ∈ [1/2, 1] and xj → x̂ ∈ 6 ∩ B(w, r) as j →∞. Let

uj (x) =
u(xj + rjx)

u(arj (xj ))
for x ∈ �j = {x : xj + rjx ∈ B(w, 2r) \6}.

Let Aj (x, η) = A(xj + rjx, η) for x, η ∈ Rn. Using the (p − 1)-homogeneity of A (see
Definition 1.1), we see that uj is a weak solution to ∇ · Aj (x,∇uj ) = 0 in �j . Note that
Aj has the same structure constants as doA in (i) and (iii) of Definition 1.1, while β in (ii)
is replaced by βrγj . From the vanishing Reifenberg flat assumption in Corollary 1.12 we
see, for a subsequence of (�j ) (also denoted (�j )) that ∂�j → 3 as j →∞, where3 is
anm-dimensional hyperplane through 0, uniformly in the Hausdorff distance on compact
subsets of Rn. From Lemmas 3.1, 3.3, and 3.4, as well as Harnack’s inequality, and the
NTA property of�j , we see, given R > 0, that there exists j0 such that whenever j ≥ j0,
then uj is Hölder continuous with exponent σ , and the Hölder norm of uj in B(0, R) is
uniformly bounded. Also given a compact subset K of Rn \3, we find from Lemma 3.6
that ∇uj is σ̂ -Hölder continuous onK with a uniformly bounded Hölder norm for j large
enough. Moreover, by these lemmas, (uj ) is bounded in the norm of W 1,p(B(0, R)).

Using these facts we deduce from Ascoli’s theorem that subsequences of (uj ), (∇uj )
(not relabelled) converge uniformly on compact subsets of Rn,Rn \ 3 to û,∇û. From
weak compactness of W 1,p we may also assume that uj → û weakly in W 1,p(B(0, R))
for each R > 0. By construction, û is σ -Hölder continuous in Rn and û ≡ 0 on 3. It is
also easily seen that û is Â-harmonic in Rn \ 3 with Â(η) = A(x̂, η), η ∈ Rn \ {0}. To
reach a contradiction we assume, as we may, that 3 = Rm × {0}. Indeed, otherwise we
first rotate the coordinate system so that 3 becomes Rm × {0} and û becomes u′, a weak
solution to ∇ · A′(∇u′) = 0. We then apply the following argument to u′.

Applying Theorem 1.9 or 1.10 with u, v replaced by û, un−m, with un−m as in Lem-
ma 5.3, and then letting r → ∞, we see that û is a constant multiple of un−m. Using
this and Lemma 5.3 we deduce that the measure, say µ̂, corresponding to û is a constant
multiple of Lebesgue measure on Rm × {0}. Let µj be the measure corresponding to uj
for j = 1, 2, . . . . Using the above convergence results, we easily deduce that µj → µ̂

weakly as measures. From weak convergence and the fact that µ̂(B(0, s)) is a constant
multiple of sm when s ∈ (0, 1], we conclude

lim
j→∞

µj (B(0, tj ))
µj (B(0, 1))

=
µ̂(B(0, t))
µ̂(B(0, 1))

= tm. (7.51)

Finally, we note from (p − 1)-homogeneity of A that

µj (B(0, tj ))
µj (B(0, 1))

=
µ(B(xj , tj rj ))

µ(B(xj , rj ))
for j = 1, 2, . . . . (7.52)
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Using (7.50)–(7.52) we deduce that

ε ≤ lim
j→∞

∣∣∣∣µ(B(xj , tj rj ))µ(B(xj , rj ))
− tmj

∣∣∣∣ = lim
j→∞

∣∣∣∣µj (B(0, tj ))µj (B(0, 1))
− tmj

∣∣∣∣ = 0. (7.53)

We have reached a contradiction. Hence Corollary 1.12 is valid.

8. Proof of Theorem 1.13

To begin the proof, we assume that 6 is (m, r0, δ)-Reifenberg flat with 0 < δ < δ̃,
where δ̃ is the constant appearing in Theorem 1.9 or 1.10. We start by making several key
observations.

First, if û, v̂, w, r,6 are as in the statement of Theorem 1.13, then by Theorem 1.9 or
1.10, and Harnack’s inequality, it follows that

sup
∂B(w,s)\6

û/v̂ ≤ c inf
∂B(w,s)\6

û/v̂ as s → 0. (8.1)

In particular, there exists K > 0 such that

K ≤ û/v̂ ≤ cK in B(w, r) \6, (8.2)

where c depends only on the data. Indeed, suppose û/v̂ is unbounded in B(w, r) \ 6.
Then from the maximum principle for A-harmonic functions we see that

sup
∂B(w,s)\6

û/v̂→∞ as s → 0.

From (8.1) it follows that

sup
∂B(w,s)\6

û/v̂ ≤ c inf
∂B(w,s)\6

û/v̂→∞ as s → 0. (8.3)

The maximum principle for A-harmonic functions then implies that v̂ ≡ 0 in B(w, r).
From this contradiction and the same argument as in (8.3) we conclude the validity
of (8.2).

Second, suppose 0 < s � 4r < r̃0, where r̃0 = min{r0, 1}, and suppose that ū is an
A-harmonic function inB(w, 4r)\(6∪B(w, s))with ū = 0 continuously on6\B(w, s).
We can apply Lemma 7.1 to conclude that there exist δ∗ ∈ (0, 1) and c̄, λ̄ ≥ 1, depending
only on the data, such that if 0 < δ ≤ δ∗ and ŷ ∈ (6 ∩ B(w, 2r)) \ B(w, 2s), then the
‘fundamental inequality’

λ̄−1 ū(y)

d(y,6)
≤ |∇ū(y)| ≤ λ̄

ū(y)

d(y,6)
(8.4)

holds whenever y ∈ B(ŷ, |ŷ − w|/c̄) \ 6. Using this fact we see that if 0 < δ ≤ δ∗,
then there exists η̃, depending only on the data, such that if we define a non-tangential
approach region at w by �̃(w, η̃) = {y ∈ B(w, r̃0) : d(y,6) ≥ η̃|y − w|}, then

ū satisfies (8.4) for y ∈ B(w, 2r) \ [�̃(w, η̃) ∪ B(w, 2s)]. (8.5)
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To prove Theorem 1.13 we now use (8.2)–(8.5), and proceed essentially along the
same proof scheme as used in the proofs of Theorems 1.9 and 1.10. In particular, we first
prove that the quantitative estimates underlying the conclusion in Theorem 1.13 are true
in the baseline case when 6 = Rm × {0}. We then use this to complete the proof in the
general case. We will use the following lemma.

Lemma 8.1. Under the structure assumptions of either Theorem 1.9 or Theorem 1.10
suppose 0 < s < r/100, w = 0, 6 = Rm× {0}, and A ∈ Mp(α). Let 61 = 6 \B(0, 2s)
and let u be A-harmonic in � = B(0, 4r) \ [61 ∪ B(0, s)] with continuous boundary
values u = 0 on ∂� \ B(0, s) and u = 1 on ∂B(0, s). Then for some λ̄, depending only
on the data, (8.4) is valid with ū replaced by u in � ∩ [B(0, 2r) \ B(0, 2s)].

Proof. We first argue as in the proof of (5.13). Consider λ > 1 given with λ − 1 small.
We assert that

u(x)− u(λx)

λ− 1
≥ c−1u(x) whenever x ∈ �(λ) = {x ∈ � : λx ∈ �}. (8.6)

Indeed, from basic geometry it follows that this holds trivially on ∂�(λ) \ B(0, s) as
u ≡ 0 on ∂� \ B(0, s). For x ∈ ∂�(λ) ∩ ∂B(0, s), we use Lemma 3.3 applied to u, and
Harnack’s inequality applied to 1− u, to conclude that

1− u ≥ c−1 on ∂B(0, 7s/4). (8.7)

As in (5.8) we set

ψ̂(z) =
eN |z|

2
− eN

e49N/16 − eN
(8.8)

for z ∈ B(0, 7/4) \ B(0, 1), where N is a non-negative integer. Set ψ(x) = ψ̂(x/s),
x ∈ B(0, 7s/4) \B(0, s). Using (8.7) and (8.8), and repeating the argument leading up to
(5.13), we see that there exists c+ ≥ 1, depending only on the data, such that

c+(1− u(z)) ≥ ψ(z) ≥ c−1
+ d(z, ∂B(0, s))/s for z ∈ B(0, 7s/4) \ B(0, s). (8.9)

If x ∈ ∂B(0, s) we can use (8.9), with z replaced by λx, to find that (8.6) is also valid on
∂B(0, s). From the maximum principle for A-harmonic functions, we conclude that (8.6)
holds in �(λ). Letting λ→ 1 in (8.6) we have

−〈x,∇u(x)〉 ≥ c−1u(x) whenever x ∈ B(0, 2r) \ [B(0, 2s) ∪6]. (8.10)

From (8.10), (8.5) and basic geometry we deduce the validity of Lemma 8.1. ut
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8.1. Proof of Theorem 1.13 in the baseline case when A ∈ Mp(α)

We here prove the following lemma.

Lemma 8.2. Theorem 1.13 is valid when w = 0, 6 = Rm × {0}, and A ∈ Mp(α).

Proof. Let uk , for k = 1, 2, . . . , be the A-harmonic function u defined in Lemma 8.1
with w = 0 and A ∈ Mp(α), but with s replaced by sk = 10−4kr . Set ũk = uk/uk(ar(0))
for k = 1, 2, . . . . From Lemma 8.1 and our work in Sections 3 and 4, we deduce, as in the
proof of Corollary 1.12, that subsequences of (ũk), (∇ũk) converge uniformly on compact
subsets of B(0, 4r) \ {0}, B(0, 4r) \6, respectively, to ũ, ∇ũ, where ũ is an A-harmonic
function in B(0, 4r) \ 6 with ũ(ar(0)) = 1. Furthermore, the fundamental inequality
(8.4) holds for ũ in B(0, 2r)\6, and ũ ≡ 0 continuously on the boundary of B(0, 4r)\6
except at {0}. Fix 0 < s < 10−4r and A ∈ Mp(α), recall that 6 = Rm × {0}, and let
v̄ 6≡ 0 beA-harmonic inD = B(0, 4r)\[6∪B(0, s)].Assume also that v̄ has continuous
boundary values with v̄ ≡ 0 on ∂D \∂B(0, s). We will use the fundamental inequality for
ũ, and the same argument as in the proof of Lemma 4.11, under Assumption 1′′, to first
prove that if 0 < c′s ≤ r/100, D1 = B(0, 4r) \ [6 ∪ B(0, c′s)], and c′ is large enough,
then

(8.4) is valid with ū replaced by v̄, in D1 ∩ B(0, r),
with constants depending only on the data. (8.11)

Using this we will prove that if t ∈ (0, r) and

m(t) = inf
∂B(0,t)

ũ/v̄, M(t) = sup
∂B(0,t)

ũ/v̄, osc(t) = M(t)−m(t),

and if s is as above, then for some c̆ ≥ 1 and a ∈ (0, 1), depending only on the data,

osc(t) ≤ c̆(s/t)aosc(s) whenever s ≤ t ≤ r. (8.12)

Now the proof of Lemma 8.2 can be completed. Indeed, suppose that ṽ is a positive
A-harmonic function in B(0, 4r) \ 6, continuous on B(0, 4r) \ {0}, and ṽ = 0 on
∂(B(0, 4r) \ 6) \ {0}. For s > 0 fixed as above, let v̄ denote the restriction of ṽ to D.
Applying (8.12) and letting s → 0 in this inequality we find that ṽ is a constant multiple
of ũ.

To prove (8.11) and (8.12) we assume, as we may by the same argument as in (8.2),
that

2 ≤ v̄/ũ ≤ c+ in D \ B(0, 2s) where c+ depends only on the data. (8.13)

Also let u(·, τ ), τ ∈ [0, 1], be A-harmonic functions in D2 = B(0, 4r) \ [6 ∪ B(0, 2s)]
with continuous boundary values,

u(y, τ ) = τ v̄(y)+ (1− τ)ũ(y) for y ∈ ∂D2, 0 ≤ τ ≤ 1. (8.14)

Existence of u(·, τ ), τ ∈ (0, 1), is a consequence of Lemma 3.2. Using the maximum
principle for A-harmonic functions and (8.13) we find, for some c̃ ≥ 1 depending only
on the data, that

c̃−1u(·, τ1) ≤
u(·, τ2)− u(·, τ1)

τ2 − τ1
≤ c̃u(·, τ1) (8.15)
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in D2 whenever 0 ≤ τ1 < τ2 ≤ 1. Copying the argument after (4.43) we deduce, since
ũ satisfies the fundamental inequality in D2, that there exists ε′0, depending only on the
data, such that if ξ2 = ε

′

0, then

c−1
−

u(y, ξ2)

d(y,6)
≤ |∇u(y, ξ2)| ≤ c−

u(y, ξ2)

d(y,6)
whenever y ∈ D2. (8.16)

Using (8.16), as well as the fundamental inequality for ũ, and arguing as in the proof of
Lemma 4.11 under Assumption 1′, we find that Assumption 1 in Section 4 holds with
û, v̂ replaced by ũ, u(·, ξ2) in D2 \ B(0, 2s), and with constants depending only on the
data. Next we use this fact and argue as in (4.31), (4.32) to obtain (8.12) with v̄ replaced
by u(·, ξ2) and s by 2s. Continuing by induction, as in the proof of (4.46), we eventually
get (8.11) in D ∩ B(0, r) \ B(0, c′s), and then (8.12) with s replaced by 2c′s, where c′

depends only on the data. Since osc(·) is decreasing on (0, r), we also have (8.12). ut

8.2. Final proof of Theorem 1.13

To prove Theorem 1.13 in the general case, assuming that A ∈ Mp(α, β, γ ) and that û, v̂
are functions as in the statement, we note, for some b ∈ (0, 1) and c ≥ 1, depending only
on the data, that

u∗(at2(w)) ≤ c(t1/t2)
bu∗(at1(w)) whenever 0 < t1 < t2 < 4r, (8.17)

and u∗ ∈ {û, v̂}. Also from the Harnack inequality we have, for some b̂ ≥ 2 depending
only on the data,

u∗(at2(w)) ≥ (t1/t2)
b̂u∗(at1(w)) whenever 0 < t1 < t2 < 4r, (8.18)

and u∗ ∈ {û, v̂}. Let s1 ≤ r and let c̄ be a large positive constant such that 0 < c̄s ≤

s1 ≤ r . Let A1(η) = A(w, η), η ∈ Rn \ {0}, and let u1, v1 be A1-harmonic functions in
D3 = B(w, c̄s) \ (6 ∪ B(w, s)) having continuous boundary values and u1 = û, v1 = v̂

on ∂D3. We first show that if c̄ is large enough, then there exist c1, c2 ≥ 1 such that

c−1
1

u∗(y)

d(y,6)
≤ |∇u∗(y)| ≤ c1

u∗(y)

d(y,6)
for y ∈ B(w, 6c2s) \ [6 ∪ B(w, 2c2s)], (8.19)

and u∗ ∈ {u1, v1}. To outline the argument we can without loss of generality assume that
w = 0 and

h[B(0, c̄s) ∩6,B(0, c̄s) ∩ (Rm × {0})] ≤ 2c̄δs.

For u∗ as above, let v∗ ≥ 0 be theA1-harmonic function inD3 = B(0, c̄s)\[(Rm×{0})∪
B(0, s)] with continuous boundary values, v∗ ≡ 0 on ∂D3 \ ∂B(0, s), while v∗ ≤ u∗ on
∂B(0, s), and v∗ ≡ u∗ at points z in this set with d(z,Rm × {0}) ≥ 20c̄δs. Using (8.17)
and Lemma 3.3, we deduce, for c large enough, depending only on the data, that

u∗ ≤ c[(c̄)−b + (c̄δ)σ ]u∗(as(0))+ v∗ and v∗ ≤ c(c̄δ)σu∗(as(0))+ u∗ on D3.

(8.20)
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Also using (8.18), we see that if c2 � c̄ is large enough, depending only on the data, then

min{v∗(x) : x ∈ �̃(w, η̃/2) ∩ B(0, 8c2s) \ B(0, c2s)} ≥ c
−2b̂
2 u∗(as(0)). (8.21)

We can, without loss of generality, also assume that c2 > 2c′, where c′ is the constant in
(8.11). Using this assumption we see that the fundamental inequality (8.11) holds for v∗

in D3 ∩ [B(0, c̄s/4) \ B(0, c2s)], with c̄s playing the role of 4r . With c2 now fixed, we
observe from (8.20), (8.21) that the ratio of u∗/v∗ in �̃(w, η̃/2)∩[B(0, 8c2s)\B(0, c2s)]

can be made arbitrarily close to 1 by first choosing c̄ large, and then choosing δ < δ∗ small
enough depending on c̄. In view of (8.11) for v∗, these constants can in fact be chosen
to depend only on the data and in such a way that Lemma 3.9 can be applied to u∗, v∗.
Hence, applying Lemma 3.9 we can conclude (8.19) for u1, v1 in �̃(w, η̃)∩B(0, 6c2s) \

B(0, 2c2s). From this conclusion and (8.5) we obtain (8.19).
Armed with (8.19), we can now repeat the argument in Lemma 3.8 with A1, A2 re-

placed by A,A1, and with cylinders replaced by balls, in order to conclude that

|u1(x)−û(x)| ≤ cs
θ
1u1(x), x ∈ �̃(w, η̃/2)∩B̄(w, 6c2s)\[6∪B(w, 2c2s)], (8.22)

for some c, θ, depending only on the data. Further, (8.22) also holds for v1, v̂. From (8.22)
and Lemma 3.9 we see, for s1 small enough, that (8.19) is valid for û, v̂ on �̃(w, η̃) ∩
[B(w, 5c2) \ B(w, 3c2)] with c1 replaced by c4 ≥ c1, depending only on the data. Using
this fact and once more (8.5) we get the fundamental inequality for û, v̂ on B(w, 5c2s) \

[6 ∪ B(w, 3c2s)] provided s1 ≤ r/c∗ and c∗ is large enough.
From arbitrariness of s we deduce that the fundamental inequality holds for û, v̂ in

B(0, r/c) \ 6 with constants depending only on the data. Theorems 1.9 and 1.10 now
easily imply that if a, b ∈ (0,∞), then (a|∇û| + b|∇v̂|)p−2 is an A2-weight on cubes
⊂ B(0, r/c) \ B(0, s), 0 < s ≤ r/c, with constants that can be chosen independent of
a, b. Using this fact, and the same argument as in the proof of (8.12), we see that if

m(t,w) = inf
∂B(w,t)

û/v̂, M(t, w) = sup
∂B(w,t)

û/v̂, osc(t, w) = M(t,w)−m(t,w),

then for some ĉ ≥ 1 and â ∈ (0, 1), depending only on the data, we have

osc(t, w) ≤ ĉ(s/t)âosc(s, w), s ≤ t ≤ r. (8.23)

Theorem 1.13 now follows from (8.23) if we let s → 0.
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Zbl 1241.35221 MR 2876248

[LN8] Lewis, J., Nyström, K.: Regularity and free boundary regularity for the p-Laplace op-
erator in Reifenberg flat and Ahlfors regular domains. J. Amer. Math. Soc. 25, 827–862
(2012) Zbl 1250.35084 MR 2904575

[Li] Lieberman, G.: Boundary regularity for solutions of degenerate elliptic equations. Non-
linear Anal. 12, 1203–1219 (1988) Zbl 0675.35042 MR 0969499

[Lu] Lundström, N.: Estimates for p-harmonic functions vanishing on a flat. Nonlinear Anal.
74, 6852–6860 (2011) Zbl 1234.35050 MR 2833675

[PTT] Preiss, D., Tolsa, X., Toro, T.: On the smoothness of Hölder doubling measures. Calc.
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