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Abstract. We settle the longstanding problem of establishing pointwise potential estimates for
vectorial solutions u : �→ RN to the non-homogeneous p-Laplacean system

− div(|Du|p−2Du) = µ in � ⊂ Rn,

where µ is an RN -valued Borel measure with finite total mass. In particular, for solutions u ∈
W

1,p−1
loc (Rn) with a suitable decay at infinity, the global estimates via Riesz and Wolff potentials,

|Du(x0)|
p−1 .

∫
Rn

d|µ|(x)

|x − x0|n−1

and

|u(x0)| . Wµ
1,p(x0,∞) =

∫
∞

0

(
|µ|(B%(x0))

%n−p

)1/(p−1) d%

%

respectively, hold at every point x0 such that the corresponding potentials are finite. The estimates
allow sharp descriptions of fine properties of solutions which are the exact analog of the ones in
classical linear potential theory. For instance, sharp characterizations of Lebesgue points of u and
Du and optimal regularity criteria for solutions are provided exclusively in terms of potentials.
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1. Introduction, results, techniques

One of the main concerns of nonlinear potential theory is to extend the study of the fine
properties of classical harmonic functions to solutions to nonlinear, possibly degenerate,
elliptic and parabolic equations or systems. Its origins can be traced back to the landmark
paper of Havin & Maz’ya [49], where what are nowadays called Wolff potentials were
introduced and studied in detail. Almost at the same time, a fundamental contribution
of Maz’ya [48] established the sufficiency part of the Wiener criterion for solutions to
boundary value problems involving the p-Laplacean equation

−4pu ≡ − div(|Du|p−2Du) = µ in � ⊂ Rn. (1.1)

Here, as in the rest of the paper, � is an open subset and n ≥ 2. Maz’ya’s proof employs
techniques and capacitary conditions again involving quantities related to Wolff poten-
tials. The linear case p = 2 was originally treated by Wiener [61], while the extension
to general linear elliptic equations is an achievement of Littmann, Stampacchia & Wein-
berger [45]. For a modern description of the mains topics in nonlinear potential theory and
the use of nonlinear potentials we refer to the treatise of Heinonen, Kilpeläinen & Mar-
tio [27]. A book with special emphasis on the interplay between nonlinear potential theory
and regularity theory of nonlinear elliptic equations is the one of Malý & Ziemer [46].
For more classical potential theory we instead refer to Adams & Hedberg [1].

At this point it is worth recalling that, with µ being a Borel measure with finite total
mass in Rn, the nonlinear Wolff potential Wµ

β,p is defined by

Wµ
β,p(x, R) :=

∫ R

0

(
|µ|(B%(x))

%n−βp

)1/(p−1)
d%

%
, β > 0,

for x ∈ Rn and 0 < R ≤ ∞; see Section 2 below for the general notation used in
this paper. Wolff potentials have been first introduced by Havin & Maz’ya [49], while
important contributions are in [26]. Wolff potentials play an essential role in studying
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fine properties of W 1,p-Sobolev functions and establishing optimal regularity results for
solutions to equations of the type (1.1). A landmark result in this direction was achieved
by Kilpeläinen & Malý [31, 32], who proved pointwise estimates for solutions to (1.1) in
terms of the Wolff potential Wµ

1,p, similar to our estimate (1.15) below. See also [33, 58]
for different proofs. This eventually implied the long-awaited proof of the necessity part
of the Wiener criterion for the p-Laplacean equation, thus completing Maz’ya’s original
result [48]. The results of Kilpeläinen & Malý actually extend to more general equations
of the type

− div a(x,Du) = µ (1.2)

with p-Laplacean structure and measurable dependence on the variable x. The remark-
able point here is that pointwise estimates via potentials as (1.15) fully replace those
via fundamental solutions valid in the linear case. In this respect, the results in [31, 32]
for equations of the type (1.2) are significant and totally nontrivial already in the non-
degenerate case p = 2, that is, possibly nonlinear equations of the type (1.2) with a(·)
having linear growth in the gradient variable.

The question of extending the pointwise estimates via nonlinear potentials to the gra-
dient of solutions to (1.2) has remained a difficult and challenging open problem for
nearly 20 years after [31, 32]. The first and complete result for p = 2 has been estab-
lished in [53]. On the other hand, the final, and surprising, answer to this problem in the
general case p > 2 − 1/n has been found in [20, 35]; see also [19] for an intermediate
result. Indeed, it was proved that, when passing to the gradient level, Riesz potentials
reappear as in the linear theory, and they allow one to prove pointwise estimates better
than those expected via Wolff potentials (see [39] for a full description of the problems).
Riesz potentials are defined as

Iµβ (x, R) :=
∫ R

0

µ(B%(x))

%n−β

d%

%
, β > 0,

for x ∈ Rn and 0 < R ≤ ∞, and the estimate proved in [35] is (1.10) below. Extensions
can be found in [34, 39]. In particular, the results derived in [39] allow one to reduce the
regularity theory of nonlinear equations of the type (1.2) with p-structure to the one of
the classical Poisson equation

−4u = µ (1.3)

up to the C1-level. For related Calderón–Zygmund type estimates we refer to [28, 14, 11].

1.1. Results

So far, the validity of the potential estimates proved in [32, 35] for the scalar case and
described above has remained an open problem in the case of systems. The aim of this
paper is to give a full extension of such results to degenerate systems in order to start
a nonlinear potential theory in the vectorial case. The prototype and the main model
example is precisely the p-Laplacean system

− div(|Du|p−2Du) = µ. (1.4)
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Throughout we assume that the vector valued measure µ : �→ RN is Borel regular and
has finite total mass,

|µ|(�) <∞.

A vector valued measure will be simply referred to as a measure. With no loss of gener-
ality, we shall assume that µ is defined on the whole Rn with |µ|(Rn) <∞.

The local C1,α-regularity of W 1,p-solutions in the homogeneous case, for some pos-
itive exponent α ≡ α(n,N, p), is a fundamental achievement of Uhlenbeck [59], in
turn extending to the vectorial case the analogous result of Ural’tseva [60] valid for the
scalar equation (see also [47]). For this reason we shall consider vector valued solutions
u ∈ W 1,p(�;RN ) to the p-Laplacean system with measure data (1.4), considered in an
open subset � ⊂ Rn for n ≥ 2. More general systems can be considered: see Remark 1.1
below. We shall anyway confine ourselves to the model case (1.1) in order not to hide the
main ideas behind a fog of additional technicalities. To keep the treatment at a reasonable
length, when dealing with gradient potential estimates and unless otherwise stated, we
shall mainly deal with the range of parameters dictated by

p > 2 (when using Riesz potentials).

The subquadratic case 2−1/n < p < 2, aimed at proving a vectorial analog of the results
in [20], needs a different approach and it will be treated in the forthcoming paper [42]
together with additional cases. Needless to say, all our results continue to hold when
p = 2. This is of course a corollary of the classical linear theory that holds for solutions
to (1.3). Instead, when proving Wolff potential estimates, i.e., estimates that do not involve
the gradient of solutions, we shall assume the weaker lower bound

p > 2− 1/n (when using Wolff potentials). (1.5)

We recall that the above inequality also serves to guarantee that the solutions we are
considering are Sobolev functions (see (1.6) below).

To fix the functional framework, we clarify the type of solutions we are dealing with,
which is on the other hand the usual one adopted in measure data problems. Distributional
solutions to measure data problems as the one in (1.4) are not in general energy solutions.
Indeed, the so-called fundamental solution

Gp(x) = c(n, p)

{
|x|

p−n
p−1 − 1 if 1 < p 6= n,

log |x| if p = n,
(1.6)

solves, in the sense of distributions, the problem{
−4pu = δ in B1

u = 0 on ∂B1,
(1.7)

where δ is the Dirac mass charging the origin and B1 denotes the unit ball in Rn (see for
instance [12]). Clearly, Gp does not belong W 1,p

loc (B1) for p ≤ n, but Gp ∈ W 1,q(B1) for
every q < n(p− 1)/(n− p) for p < n, provided the lower bound in (1.5) holds. Indeed,
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notice also that if p < 2− 1/n then Gp 6∈ W
1,1
loc (B1). For general measure data problems

involving the p-Laplacean system (1.1) the notion of solution which is usually used in
the literature is the one of SOLA (Solution Obtained as Limits of Approximations):

Definition 1.1 (SOLA). A vector valued map u ∈ W 1,p−1(�;RN ) for p > 2−1/n is a
SOLA to (1.1) if there exists a sequence {uh} ⊂ W 1,p(�;RN ) of local energy solutions
to the systems

− div(|Duh|p−2Duh) = µh (1.8)

such that uh → u locally in W 1,p−1(�;RN ), where {µh} ⊂ C∞(�;RN ) is a sequence
of smooth maps that converges to µ weakly in the sense of measures and satisfies

lim sup
k

|µk|(B) ≤ |µ|(B) for every ball B ⊂ �. (1.9)

Observe that the above approximation property immediately implies that u is a distribu-
tional solution to (1.1), that is,∫

�

|Du|p−2Du :Dϕ dx =

∫
�

ϕ dµ ∀ϕ ∈ C∞0 (�;R
N ).

See Section 2 for notation. Indeed, SOLAs naturally stem from approximation methods
built to prove existence theorems. We also observe that if all the components of {µk} are
nonnegative, then (1.9) is a standard consequence of weak convergence of measures. Here
we are dealing with signed measures, and therefore (1.9) must be prescribed to avoid can-
cellations in the limit. Anyway, usual SOLAs, built by convolution methods, satisfy (1.9).
The existence of SOLAs has been proved in [8] for scalar equations and in [15, 16] for the
p-Laplacean system (1.1); see also [22] for a special case concerning (1.7) and [43, 44]
for more existence theorems. When p > n, SOLAs coincide with usual energy solutions.
In the scalar case several definitions of solutions are available and all of them coincide for
µ nonnegative, as proved in [29]. Instead, in the vectorial case SOLAs are the only ones
available, and their uniqueness is still unclear when p < n (see [16]). For the scalar case,
we recommend [12] for a thorough discussion of the concept of solution to measure data
problems, and [53] for an overview of the results available.

The first result we are going to present is a potential gradient estimate, which is also
the most delicate one.

Theorem 1.1 (Riesz potential gradient bound). Let u ∈ W 1,p−1(�;RN ) be a SOLA to
the system (1.1) with p > 2, and let Br(x0) ⊂ � be a ball. If I|µ|1 (x0, r) is finite, then x0
is a Lebesgue point of Du and the pointwise estimate

|Du(x0)| ≤ c[I
|µ|
1 (x0, r)]

1/(p−1)
+ c

∫
Br (x0)

|Du| dx (1.10)

holds with a constant c that depends only on n,N, p.

As a matter of fact, Theorem 1.1 follows as a corollary of a more general statement
encoding also the oscillation properties of SOLAs.
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Theorem 1.2 (Gradient oscillations via potential bounds). Let u ∈ W 1,p−1(�;RN ) be
a SOLA to (1.1) with p > 2, and let Br(x0) ⊂ �. If

lim
%→0

|µ|(B%(x0))

%n−1 = 0, (1.11)

then Du has vanishing mean oscillations at x0, i.e.,

lim
%→0

∫
B%(x0)

|Du− (Du)B%(x0)| dx = 0. (1.12)

Moreover, if I|µ|1 (x0, r) is finite, then x0 is a Lebesgue point of Du, and

|Du(x0)−(Du)Br (x0)| ≤ c[I
|µ|
1 (x0, r)]

1/(p−1)
+c

∫
Br (x0)

|Du−(Du)Br (x0)| dx (1.13)

for a constant c ≡ c(n,N, p).

The previous theorem implies the following optimal continuity result.

Theorem 1.3 (Riesz potential continuity criterion). Let u ∈ W 1,p−1(�;RN ) be a SOLA
to (1.1) with p > 2, and let Br(x0) b �. If

lim
%→0

sup
x∈Br (x0)

I|µ|1 (x, %) = 0, (1.14)

then Du is continuous in Br(x0).

A few remarks are now in order. In the scalar case N = 1 estimate (1.10) has been ob-
tained in [35]; the proof given here is completely different and substantially more difficult.
The ultimate effect of Theorems 1.1–1.3 is to reduce the problem of getting sharp gradient
estimates for solutions to (1.1) to the study of Riesz potentials, whose properties are well-
understood. The gradient regularity theory of the p-Laplacean system can be reduced to
the theory of the Poisson equation −4u = µ and all the results follow verbatim from
this case up to the C1-level thanks to Theorem 1.3. These aspects are briefly discussed
in Sections 10.1–10.2. As an example already mentioned in the abstract, we note that if
we have a global solution u ∈ W 1,p−1

loc (Rn;RN ) to (1.1) with suitable decay properties at
infinity, then letting r →∞ in (1.10) yields

|Du(x0)|
p−1
≤ c

∫
Rn

d|µ|(x)

|x − x0|n−1

for c ≡ c(n,N, p). This happens for instance when

lim inf
r→∞

∫
Br

|Du| dx = 0.

Notice that this is the case for the fundamental solution to −4pu = δ, which has |Du|
proportional to |x|(1−n)/(p−1). Apart from the exponent p − 1 dictated by the scaling
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of the system, this is exactly the same pointwise estimate that holds for the solution to
the Poisson system (1.3) via fundamental solutions. We finally note that the criterion to
determine Lebesgue points in Theorem 1.1 is a reproduction of the analogous one from
the classical linear potential theory.

We now come to Wolff potential estimates, thereby giving a vectorial version of the
results of Kilpeläinen & Malý [31, 32].

Theorem 1.4 (Wolff potential bound). Let u ∈ W 1,p−1(�;RN ) be a SOLA to (1.1) with
p > 2 − 1/n, and let Br(x0) ⊂ �. If Wµ

1,p(x0, r) is finite, then x0 is a Lebesgue point
of u, and the pointwise estimate

|u(x0)| ≤ cW
µ
1,p(x0, r)+ c

∫
Br (x0)

|u| dx (1.15)

holds with a constant c that depends only on n,N, p.

In the case of a single equation (N = 1) a two-sided estimate of the type

Wµ
1,p(x, r) . u(x) . Wµ

1,p(x, 2r)+ inf
Br (x)

u

actually holds when u,µ are nonnegative and B2r(x0) ⊂ � [31, 32]. No analog of that
estimate is possible in the vectorial case, which is ultimately related to the lack of maxi-
mum principle for systems. Just as the gradient estimates, also Theorem 1.4 follows as a
corollary of more general facts:

Theorem 1.5 (Oscillations via Wolff potential bounds). Let u ∈ W 1,p−1(�;RN ) be a
SOLA to (1.1) with p > 2− 1/n, and let Br(x0) ⊂ �. If

lim
%→0

|µ|(B%(x0))

%n−p
= 0, (1.16)

then u has vanishing mean oscillations at x0, i.e.,

lim
%→0

∫
B%(x0)

|u− (u)B%(x0)| dx = 0. (1.17)

Furthermore, if Wµ
1,p(x0, r) is finite, then x0 is a Lebesgue point of u and

|u(x0)− (u)Br (x0)| ≤ cW
µ
1,p(x0, r)+ c

∫
Br (x0)

|u− (u)Br (x0)| dx (1.18)

with a constant c ≡ c(n,N, p).

We finally have the following optimal continuity criterion.

Theorem 1.6 (Wolff potential continuity criterion). Let u ∈ W 1,p−1(�;RN ) be a SOLA
to (1.1) with p > 2− 1/n, and let Br(x0) b �. Assume that

lim
%→0

sup
x∈Br (x0)

Wµ
1,p(x, %) = 0. (1.19)

Then u is continuous in Br(x0).
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Remark 1.1. The methods of this paper open the way to the proof of potential estimates
for more general systems than (1.4). The systems in question have quasi-diagonal struc-
ture, i.e. they are of the type

− div(g(|Du|)Du) = µ, (1.20)

where g : [0,∞)→ [0,∞) is a continuous, nondecreasing and C1((0,∞))-regular func-
tion and satisfies the growth and monotonicity assumptions
√
ν tp−2

≤ g(t) ≤ tp−2/
√
ν,

√
ν tp−2

≤ tg′(t) ≤ tp−2/
√
ν ∀t ≥ 0, (1.21)

where ν ∈ (0, 1) is a fixed ellipticity constant. We still impose p > 2 when gradient
estimates are considered, otherwise p > 2 − 1/n suffices for Wolff potential estimates.
Systems of the type (1.20) with µ = 0 have in fact been considered in the original paper
by Uhlenbeck [59]. For a brief summary of the modifications needed in order to treat
(1.20), see Section 11.

In contrast to the scalar case N = 1, an extension of the potential estimates to general
systems of the form

− div a(Du) = µ, u : �→ RN , (1.22)

is not possible. Indeed, already in the case of homogeneous systems of the type

− div a(Du) = 0 (1.23)

vector valued energy solutions u can be unbounded and develop singularities [54, 57].
This means that potential estimates such as (1.10) and (1.15) do not hold in general, be-
cause, for µ ≡ 0, they would imply the local boundedness ofDu and u, respectively. The
appearance of singularities when considering systems is a genuine feature of vectorial
problems and it is unrelated to the presence of the datum µ; see for instance [50] for a
survey of examples. When passing to general elliptic systems of the type (1.23), it is still
possible to obtain sharp potential estimates, but these cannot hold at every point. Roughly
speaking, they hold outside a closed, negligible singular set defined by a so called ε-
smallness condition on a suitable excess functional of the gradient. In other words, po-
tential estimates are embedded in the setting of partial regularity [41]. We finally mention
that the methods developed here are the starting point to attack the question of parabolic
potential estimates in the vectorial case [6]. These are the vectorial versions of the caloric
potential estimates obtained in [36, 37, 38].

1.2. Techniques

The proofs of Theorems 1.1–1.6 are very different from those of the analogous results in
the scalar case [31, 32, 33, 34, 35, 39, 58] and establish new, basic techniques in nonlin-
ear potential theory. The fundamental difference between the scalar and vectorial cases
ultimately lies in the lack of a comparison principle in the latter. To overcome this point,
we combine methods from classical potential theory and measure data problems theory
with those coming from the partial regularity theory for elliptic systems, as for instance



Vectorial nonlinear potential theory 937

described in [24] and [59]. In turn, such methods find their origins in the regularity tech-
niques developed in the context of geometric measure theory, where the idea of local
linearization through so called ε-regularity theorems has been initially introduced by De
Giorgi [13] (see [50] for a historical overview and more details). In particular, the main
approach here relies on a connection between the classical potential-theoretic methods
developed in the last decades and the regularity theory of degenerate systems started in
the fundamental paper of Uhlenbeck [59]. In order to achieve this, we develop new tools
that, we believe, will be useful to attack other problems in the future.

We here give a brief outline of the proof of estimate (1.10), which in our opinion is the
main result of the paper. Assume, for simplicity, that x0 is a Lebesgue point of Du. We
consider a sequence {Bj } of nested balls, with radii {rj }, shrinking to x0, and the related
gradient averages

Aj := |(Du)Bj |.

We also consider the excess functional defined by

Ej :=

∫
Bj
|Du− (Du)Bj | dx, (1.24)

which, roughly speaking, provides an integral measure of the oscillations of Du in the
ball Bj . The first, preliminary step in the proof is to implement a comparison method in
which, at all scales, we argue via alternatives. Either the so-called degenerate alternative
holds, that is, Aj can be controlled by Ej , or Aj is much larger than Ej , in which case we
analyze the size of Aj and |µ|(Bj ) simultaneously. When the first alternative holds, we
are considering conditions of the type (5.7); this is treated in Section 5.1. We can then find
a p-harmonic map v, a solution to the homogeneous system4pv = 0 in Bj/2, such that u
and v are suitably close (see (5.8)). In order to achieve this we need to develop a technical
tool, which we call measure data p-harmonic approximation. This is the main concern
of Section 4. The outcome is Theorem 4.1, which states that if a map u has controlled
L1-norm in the sense of (4.1), and is almost p-harmonic in the sense of (4.3), then there
exists a truly p-harmonic map v which is close to u inW 1,q as described in (4.4). Lemmas
of this type for the p-Laplacean operator are already contained in the literature (see for
instance [17, 18, 21]) and they essentially go back to the pioneering paper of De Giorgi
in the setting of minimal surfaces [13, 55], where a similar result is proved for harmonic
maps. The one presented here differs from them in two essential points. In fact, the typical
energy bounds assumed in the known lemmas are not of the type (4.1) but rather∫

Br (x0)
|Dv|p dx . 1, (1.25)

i.e. they involve the natural energy space W 1,p associated to the p-Laplacean operator.
Bounds of the type (1.25) do not hold in the context of measure data problems since,
as already noticed above, solutions to measure data problems do not belong to W 1,p.
Therefore we are led to assume energy bounds which are compatible to the degree of
integrability of the solutions in question; the one considered in (4.1) fits our purposes.
The second difference from standard p-harmonic approximation lemmas is that now the
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measure data problem forces us to consider the closeness of u to being p-harmonic in
L∞-norm instead of the natural W 1,p-norm (see (4.3)). Proving the lemma under bounds
like (4.1) and (4.3) rather than (1.25) requires significant technical efforts and very dif-
ferent means. We rely on two basic ingredients to build a proof by contradiction: energy
estimates and convergence. For energy estimates we use truncation arguments that work
in the vectorial case due to the quasi-diagonal structure of the p-Laplacean operator. As
for the convergence, we adapt to our situation powerful blow-up arguments developed
in [15] for which once again the specific structure of the p-Laplacean is essential. Indeed,
general systems of the type (1.23) cannot be considered here.

Going back to the proof, we then analyze the case when Aj is much larger than Ej ,
that is, we consider conditions as in (7.1). Moreover, these are considered together with
a simultaneous smallness condition on |µ|(Bj ) as described in (7.2). In this case we find
that our solution u is suitably close, in the sense of (7.4), to a solution h of a linearized
system

− div(Ã :Dh) = 0

where Ã is a constant elliptic tensor. This is essentially the content of Section 7. In par-
ticular, the key estimate (7.43) provides a crucial reverse type inequality for certain inter-
mediate rescalings of the original solution.

The two alternatives described above are then combined in Section 8. In both cases
we see that on each ball Bj the original solution u can be approximated either by a p-
harmonic map or by an Ã-harmonic map, that is, a solution to a linear system. Therefore
we can prove a decay estimate for the excess quantities Ej defined in (1.24) of the type

Ej+1 ≤ εEj + c(m,N, p, ε)[|µ|(B
j )/rn−1

j ]
1/(p−1), ε ∈ (0, 1).

This resembles the classical decay properties of harmonic and p-harmonic functions. The
last inequality is the real starting point of the proof of (1.10), which now proceeds via
an iteration procedure based on two ingredients. The first one is the key Lemma 8.4. It
allows us to prove by induction certain bounds on the size of the gradient averages Aj ,
namely

Aj ≤ λ (1.26)

for a certain λ > 0, and for a set of indices j satisfying certain properties in the induction
scheme applied. The second and final ingredient is developed in Section 8.4. This time
we compare Aj not to Ej , but rather to an initial parameter λ of the form

λ ≈ [I|µ|1 (x0, r0)]
1/(p−1)

+

∫
B0

|Du− (Du)B0 | dx.

It is in fact part of the proof to show that λ can really be chosen in this way. At this stage
we still consider degenerate and nondegenerate cases (Steps 3 and 4 in Section 8.4), but
the use of Lemma 8.4 together with the choice of λ enables reducing ourselves to the
nondegenerate case. This allows us to prove bounds of the type (1.26) for every j . Since
Aj → |Du(x0)| as j → ∞, because x0 was assumed to be a Lebesgue point of the
gradient, we finally conclude the proof of (1.10).
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The rest of the paper is structured as follows. In Section 2 we establish some notation,
while in Section 3 we restate, in suitable forms, some basic regularity properties of p-
harmonic maps. Section 4 is entirely dedicated to the proof of measure data p-harmonic
approximation, while in Section 5 we derive a few corollaries of it. Section 6 is dedicated
to proving reverse inequalities satisfied by p-harmonic maps; this is linked to some basic
properties used in the classical Gehring lemma [23], and it is formulated directly on level
sets. Section 7 is the last technical section before the proofs of the potential estimates, and
features a series of lemmas aimed at implementing the necessary linearization procedures
in order to treat the nondegenerate case. In Section 8 we give the proof of the Riesz
potential estimates, in Section 9 we prove the Wolff potential estimates and in the final
Section 10 we give a few selected consequences.

2. Notation

Let us recall some basic notation that will be used throughout the paper. In what follows
we denote by c a general positive constant, possibly varying from line to line; special
occurrences will be denoted by c̄ or the like. All such constants will always be larger than
or equal to 1; moreover, relevant dependencies on parameters will be emphasized using
parentheses, e.g., c̄ ≡ c̄(n, p, q) means that c̄ depends only on n, p, q. Throughout, we
use Einstein’s convention of summing over repeated indices. With t being a real number,
we shall sometimes denote t+ := max{t, 0}. We denote by

Br(x0) := {x ∈ Rn : |x − x0| < r}

the open ball with center x0 and radius r > 0; when not important, or clear from the
context, we shall omit denoting the center as follows: Br ≡ Br(x0). Unless otherwise
stated, different balls in the same context will have the same center; we shall often denote
B1 ≡ B1(0). With γ > 0 and B being a given ball, we denote by γB [B/γ ] the ball with
the same center and radius magnified [demagnified] by a factor of γ . With B ⊂ Rn being
a measurable subset with positive measure |B|, and with g : B → Rk , k ≥ 1, being an
integrable map, we shall denote by

(g)B ≡
∫
B
g(x) dx :=

1
|B|

∫
B
g(x) dx

its integral average. Moreover, the oscillation of g on B is defined as

osc
B
g := sup

x,y∈B
|g(x)− g(y)|.

We finally recall a general and elementary property of the so-called excess functionals:∫
B
|g − (g)B| dx ≤ 2

∫
B
|g − ξ | dx ∀ξ ∈ Rk. (2.1)

We shall very often deal with vector valued maps and related function spaces. The
usual notation indicates the number of components of the map in question. For instance
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when considering a vector field g : �→ Rk whose components belong to a certain func-
tion space X(�), it is customary to write g ∈ X(�;Rk). However, we shall often abbre-
viate X(�) ≡ X(�;Rk), for instance Lp(�) ≡ Lp(�;Rk), W 1,p(�) ≡ W 1,p(�;Rk)
etc. The number of components involved will always be clear from the context.

Let next {eα}Nα=1 and {ej }nj=1 stand for Cartesian bases for RN and Rn, respectively.
We will denote a second-order tensor ζ of size (N, n) as ζ = ζαj e

α
⊗ ej , where repeated

indices are summed. The Frobenius product of second-order tensors ξ and ζ is defined
as ξ : ζ = ξαj ζ

α
j so that obviously ξ : ξ = |ξ |2. The linear space of all such tensors is

isomorphic to matrices in RN×n, and indeed we will denote the space of these by RN×n.
We let the Greek superscripts indicate components and Latin subscripts indicate partial
derivatives. The gradient of a map u = uαeα is thus defined as Du = ∂xj u

αeα ⊗ ej ,

and the divergence of a tensor ζ = ζαj e
α
⊗ ej as div ζ = ∂xj ζ

α
j e

α . Again we sum over
repeated indices. Concerning the tensor field

Ap(z) := |z|
p−2z, Ap(z) = |z|

p−2zαj e
α
⊗ ej , (2.2)

defined on second-order tensors z ∈ RN×n for p > 2, we interpret the differential of Ap
as a fourth-order tensor defined as

∂Ap(z) = |z|
p−2

(
δαβδij + (p − 2)

zαi z
β
j

|z|2

)
(eα ⊗ ei)⊗ (e

β
⊗ ej ), (2.3)

so that by contracting we have

∂Ap(z) : ξ = |z|
p−2

[
ξ + (p − 2)

(z : ξ)z

|z|2

]
and

(∂Ap(z) : ξ) : ξ = |z|
p−2

[
|ξ |2 + (p − 2)

(z : ξ)2

|z|2

]
whenever ξ, z are second-order tensors, i.e. for every choice of ξ, z ∈ RN×n. Notice
that we still denote the contraction of a fourth-order tensor and a second-order one by :,
exactly as in the above display. Notice also that Ap is of class C1 and smooth outside the
origin. In what follows, it is convenient for us to write

L(z) =

(
δαβδij + (p − 2)

zαi z
β
j

|z|2

)
(eα ⊗ ei)⊗ (e

β
⊗ ej ) (2.4)

for z 6= 0, so that
∂Ap(z) = |z|

p−2L(z) (2.5)
for all z ∈ RnN , defined obviously at the origin as ∂Ap(0) = 0 for p > 2. Notice that L
is zero-homogeneous in the sense that

L(λz) = L(z) for all λ ∈ R and z ∈ RN×n \ {0}. (2.6)

Moreover, L satisfies the ellipticity conditions

|ξ |2 ≤ (L(z) : ξ) : ξ, |L(z) : ξ | ≤ (p − 1)|ξ | (2.7)

for every z ∈ RN×n \ {0} and ξ ∈ RN×n.



Vectorial nonlinear potential theory 941

3. Harmonic and p-harmonic maps

In this section we collect, and reformulate in a suitable way, a few basic facts concerning
p-harmonic and A-harmonic maps. First, the definitions. For p > 1, v ∈ W 1,p

loc (�;R
N )

is a p-harmonic map in � ⊂ Rn provided that v ∈ W 1,p(�;RN ) and∫
�

|Dv|p−2Dv :Dϕ dx = 0 ∀ϕ ∈ C∞0 (�;R
N ). (3.1)

Analogously, for a given constant coefficient fourth-order tensor A we say that h is an
A-harmonic map in � if h ∈ W 1,2

loc (�;R
N ) and∫

�

(A :Dh) :Dϕ dx = 0 ∀ϕ ∈ C∞0 (�;R
N ).

It is well-known [59] that a p-harmonic map is locally C1,α-regular for some α ≡
α(n,N, p) ∈ (0, 1), while an A-harmonic map is smooth (real analytic) provided that
A is uniformly elliptic, i.e.,

3−1
|ξ |2 ≤ (A : ξ) : ξ ≤ 3|ξ |2 ∀ξ ∈ RN×n (3.2)

with some parameter 3 ∈ [1,∞). The following theorem reports a classical regularity
property of solutions to elliptic systems with constant coefficients that essentially goes
back to the work of Campanato. The proof can be found for instance in [24, Chapter 10].

Theorem 3.1. Suppose that a map v is A-harmonic in Br ≡ Br(x0), with A satisfying
(3.2) for some 3 ∈ [1,∞). Then there exists a positive constant chol,A ≥ 1, depending
only on n,N,3, such that

osc
Bδr
Dv ≤ chol,Aδ

∫
Br

|Dv − (Dv)Br | dx ∀δ ∈ (0, 1/2]. (3.3)

The next theorem reports an analogous property of p-harmonic maps. The proof is con-
siderably more delicate and rests on some classical a priori estimates of Uhlenbeck [59]
and a priori estimates for solutions to constant coefficient elliptic systems. The following
theorem is stated for the general case p > 1, although we shall use it only for p > 2.

Theorem 3.2. Let v ∈ W 1,p(Br) be a p-harmonic map, p > 1, in Br ≡ Br(x0). Then
there exist constants chol,p ≥ 1, αhol ∈ (0, 1) and σ0 ∈ (0, 1/2], depending only on
n,N, p, such that

osc
Bδr
Dv ≤ chol,pδ

αhol

∫
Br

|Dv − (Dv)Br | dx ∀δ ∈ (0, σ0]. (3.4)
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Proof. We first recall a few a priori regularity estimates “below the natural growth ex-
ponent” that hold for p-harmonic maps. The classical local Lipschitz estimate for p-
harmonic maps states that for every δ < 1 there exists a constant c, depending only on
n,N, p and 1− δ, such that

sup
Bδr

|Dv| ≤ c

(∫
Br

|Dv|p dx

)1/p

(3.5)

(see [59]). By a standard interpolation technique (see for instance [24, Chapter 10] or [51])
the previous estimate implies

sup
Bδr

|Dv| ≤ c

∫
Br

|Dv| dx. (3.6)

Here c again depends only on n, N , p and 1 − δ. The estimate (3.6) then allows one to
use the following form of the standard C1,α a priori local estimate for p-harmonic maps:

osc
Bδr
Dv ≤ c̄δαhol

∫
Br

|Dv| dx. (3.7)

This holds whenever δ ∈ (0, 2/3) and for a constant c̄ ≡ c̄(n,N, p) ≥ 1 and an exponent
αhol ≡ αhol(n,N, p) ∈ (0, 1). See for instance [14], where the right hand side features
the Lp-norm ofDv instead of the L1-norm, as in the above display. Combining the result
in [14] with (3.6) yields (3.7). We then proceed via alternatives, that is, we consider the
two cases 

∫
Br

|Dv − (Dv)Br | dx ≥ θ̄ |(Dv)Br |

or∫
Br

|Dv − (Dv)Br | dx < θ̄ |(Dv)Br |

(3.8)

where, with c̄ being the constant appearing in (3.7),

θ̄ :=
1

40σ n0
and σ0 :=

(
1

160c̄

)1/αhol

. (3.9)

Notice that θ̄ ≡ θ̄ (n,N, p) ∈ (0, 1) and σ0 ≤ 1/160. If the first inequality in (3.8) holds
then by (3.7) we have

osc
Bδr
Dv ≤ c̄δαhol

∫
Br

|Dv − (Dv)Br | dx + c̄δ
αhol |(Dv)Br |

≤ c̄

(
1+

1
θ̄

)
δαhol

∫
Br

|Dv − (Dv)Br | dx,

so that (3.4) holds with σ0 = 1/2 since θ̄ depends only on n,N, p.
We then consider the case when the second inequality in (3.8) holds, and we may

assume that |(Dv)Br | > 0 since otherwise (3.4) follows trivially. The triangle inequality
gives ∫

Br

|Dv| dx ≤ 2|(Dv)Br |. (3.10)
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By (3.8)2 we observe that∫
B2σ0r

|Dv − (Dv)Br | dx ≤ (2σ0)
−n

∫
Br

|Dv − (Dv)Br | dx ≤ (2σ0)
−nθ̄ |(Dv)Br |,

and by (3.9) we conclude that there exists a point x̃ ∈ B2σ0r such that

|Dv(x̃)− (Dv)Br | ≤ |(Dv)Br |/20.

Then, by (3.7) and (3.10) we notice that

osc
B2σ0r

Dv ≤ 4c̄σαhol
0 |(Dv)Br | ≤ |(Dv)Br |/20,

where we have used the definition of σ0 in (3.9). The information in the last two displays
then allows us to conclude that

|Dv(x)− (Dv)Br | ≤ |(Dv)Br |/10 ∀x ∈ B2σ0r .

On the other hand, notice that (3.6) and (3.10) imply

|Dv(x)| ≤ c

∫
Br

|Dv| dy ≤ 2c|(Dv)Br |

for every x ∈ B2r/3 and for c ≡ c(n,N, p). All in all, the last two displays yield

|(Dv)Br |/c ≤ |Dv(x)| ≤ c|(Dv)Br |, ∀x ∈ B2σ0r , (3.11)

for a constant c ≡ c(n,N, p). In particular, the gradient Dv never vanishes in B2σ0r

and thus the system (3.1) becomes nondegenerate in B2σ0r . Therefore smoothness of the
solution v (i.e., local Hölder regularity of the gradient) can be gained by a standard per-
turbation argument (but on the other hand this already comes from the standard regu-
larity theory of Uhlenbeck). The main point is the quantification of such smoothness, in
turn yielding suitable a priori estimates. To this end, let us first observe that whenever
x, y ∈ Br/2, (3.7) and (3.10) give

|Dv(x)−Dv(y)| ≤ c(n,N, p)|(Dv)Br | |x − y|
αhol . (3.12)

By differentiating (3.1) we see that the partial derivatives wi := ∂xiv satisfy the system

− div(B(x) :Dwi) = 0, B(x) :=

(
|Dv|

|(Dv)Br |

)p−2

L(Dv(x)),

where L is defined in (2.4). This is a linear elliptic system since by (3.11)

c−1
|ξ |2 ≤ (B(x) : ξ) : ξ ≤ c|ξ |2 ∀ξ ∈ RN×n and ∀x ∈ B2σ0r ,

where the constant c ≥ 1 depends only on n,N, p. By using the mean value theorem and
again (3.11), from (3.12) it then follows that

|B(x)− B(x0)| ≤ c|x − x0|
αhol ∀x, x0 ∈ B2σ0r ,
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where c ≥ 1 again depends on n,N, p. We can therefore use a standard perturbation
argument, based on the classical trick of freezing the coefficients. This shows that wi is
locally Hölder continuous in Bσ0r with every exponent α < 1, with a related local a priori
estimate. In particular, this applies with the exponent αhol determined in (3.7) and gives

osc
Bδr
wi ≤ cδ

αhol

∫
B2σ0r

|wi − (wi)Bσ0r
| dx ≤ 2cσ−n0 δαhol

∫
Br

|wi − (Dv)Br | dx

whenever δ ∈ (0, σ0) and with c ≡ c(n,N, p); notice that we have used (2.1). From
this last inequality, recalling that σ0 ≡ σ0(n,N, p), we conclude that (3.4) follows for
δ ∈ (0, σ0], as required. ut

Theorem 3.3. Let v ∈ W 1,p(Br) be a p-harmonic map, p > 1, in Br ≡ Br(x0). Then
there exists a constant c ≡ c(n,N, p) such that

osc
Bδr
v ≤ cδ

∫
Br

|v − (v)Br | dx whenever δ ∈ (0, 1/2]. (3.13)

Proof. Once again we start by recalling a few basic regularity estimates for p-harmonic
maps; this time we deal with the regularity of v rather than Dv. We take a ball Br ⊂ Br ,
not necessarily concentric to Br . The standard Caccioppoli type estimate for p-harmonic
mappings reads ∫

Bσ ′r

|Dv|p dx ≤
c

(σ ′ − σ)p

∫
Bσr

∣∣∣∣v − λr
∣∣∣∣p dx (3.14)

for all λ ∈ RN and 7/8 ≤ σ ′ < σ ≤ 1 and some c ≡ c(n,N, p) (see for instance [24,
Chapter 6]). Applying the Sobolev–Poincaré inequality gives(∫

Bσ ′r

∣∣∣∣v − (v)Bσ ′rr

∣∣∣∣γ dx)1/γ

≤
c

σ ′ − σ

(∫
Bσr

∣∣∣∣v − λr
∣∣∣∣p dx)1/p

for some γ > p. Since v is p-harmonic, so is v + (v)Bσ ′r ; applying to this last function
the inequality above with λ = (v)Bσ ′r yields(∫

Bσ ′r

|v|γ dx

)1/γ

≤
c

σ ′ − σ

(∫
Bσr

|v|p dx

)1/p

.

We can at this point use Lemma 3.1 below with w = |v|, U ≡ Br dµ̃ ≡ dx and κ = 7/8,
and this gives the estimate(∫

B7r/8

|v|p dx

)1/p

≤ c

∫
Br

|v| dx,

again with c ≡ c(n,N, p). Applying this inequality to v − (v)Br , which is still p-
harmonic, yields (∫

B7r/8

∣∣∣∣v − (v)Brr

∣∣∣∣p dx)1/p

≤ c

∫
Br

∣∣∣∣v − (v)Brr

∣∣∣∣ dx.
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We then combine (3.5), (3.14) and the above display to get

sup
Br/2

|Dv| ≤ c

(∫
B3r/4

|Dv|p dx

)1/p

≤ c

∫
Br

∣∣∣∣v − (v)Brr

∣∣∣∣ dx.
Then the mean value principle implies

osc
Bδr
v ≤ 2δr sup

Bδr

|Dv| ≤ cδ

∫
Br

|v − (v)Br | dx,

thereby finishing the proof of (3.13). ut

The following lemma reports a well-known self-improving property of reverse Hölder
inequalities; see [27, Lemma 3.38] for the proof.

Lemma 3.1. Let µ̃ be a nonnegative Borel measure with finite total mass. Let 0 < q <

p < γ < ∞ and ξ,M ≥ 0, and let {σU}σ be a family of open sets with the property
σ ′U ⊂ σU ⊂ 1U = U whenever 0 < σ ′ < σ ≤ 1. Suppose that w ∈ Lp

µ̃
(U) is a

nonnegative function satisfying(∫
σ ′U

wγ dµ̃

)1/γ

≤
c0

(σ − σ ′)ξ

(∫
σU

wp dµ̃

)1/p

+M

for all κ ≤ σ ′ < σ ≤ 1, where κ ∈ (0, 1). Then there exists a positive constant c
depending only on c0, ξ , γ , p, and q such that(∫

σU

wγ dµ̃

)1/γ

≤
c

(1− σ)ξ̄

[(∫
U

wq dµ̃

)1/q

+M

]
for all σ ∈ (κ, 1), where

ξ̄ :=
ξp(γ − q)

q(γ − p)
.

4. Measure data p-harmonic approximation

In this section we prove a result usually called a compactness or blow-up lemma. We
think that it is of independent interest and, due to its generality, could be employed in
other settings in the future. The novelty here, making the approach nontrivial, is that this
is tailored to measure data problems. This is essentially reflected in the assumed energy
bound (4.1), and in the closeness condition (4.3). These are weaker than those usually
used to formulate such results in the setting of finite energy problems (i.e. solutions which
are uniformly in W 1,p). Our theorem states that a map u with possibly arbitrarily large
W 1,p-energy, which is almost p-harmonic in the distributional sense, that is, satisfies
(4.3), is then actually close to a real W 1,p-energy function, that is, (4.4) holds. Such a
closeness is prescribed in Sobolev spaces natural for solutions to measure data problems.
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Theorem 4.1 (Measure data p-harmonic approximation). Let u ∈ W 1,p(Br(x0)) with
p > 2− 1/n satisfy ∫

Br (x0)
|u| dx ≤ Mr, M ≥ 1. (4.1)

Let q be such that

max{1, p − 1} ≤ q < qm, where qm := min
{
n(p − 1)
n− 1

, p

}
. (4.2)

Let ε > 0. There exists a positive constant δ ≡ δ(n,N, p, q,M, ε) ∈ (0, 1] such that if∣∣∣∣∫
Br (x0)

|Du|p−2Du :Dϕ dx

∣∣∣∣ ≤ δr ‖ϕ‖L∞(Br (x0)) (4.3)

for every test function ϕ ∈ W 1,p
0 (Br(x0)) ∩ L

∞(Br(x0)), then there exists a p-harmonic
map v ∈ W 1,p(Br/2(x0)) satisfying(∫

Br/2(x0)
|Du−Dv|q dx

)1/q

≤ ε (4.4)

together with∫
Br/2(x0)

|v| dx ≤ M2nr and
(∫

Br/2(x0)
|Dv|q dx

)1/q

≤ cM, (4.5)

for a constant c depending only on n,N, p, q.

Remark 4.1. This section is the only one place where the exponent p may be less than 2.
Indeed, our assumption here is p > 2 − 1/n. This range is natural as it guarantees that
solutions to measure data problems belong to Sobolev spaces. Indeed, p > 2 − 1/n
implies that qm > 1. Notice that the lower bound p > 2− 1/n is exactly what is needed
in the proof of gradient potential estimates in [20]. We also remark that if the above
theorem is proved for a certain value of q ≥ p − 1, then it automatically holds for all
smaller values. Therefore, with no loss of generality, we can assume that q > p − 1.

Proof of Theorem 4.1. The plan is to first establish suitable a priori estimates and then
proceed with the proof via contradiction. The proof is in five steps.

Step 1: Scaling and testing. In this and in the next step we first derive the needed a priori
integrability estimates for a function u satisfying (4.1) and (4.3) for some δ ∈ (0, 1]; more
precisely, we derive a priori estimates for a certain rescaled function defined in the unit
ball B1. Indeed, we set

ū(x) =
u(x0 + rx)

Mr
and η(x) =

ϕ(x0 + rx)

r
,
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where ϕ ∈ W 1,p
0 (Br(x0)) ∩ L

∞(Br(x0)). Then (4.1) and (4.3) imply that∫
B1

|ū| dx ≤ 1, (4.6)∣∣∣∣∫
B1

|Dū|p−2Dū :Dη dx

∣∣∣∣ ≤ M1−pδ‖η‖L∞(B1), (4.7)

where, as usual, we have denoted Bσ ≡ Bσ (0) for every σ > 0. We now want to test (4.7)
with suitable test functions ϕ; these have to be bounded, so we introduce the truncation
operator Tt : RN → RN defined by

Tt (z) := min{1, t/|z|}z, (4.8)

so that DTt : RN → RN turns out to be

DTt (z) :=

Id if |z| ≤ t,
t

|z|

(
Id−

z⊗ z

|z|2

)
if |z| > t,

(4.9)

where Id is the identity operator on RN (it is an N ×N tensor) and t is a nonnegative real
number. We then choose

η := φpTt (ū) with φ ∈ C∞0 (B1), 0 ≤ φ ≤ 1, (4.10)

as a test function in (4.7). We have

Dη = χ{|ū|≤t}(φ
pDū+ pφp−1ū⊗Dφ)

+χ{|ū|>t}
t

|ū|

(
φp(Id− P)Dū+ pφp−1ū⊗Dφ

)
, P :=

ū⊗ ū

|ū|2
,

and P is evaluated when |ū| > 0. This is the case since t > 0. We then plug the identity
into (4.7). Notice that

Dū : [(Id−P)Dū] = |Dū|2−
Dj ū

αūαDj ū
β ūβ

|u|2
= |Dū|2−

∑n
j=1〈Dju, u〉

2

|u|2
≥ 0 (4.11)

where 〈·, ·〉 denotes the scalar product in RN . Using (4.11), we can then easily establish
the following standard energy inequality, after a reabsorption with the aid of Young’s
inequality: ∫

B1∩{|ū|<t}
|Dū|pφp dx ≤ c

∫
B1∩{|ū|<t}

|ū|p|Dφ|p dx + cM1−pδt

+ ct

∫
B1∩{|ū|≥t}

|Dū|p−1
|Dφ|φp−1 dx (4.12)

with c ≡ c(n,N, p). In what follows, a constant c will only depend on n,N, p, unless
otherwise stated. It may vary from line to line.
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Step 2: Summability of ū and Dū. We multiply (4.12) by (1 + t)−2−γ , γ > 0, and
integrate from zero to infinity, to get, after a few elementary estimations,

1
1+ γ

∫
B1

|Dū|pφp

(1+ |ū|)1+γ
dx ≤

c

1+ γ

∫
B1

(1+ |ū|)p−1−γ
|Dφ|p dx +

c

γ
δ

+
c

γ

∫
B1

|Dū|p−1
|Dφ|φp−1 dx. (4.13)

Here we have made use of the Cavalieri principle to obtain∫
∞

0

νj ({|ū| < t})

(1+ t)2+γ
dt =

1
1+ γ

∫
Rn

dνj

(1+ |ū|)1+γ

for j = 1, 2 and measures dν1 = |Dū|
pφp dx and dν2 = |ū|

p
|Dφ|p dx. Observe that

we have estimated M1−p
≤ 1 as M ≥ 1 here. Moreover, we have simply estimated∫

∞

0

t

(1+ t)γ+2

∫
B1∩{|ū|≥t}

|Dū|p−1
|Dφ|φp−1 dx dt

≤

∫
∞

0

dt

(1+ t)γ+1

∫
B1

|Dū|p−1
|Dφ|φp−1 dx ≤

c

γ

∫
B1

|Dū|p−1
|Dφ|φp−1 dx.

The last term appearing in (4.13) can be estimated by Young’s inequality as

c

γ

∫
B1

|Dū|p−1
|Dφ|φp−1 dx ≤

1
2(1+ γ )

∫
B1

|Dū|pφp

(1+ |ū|)1+γ
dx

+
c(1+ γ )p−1

γ p

∫
B1

(1+ |ū|)(p−1)(1+γ )
|Dφ|p dx,

leading immediately to∫
B1

|Dū|pφp

(1+ |ū|)1+γ
dx ≤ c

[
1+

(1+ γ )p

γ p

] ∫
B1

(1+ |ū|)(p−1)(1+γ )
|Dφ|p dx +

c(1+ γ )δ
γ
(4.14)

for every γ > 0. It is now convenient to denote

g := (1+ |ū|)p−1−γ , 0 < γ < p − 1. (4.15)

In fact, we are considering values of γ as in the last inequality. The pointwise inequality
|D|ū| | ≤ |Dū| implies

|D(g1/pφ)|p ≤
c|Dū|p

(1+ |ū|)1+γ
φp + cg|Dφ|p.

Using this last inequality together with (4.14) gives∫
B1

|D(g1/pφ)|p dx ≤
c

γ p

∫
B1

(1+ |ū|)γpg|Dφ|p dx +
c

γ
, (4.16)
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therefore Sobolev’s inequality in turn yields(∫
B1

gθφp
∗

dx

)1/θ

≤
c

γ p

∫
B1

(1+ |ū|)γpg|Dφ|p dx +
c

γ
(4.17)

with

θ :=
p∗

p
> 1 where p∗ =


np

n− p
, p < n,

any number larger than p, p ≥ n,
(4.18)

that is, p∗ is the usual Sobolev conjugate exponent of p. We now consider a number θ̃
such that 1 < θ̃ < θ and apply Hölder’s inequality to obtain∫
B1

(1+ |ū|)γpg|Dφ|p dx ≤
(∫

B1

gθ̃ |Dφ|pθ̃ dx

)1/θ̃(∫
B1

(1+ |ū|)γpθ̃/(θ̃−1) dx

)1−1/θ̃

.

(4.19)
We then choose γ > 0 such that γpθ̃/(θ̃ − 1) ≤ 1 so that by (4.6) we have∫

B1

(1+ |ū|)γpθ̃/(θ̃−1) dx ≤ 1+ |B1|. (4.20)

Notice that by the definition (4.18) the admissible values of γ are

0 < γ < min{1/n, 1/p}. (4.21)

Combining (4.17)–(4.20) yields the following inequality of reverse Hölder type:(∫
B1

gθφp
∗

dx

)1/θ

≤
c

γ p

(∫
B1

gθ̃ |Dφ|pθ̃ dx

)1/θ̃

+
c

γ

with a constant c that depends only on n,N, p. Now, with 7/8 ≤ σ ′ < σ ≤ 1, let us
take a cut-off function φ as in (4.10) with the additional feature that φ ≡ 1 on Bσ ′ and
|Dφ| ≤ 100/(σ − σ ′); we obtain(∫

Bσ ′

gθ dx

)1/θ

≤
c

γ p(σ − σ ′)p

(∫
Bσ

gθ̃ dx

)1/θ̃

+
c

γ
.

Applying Lemma 3.1 with a suitable choice of parameters gives(∫
B7/8

gθ dx

)1/θ

≤ c

(∫
B1

g1/(p−1−γ ) dx

)p−1−γ

+
c

γ
.

Recalling the definition of g in (4.15) and the bound in (4.6) we deduce the desired inte-
grability a priori estimate for ū:∫

B7/8

|ū|q̄ dx ≤ c, q̄ < q0 :=


n(p − 1)
n− p

, p < n,

any number larger than p, p ≥ n,

(4.22)
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with c ≡ c(n,N, p, q̄). It remains to prove the gradient integrability. To this end, observe
that (4.14) and (4.22) easily imply that∫

B3/4

|Dū|pφp

(1+ |ū|)1+γ
dx ≤ c(n,N, p, γ )

for every γ > 0 (indeed, the inequality holds for small values of γ as prescribed in (4.21),
and then trivially also for larger ones). With qm as in (4.2) and q < qm, we use Hölder’s
inequality to estimate∫
B3/4

|Dū|q dx ≤

(∫
B3/4

|Dū|p

(1+ |ū|)1+γ
dx

)q/p(∫
B3/4

(1+ |ū|)(1+γ )q/(p−q) dx
)1−q/p

.

By observing that q < qm leads to the existence of γ > 0 such that (1+γ )q/(p−q) < q0,
where q0 has been defined in (4.22), we deduce the desired integrability result:∫

B3/4

|Dū|q dx ≤ cap ≡ cap(n,N, p, q) for every q < qm. (4.23)

Step 3: Contradiction argument. After establishing the needed energy estimates in Steps
1 and 2, we continue the proof by making a counter-assumption. Let q be as in the state-
ment of Theorem 4.1 (with no loss of generality we may assume q > p − 1) and define,
in addition, q1 := (q + qm)/2, so that

max{p − 1, 1} < q < q1 < qm (4.24)

with qm as in (4.2). Then, we assume that there exist ε > 0 and sequences of balls
{Brj (xj )} and almost p-harmonic maps {uj } ⊂ W 1,p(Brj (xj )) such that∫

Brj (xj )

|uj | dx ≤ Mrj , (4.25)∣∣∣∣∫
Brj (xj )

|Duj |
p−2Duj :Dϕ dx

∣∣∣∣ ≤ 2−j

rj
‖ϕ‖L∞(Brj (xj ))

(4.26)

for all ϕ ∈ W 1,p
0 (Brj (xj )) ∩ L

∞(Brj (xj )), while the counter-assumption is that(∫
Brj /2(xj )

|Duj −Dv|
q dx

)1/q

> ε

whenever v ∈ W 1,p(Brj /2(xj )) is a p-harmonic map in Brj /2(xj ) satisfying∫
Brj /2(xj )

|v| dx ≤ M2nrj and
(∫

Brj /2(xj )
|Dv|q dx

)1/q

≤

(
2ncap

|B1|

)1/q

M,
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where cap ≡ cap(n,N, p, q) is the constant appearing in (4.23). This also fixes the con-
stant c appearing in the statement, and more precisely the one appearing in the second
inequality of (4.5). Let ūj be scaled as in the first step, but using xj and rj instead, that is,

ūj (x) :=
u(xj + rjx)

Mrj
.

We then have ∫
B1

|ūj | dx ≤ 1 (4.27)

by (4.25), and (4.26) implies that∣∣∣∣∫
B1

|Dūj |
p−2Dūj :Dϕ dx

∣∣∣∣ ≤ 2−j

Mp−1 ‖ϕ‖L
∞(B1) (4.28)

for all ϕ ∈ W 1,p
0 (B1) ∩ L

∞(B1). Moreover,(∫
B1/2

|Dūj −Dv̄|
q dx

)1/q

>
ε

M
(4.29)

whenever v̄ ∈ W 1,p(B1/2) is a p-harmonic map in B1/2 such that∫
B1/2

|v̄| dx ≤ 2n and
∫
B1/2

|Dv̄|q dx ≤ cap. (4.30)

Recalling (4.27), according to the a priori estimate (4.23) (which we actually apply with
the exponents q and q1 selected in (4.24)), we have∫

B3/4

|Dūj |
q dx ≤ cap and

∫
B3/4

|Dūj |
q1 dx ≤ c̃ap (4.31)

uniformly in j ∈ N. Then by (4.24) we can assume that there exist ũ ∈ W 1,q(B3/4),
b ∈ Lq/(p−1)(B3/4) and h ∈ Lq(B3/4) such that

∫
B3/4

|Dũ|q dx + sup
j

∫
B3/4

|Duj |
q dx + sup

j

∫
B3/4

|Duj |
q1 dx <∞,

Dūj ⇀ Dũ, |Dūj −Dũ|⇀ h in Lq(B3/4),

|Dūj |
p−2Dūj ⇀ b in Lq/(p−1)(B3/4),

ūj → ũ strongly in Lq(B3/4) and pointwise inB3/4,

(4.32)

up to a subsequence. Using lower semicontinuity, by (4.27) and the first bound in (4.31),
we get ∫

B1/2

|ũ| dx ≤ 2n and
∫
B1/2

|Dũ|q dx ≤ cap. (4.33)

In the next step we shall prove that actually the gradients converge strongly,

Dūj → Dũ in Lq(B3/4). (4.34)
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This allows us to pass to the limit in (4.28), provided the test function ϕ is smooth. Specif-
ically, we get ∫

B1/2

|Dũ|p−2Dũ :Dϕ dx = 0 (4.35)

for all ϕ ∈ C∞0 (B1/2). Later on, in the final step, we shall prove that Dũ ∈ Lp(B1/2) and
therefore (4.35) holds whenever W 1,p

0 (B1/2). This means that ũ is a p-harmonic function
as claimed in the statement of the theorem.

Remark 4.2. Notice that in the contradiction assumptions we have considered an arbi-
trary sequence of balls Brj (xj ), and this guarantees that in the statement of Theorem 4.1
the number δ is actually independent of the radius r . Alternatively, one can directly prove
the statement of Theorem 4.1 in the special case r = 1 and then retrieve the general state-
ment by a final scaling, as done for instance in the proof of the p-harmonic approximation
lemma valid for the energy range from [17, Section 3]. The two ways are equivalent.

Step 4: Strong convergence of gradients. In this section we use arguments developed
in [15] to prove the strong Lq -convergence of the gradients Duj , that is, (4.34). This will
be established by showing that h = 0 almost everywhere, where h ∈ Lq(B3/4) has been
defined via (4.32)2. Let x̄ ∈ B3/4 be a Lebesgue point simultaneously for ũ, Dũ, h, and b
in the sense that

lim
%→0

∫
B%(x̄)

(
|ũ−ũ(x̄)|+|Dũ−Dũ(x̄)|+|h−h(x̄)|+|b−b(x̄)|1/(p−1))q dx = 0 (4.36)

together with
|ũ(x̄)| + |Dũ(x̄)| + |h(x̄)| + |b(x̄)| <∞. (4.37)

By classical Lebesgue theory, almost every point in B3/4 satisfies these conditions and we
aim at showing that

h(x̄) = 0. (4.38)

This will imply (4.34). Indeed, notice that (4.38) implies that Dūj → Dũ strongly in
L1(B3/4). This, together with the second bound in (4.30) and the standard interpolation
inequality

‖Dūj −Dũ‖Lq (B3/4) ≤ ‖Dūj −Dũ‖
θ
L1(B3/4)

‖Dūj −Dũ‖
1−θ
Lq1 (B3/4)

(for 1/q = θ + (1− θ)/q1), finally gives (4.34). We also set

`%(x) := (ũ)B%(x̄) + 〈Dũ(x̄), x − x̄〉 (4.39)

as the linearization of ũ at x̄. Note that Poincaré’s inequality implies

lim
%→0

∫
B%(x̄)

∣∣∣∣ ũ− `%%

∣∣∣∣q dx ≤ c lim
%→0

∫
B%(x̄)

|Dũ−Dũ(x̄)|q dx = 0. (4.40)
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From now on % will be considered to be small enough to guarantee that B%(x̄) ⊂ B3/4,
so that all the information in (4.32) is available. By the weak convergence of |Dūj −Dũ|
to h and the fact that x̄ is a Lebesgue point of h, we get

h(x̄) = lim
%→0

lim
j→∞

∫
B%/2(x̄)

|Dūj −Dũ| dx. (4.41)

Rewrite ∫
B%/2(x̄)

|Dūj −Dũ| dx =

∫
B%/2(x̄)

χ{|ūj−`%|<%}|Dūj −Dũ| dx

+

∫
B%/2(x̄)

χ{|ūj−`%|≥%}|Dūj −Dũ| dx. (4.42)

The second term tends to zero as first j →∞ and then %→ 0, because∫
B%/2(x̄)

χ{|ūj−`%|≥%}|Dūj −Dũ| dx ≤

∫
B%/2(x̄)

χ{|ūj−ũ|≥%/2}|Dūj −Dũ| dx

+

∫
B%/2(x̄)

χ{|ũ−`%|≥%/2}|Dūj −Dũ| dx

j→∞
−−−→

∫
B%/2(x̄)

χ{|ũ−`%|≥%/2}h dx
%→0
−−−→ 0 (4.43)

since x̄ is a Lebesgue point of h. Indeed, in order to prove the first convergence in (4.43)
we appeal to (4.32)1 and observe that∫
B%/2(x̄)

χ{|ūj−ũ|≥%/2}|Dūj −Dũ| dx

≤

(∫
B%/2(x̄)

|Dūj −Dũ|
q dx

)1/q(
|{x ∈ B3/4 : |ūj − ũ| ≥ %/2}|

|B%/2(x̄)|

)1−1/q
j→∞
−−−→ 0

since ūj converges to ũ strongly in Lq(B3/4). In order to prove the last convergence
in (4.43) we use (4.36)–(4.37) and (4.40) in the estimate

∫
B%/2(x̄)

χ{|ũ−`%|≥%/2}h dx ≤

(∫
B%(x̄)

hq dx

)1/q(∫
B%(x̄)

χ{|ũ−`%|≥%/2} dx

)1−1/q

≤ c

[(∫
B%(x̄)

|h− h(x̄)|q dx

)1/q

+ h(x̄)

](∫
B%(x̄)

∣∣∣∣ ũ− `%%

∣∣∣∣q dx)1−1/q

.

By (4.41)–(4.43), in order to establish (4.38), it remains to prove that

lim
%→0

lim
j→∞

∫
B%/2(x̄)

χ{|ūj−`%|<%}|Dūj −Dũ| dx = 0. (4.44)
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For this, we start by estimating∫
B%/2(x̄)

χ{|ūj−`%|<%}|Dūj −Dũ| dx ≤

∫
B%/2(x̄)

χ{|ūj−`%|<%}|Dūj −D`%| dx

+ 2n
∫
B%(x̄)

χ{|ūj−`%|<%}|Dũ−D`%| dx.

Since by (4.36) we have

lim
%→0

lim sup
j→∞

∫
B%(x̄)

χ{|ūj−`%|<%}|Dũ−D`%| dx ≤ lim
%→0

∫
B%(x̄)

|Dũ−Dũ(x̄)| dx = 0,

it remains to show that

lim sup
%→0

lim sup
j→∞

∫
B%/2(x̄)

χ{|ūj−`%|<%}|Dūj −D`%| dx = 0. (4.45)

For (4.45), consider φ ∈ C∞0 (B%(x̄))with 0 ≤ φ ≤ 1, φ ≡ 1 onB%/2(x̄) and |Dφ| ≤ 4/%.
Let η := φT%(ūj − `%), where the truncation operator T% has been introduced in (4.8).
Then, also recalling (4.9), we have

(|Dūj |
p−2Dūj − |D`%|

p−2D`%) :Dη

= χ{|ūj−`%|<%}[(|Dūj |
p−2Dūj − |D`%|

p−2D`%) : D(ūj − `%)]φ

+
%χ{|ūj−`%|≥%}

|ūj − `%|
[(|Dūj |

p−2Dūj − |D`%|
p−2D`%) : (Id− Pj )D(ūj − `%)]φ

+ (|Dūj |
p−2Dūj − |D`%|

p−2D`%) : [T%(ūj − `%)⊗Dφ]

=: G1
j,%(x)+G

2
j,%(x)+G

3
j,%(x).

Here and in what follows, Pj and P are defined by

Pj :=
(ūj − `%)⊗ (ūj − `%)

|ūj − `%|2
, P :=

(ũ− `%)⊗ (ũ− `%)

|ũ− `%|2

when |ūj − `%| 6= 0 and |ũ− `%| 6= 0, respectively. Observe also that by the definition of
`% in (4.39) it follows that∫

B

|D`%|
p−2D`% :Dϕ dx = 0 ∀ϕ ∈ W

1,1
0 (B;RN )

whenever B ⊂ B1 is a ball, since `% is affine. By (4.28) and the previous display applied
to ϕ ≡ η, we find

0 ≤
∫
B%(x̄)

G1
j,%(x) dx ≤ 2−j%1−n

−

∫
B%(x̄)

G2
j,%(x) dx −

∫
B%(x̄)

G3
j,%(x) dx. (4.46)
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Notice that the positivity of the first integral above follows from the monotonicity of the
vector field z 7→ |z|p−2z (see also (4.51) below). We now estimate the various terms on
the right hand side, starting from G3

j,%. We have

lim
j→∞

∫
B%(x̄)

G3
j,%(x) dx =

∫
B%(x̄)

(b − |D`%|
p−2D`%) : [T%(ũ− `%)⊗Dφ] dx

by the weak convergence of |Dūj |p−2Dūj to b, the equiboundedness of |Dūj |p−2Dūj in
Lq/(p−1) and the strong convergence of ūj to ũ, as described in (4.32). We further find by
Hölder’s inequality that∣∣∣∣∫
B%(x̄)

(b − |D`%|
p−2D`%) : [T%(ũ− `%)⊗Dφ] dx

∣∣∣∣
≤ c

(∫
B%(x̄)

(
|b − b(x̄)|q/(p−1)

+ |b(x̄)|q/(p−1)
+ |Dũ(x̄)|q

)
dx

)(p−1)/q

·

(∫
B%(x̄)

(
min{%, |ũ− `%|}

%

)q/(q−(p−1))

dx

)1−(p−1)/q

.

The first integral on the right stays bounded and the second one tends to zero as % → 0
by (4.40); indeed, since p > qm > q implies q/(q − (p − 1)) > q, we have∫

B%(x̄)

(
min{%, |ũ− `%|}

%

)q/(q−(p−1))

dx ≤

∫
B%(x̄)

(
min{%, |ũ− `%|}

%

)q
dx

≤

∫
B%(x̄)

∣∣∣∣ ũ− `%%

∣∣∣∣q dx %→0
−−−→ 0.

Therefore

lim
%→0

lim
j→∞

∣∣∣∣∫
B%(x̄)

G3
j,%(x) dx

∣∣∣∣ = 0. (4.47)

We then focus on G2
j,%(x). For this we use Dūj : [(Id− Pj )Dūj ] ≥ 0 (see (4.11)), so that

(|Dūj |
p−2Dūj − |D`%|

p−2D`%) : (Id− Pj )D(ūj − `%)

≥ −|Dūj |
p−2Dūj : (Id− Pj )D`% − |D`%|p−2D`% : (Id− Pj )D(ūj − `%). (4.48)

We have χ{|ūj−`%|≥%}Pj → χ{|ũ−`%|≥%}P almost everywhere and therefore strongly
in Lt (B3/4) for every t ≥ 1; the same holds for the (uniformly bounded) functions
χ{|ūj−`%|≥%}|ūj − `%|

−1, which converge to χ{|ũ−`%|≥%}|ũ − `%|
−1. Using these facts and

(4.48), by (4.32) we obtain

lim sup
j→∞

(
−

∫
B%(x̄)

G2
j,%(x) dx

)
≤

∫
B%(x̄)

b : (Id− P)D`%
%χ{|ũ−`%|≥%}

|ũ− `%|
dx

+

∫
B%(x̄)

|D`%|
p−2D`% : (Id− P)D(ũ− `%)

%χ{|ũ−`%|≥%}

|ũ− `%|
dx. (4.49)
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We now estimate the two terms on the right hand side. Since q > p−1 we can find t > 1
such that q(t − 1)/(q − p + 1) ≤ q; therefore∣∣∣∣∫
B%(x̄)

b : (Id− P)D`%
%χ{|ũ−`%|≥%}

|ũ− `%|
dx

∣∣∣∣ ≤ c ∫
B%(x̄)

|b|

∣∣∣∣ ũ− `%%

∣∣∣∣t−1

dx

≤ c

(∫
B%(x̄)

|b|q/(p−1) dx

)(p−1)/q(∫
B%(x̄)

∣∣∣∣ ũ− `%%

∣∣∣∣q dx)(t−1)/q

.

As for the remaining integral in (4.49), we have∣∣∣∣∫
B%(x̄)

|D`%|
p−2D`% : (Id− P)D(ũ− `%)

%χ{|ũ−`%|≥%}

|ũ− `%|
dx

∣∣∣∣
≤ c

∫
B%(x̄)

|D(ũ− `%)|

∣∣∣∣ ũ− `%%

∣∣∣∣q−1

dx

≤ c

(∫
B%(x̄)

|Dũ−Dũ(x̄)|q dx

)1/q(∫
B%(x̄)

∣∣∣∣ ũ− `%%

∣∣∣∣q dx)1−1/q

.

By using (4.40), the last three displays lead to

lim sup
%→0

lim sup
j→∞

(
−

∫
B%(x̄)

G2
j,%(x) dx

)
≤ 0.

Recalling also (4.46) and (4.47) we conclude that

lim sup
%→0

lim sup
j→∞

∫
B%(x̄)

G1
j,%(x) dx = 0. (4.50)

We proceed with the proof of (4.45); we are going to use the following, well-known
inequality (see for instance [51] and the references therein):

(|z2|
p−2z2 − |z1|

p−2z1) : (z2 − z1) ≥
1
c
(|z2|

2
+ |z1|

2)(p−2)/2
|z2 − z1|

2 (4.51)

with a constant c ≡ c(n,N, p) ≥ 1, and therefore from (4.50) it follows that

lim sup
%→0

lim sup
j→∞

∫
B%(x̄)

χ{|ūj−`%|<%}(|Dūj |+ |D`%|)
p−2
|Dūj −D`%|

2φ dx = 0. (4.52)

Now, as p ≥ 2 and recalling that φ ≡ 1 on B%/2, it follows that∫
B%(x̄)

G1
j,%(x) dx ≥

1
c

∫
B%/2(x̄)

χ{|ūj−`%|<%}|Dūj −D`%|
p dx ≥ 0,

proving also (4.45) by Hölder’s inequality in the case p ≥ 2. For 2 − 1/n < p < 2 we
instead have, again by Hölder’s inequality,
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B%/2(x̄)

χ{|ūj−`%|<%}|Dūj −D`%| dx

≤

(∫
B%/2(x̄)

χ{|ūj−`%|<%}(|Dūj | + |D`%|)
p−2
|Dūj −D`%|

2 dx

)1/2

·

(∫
B%/2(x̄)

(|Dūj | + |D`%|)
2−p dx

)1/2

,

and therefore, by (4.52), and recalling that x̄ is a Lebesgue point of Dũ, we again deduce
(4.45), which is thus established in the full range p > 2 − 1/n. This shows that h = 0
(h has been defined in (4.41)), thereby establishing (4.34).

Step 5: p-harmonicity of the limit map and contradiction. In the final step we prove that
the function ũ obtained in the previous step is p-harmonic. Indeed,Dũ ∈ Lp(B1/2)would
then imply that ũ is a p-harmonic map by (4.35). Since (4.33) holds, we may take v̄ = ũ
in (4.29) as a test function, thereby obtaining a contradiction after taking j large enough
using (4.34); notice that bounds in (4.30) are satisfied with v̄ = ũ. The final goal is hence
to show that Dũ ∈ Lp(B1/2), and this will finish the proof. In order to achieve this, let us
write (4.22) for ū ≡ ūj ; by lower semicontinuity we then get

∫
B7/8

|ũ|q̄ ≤ c, q̄ < q0 :=


n(p − 1)
n− p

, p < n,

any number larger than p, p ≥ n,

(4.53)

with c ≡ c(n,N, p, q̄). Similarly, we consider (4.12) with ū ≡ ūj and δ = 2−j . Letting
j → ∞ in the resulting inequality, and using Fatou’s lemma to handle the convergence
on the left hand side and (4.34) on the right hand side, we arrive at∫

B3/4∩{|ũ|<t}
|Dũ|pφp dx ≤ c

∫
B3/4∩{|ũ|<t}

|ũ|p|Dφ|p dx

+ ct

∫
B3/4∩{|ũ|≥t}

|Dũ|p−1
|Dφ|φp−1 dx

for all t > 0 and φ ∈ C∞0 (B3/4) with φ ≥ 0, and c ≡ c(n,N, p). We then multiply
the inequality above by (1+ t)−1−γ , γ > 0, and integrate over (0,∞) with respect to t .
Manipulations based on Fubini’s theorem similar to those in Step 2 lead to

1
γ

∫
B3/4

|Dũ|pφp

(1+ |ũ|)γ
dx ≤

c

γ

∫
B3/4

(1+ |ũ|)p−γ |Dφ|p dx

+ c

∫
∞

0

1
(1+ t)γ

∫
B3/4∩{|ũ|≥t}

|Dũ|p−1
|Dφ|φp−1 dx dt

with c ≡ c(p). Considering γ ∈ (0, 1), again by Fubini’s theorem and Young’s inequality
we obtain
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c

∫
∞

0

1
(1+ t)γ

∫
B3/4∩{|ũ|≥t}

|Dũ|p−1
|Dφ|φp−1 dx dt

≤
c

1− γ

∫
B3/4

|Dũ|p−1(1+ |ũ|)1−γ |Dφ|φp−1 dx

≤
1

2γ

∫
B3/4

|Dũ|pφp

(1+ |ũ|)γ
dx +

cγ p−1

(1− γ )p

∫
B3/4

(1+ |ũ|)p−γ |Dφ|p dx.

Combining the last two displays, and reabsorbing terms, finally yields∫
B3/4

|Dũ|pφp

(1+ |ũ|)γ
dx ≤

c

(1− γ )p

∫
B3/4

(1+ |ũ|)p−γ |Dφ|p dx (4.54)

with c ≡ c(p). The idea of proving the Lp-integrability of Du is now as follows. Note
first that the constant c in the last display is independent of γ ∈ (0, 1). We may thus
let γ → 0 provided the right hand side of (4.54) remains finite. This will be achieved
via a finite iteration scheme that resembles Moser’s iteration; the only difference is that
we stop after a number of iterations. As a matter of fact, in the case n < p2 by (4.53)
we have u ∈ Lp(B7/8); therefore letting γ → 0 in (4.54) and choosing φ properly yields
Du ∈ Lp(B1/2) and we are done. We can therefore confine ourselves to p2

≤ n, where we
again observe that by (4.53) the right hand side in (4.54) is finite for γ > (n−p2)/(n−p);
notice that this last quantity is smaller than 1. Set g̃ = 1+ |ũ|. Since

|Dg̃(p−γ )/p|p ≤ (1− γ /p)p|Dũ|pg̃−γ ,

(4.54) implies that∫
B3/4

|D(g̃(p−γ )/pφ)|p dx ≤
c

(1− γ )p

∫
B3/4

g̃p−γ |Dφ|p dx (4.55)

with c ≡ c(p), provided that γ ∈ (0, 1). For θ = n/(n− p) = p∗/p we apply Sobolev’s
inequality to get(∫

B3/4

(g̃1−γ /pφ)θp dx

)1/θ

≤ c

∫
B3/4

|D(g̃1−γ /pφ)|p dx,

which, in conjunction with (4.55), leads to(∫
B3/4

(g̃1−γ /pφ)θp dx

)1/θ

≤
c

(1− γ )p

∫
B3/4

g̃p−γ |Dφ|p dx. (4.56)

We have thus improved the integrability of g̃ on {φ ≡ 1} ∩ B3/4. We now iterate this
argument: we take a fixed γ0 := γ > (n− p2)/(n− p) with γ < 1, and define

qj := θ
j (p − γ0) and γj := p − qj

for every integer j ≥ 0; we have qj+1 := θqj . We also notice that {γj } is a decreasing
sequence. We then choose a shrinking sequence {Bj } of concentric balls centered at the
origin such that

Bj+1 b Bj ∀j and B5/8 ⊂
⋂
j

Bj ,
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and related cut-off functions {φj } ⊂ C∞0 (B
j ) such that 0 ≤ φj ≤ 1, φj+1 ≤ φj , and

φj ≡ 1 on Bj+1 for every j. Using (4.56) with the obvious choices leads to(∫
B3/4

g̃θ(p−γj )φ
θp
j dx

)1/θ

≤ c

∫
B3/4

g̃p−γj |Dφj |
p dx

whenever γj > 0. Therefore u ∈ Lqj (Bj ) implies u ∈ Lqj+1(Bj+1) for every positive
integer j such that γj > 0. We proceed inductively and the iteration stops at the first
step ̄ such that γ̄+1 := p − q̄+1 ≤ 0, when the inequality in the last display yields
u ∈ Lq̄+1(B ̄+1). It then follows in particular that ũ ∈ Lp(B5/8). With this information
at hand we go back to (4.54), letting γ → 0, which gives, upon a suitable choice of φ,
that Dũ ∈ Lp(B1/2). This finishes the proof of Theorem 4.1 as seen at the beginning of
Step 5. ut

5. Degenerate p-linearization

In this section we derive two corollaries of Theorem 4.1. The central result is Proposi-
tion 5.1 below, where we exploit the consequence of a degeneracy condition (5.7). The
condition tells us that the gradient is suitably small provided it is measured in the right
scale dictated by the excess functional.

Lemma 5.1. Let u ∈ W 1,p(Br) be a weak solution to (1.1) in Br ≡ Br(x0) with p >
2− 1/n, where µ ∈ C∞(Br). Then, for every q̄ ∈ (1, qm) with qm defined in (4.2), there
exists a constant ch ≡ ch(n,N, p, q̄) such that(∫

Br/2

|Du|q dx

)1/q

≤ ch

∫
Br

|Du| dx + ch

[
|µ|(Br)

rn−1

]1/(p−1)

(5.1)

whenever q ∈ [1, q̄].

Proof. It is obviously sufficient to prove (5.1) for q = q̄, the remaining cases then fol-
lowing by the Jensen inequality. Let ε > 0 be a free parameter for the moment, and set

λ :=
1
ε

∫
Br

|Du| dx +

[
2nr
δ

|µ|(Br)

|Br |

]1/(p−1)

, (5.2)

where δ ≡ δ(n,N, p, q̄, ε) corresponds to the constant in Theorem 4.1 with parameters ε
and M = 1; notice that we can assume that λ > 0 since otherwise the statement becomes
trivial. We use a scaling argument with

ū :=
u− (u)Br

λ
, µ̄ :=

µ

λp−1 , −4pū = µ̄ in Br . (5.3)

Then for y ∈ Br/2(x0) we have∣∣∣∣∫
Br/2(y)

|Dū|p−2Dū :Dϕ dx

∣∣∣∣ ≤ 2n‖ϕ‖L∞(Br/2(y))
λp−1

|µ|(Br)

|Br |
≤
δ

r
‖ϕ‖L∞(Br/2(y))



960 Tuomo Kuusi, Giuseppe Mingione

whenever ϕ ∈ W 1,p
0 (Br/2(y)) ∩ L

∞(Br/2(y)). Scaling gives∫
Br

|Dū| dx =
1
λ

∫
Br

|Du| dx ≤ ε. (5.4)

Moreover, Poincaré’s inequality implies∫
Br

|ū| dx ≤
c(n)r

λ

∫
Br

|Du| dx

for a constant c(n) depending indeed only on n, therefore∫
Br/2(y)

|ū| dx ≤ 2n
∫
Br

|ū| dx ≤ c(n)rε =
r

2

provided ε := 1/[2c(n)]. This fixes ε and therefore also δ, which is now a function
of n,N, p, q̄. Theorem 4.1 then implies that there exists a p-harmonic map v̄ ≡ v̄y in
Br/4(y) such that (∫

Br/4(y)
|Dū−Dv̄|q̄ dx

)1/q̄

≤ ε. (5.5)

Furthermore, by the Lipschitz estimate for Dv̄ (see (3.6)), and by (5.4) and (5.5),

sup
Br/8(y)

|Dv̄| ≤ c

∫
Br/4(y)

|Dv̄| dx

≤ c

∫
Br/4(y)

|Dū−Dv̄| dx + c

∫
Br/4(y)

|Dū| dx ≤ 2cε.

This translates to Dū via (5.5) and the triangle inequality:(∫
Br/8(y)

|Dū|q̄ dx

)1/q̄

≤ sup
Br/8(y)

|Dv̄| +

(∫
Br/8(y)

|Dū−Dv̄|q̄ dx

)1/q̄

≤ cε.

A simple covering argument then gives(∫
Br/2(x0)

|Dū|q̄ dx

)1/q̄

≤ cε,

and (5.1) follows by recalling the definitions in (5.2)–(5.3), i.e. scaling back to u. ut

Lemma 5.2. Let u ∈ W 1,p(Br) be a weak solution to (1.1) in Br ≡ Br(x0) with p >
2 − 1/n, where µ ∈ C∞(Br). Let q ∈ (1, qm) with qm defined in (4.2), and ε ∈ (0, 1).
There exists a positive constant cs ≡ cs(n,N, p, q, ε) and a p-harmonic map v in Br/2
such that(∫

Br/2

|Du−Dv|q dx

)1/q

≤
ε

r

∫
Br

|u− (u)Br | dx + cs

[
|µ|(Br)

rn−1

]1/(p−1)

. (5.6)
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Proof. We rescale u as in (5.3), this time with

λ :=
1
r

∫
Br

|u− (u)Br | dx +

[
r

δ

|µ|(Br)

|Br |

]1/(p−1)

,

where δ ≡ δ(n,N, p, q, ε) corresponds to the parameter δ in Theorem 4.1 with M ≡ 1,
and ε ∈ (0, 1) is the number appearing on the statement of the lemma; again we can
assume that λ > 0 since otherwise u is constant and we deduce the conclusion with
v = u. As in the proof of the previous lemma we have∣∣∣∣∫

Br

|Dū|p−2Dū :Dϕ dx

∣∣∣∣ ≤ ‖ϕ‖L∞(Brλp−1
|µ|(Br)

|Br |
≤
δ

r
‖ϕ‖L∞(Br ),

while by the very definition of ū and λ it follows that
∫
Br
|ū| dx ≤ r . Therefore Theo-

rem 4.1 applies to ū and provides a p-harmonic map v̄ in Br/2 such that(∫
Br/2

|Dū−Dv̄|q dx

)1/q

≤ ε.

Inequality (5.6) now follows by scaling back to u with v = λv̄, which is of course still
p-harmonic. ut

The next proposition is finally the degenerate p-harmonic approximation result the title
of this section is alluding to.

Proposition 5.1. Let u ∈ W 1,p(Br) be a weak solution to (1.1) in Br ≡ Br(x0) with p >
2− 1/n, where µ ∈ C∞(Br). Let q ∈ (1, qm) with qm defined in (4.2), and ε, θ ∈ (0, 1).
There exists a positive constant cd ≡ cd(n,N, p, q, ε, θ) such that if∫

Br

|Du− (Du)Br | dx ≥ θ |(Du)Br | (5.7)

then there exists a p-harmonic map v in Br/2, that is, a solution to

−4pv = 0 in Br/2,

satisfying(∫
Br/2

|Du−Dv|q dx

)1/q

≤ ε

∫
Br

|Du− (Du)Br | dx + cd

[
|µ|(Br)

rn−1

]1/(p−1)

. (5.8)

Proof. We notice that (5.7) implies∫
Br

|Du| dx ≤

∫
Br

|Du− (Du)Br | dx + |(Du)Br | ≤
1+ θ
θ

∫
Br

|Du− (Du)Br | dx,

and Poincaré’s inequality gives∫
Br

|u− (u)Br | dx ≤ c(n)r

∫
Br

|Du| dx ≤
c(n)(1+ θ)r

θ

∫
Br

|Du− (Du)Br | dx.

We then proceed as in the proof of Lemma 5.2. Indeed, we scale as in (5.3), this time with

λ :=
c(n)(1+ θ)

θ

∫
Br

|Du− (Du)Br | dx +

[
r

δ

|µ|(Br)

|Br |

]1/(p−1)

,
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where δ ≡ δ(n,N, p, q, ε, θ) corresponds to the parameter δ in Theorem 4.1 with

M ↔ 1 and ε↔
εθ

c(n)(1+ θ)
.

In the previous line, the last ε appearing on the right hand side is the one that will even-
tually appear in (5.8) and that comes from the statement of the proposition. Notice that
again we may assume that λ > 0, otherwise Du is constant and we can take v = u.
Applying Theorem 4.1 then gives the existence of a p-harmonic map v̄ in Br/2 such that(∫

Br/2

|Dū−Dv̄|q dx

)1/q

≤
εθ

c(n)(1+ θ)
.

Then (5.8) follows by scaling back to u and letting v := λv; notice that this time

cd =
εθ

c(n)(1+ θ)δ1/(p−1)

with dangerous dependence on θ now incorporated in δ. ut

6. A pre-reverse Hölder inequality on level sets

In this section we prove Lemma 6.1 below; it involves a level set consequence of the
reverse Hölder inequality (5.1). The proof is based on a Calderón–Zygmund type exit
time argument and on Vitali’s covering lemma. The “pre-reverse” terminology refers to
the fact that, in the usual energy setting, inequalities like (6.2) below are used to prove
reverse Hölder type inequalities. In the present, subenergy setting, we take an inverse
path: we start from the reverse Hölder type inequality of Lemma 5.1 and derive level set
inequalities as in (6.2) below.

Lemma 6.1. Let u ∈ W 1,p(Br) be a weak solution to (1.1) in Br ≡ Br(x0) with p >
2− 1/n, where µ ∈ C∞(Br). Then, for every q̄ ∈ (1, qm) with qm defined in (4.2), there
exists a constant c∗ ≡ c∗(n,N, p, q̄) such that if

t > 20nch

∫
Br

|Du| dx + 20nch

[
|µ|(Br)

rn−1

]1/(p−1)

, (6.1)

where ch ≡ ch(n,N, p, q̄) is the constant appearing in (5.1), then∫
Br/2∩{|Du|>t}

|Du|γ dx ≤ c∗t
γ−1

∫
Br∩{|Du|>t/c∗}

|Du| dx + c∗t
γ+1−pr|µ|(Br) (6.2)

whenever γ ∈ [1, q̄].

Proof. Let t be as in (6.1), and consider the level set Et := Br/2 ∩ {|Du| > t}. Then, by
classical Lebesgue theory, for almost every y ∈ Et we have

lim
%→0

(∫
B%(y)

|Du|γ dx

)1/γ

= |Du(y)| > t.
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Moreover, using the reverse Hölder inequality of Lemma 5.1 we get(∫
Br/20(y)

|Du|γ dx

)1/γ

≤ ch

∫
Br/10

|Du| dx + ch

[
|µ|(Br/10)

(r/10)n−1

]1/(p−1)

≤ 10nch

∫
Br

|Du| dx + 10
n−1
p−1 ch

[
|µ|(Br)

rn−1

]1/(p−1)

.

Estimating the right hand side by means of (6.1) we have(∫
Br/20(y)

|Du|γ dx

)1/γ

< t.

Therefore for almost every y ∈ Et we find an exit time radius ry ∈ (0, r/20) such that(∫
Bry (y)

|Du|γ dx

)1/γ

= t, max
%∈[ry ,r/20]

(∫
B%(y)

|Du|γ dx

)1/γ

≤ t. (6.3)

Applying again the reverse Hölder inequality of Lemma 5.1 then gives

t =

(∫
Bry (y)

|Du|γ dx

)1/γ

≤ ch

∫
B2ry (y)

|Du| dx + ch

[
|µ|(B2ry (y))

rn−1
y

]1/(p−1)

.

Therefore at least one of the two inequalities holds:

t

2
≤ ch

∫
B2ry (y)

|Du| dx,
t

2
≤ ch

[
|µ|(B2ry (y))

rn−1
y

]1/(p−1)

. (6.4)

In case the first inequality holds we use

t

2
≤ ch

∫
B2ry (y)

|Du| dx ≤
ch

|B2ry (y)|

∫
B2ry (y)∩{|Du|>t/(4ch)}

|Du| dx +
t

4

to obtain
|B2ry (y)| ≤

4ch

t

∫
B2ry (y)∩{|Du|>t/(4ch)}

|Du| dx.

In case the second inequality in (6.4) holds we have

|B2ry (y)| ≤ (2ch/t)
p−1ry |µ|(B2ry (y)).

Combining both cases we conclude that

|B2ry (y)| ≤
4ch

t

∫
B2ry (y)∩{|Du|>t/(4ch)}

|Du| dx +

(
2ch

t

)p−1

ry |µ|(B2ry (y)). (6.5)

We next appeal to the classical Vitali covering theorem to find a countable family
{B2ryj (yj )} of disjoint balls satisfying

Et ⊂
(⋃
j

B10ryj (yj )
)
∪ negligible set. (6.6)
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Applying (6.5) to each ball B2ryj (yj ), and recalling also (6.3), yields∫
B10ryj

(yj )

|Du|γ dx ≤ tγ |B10ryj (yj )| ≤ 5ntγ |B2ryj (yj )|

≤ ctγ−1
∫
B2ryj

(yj )∩{|Du|>t/(4c)}
|Du| dx + crtγ+1−p

|µ|(B2ryj (yj ))

with c ≡ c(n,N, p, q̄). Summing the above inequality over j , recalling (6.6) and the fact
that the family {B2ryj (yj )} is disjoint, we get (6.2), upon renaming the constant c. ut

7. Nondegenerate linearization

This section is dedicated to implementing the counterpart of Proposition 5.1, that is,
Proposition 7.1 below. This features a linearization lemma that holds for solutions u to
the p-Laplacean system −4pu = µ in case the problem is nondegenerate on a single
scale, that is, when the average (Du)Br 6= 0 is large enough in a certain quantitative way,
described in (7.1) below.

Proposition 7.1. Let u ∈ W 1,p(Br) be a weak solution to the system −4pu = µ in
Br ≡ Br(x0) with p > 2, where µ ∈ C∞(Br), and assume that (Du)Br 6= 0. Then
for every ε ∈ (0, 1] there exist positive constants θnd ≡ θnd(n,N, p, ε) ∈ (0, 1) and
q ≡ q(n, p) ∈ (1, n/(n− 1)) such that if both∫

Br

|Du− (Du)Br | dx ≤ θnd|(Du)Br | (7.1)

and
|µ|(Br)

rn−1 ≤ θnd|(Du)Br |
p−2

∫
Br

|Du− (Du)Br | dx, (7.2)

then there exists an A-harmonic map h ∈ W 1,2(Br/4) in Br/4, that is,

− div(A :Dh) = 0 weakly in Br/4, A := L((Du)Br ), (7.3)

satisfying (∫
Br/4

|Du−Dh|q dx

)1/q

≤ ε

∫
Br

|Du− (Du)Br | dx. (7.4)

The tensor L(·) defining A in (7.3) has been introduced in (2.4).

The proof requires a series of technical lemmas, which are included in Section 7.1. The
proof proper will then be given in Section 7.2.

Remark 7.1. The proof will reveal that θnd can be chosen as θnd := (ε/c)
1/γ with c ≡

c(n,N, p) ≥ 1 and γ ≡ γ (n,N, p) ∈ (0, 1).
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7.1. Preparatory lemmas

In this subsection we work out preliminary estimates, mainly of technical nature, to be
used in the proof of Proposition 7.1. Let us first clarify the setting. We shall deal with a
weak solution ū ∈ W 1,p(B1) to the p-Laplacean system

−4pū = µ̄ ∈ C
∞(B1), p > 2, (7.5)

which is such that
|(Dū)B1 | = 1 and |(ū)B1 | = 0. (7.6)

We then define the maps ` ≡ (`α)1≤α≤N and v as

`α(x) := 〈(Dūα)B1 , x〉 and v = ū− `. (7.7)

It follows that
|(Dv)B1 | = |(v)B1 | = 0. (7.8)

Finally, we shall assume that∫
B1

|Dv| dx ≤ 1 and |µ̄|(B1) ≤ 1. (7.9)

For τ > 1, we have the following trivial inclusions:
B1 ∩ {|v| > τ } ⊂ B1 ∩ {|ū| > τ − 1},
B1 ∩ {|ū| > τ } ⊂ B1 ∩ {|v| > τ − 1},
B1 ∩ {|Dv| > τ } ⊂ B1 ∩ {|Dū| > τ − 1},
B1 ∩ {|Dū| > τ } ⊂ B1 ∩ {|Dv| > τ − 1}.

(7.10)

We also notice that, as a consequence of (7.6) and (7.9),∫
B1

|Dū| dx ≤

∫
B1

|Dv| dx + |(Dū)B1 | ≤ 2. (7.11)

Lemma 7.1. Let ū, µ̄, v be as in (7.5)–(7.9). Let τ > 3 and q ≥ 1. Then∫
B7/8∩{3<|v|≤τ }

(|Dv|2 + |Dv|p) dx ≤ c

∫
B1

|Dv|q dx + c|µ̄|(B1)

with a constant c ≡ c(n,N, p, q, τ ).

Proof. We take m ∈ R such that m > 1
2(τ−1) , so 2+ 1

m
< 2τ . Define

ξ(t) := min{1, 2τ/t}min{m(t − 2)+, 1}.

The number m will eventually be sent to infinity. Keeping also (4.9) in mind, we notice
that
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D(ξ(|ū|)ū) =



0, |ū| ≤ 2,
m((|ū| − 2)Id+ |ū|P)Dū, 2 < |ū| < 2+ 1/m,
Dū, 2+ 1/m < |ū| < 2τ,
2τ
|ū|
(Id− P)Dū, |ū| ≥ 2τ,

(7.12)

where P is, as usual, the projection defined by

P :=
ū⊗ ū

|ū|2

and which is here computed only when |ū| > 2. Recalling (4.11) we have

Dū :D(ξ(|ū|)ū)χ{|ū|≥2τ } =
2τ
|ū|
Dū : [(Id− P)Dū]χ{|ū|≥2τ } ≥ 0,

and therefore
Dū :D(ξ(|ū|)ū) ≥ χ{2+1/m<|ū|<2τ }|Dū|

2. (7.13)
We then test the weak form of (7.5), that is,∫

B1

|Dū|p−2Dū :Dϕ dx =

∫
B1

ϕ dµ̄ ∀ϕ ∈ W
1,p
0 (B1;RN ) (7.14)

(notice that the enlarged space of test functions, that is, W 1,p
0 (B1;RN ), is allowed since

Dū ∈ Lp and µ̄ is a smooth map) with

ϕ := φmin{1, 2τ/|ū|}min{m(|ū| − 2)+, 1}ū
= φmin{m(|ū| − 2)+, 1}T2τ (ū) = φξ(|ū|)ū

where φ ∈ C∞0 (B15/16), 0 ≤ φ ≤ 1, φ = 1 in B7/8 and |Dφ| ≤ 28, and where the opera-
tor T2τ (·) has been defined in (4.8). Using (7.12)–(7.13), and eventually letting m→∞,
yields∫

B1∩{2<|ū|<2τ }
|Dū|pφ dx ≤ 2τ

∫
B1∩{|ū|>2}

|Dū|p−1
|Dφ| dx + 2τ |µ̄|(B1). (7.15)

We proceed by splitting the last integral as∫
B1∩{|ū|>2}

|Dū|p−1
|Dφ| dx ≤ ‖Dφ‖L∞

∫
B15/16∩{|Dū|>H }

|Dū|p−1 dx

+Hp−1
|B15/16 ∩ {|ū| > 2}| (7.16)

forH ≥ 1 to be chosen in a moment. By (7.9) and (7.11), we are able to apply Lemma 6.1
with γ = p − 1, which together with a standard covering argument yields the existence
of a constant H ≡ H(n,N, p) ≥ 1 such that∫

B15/16∩{|Dū|>H }
|Dū|p−1 dx ≤ c

∫
B1∩{|Dū|>2}

|Dū|q dx + c|µ̄|(B1) (7.17)

with c ≡ c(n,N, p, q). Indeed, we can find a finite covering {Bi} of B15/16 with smaller
balls Bi , each of radius 1/128 and touching B15/16; the number of balls in the covering
depends only on n. Notice that such a choice implies that 2Bi ⊂ B1 for every i. On each
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such ball we can estimate

20nch

∫
2Bi
|Dū| dx + 20nch

[
|µ̄|(2Bi)
|2Bi |1−1/n

]1/(p−1)

≤ c

∫
B1

|Dū| dx + c[|µ̄|(B1)]
1/(p−1)

≤ c(n,N, p) ≤ H,

where we can choose H ≡ H(n,N, p) large enough to have H/c∗ ≥ 2, and c∗, ch ≡

c∗, ch(n,N, p) are the constants detailed in Lemma 6.1 (which we consider here with
γ = p − 1). Notice that in the last estimate we have used both (7.9) and (7.11). We
therefore use (6.2) with γ = p − 1 for each Bi , getting∫
B15/16∩{|Dū|>H }

|Dū|p−1 dx ≤
∑
i

∫
Bi∩{|Dū|>H }

|Dū|p−1 dx

≤ c∗H
p−2

∑
i

∫
2Bi∩{|Dū|>H/c∗}

|Dū| dx+c∗
∑
i

|µ̄|(2Bi)

≤ c

∫
B1∩{|Dū|>H/c∗}

|Dū| dx+c|µ̄|(B1)

with c ≡ c(n,N, p). From this we get (7.17) as H/c∗ ≥ 2. To proceed with the proof,
we observe that the inclusion B1 ∩ {|ū| > 2} ⊂ B1 ∩ {|v| > 1} (by (7.10)) together with
Poincaré’s inequality (recall (7.8)) gives

|B15/16 ∩ {|ū| > 2}| ≤ |B1 ∩ {|v| > 1}| ≤
∫
B1

|v|q dx ≤ c

∫
B1

|Dv|q dx. (7.18)

Combining (7.16)–(7.18) and using the fact that in B1 ∩ {|Dū| > 2} we also have |Dū| ≤
2|Dv| (indeed, 2|Dv| ≥ |Dū| + |Dū| − 2 ≥ |Dū|), we obtain∫

B1∩{|ū|>2}
|Dū|p−1

|Dφ| dx ≤ c

∫
B1

|Dv|q dx + c|µ̄|(B1),

again with c ≡ c(n,N, p, q). Using this together with (7.15), we have∫
B1∩{2<|ū|<2τ }

|Dū|pφ dx ≤ c

∫
B1

|Dv|q dx + c|µ̄|(B1) (7.19)

with c ≡ c(n,N, p, q, τ ). By further splitting the supports of the integrals in the sets
{|Dū| ≥ 1} and {|Dū| < 1}, using Poincaré’s inequality and the estimate in (7.19) we
conclude the proof as follows:∫
B7/8∩{3<|v|≤τ }

(|Dv|2 + |Dv|p) dx

≤ c|B7/8 ∩ {3 < |v| ≤ τ }| + c
∫
B7/8∩{2<|ū|≤2τ }

|Dū|p dx

≤ c

∫
B1

|v|q dx + c

∫
B7/8∩{2<|ū|≤2τ }

|Dū|p dx ≤ c

∫
B1

|Dv|q dx + c|µ̄|(B1). ut
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The next lemma is the key technical result of this section. It includes a weighted inequality
with weight given by |v|−γ . Indeed, the inequality captures the integrability properties
around the zero set of |v|. For this reason, the range of exponents γ considered cannot be
too large.

Lemma 7.2. Let ū, µ̄, v be as in (7.5)–(7.9). Let τ ≥ 3 and q ∈ [1, 3/2]. Then∫
B1/2∩{|v|≤τ }

|Dv|2 + |Dv|p

|v|γ
dx ≤ c

∫
B1

|Dv|q dx + c|µ̄|(B1) (7.20)

with a constant c ≡ c(n,N, p, τ, γ ) whenever

0 ≤ γ ≤ 1/(4p). (7.21)

The integrand on the left hand side of (7.20) is meant to be zero when |v| = 0.

Proof. The proof is in four steps. In the first four steps we prove (7.20) in the special case
γ = 1/(4p); then in the last step we prove it in the whole range (7.21).

Step 1: Testing the system. The system in (7.5) can be rewritten as

− div(|Dū|p−2Dū− |D`|p−2D`) = µ̄, (7.22)

which in turn can be linearized as follows:

− div(B(x) :Dv) = µ̄ (7.23)

with

B(x) :=

∫ 1

0
|D`+ sDv|p−2L(D`+ sDv) ds, v = ū− `, (7.24)

and L(·) has been defined in (2.4) (keep in mind (2.5)). Notice that B(·) satisfies the
ellipticity condition

c−1
|ξ |2 ≤

(B(x) : ξ) : ξ

(1+ |Dv(x)|)p−2 ≤ c|ξ |
2
∀ξ ∈ RN×n (7.25)

with c ≡ c(p); this is indeed a consequence (2.7), (7.6) and the general algebraic fact that

1
c
(|ξ1| + |ξ2|)

t
≤

∫ 1

0
|ξ1 + sξ2|

t ds ≤
c

t + 1
(|ξ1| + |ξ2|)

t
∀ξ1, ξ2 ∈ RN×n (7.26)

for every real t > −1, with c being an absolute constant (see for instance [24, Chapter 8]).
We also notice that with

P =
v ⊗ v

|v|2
, |v| 6= 0 (7.27)

(we define it to be the null tensor otherwise) we have

Q := sup
x∈B1

∣∣∣∣ (B(x) :Dv) : (Id− P)Dv(B(x) :Dv) :Dv

∣∣∣∣ ≤ p − 1, (7.28)

and this fact will be proved in Step 4 below. Now, let 8 ∈ C∞0 ((−6, 6)) be such that
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8 ≡ 1 on [−3, 3] and |8′| ≤ 1. Let φ ∈ C∞0 (B3/4) with 0 ≤ φ ≤ 1, φ = 1 in B1/2 and
|Dφ| ≤ 128. We test the weak formulation of (7.22), that is,∫

B1

(B(x) :Dv) :Dϕ dx =

∫
B1

ϕ dµ̄ ∀ϕ ∈ W
1,p
0 (B1;RN )

(in view of (7.23)) with

ϕ := φ 8(|v|/τ)Tt (v) where 6τ ≥ t > 0.

We recall that the truncation operator Tt (·) has been defined in (4.8). Notice that this is an
admissible test function as we indeed have additional regularity of v (as µ̄ is here assumed
to be smooth). We get∫

B1

ϕ dµ̄ =

∫
B1∩{|v|≤t}

[(B(x) :Dv) :Dv]8(|v|/τ)φ dx

+ t

∫
B1∩{|v|>t}

(B(x) :Dv) : [(Id− P)Dv]
|v|

8(|v|/τ)φ dx

+
1
τ

∫
B1∩{|v|≤t}

[(B(x) :Dv) : (PDv)]8′(|v|/τ)|v|φ dx

+
t

τ

∫
B1∩{|v|>t}

[(B(x) :Dv) : (PDv)]8′(|v|/τ)φ dx

+

∫
B1∩{|v|≤t}

[(B(x) :Dv) : (v ⊗Dφ)]8(|v|/τ) dx

+ t

∫
B1∩{|v|>t}

[
(B(x) :Dv) :

(
v

|v|
⊗Dφ

)]
8(|v|/τ) dx, (7.29)

where P has been defined in (7.27). Take 0 < ε < τ/2 and K ≥ 6 (to be chosen later).
Multiplying (7.29) by t−1−γ (we take initially γ ∈ (0, 1)), using (7.25) and integrating on
the interval (ε,Kτ) with respect to t , and making a few simple estimations, we arrive at

(Kτ)1−γ

1− γ
|µ̄|(B1) ≥

∫ Kτ

ε

t−1−γ
∫
B1∩{|v|≤t}

[(B :Dv) :Dv]8(|v|/τ)φ dx dt

−Q

∫ Kτ

ε

t−γ
∫
B1∩{|v|>t}

(B :Dv) :Dv

|v|
8(|v|/τ)φ dx dt

− c

∫ Kτ

0

t−1−γ

τ

∫
B1∩{3τ<|v|<6τ }∩{|v|≤t}

(1+ |Dv|)p−2
|Dv|28′(|v|/τ)|v|φ dx dt

− c

∫ Kτ

0

t−γ

τ

∫
B1∩{3τ<|v|<6τ }∩{|v|>t}

(1+ |Dv|)p−2
|Dv|28′(|v|/τ)φ dx dt

− c

∫ Kτ

0
t−1−γ

∫
B1∩{|v|≤t}

(1+ |Dv|)p−2
|Dv| |Dφ||v|8(|v|/τ) dx dt

− c

∫ Kτ

0
t−γ

∫
B1∩{|v|>t}

(1+ |Dv|)p−2
|Dv| |Dφ|8(|v|/τ) dx dt

=: I1(ε)−QI2(ε)− I3 − I4 − I5 − I6, (7.30)
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where c ≡ c(n,N, p) and we recall that Q has been defined and estimated in (7.28).
We now apply Fubini’s theorem to estimate I1(ε), I2(ε), I3, . . . , I6. Notice that the ap-
plication of Fubini’s theorem is legitimate as all the terms displayed in (7.30) are finite,
including those that do not involve ε and the corresponding integrands are nonnegative.
This is obvious for as I1(ε), I2(ε), I4, I6 as γ < 1, while for I3 it is sufficient to remark
that the corresponding domain of integration forces t ≥ 3τ . And for I5, we have

I5 ≤ c

∫ Kτ

0
t−γ

∫
B1

(1+ |Dv|)p−2
|Dv| |Dφ|8(|v|/τ) dx dt <∞.

Therefore, Fubini’s theorem yields

I5 ≤
c

γ

∫
B1

(1+ |Dv|)p−2
|Dv| |v|1−γ |Dφ|8(|v|/τ) dx.

Furthermore,

I3 ≤
c

τ

∫
∞

3τ
t−1−γ dt

∫
B1∩{3τ<|v|<6τ }

(1+ |Dv|)p−2
|Dv|28′(|v|/τ)|v|φ dx dt

≤
c

γ τ 1+γ

∫
B1∩{3τ<|v|<6τ }

(1+ |Dv|)p−2
|Dv|2|v|φ dx. (7.31)

Notice that we have used |8′| ≤ 1. Recalling that γ < 1 and8(|v|/τ) = 0 for |v| ≥ Kτ ,
and keeping (7.24) in mind, we also have

I2(ε) =
1

1− γ

∫
B1∩{|v|≥ε}

[max{|v|, ε}1−γ − ε1−γ
]
(B :Dv) :Dv

|v|
8(|v|/τ)φ dx

≤
1

1− γ

∫
B1∩{|v|≥ε}

(B :Dv) :Dv

|v|γ
8(|v|/τ)φ dx, (7.32)

I4 ≤
c

(1− γ )τ

∫
B1∩{3τ<|v|<6τ }

(1+ |Dv|)p−2
|Dv|2|v|1−γ8′(|v|/τ)φ dx, (7.33)

and finally

I6 ≤
c

1− γ

∫
B1

(1+ |Dv|)p−2
|Dv| |v|1−γ |Dφ|8(|v|/τ) dx.

In all the above estimates the constant c depends only on n,N, p. It remains to estimate
I1(ε). We have

I1(ε) =
1
γ

∫
B1

[
1

max{|v|, ε}γ
−

1
Kγ τ γ

]
[(B :Dv) :Dv]8(|v|/τ)φ dx,

and therefore

I1(ε) ≥
1
γ

∫
B1∩{|v|≥ε}

[
1
|v|γ
−

1
Kγ τ γ

]
[(B :Dv) :Dv]8(|v|/τ)φ dx. (7.34)
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Again, notice that 8(|v|/τ) ≡ 0 provided |v| ≥ 6τ and so

8(|v|/τ)

Kγ τ γ
≤

6γ

Kγ

8(|v|/τ)

|v|γ
.

Using this in the preceding display yields

I1(ε) ≥
1
γ

∫
B1∩{|v|≥ε}

[
1−

6γ

Kγ

]
(B :Dv) :Dv

|v|γ
8(|v|/τ)φ dx,

so that by choosing
K ≡ K(γ ) = 6(21/γ ) (7.35)

we conclude that

I1(ε) ≥
1

2γ

∫
B1∩{|v|≥ε}

(B :Dv) :Dv

|v|γ
8(|v|/τ)φ dx. (7.36)

Step 2: An estimate for I1(ε)−QI2(ε)− I3 − I4. Estimates (7.36) and (7.32) imply

I1(ε)−QI2(ε) ≥

∫
B1∩{ε≤|v|<6τ }

[
1

2γ
−

Q

1− γ

]
(B :Dv) :Dv

|v|γ
8(|v|/τ)φ dx.

By recalling the upper bound in (7.28), we notice that

γ =
1

4p

(
≤

1
4Q

)
, so

1
2γ
−

Q

1− γ
≥

1
2γ
−
p − 1
1− γ

≥
1

4γ
, (7.37)

which also fixes the choice ofK ≡ K(p) in (7.35). Combining the last two displays yields

I1(ε)−QI2(ε) ≥
1

4γ

∫
B1∩{ε≤|v|<6τ }

(B :Dv) :Dv

|v|γ
8(|v|/τ)φ dx. (7.38)

Next, recalling (7.31) and (7.33), we notice that

I3 + I4 ≤
c

γ τ γ

∫
B1∩{3τ<|v|<6τ }

(|Dv|2 + |Dv|p)φ dx,

and therefore appealing to Lemma 7.1 (with 6τ instead of τ ) and recalling that φ vanishes
outside B3/4, we deduce

I3 + I4 ≤
c

γ τ γ

(∫
B1

|Dv|q dx + |µ̄|(B1)

)
.

Combining the last four displays yields

I1(ε)−QI2(ε)− I3 − I4 ≥
1

4γ

∫
B1∩{ε≤|v|<6τ }

(B :Dv) :Dv

|v|γ
8(|v|/τ)φ dx

−
c

γ

(∫
B1

|Dv|q dx + |µ̄|(B1)

)
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with c ≡ c(n,N, p) (recall that τ ≥ 3). Finally, using (7.25), we conclude that

I1(ε)−QI2(ε)− I3 − I4 ≥
1
c

∫
B1∩{ε≤|v|≤τ }

|Dv|2 + |Dv|p

|v|γ
φ dx

− c

(∫
B1

|Dv|q dx + |µ̄|(B1)

)
, (7.39)

again with c ≡ c(n,N, p, τ), since γ has been fixed in (7.37).

Step 3: Estimates for I5 and I6. We start by observing that

I5 + I6 ≤ c

[
1
γ
+

1
1− γ

] ∫
B1∩{|v|<6τ }

(1+ |Dv|)p−2
|Dv| |v|1−γ |Dφ| dx, (7.40)

where c ≡ c(n,N, p). Then, by Lemma 6.1 (which we can apply with γ = p − 1 and
since (7.9) and (7.11) are in force), for H ≡ H(n,N, p) ≥ 3 large enough we estimate∫
B1∩{|v|<6τ }∩{|Dv|>H }

(1+ |Dv|)p−2
|Dv| |v|1−γ |Dφ| dx

≤ cτ 1−γ
∫
B3/4∩{|Dv|>H }

|Dv|p−1 dx ≤ c

∫
B3/4∩{|Dū|>H−1}

|Dū|p−1 dx

≤ c

∫
B1∩{|Dū|>2}

|Dū|q dx + c|µ̄|(B1) ≤ c

∫
B1

|Dv|q dx + c|µ̄|(B1) (7.41)

with c ≡ c(n,N, p, τ); recall that the support of φ is contained in B3/4. We remark
that, in order to derive the last estimate we have applied Lemma 6.1 via a covering argu-
ment which is the same as the one detailed after (7.17). On the other hand, by Hölder’s
inequality we have∫
B1∩{|v|<6τ }∩{|Dv|≤H }

(1+ |Dv|)p−2
|Dv| |v|1−γ |Dφ| dx

≤ (1+H)p−2
(∫

B1

|Dv|q dx

)1/q(∫
B1∩{|v|<6τ }

|v|(1−γ )q/(q−1) dx

)1−1/q

≤ cτ 2−γ−q
(∫

B1

|Dv|q dx

)1/q(∫
B1

|v|q dx

)1−1/q

.

In the last estimate we have used (1− γ )q/(q − 1) ≥ q; this holds whenever q ≤ 2− γ
and γ ≤ 1/2, and this is the case since we take q ≤ 3/2 and γ ≤ γ̄ ≤ 1/4. Using the
Poincaré inequality, by (7.8) we obtain∫

B1∩{|v|<6τ }∩{|Dv|≤H }
(1+ |Dv|)p−2

|Dv| |v|1−γ |Dφ| dx ≤ c(τ )

∫
B1

|Dv|q dx.
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Hence, combining this last estimate with (7.40)–(7.41), we conclude that

I5 + I6 ≤ c

∫
B1

|Dv|q dx + c|µ̄|(B1)

with c ≡ c(n,N, p, τ). Combining this with (7.30) and (7.39) gives∫
B1∩{ε≤|v|≤τ }

|Dv|2 + |Dv|p

|v|γ
φ dx ≤ c

(∫
B1

|Dv|q dx +K|µ̄|(B1)

)
for c ≡ c(n,N, p, τ). At this point (7.20) follows by letting ε → 0, and recalling the
way K has been chosen as a function of γ in (7.35), and that γ has in turn been fixed in
(7.37).

Step 4: Proof of (7.28). For completeness we give the full proof of inequality (7.28). By
the definition in (7.24) and (2.4) it follows that

(B(x) :Dv) :Dv ≥

∫ 1

0
|D`+ sDv|p−2 ds |Dv|2.

Next, notice that for j ∈ {1, . . . , n}, the vector (|v|−2vαvβDjv
β)1≤α≤N is the projection

of (Djvβ)1≤β≤N onto the one-dimensional subspace generated by v. Hence |(Id−P)Dv|
≤ |Dv| and using (2.7) we have

|(B(x) :Dv) : (Id− P)Dv| ≤ (p − 1)
∫ 1

0
|D`+ sDv|p−2 ds |Dv|2,

so that (7.28) follows by combining the last two displays.

Step 5: Validity of (7.20) in the whole range (7.21). Indeed, observe that for 0 ≤ γ <
1/(4p) we have∫

B1/2∩{|v|≤τ }

|Dv|2 + |Dv|p

|v|γ
dx ≤ τ 1/(4p)−γ

∫
B1/2∩{|v|≤τ }

|Dv|2 + |Dv|p

|v|1/(4p)
dx

≤ c

(∫
B1

|Dv|q dx + |µ̄|(B1)

)
,

and the proof is finally complete. ut

Remark 7.2. Actually, the previous lemma will be used with the specific choice γ =
1/(4p) that was used in the main computations.

Lemma 7.2 is the key to achieving the next lemma, which features a sort of reverse Hölder
inequality: the integral of a higher power of the gradient can be estimated by integrals of
smaller powers.
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Lemma 7.3. Let ū, µ̄, v be as in (7.5)–(7.9). There exist constants t ≡ t (n, p) and δ ≡
δ(n, p) with

1 < t < min
{

n

n− 1
,

p

p − 1

}
and 0 < δ < 1 (7.42)

and c ≡ c(n,N, p) such that∫
B1/4

[(1+ |Dū|)p−3
|Dv|2]t dx ≤ c

(∫
B1

|Dv| dx

)t+δ−1(∫
B1

|Dv| dx + |µ̄|(B1)

)
.

(7.43)

Proof. Set

E :=

∫
B1

|Dv| dx

and assume, without loss of generality, that E > 0. Recall also that we are assuming,
by (7.9), that E ≤ |B1|. We will now show that∫

B1/4

[(1+ |Dū|)p−3
|Dv|2]t dx ≤ cEt+δ[1+ E−1

|µ̄|(B1)] (7.44)

with c ≡ c(n,N, p) for a suitable choice of the exponents t and δ as described in the
statement; this is (7.43). Indeed, we start by taking t and δ so that

t + δ ≤ 1+
1

n2 + 4pn
. (7.45)

It follows in particular that t < n/(n− 1). Then, consider the function f (·) defined by

f (s, t, δ) :=
t (p − 1)

s
+ 1∗

(
1−

t (p − 1)
s

)
− t − δ

for {
t (p − 1) < s < qm = min{1∗(p − 1), p},

1 < t < min{1∗, p/(p − 1)}, δ ∈ (0, 1).
(7.46)

where 1∗ = n/(n − 1). We notice that f (·) is decreasing in t and increasing in s, and
moreover

lim
s→qm
t→1

f (s, t) =
1

(n− 1)max{n, p}
− δ.

We can therefore select s ≡ s(n, p) as in (7.46) and sufficiently close to qm; t as in (7.46)
and sufficiently close to 1; and δ sufficiently close to 0 such that

f (s, t, δ) ≥ 0 ⇔ t + δ ≤
t (p − 1)

s
+ 1∗

(
1−

t (p − 1)
s

)
. (7.47)

Therefore, from now on, t > 1 and δ ∈ (0, 1) are fixed in such a way that (7.45) and (7.47)
hold. We split the integral in (7.44) as
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B1/4

[(1+ |Dū|)p−3
|Dv|2]t dx =

∫
B1/4∩{|v|<3}∩{|Dv|≤H }

[(1+ |Dū|)p−3
|Dv|2]t dx

+

∫
B1/4∩{|v|<3}∩{|Dv|>H }

[(1+ |Dū|)p−3
|Dv|2]t dx

+

∫
B1/4∩{|v|≥3}∩{|Dv|≤H }

[(1+ |Dū|)p−3
|Dv|2]t dx

+

∫
B1/4∩{|v|≥3}∩{|Dv|>H }

[(1+ |Dū|)p−3
|Dv|2]t dx

=: J1 + J2 + J3 + J4 (7.48)

for large enough H ≥ 3 to be fixed in (7.53) below. We are going to use Lemma 7.2 with
γ = 1/(4p), τ = 3 and q = 1. Let ε1, ε2 ∈ (0, 1) be such that

γ (2− ε1)

ε1
=
γ (p − ε2)

ε2
= 1∗ =

n

n− 1
; (7.49)

this implies
ε1

2
=

γ

γ + 1∗
,

ε2

p
=

γ

γ + 1∗
. (7.50)

Then, using |Dv −Dū| = |D`| = 1 and (7.10), we start by estimating

J1 ≤ c(H)

∫
B1/4∩{|v|<3}∩{|Dv|≤H }

|Dv|2−ε1 dx,

J2 ≤ c

∫
B1/4∩{|v|<3}∩{|Dv|>H }

|Dv|p−ε2 dx,

so that Hölder’s inequality gives

J1 ≤ c

(∫
B1/4∩{|v|<3}

|v|−γ |Dv|2 dx

)1−ε1/2(∫
B1

|v|γ (2−ε1)/ε1 dx

)ε1/2

,

J2 ≤ c

(∫
B1/4∩{|v|<3}

|v|−γ |Dv|p dx

)1−ε2/p
(∫

B1

|v|γ (p−ε2)/ε2 dx

)ε2/p

.

Using Lemma 7.2, (7.8), (7.49)–(7.50), and Sobolev–Poincaré’s inequality we get

J1 + J2 ≤ c[E + |µ̄|(B1)]
1−γ /(γ+1∗)E1∗γ /(γ+1∗)

= c[1+ E−1
|µ̄|(B1)]

1−γ /(γ+1∗)E1+(1∗−1)γ /(γ+1∗).

Now observe that

t + δ ≤ 1+ (1∗ − 1)
γ

γ + 1∗
= 1+

1
n(4p + 1)− 1

as a consequence of (7.45). Therefore, using E ≤ |B1|, we get

J1 + J2 ≤ cE
t+δ
[1+ E−1

|µ̄|(B1)]

where the constant c depends on n,N, p. We then move on to estimate J3, which is a
rather simple task. Indeed, we have
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|B1/4 ∩ {|v| ≥ 3}| ≤
1

31∗

∫
B1/4

|v|1
∗

dx ≤ c

(∫
B1

|Dv| dx

)1∗

= cE1∗ (7.51)

with c ≡ c(n,N, p), and hence

J3 ≤ cE
t+δ
≤ cEt+δ[1+ E−1

|µ̄|(B1)]

with c ≡ c(n,N, p,H) provided

t + δ ≤ 1∗ = 1+
1

n− 1
,

which is again ensured by (7.45). Next, to estimate J4 we also use Hölder’s inequality
and (7.10) to obtain

J4 ≤ c(p)

∫
B1/4∩{|Dv|>H }

|Dv|t (p−1) dx

≤ c

(∫
B1/4∩{|Dv|>H }

|Dv|s dx

)t (p−1)/s

|B1/4 ∩ {|v| > 3}|1−t (p−1)/s . (7.52)

We recall that s has been defined through (7.46)–(7.47). In order to estimate the last
integral, we use Lemma 6.1 with q̄ ≡ γ = s (which is admissible since s < qm) and
t ≡ H where

H := 20n2ch ≥ 20nch

∫
B1

|Dv| dx + 20nch[|µ|(B1)]
1/(p−1) (7.53)

where, finally, the constant ch ≡ ch(n,N, p, q̄) is determined by taking q̄ ≡ s; notice
that in the last estimate, (7.8) has been used. In this way we finally see that H depends
only on n,N, p, which fixes the dependence of all the constants above depending on H .
Therefore Lemma 6.1 can be applied directly to v and yields∫

B1/4∩{|Dv|>H }
|Dv|s dx ≤ c

∫
B1∩{|Dū|>H/c∗}

|Dv| dx + c|µ̄|(B1) ≤ c[E + |µ̄|(B1)].

Combining the last display with (7.52), and using (7.51) again, we obtain

J4 ≤ c[E + |µ̄|(B1)]
t (p−1)/sE1∗[1−t (p−1)/s]

= c[1+ E−1
|µ̄|(B1)]E

t (p−1)/s+1∗[1−t (p−1)/s]
≤ cEt+δ[1+ E−1

|µ̄|(B1)].

In the last line we have used (7.47) as E ≤ |B1|. Using the estimates found for J1, . . . , J4
in (7.48) finally yields (7.44), and the proof is complete. ut

7.2. Proof of Proposition 7.1

We look for the constants θnd and q in the form

θnd := (ε/H)
q/δ and q := t, (7.54)

where ε ∈ (0, 1] is as in the statement of Proposition 7.1, while t and δ are provided
in (7.42) by Lemma 7.3, and therefore depend only on n and p; finally, H ≥ 1 will be
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chosen later depending only on n,N, p. When (Du)Br 6= 0 (this is the relevant case to
consider here, otherwise the assertion of Proposition 7.1 becomes trivial), we assume that
both ∫

Br

|Du− (Du)Br | dx ≤

(
ε

H

)q/δ
|(Du)Br | (7.55)

and
|µ|(Br)

rn−1 ≤

(
ε

H

)q/δ
|(Du)Br |

p−2
∫
Br

|Du− (Du)Br | dx. (7.56)

We then construct an A-harmonic map h in Br/4 satisfying (7.4), with A defined in (7.3)
and L(·) defined in (2.4). To this end, we start by rescaling u and µ in B1 as

ū(x) :=
u(x0 + rx)− (u)Br

r|(Du)Br |
, µ̄(x) =

rµ(x0 + rx)

|(Du)Br |
p−1 .

In this way, also recalling (2.6), it follows that

|(Dū)B1 | = 1, (ū)B1 = 0, L((Dū)B1) = L((Du)Br ). (7.57)

Moreover, ū solves the system

−4pū = µ̄ in B1,

and by (7.55)–(7.56) we have

E :=

∫
B1

|Dū− (Dū)B1 | dx ≤

(
ε

H

)q/δ
and |µ̄|(B1) ≤

(
ε

H

)q/δ
E; (7.58)

in particular, |µ̄|(B1) ≤ 1. Next, again for x ∈ B1, we define the maps ` ≡ (`α)1≤α≤N
and v exactly as in (7.7), so that∫

B1

|Dv| dx = E ≤

(
ε

H

)q/δ
≤ 1

together with
|D`| = 1, (7.59)

which is a consequence of the first relation in (7.57). We are thus in the setup of Sec-
tion 7.1. Then, by Lemma 7.3, there exists a positive constant c ≡ c(n,N, p) such that∫

B1/4

[(1+ |Dū|)p−3
|Dv|2]q dx ≤ c

(∫
B1

|Dv| dx

)t+δ−1(∫
B1

|Dv| dx + |µ̄|(B1)

)
≤ cEq+δ ≤ c

(
ε

H

)q
Eq , (7.60)

because we have chosen q = t at the beginning of the proof. Observe that we have used
(7.58) repeatedly. Now, as in Lemma 7.2, rewrite
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|Dū|p−2Dū− |D`|p−2D`− |D`|p−2A : (Dū−D`)

=

∫ 1

0

(
G(D`+ τ(Dū−D`))−G(D`)

)
dτ : (Dū−D`) =: W, (7.61)

where G(z) := ∂Ap(z) = |z|
p−2L(z), and L(·) and A have been defined in (2.4)

and (7.3), respectively. In particular, G(z) is a tensor obtained by linearizing the vector
field |z|p−2z. Its components are

G
αβ
ij (z) = |z|

p−2
(
δαβδij + (p − 2)

zαi z
β
j

|z|2

)
(see (2.3)). A direct computation gives the existence of a constant c ≡ c(n,N) such that

|∂G(z)| ≤ c(p − 2)|z|p−3 (7.62)

for every z 6= 0. Therefore, using also (7.26) with t = p − 3 > −1, we have∫ 1

0
|G(D`+ τ(Dū−D`))−G(D`)| dτ

≤ c(p − 2)
∫ 1

0

∫ 1

0
|D`+ τs(Dū−D`))|p−3 dτ ds |Dū−D`|

≤ c(|D`| + |Dū|)p−3
|Dū−D`| = c(1+ |Dū|)p−3

|Dv|

with c ≡ c(n,N). Here we have used p > 2 although this information does not appear in
a quantitative way, i.e., by (7.62) the constant in the above inequality is stable as p→ 2.
Thus, by the definitions of W in (7.61) and of v we get

|W | ≤ c(1+ |Dū|)p−3
|Dv| |Dū−D`| = c(1+ |Dū|)p−3

|Dv|2,

again with c ≡ c(n,N, p), and hence (7.60) implies(∫
B1/4

|W |q dx

)1/q

≤ c

(
ε

H

)
E. (7.63)

We now define h̄ ∈ W 1,2(B1/4) as the solution to{
− div(A :Dh̄) = 0 in B1/4,

h̄ = ū on ∂B1/4,
(7.64)

where we recall that A = L((Dū)B1) thanks to (7.57). By (2.7) the system (7.64) is
a strongly elliptic system with constant coefficients, and therefore standard Calderón–
Zygmund theory applies. In particular, since ū is inW 1,p(B1/4), so is h̄. Using the identity
−4pū = µ̄ together with (7.59) and (7.61) we get

div[A : (Dh̄−Dū)] = div W + µ̄.

We can now use classical linear Calderón–Zygmund theory for linear elliptic systems to
find a constant c ≡ c(n,N, p, q) ≡ c(n,N, p) such that(∫

B1/4

|Dū−Dh̄|q dx

)1/q

≤ c

(∫
B1/4

|W |q dx

)1/q

+ c|µ̄|(B1). (7.65)
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Here we are in fact using the smoothness of µ̄ and 1 < q < n/(n − 1). We continue to
estimate using (7.63) and the second inequality in (7.58); this yields(∫

B1/4

|Dū−Dh̄|q dx

)1/q

≤ c

(
ε

H

)
E + c

(
ε

H

)q/δ
E ≤ c

(
ε

H

)
E.

Scaling back to original solutions, setting also

h(x) = r|(Du)Br | h̄

(
x − x0

r

)
, x ∈ Br/4(x0),

we get (∫
Br/4

|Du−Dh|q dx

)1/q

≤ c

(
ε

H

)
E

∫
Br

|Du− (Du)Br | dx

with c ≡ c(n,N, p). Choosing H := c finishes the proof, since h is an A-harmonic map
in Br/4. ut

8. Riesz potential estimates: Proof of Theorems 1.1–1.3

In this section we give the proof of Theorems 1.1–1.3. We first prove a few lemmas for
energy solutions, u ∈ W 1,p(�) and assuming that µ ∈ C∞(�) (Section 8.2). Then,
starting from Section 8.3, we start treating the general case of SOLAs. In the rest of the
section we shall always assume that p > 2.

8.1. Setting up the parameters

In this section we fix a few quantities and objects that will be used throughout the follow-
ing pages; these are the main actors in the proofs, and they are independent of whether
we are considering an energy solution or a SOLA to (1.1). In particular, we choose some
constants in order to apply Propositions 5.1 and 7.1; in this connection, a key point is that
while the choice of θnd in Proposition 7.1 is determined by the choice of ε, the choice
of θ is essentially free in Proposition 5.1, and this allows us to combine the two re-
sults. Let chol,p ≡ chol,p(n,N, p) ≥ 1, αhol ≡ αhol(n,N, p) and σ0 ≡ σ0(n,N, p) ∈

(0, 1/2) be the constants from Theorem 3.2; moreover, let chol,A ≡ chol,A(n,N,3) ≡

chol,A(n,N, p − 1) ≥ 1 be the constant from Theorem 3.1 with 3 = p − 1. We finally
set

chol := max{chol,A(n,N, p − 1), chol,p(n,N, p)} ≡ chol(n,N, p). (8.1)

We observe that the choice of chol,A is dictated by the fact that we are going to apply The-
orem 3.1 to A-harmonic maps with A being a fourth-order tensor satisfying the ellipticity
condition

|ξ |2 ≤ (A : ξ) : ξ ≤ (p − 1)|ξ |2 ∀z, ξ ∈ RN×n. (8.2)

This is actually the condition satisfied by L(·) in (2.7). We proceed by fixing

σ := min
{

1
32
,
σ0

20
,

(
1

8n+20chol

)1/αhol
}
, (8.3)
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which then depends only on n,N, p. With σ chosen as in the above display and with
Br(x0) ⊂ � being a fixed ball, we set

rj := σ
j+1r and Bj := Brj (x0), ∀j ∈ N ∪ {0}, r−1 := r, (8.4)

thereby defining a sequence of closed balls shrinking to x0:

· · · ⊂ Brj+1(x0) ≡ B
j+1
⊂ Bj ≡ Brj (x0) ⊂ · · · ⊂ B

0
≡ Bσr(x0).

Remark 8.1. We are here using closed balls instead of the usual open ones since this will
be useful when passing from W 1,p solutions to SOLAs, in Lemma 8.4 below.

We now look at Proposition 7.1 with the choice

ε := σ n/210, (8.5)

which again fixes ε as a quantity depending only on n,N, p, and determine the corre-
sponding quantity

θnd ≡ θnd(n,N, p, ε) ≡ θnd(n,N, p).

We then set
θ := min{θnd, σ

4n
} (8.6)

and let
cd ≡ cd(n,N, p, 1, ε, θ) ≡ cd(n,N, p)

be as in Proposition 5.1 corresponding to ε and θ in (8.5) and (8.6), respectively, and with
q = 1. Set finally

H1 :=
28

θ
≥

28

σ 4n , (8.7)

H2 :=
220pcdH1

σ 8nθ
. (8.8)

Note that since σ depends only on n,N, p, so do the constants ε, θ,H1, H2.

8.2. Three preliminary lemmas

In this section we restrict our attention to the system (1.1) when u ∈ W 1,p(�) and
µ ∈ C∞(�). In other words, we are considering standard energy solutions. Anyway, we
shall use this result only in a qualitative way, while all the constants will be independent
of this fact. We define, for every integer j ≥ 0,

Aj := |(Du)Bj | and Ej :=

∫
Bj
|Du− (Du)Bj | dx, (8.9)

together with the composite quantity

Cj := Aj +H1Ej ≡ |(Du)Bj | +H1

∫
Bj
|Du− (Du)Bj | dx. (8.10)

We now prove a sequence of preliminary lemmas, which are eventually employed to prove
the main theorems. In the following, j will always denote a nonnegative integer. The first
lemma analyses the case where it is possible to apply Proposition 5.1.
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Lemma 8.1 (Decay in the degenerate case). Let u ∈ W 1,p(�) be an energy solution to
the system (1.1) with µ ∈ C∞(�). Suppose that

Ej ≥ θAj (8.11)

for some integer j ≥ 0. Then

Ej+1 ≤
Ej

27 +
2cd

σ n

[
|µ|(Bj )

rn−1
j

]1/(p−1)

. (8.12)

Proof. Since (8.11) holds, Proposition 5.1 applied in Br ≡ Brj (x0) implies that there
exists a p-harmonic map vj ∈ W 1,p(Brj /2(x0)) in Brj /2(x0) such that∫

1
2B

j

|Du−Dvj | dx ≤ εEj + cd

[
|µ|(Bj )

rn−1
j

]1/(p−1)

. (8.13)

Therefore the triangle inequality implies that∫
1
2B

j

|Dvj − (Dvj ) 1
2B

j | dx ≤ 2
∫

1
2B

j

|Dvj − (Duj )Bj | dx

≤ 2n+1Ej + 2
∫

1
2B

j

|Du−Dvj | dx ≤ 2n+2Ej + 2cd

[
|µ|(Bj )

rn−1
j

]1/(p−1)

. (8.14)

In the first line above we have used (2.1). By appealing to Theorem 3.2, inequality (3.4)
applied to v ≡ vj , Br ≡ Bj/2 and δ ≡ 2σ , together with (8.14), leads to

osc
Bj+1

Dvj ≤ 2cholσ
αhol

∫
1
2B

j

|Dvj − (Dvj ) 1
2B

j | dx

≤ 2cholσ
αhol

(
2n+2Ej + 2cd

[
|µ|(Bj )

rn−1
j

]1/(p−1))
.

Combining this with (8.13) and again using (2.1) then gives

Ej+1 ≤ 2
∫
Bj+1
|Du− (Dvj )Bj+1 | dx

≤ 2
∫
Bj+1
|Du−Dvj | dx + 2

∫
Bj+1
|Dvj − (Dvj )Bj+1 | dx

≤ 2
∫
Bj+1
|Du−Dvj | dx + 2 osc

Bj+1
Dvj

≤ σ−n
∫

1
2B

j

|Du−Dvj | dx + 2 osc
Bj+1

Dvj

≤ (2n+4cholσ
αhol + σ−nε)Ej + (8cholcdσ

αhol + σ−ncd)

[
|µ|(Bj )

rn−1
j

]1/(p−1)

≤
Ej

27 +
2cd

σ n

[
|µ|(Bj )

rn−1
j

]1/(p−1)

.

In deriving the last estimate we have also used the definitions of the constants σ and ε
in (8.3) and (8.5), respectively. This proves (8.12). ut
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Lemma 8.2 (Decay in the nondegenerate case I). Let u ∈ W 1,p(�) be an energy solu-
tion to the system (1.1) with µ ∈ C∞(�). Suppose that

Ej ≤ θAj and
|µ|(Bj )

rn−1
j

≤ θA
p−2
j Ej (8.15)

for some integer j ≥ 0. Then
Ej+1 ≤ Ej/4. (8.16)

Proof. First, ifAj = 0, then (8.15) implies that alsoEj = 0, and henceEj+1 = 0 as well,
because then Du is a constant in Bj . Therefore (8.16) holds trivially. So we can assume
that Aj = |(Du)Bj | > 0. Then, since by (8.6) we have θ ≤ θnd, Proposition 7.1 applied
in Br ≡ Brj (x0) implies that there exists an A-harmonic map hj ∈ W 1,p(Brj /4(x0)) in
Brj /4(x0) that solves

div(A :Dhj ) = 0 in Brj /4(x0), A := L((Du)Bj ),

such that ∫
1
4B

j

|Du−Dhj | dx ≤ εEj .

We recall that L(·) has been defined in (2.4), while ε has been fixed in (8.5). Theorem 3.1
applied to hj in Br ≡ Bj/4 and with δ = 4σ further gives

osc
Bj+1

Dhj ≤ 4cholσ
αhol

∫
1
4B

j

|Dhj − (Dhj ) 1
4B

j | dx.

The application of Theorem 3.1 here is allowed by the choice of the constant chol in (8.1),
since the tensor A satisfies (8.2). Combining the last two displays as in the proof of
Lemma 8.1, and using the elementary property in (2.1) repeatedly, we obtain

Ej+1 ≤ 2
∫
Bj+1
|Du− (Dhj )Bj+1 | dx

≤ 2
∫
Bj+1
|Du−Dhj | dx + 2

∫
Bj+1
|Dhj − (Dhj )Bj+1 | dx

≤ σ−n
∫

1
4B

j

|Du−Dhj | dx + 2 osc
Bj+1

Dhj

≤ σ−nεEj + 16cholσ
αhol

∫
1
4B

j

|Dhj − (Du)Bj | dx

≤ (σ−nε + 4n+2cholσ
αhol)Ej + 16cholσ

αhol

∫
1
4B

j

|Du−Dhj | dx

≤ (σ−nε + 4n+2cholσ
αhol + 16cholσ

αholε)Ej .

Now (8.3) and (8.5) yield

σ−nε + 4n+2cholσ
αhol + 16cholσ

αholε ≤ 1/4,

so that (8.16) follows. ut
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Lemma 8.3 (Decay in the nondegenerate case II). Let u ∈ W 1,p(�) be an energy solu-
tion to the system (1.1) with µ ∈ C∞(�). Suppose that

Ej ≤ θAj and
|µ|(Bj )

rn−1
j

> θA
p−2
j Ej (8.17)

for some integer j ≥ 0. Then

Ej ≤
1
θ

[
|µ|(Bj )

rn−1
j

]1/(p−1)

. (8.18)

Proof. By (8.17) and since we are assuming that p > 2, we simply estimate

Ej = E
(p−2)/(p−1)
j E

1/(p−1)
j ≤ [(θAj )

p−2Ej ]
1/(p−1)

≤

[
θp−3 |µ|(B

j )

rn−1
j

]1/(p−1)

,

and (8.18) follows since θ ≤ 1 and again p > 2. ut

8.3. The key lemma for SOLAs

In this section, after the the first preliminary results obtained for standard energy solutions
in Lemmas 8.1–8.3, we treat the transition to SOLAs. We stress that, for a single SOLA
u to (1.1), the quantities Aj , Cj and Ej are defined exactly as in (8.9)–(8.10).

Lemma 8.4 (Iterative step). Let u ∈ W 1,p−1(�;RN ) be a SOLA to the system (1.1).
Suppose that λ is a positive number and that for some integers k ≥ m ≥ 0 we have

Cj < λ, Cj+1 > λ/16 ∀j ∈ {m, . . . , k}, Cm < λ/4, (8.19)[ k∑
j=m

|µ|(Bj )

rn−1
j

]1/(p−1)

<
2λ
σ nH2

. (8.20)

Then, inductively,

Ck+1 < λ. (8.21)

Moreover,

k+1∑
j=m

Ej ≤
σ 4n

32
λ and

k+1∑
j=m

Ej ≤ 2Em +
H2σ

n

64H1
λ2−p

k∑
j=m

|µ|(Bj )

rn−1
j

. (8.22)

Proof. The proof is in several steps; with m ≤ k fixed as in the statement of the lemma,
the following arguments hold for any j ∈ {m, . . . , k}.
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Step 0: Reduction to the case of energy solutions. Here we first show that we can reduce
to the case when u ∈ W 1,p(�) is an energy solution and µ ∈ C∞(�). More precisely,
under the additional condition u ∈ W 1,p(�), in Steps 1–4 below we will show that if

Cj ≤ λ, Cj+1 ≥ λ/16 ∀j ∈ {m, . . . , k}, Cm ≤ λ/4, (8.23)[ k∑
j=m

|µ|(Bj )

rn−1
j

]1/(p−1)

≤
2λ
σ nH2

(8.24)

for a W 1,p-solution u and µ ∈ C∞(�), then

Ck+1 ≤ 11λ/12, (8.25)

and (8.22) holds as in the statement of the lemma. Taking this for granted, we now show
the validity of the lemma for SOLAs. We therefore take a SOLA u as in Definition 1.1
and, as in (8.9)–(8.10), we define the corresponding quantities

Ahj := |(Duh)Bj |, Ehj :=

∫
Bj
|Duh − (Duh)Bj | dx,

Chj := A
h
j +H1E

h
j ≡ |(Duh)Bj | +H1

∫
Bj
|Duh − (Duh)Bj | dx.

Since the sets Bj are the closures of open balls, we can use (1.9) to conclude that

lim sup
h

|µh|(B
j ) ≤ |µ|(Bj ) for every j ∈ N. (8.26)

On the other hand, the W 1,p−1-convergence of the gradient also gives

Ahj → Aj , Ehj → E, Chj → Cj , as h→∞, (8.27)

for every j . Therefore, by (8.19), there exists an integer h̄ such that

Chj ≤ λ, Chj+1 ≥ λ/16 ∀j ∈ {m, . . . , k}, Chm ≤ λ/4,[ k∑
j=m

|µh|(Bj )

rn−1
j

]1/(p−1)

≤
2λ
σ nH2

provided h ≥ h̄. Applying the result for W 1,p-solutions as described at the beginning of
this step we will actually show that

Chk+1 ≤ 11λ/12

and
k+1∑
j=m

Ehj ≤
σ 4n

32
λ and

k+1∑
j=m

Ehj ≤ 2Ehm +
H2σ

n

64H1
λ2−p

k∑
j=m

|µh|(B
j )

rn−1
j

whenever h ≥ h̄. Letting h→∞ and recalling that the balls Bj are closed yields (8.25)
and (8.22). We have therefore reduced the matter to proving that (8.23)–(8.24) im-
ply (8.25) and (8.22) for W 1,p-solutions.
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Step 1: The degenerate case never occurs. Assume first that the basic inequality used in
Lemma 8.1 to treat the so-called degenerate case, that is,

Ej > θAj , (8.28)

holds. We will show that this leads to a contradiction. Indeed, Lemma 8.1 and (8.20),
together with the definition of H2 in (8.8), imply

H1Ej+1 ≤
H1Ej

27 +
4cdH1

σ 2nH2
λ ≤

Cj

27 +
λ

27 ≤
λ

26 .

Furthermore,

|Aj+1 − Aj | ≤ |(Du)Bj+1 − (Du)Bj |

≤

∫
Bj+1
|Du− (Du)Bj | dx ≤

Ej

σ n
≤

Cj

σ nH1
≤
λ

26 (8.29)

by the definition of H1 in (8.7). Then (8.28) and Cj ≤ λ, which is also an assumption
in (8.19), imply

Aj ≤
Ej

θ
≤

Cj

H1θ
≤

λ

H1θ
≤
λ

26 ,

and therefore

λ

16
≤ Cj+1 ≤ |Aj+1 − Aj | + Aj +H1Ej+1 ≤

λ

26 +
λ

26 +
λ

26 <
λ

16
,

a contradiction. Thus we must have

Ej ≤ θAj (8.30)

for every j ∈ {m, . . . , k}, under the assumptions considered in (8.19)–(8.20).

Step 2: Nondegenerate case I. Assume now that

|µ|(Bj )

rn−1
j

≤ θA
p−2
j Ej .

Then (8.30) allows us to apply Lemma 8.2, which gives

Ej+1 ≤ Ej/4 ∀j ∈ {m, . . . , k}. (8.31)

Step 3: Nondegenerate case II. Assume finally that

|µ|(Bj )

rn−1
j

> θA
p−2
j Ej . (8.32)
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This last inequality with (8.30) allows us to apply Lemma 8.3, which together with (8.20)
implies

Ej ≤
1
θ

[
|µ|(Bj )

rn−1
j

]1/(p−1)

≤
2λ

θσ nH2
.

Therefore, since by the definitions of H1, H2 in (8.7)–(8.8) we have

|Aj+1 − Aj | ≤

∫
Bj+1
|Du− (Du)Bj | dx ≤

Ej

σ n
≤

2λ
θσ 2nH2

≤
λ

26 ,

and also by means of (2.1),

H1Ej+1 ≤ 2H1

∫
Bj+1
|Du− (Du)Bj | dx ≤

2H1Ej

σ n
≤

4H1λ

θσ 2nH2
≤
λ

26 .

The last two displays allow us to conclude that

Cj+1 ≡ Aj+1 +H1Ej+1 ≤ Aj + |Aj+1 − Aj | +H1Ej+1 ≤ Aj + λ/25.

Recalling that in (8.19) we are assuming Cj+1 ≥ λ/16, we find that

Aj ≥ λ/25,

which together with (8.32) further gives (keep again property (2.1) in mind)

Ej+1 ≤
2Ej
σ n
≤

2A2−p
j

θσ n

|µ|(Bj )

rn−1
j

≤
21+5(p−2)

θσ n
λ2−p |µ|(B

j )

rn−1
j

(8.33)

for every j ∈ {m, . . . , k}.

Step 4: Induction step. Estimates (8.31) and (8.33) allow us to conclude that

Ej+1 ≤ Ej/4+
21+5(p−2)

θσ n
λ2−p |µ|(B

j )

rn−1
j

∀j ∈ {m, . . . , k}.

Summing the above inequalities, reabsorbing terms, still adding Em to both sides and
finally using (8.20), leads to

k+1∑
j=m

Ej ≤
4Em

3
+

8
3

25(p−2)

θσ n
λ2−p

k∑
j=m

|µ|(Bj )

rn−1
j

=
4Em

3
+

2
3H1

(
25pH1

H2σ n

)
H2σ

nλ2−p
k∑

j=m

|µ|(Bj )

rn−1
j

≤
4Em

3
+

H2σ
n

210pH1
λ2−p

k∑
j=m

|µ|(Bj )

rn−1
j

≤
λ

3H1
+

2p−1

210pH1

(
1

H2σ n

)p−2

λ ≤
5λ

12H1
. (8.34)
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Notice that we have used (8.19) to estimate H1Em ≤ λ/4, and the very definition of
H1, H2 in (8.7)–(8.8). Moreover, by the definition of H1, we conclude that

σ−4n
k+1∑
j=m

Ej ≤
H1

16

k+1∑
j=m

Ej ≤
λ

32
. (8.35)

The last inequality and (8.34) prove the two estimates in (8.22). Furthermore, since

|Ak+1 −Am| ≤

k∑
j=m

|Aj+1 −Aj | ≤

k∑
j=m

∫
Bj+1
|Du− (Du)Bj | dx ≤ σ

−n
k∑

j=m

Ej ≤ λ/4,

(8.36)
we get

Ak+1 ≤ Am + |Ak+1 − Am| ≤ Cm + |Ak+1 − Am| ≤ λ/4+ λ/4 = λ/2.

Therefore, using (8.34) and (8.35), we conclude that

Ck+1 = Ak+1 +H1Ek+1 ≤ λ/2+ 5λ/12 ≤ 11λ/12,

proving (8.25) and thereby finishing the proof. ut

We conclude this section with another consequence of Lemmas 8.1–8.3.

Lemma 8.5 (Excess decay). Let u ∈ W 1,p−1(�;RN ) be a SOLA to the system (1.1).
There exist positive constants cV ≡ cV(n,N, p) ≥ 1 and αV ≡ αV(n,N, p) ∈ (0, 1)
such that∫
Bτr (x0)

|Du− (Du)Bτr (x0)| dx

≤ cVτ
αV

∫
Br (x0)

|Du− (Du)Br (x0)| dx + cV sup
0<%<r

[
|µ|(B%(x0))

%n−1

]1/(p−1)

(8.37)

for all τ ∈ (0, 1].
Proof. As in Lemma 8.4, we reduce to the case when we are dealing with energy solutions
and µ is smooth. Indeed, let u ∈ W 1,p−1(�) be the SOLA mentioned in the statement,
and define {uh} and {µh} as in Definition 1.1; in particular, −4puh = µh for every h.
This means that, taking (8.37) for granted in the case of energy solutions, we have∫
Bτr (x0)

|Duh − (Duh)Bτr (x0)| dx

≤ cVτ
αV

∫
Br (x0)

|Duh − (Duh)Br (x0)| dx + cV sup
0<%<r

[
|µh|(B%(x0))

%n−1

]1/(p−1)

(8.38)

uniformly in h. At this point (8.37) follows by letting h→∞, and recalling (1.9). There-
fore, it remains to prove (8.37) for every energy solution to a system with smooth right
hand side. Using Lemmas 8.1–8.3 we conclude that

Ej+1 ≤ Ej/4+max{2σ−ncd, θ
−1
}

[
|µ|(Bj )

rn−1
j

]1/(p−1)
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for all j ∈ N ∪ {0}. Iterating the above inequality gives, by induction,

Ek+1 ≤
E0

4k+1 + c

k∑
j=0

4j−k
[
|µ|(Bj )

rn−1
j

]1/(p−1)

for every k ∈ N ∪ {0} with c ≡ c(n,N, p) (recall the choice of the constants made in
Section 8.1 that makes σ, θ and cd depend only on n,N, p). By using (2.1) and some
standard manipulation we then conclude that

Ek ≤
c̄

4k

∫
Br

|Du− (Du)Br | dx + c̄ sup
0<%<r

[
|µ|(B%(x0))

%n−1

]1/(p−1)

, (8.39)

again with c̄ ≡ c̄(n,N, p) and for every k ∈ N∪{0}. (8.37) now follows via an interpola-
tion argument that we report here for completeness. We first consider the case τ ∈ (0, σ ).
We take the integer k ≥ 1 such that σ k+1 < τ ≤ σ k; then, by (2.1) and (8.39),∫
Bτr (x0)

|Du− (Du)Bτr (x0)| dx ≤
2σ kn

τn

∫
B
σkr

(x0)
|Du− (Du)Bk | dx ≤

2Ek−1

σ n

≤
8E0

4kσ n
+

2c̄
σ n

sup
0<%<r

[
|µ|(B%(x0))

%n−1

]1/(p−1)

=
8σ kαVE0

σ n
+

2c̄
σ n

sup
0<%<r

[
|µ|(B%(x0))

%n−1

]1/(p−1)

where αV := [log(1/4)]/log σ . This defines the exponent αV mentioned in the statement,
with the dependence on n,N, p coming only from that of σ , introduced in (8.3). Recalling
the definition of E0 ((8.4)), and using again (2.1), we conclude that∫

Bτr (x0)
|Du− (Du)Bτr (x0)| dx

≤
16σ kαV

σ 2n

∫
Br (x0)

|Du− (Du)Br (x0)| dx +
2c̄
σ n

sup
0<%<r

[
|µ|(B%(x0))

%n−1

]1/(p−1)

.

Now (8.37) follows with cV = 16(1+ c̄)σ−2n−1 for τ ∈ (0, σ r); notice that cV again de-
pends only on n,N, p by the choices made in Section 8.1. Here we have used σ k+1 < τ .
For τ ∈ [σ, 1] we then trivially have∫

Bτr (x0)
|Du− (Du)Bτr (x0)| dx ≤

2
σ n

∫
Br (x0)

|Du− (Du)Br (x0)| dx,

and (8.37) follows in every case. ut

8.4. Proof of Theorems 1.1 and 1.2

We will now prove Theorem 1.2, from which Theorem 1.1 immediately follows. The
proof is in several steps. Here the ball Br(x0) is the one fixed in the statements of Theo-
rems 1.1 and 1.2, while we notice that the arguments developed in Sections 8.1 and 8.2
work for any ball Br ⊂ �.
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Step 1: Vanishing mean oscillations at x0. We will first show that if (1.11) holds, then
Du has vanishing mean oscillations at x0, i.e., (1.12) holds. To this end, fix δ ∈ (0, 1).
By (1.11) we find a positive radius r1,δ < r such that

cV sup
0<%<r1,δ

[
|µ|(B%(x0))

%n−1

]1/(p−1)

≤
δ

2
,

and then τδ so small that

cVτ
α
δ

∫
Br1,δ (x0)

|Du− (Du)Br1,δ (x0)| dx ≤
δ

2
.

Thus, for rδ := τδr1,δ we deduce from (8.37) (which we apply with r ≡ r1,δ , see the
remarks at the beginning of the proof) that

sup
0<%<rδ

∫
B%(x0)

|Du− (Du)B%(x0)| dx ≤ δ,

thereby proving that Du has vanishing mean oscillations at x0 if (1.11) holds. We have
thus proved (1.12) and the first assertion of Theorem 1.2.

Step 2: Notation. For a fixed ball Br(x0) ⊂ � we now define the quantity

9 ≡ 9(x0, r)

:=
64H1

σ n

∫
Br (x0)

|Du− (Du)Br (x0)| dx +H2[I
|µ|
1 (x0, r)]

1/(p−1). (8.40)

Here σ ∈ (0, 1), and H1, H2 are the large positive constants defined in Section 8.1. Re-
call also the balls {Bj } defined in (8.4) and the quantities Aj , Ej and Cj introduced in
(8.9)–(8.10). We shall assume that

I|µ|1 (x0, r) <∞, (8.41)

so that 9 is also finite. At this point, with the definition of H2 in (8.8) we can control the
measure terms as follows:[ ∞∑

j=0

|µ|(Bj )

rn−1
j

]1/(p−1)

≤

[ ∞∑
j=0

r1−n
j

− log σ

∫ rj−1

rj

|µ|(B%)
d%

%

]1/(p−1)

≤

[
σ 1−n

− log σ

∞∑
j=0

∫ rj−1

rj

|µ|(B%)

%n−1
d%

%

]1/(p−1)

≤ σ−n[I|µ|1 (x0, r)]
1/(p−1)

≤
9

H2σ n
. (8.42)

This and (8.41) readily imply

lim
%→0

(
|µ|(B%(x0))

%n−1 + I|µ|1 (x0, %)

)
= 0,



990 Tuomo Kuusi, Giuseppe Mingione

and, by the result of Step 1,
lim
%→0

9(x0, %) = 0. (8.43)

The rest of the proof of Theorem 1.2 now splits into two different cases, treated in Steps 3
and 4 below.

Step 3: The nondegenerate case. This is the case in which

A0 > 9/16 ≡ 9(x0, r)/16. (8.44)

Then we set
λ := 8A0. (8.45)

Estimating

E0 ≤
2
σ n

∫
Br (x0)

|Du− (Du)Br (x0)| dx ≤
9

32H1
, (8.46)

by (8.44) we have

C0 = A0 +H1E0 ≤ A0 +9/16 < 2A0 = λ/4. (8.47)

Moreover, by (8.42) and (8.44), and recalling (8.45), it follows that[ ∞∑
j=0

|µ|(Bj )

rn−1
j

]1/(p−1)

≤
9

H2σ n
≤

16A0

H2σ n
=

2λ
H2σ n

. (8.48)

Next, notice that
A1 > A0/2. (8.49)

Indeed, recalling (8.44), (8.46) and (8.47) and using again |A1 − A0| ≤ σ−nE0 as
in (8.36), we have

A1 ≥ A0 − |A1 − A0| ≥ A0 −
E0

σ n
≥ A0 −

9

32σ nH1

≥ A0 −9/64 ≥ 3A0/4 > A0/2.

We have used the definition of H1 in (8.7). We now prove that

Aj > A0/2 ∀j ≥ 0. (8.50)

To reach a contradiction, by (8.49), assume that there exists a finite (exit time) index
J ≥ 2 such that

AJ ≤ A0/2 and Aj > A0/2 ∀j ∈ {0, . . . , J − 1}. (8.51)

First we are going to prove by induction that

Cj < λ ∀j ∈ {0, . . . , J − 1}. (8.52)

For this we notice that C0 < λ by (8.47). Assuming that the condition

Cj < λ ∀j ∈ {0, . . . , k}

holds for some k ≤ J−2, we will prove that Ck+1 < λ. Notice that ifAj > A0/2 = λ/16
for every j ∈ {0, . . . , J − 1}, then, by the very definition of Cj ,

Cj > λ/16 ∀j ∈ {0, . . . , J − 1}. (8.53)
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In particular, Cj+1 > λ/16 for every j ∈ {0, . . . , k}. Recalling (8.47), we can therefore
apply Lemma 8.4 with m = 0, obtaining Ck+1 < λ as desired.

We can now proceed with the proof of (8.50). By (8.47), (8.52) and (8.53) we can
apply Lemma 8.4 with m = 0 and k = J − 2; in particular, we gain the validity of (8.22),
whose first inequality reads

J−1∑
j=0

Ej ≤
σ 4n

32
λ ≤

σ 3nA0

32
.

Therefore, arguing as for (8.36), we have

|AJ − A0| ≤

J−1∑
j=0

|Aj+1 − Aj | ≤ σ
−n

J−1∑
j=0

Ej ≤ A0/4,

and hence
AJ ≥ A0 − |AJ − A0| ≥ A0 − A0/4 = 3A0/4,

contrary to (8.51). This proves (8.50).
Now, with (8.50) at our disposal, we may repeat the induction argument used above

to prove that (8.52) holds for every J , so Cj < λ for every j ∈ N ∪ {0}. Moreover, again
by the very definition of Cj , (8.50) implies that Cj > λ/16 for every j ∈ N∪{0}, and this
together with (8.47) allows us to apply Lemma 8.4 with m = 0 and for every integer k.
The second inequality in (8.22), after letting k→∞, then yields

∞∑
j=0

Ej ≤ 2E0 +
H2σ

n

64H1
A

2−p
0

∞∑
j=0

|µ|(Bj )

rn−1
j

,

and, recalling (8.44) and (8.48), in particular estimating A2−p
0 ≤ 16p−292−p, we have

∞∑
j=0

Ej ≤ 2E0 +
(H2σ

n)2−pA
2−p
0

64H1
9p−1

≤
9

32H1
+

9

64H1
≤
9

H1
. (8.54)

Now observe that if m < k then

|(Du)Bk − (Du)Bm | ≤

k−1∑
j=m

|(Du)Bj+1 − (Du)Bj | ≤ σ
−n
∞∑
j=m

Ej ≤
9

σ nH1
, (8.55)

which, together with the second-last display, implies that {(Du)Bj } is a Cauchy sequence.
Thus we may define

Du(x0) := lim
j→∞

(Du)Bj . (8.56)

This is in fact the precise representative of Du at x0. Indeed, for any positive % ≤ σr

we get the integer j% ≥ 1 such that σ j%+1r < % ≤ σ j%r; thus, recalling that the series
in (8.55) converges, we have

lim
%→0
|Du(x0)− (Du)B%(x0)| ≤ lim

j%→∞

(
|Du(x0)− (Du)Bj% | + σ

−nEj%
)
= 0.
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We have thus proved that

∃ lim
%→0

(Du)B%(x0) = Du(x0). (8.57)

Next, letting k→∞ in (8.55) with m = 0 yields

|Du(x0)− (Du)Bσr (x0)| ≤ σ
−n
∞∑
j=0

Ej ,

so that by means of (8.54) we obtain

|Du(x0)− (Du)Br (x0)| ≤ |Du(x0)− (Du)Bσr (x0)| + |(Du)Br (x0) − (Du)Bσr (x0)|

≤ σ−n
∞∑
j=0

Ej + σ
−n

∫
Br (x0)

|Du− (Du)Br (x0)| dx

≤
29
σ nH1

≤ 9 ≡ 9(x0, r). (8.58)

This last estimate is exactly (1.13) (recall the definition of 9). In conclusion, if (8.44)
holds we have proved that x0 is a Lebesgue point, that is, (8.57) holds, and estimate (1.13)
holds. To conclude the proof, it remains to establish the same facts when (8.44) does not
hold. This will be done in Step 4 below.

Step 4: The degenerate case. Here we treat the remaining case when (8.44) does not hold,
that is,

A0 = |(Du)B0 | ≤ 9/16 ≡ 9(x0, r)/16. (8.59)

There is no loss of generality in assuming 9 > 0, since otherwise Du is constant in
Br(x0) and there is nothing to prove. This time we define

λ := 9/2. (8.60)

Now, recall that by the definition of 9 and using (8.46), we have

C0 ≡ A0 +H1E0 ≤ 9/16+9/32 < 9/16+9/16 = 9/8 = λ/4. (8.61)

Next, we consider chains Ckm of indices where Lemma 8.4 can be applied; specifically, we
set

Ckm := {j ∈ N : m ≤ j ≤ k and the conditions in (8.19) are satisfied}. (8.62)

We are now able to prove that

Cj < λ = 9/2 ∀j ∈ N. (8.63)

Indeed, for contradiction define

k := min{s ∈ N ∪ {0} : Cs+1 ≥ λ}, (8.64)
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that is, k is the smallest integer such that

Ck+1 ≥ λ. (8.65)

We then define

Jk := {j ∈ N ∪ {0} : Cj < λ/4, j < k + 1} and m := max Jk.

Notice that Jk is nonempty since C0 < λ/4 (see (8.61)). Also, j ∈ {m, . . . , k} implies
that Cj ≥ λ/4 > λ/16; hence recalling the definition of k in (8.64), we conclude that
Ckm is a chain of the type considered in (8.62). We can therefore apply Lemma 8.4 to get
Ck+1 < λ, which contradicts (8.65) and finally implies (8.63).

To proceed with the proof, we take % ∈ (0, σ r] and k ≥ 0 the largest integer in N∪{0}
such that rk = σ k+1r ≥ %, so that (rk/%)−n ≤ (rk/rk+1)

−n
= σ−n; we obtain

|(Du)B%(x0)| ≤ Ak + |(Du)B%(x0) − (Du)Bk | ≤ Ak + σ
−n

∫
Bk
|Du− (Du)Bk | dx

≤ Ck ≤ λ = 9/2. (8.66)

In the last lines we have used the definitions in (8.7)–(8.10), (8.60) and (8.63). If, on the
other hand, % ∈ (σ r, r], then in a similar way we have

|(Du)B%(x0)| ≤ A0+|(Du)B%(x0)−(Du)B0 | ≤ A0+2σ−n
∫
Br (x0)

|Du−(Du)Br (x0)| dx

≤ 9/16+9/16 ≤ 9/2, (8.67)

where this time we have also used (8.59). All in all, we have proved that

|(Du)Bσr | ≤ 9(x0, r)/16, so sup
%<r
|(Du)B%(x0)| ≤ 9(x0, r)/2. (8.68)

We are now ready to finish the proof, and we start by showing that x0 is a Lebesgue
point for Du. For contradiction, assume that

@ lim
%→0

(Du)B%(x0). (8.69)

This implies that the nondegenerate case (8.44) cannot occur for any % ∈ (0, σ r), since
then the limit would exist. Thus

|(Du)B%(x0)| ≤ 9(x0, %/σ)/16 ∀% ∈ (0, σ r).

But, recalling (8.43), this immediately implies that lim%→0(Du)B%(x0) = 0, contradicting
(8.69). Therefore also in this case (8.57) holds, that is, x0 is a Lebesgue point of Du. It
remains to prove (1.13). Now, as we are assuming that the degenerate case holds for r ,
that is, (8.59) is valid, it follows that (8.66)–(8.67) hold and give

|(Du)B%(x0) − (Du)Br (x0)| ≤ sup
%<r
|(Du)B%(x0)| + |(Du)Br (x0)| ≤ 9(x0, r).

By letting % → 0 in the above inequality, and using (8.57), we get (1.13), and the proof
of Theorems 1.1 and 1.2 is complete.
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8.5. Proof of Theorem 1.3

We now assume that (1.14) holds and show that Du is continuous in Br(x0). For this
we show that for every δ > 0 and x1 ∈ Br(x0) we can a find positive radius rδ <
dist(Br(x0), ∂�) such that

osc
Brδ (x1)

Du < δ. (8.70)

Let c ≡ c(n,N, p) be the constant from Theorem 1.2. Choose first %1 so small that

sup
x∈Br (x0)

[I|µ|1 (x, %1)]
1/(p−1)

≤
δ

16c
, (8.71)

which is certainly possible by (1.14) (here recall that we are assuming for simplic-
ity that the measure µ is defined on the whole space Rn; see the Introduction). By
Theorem 1.2, Du has vanishing mean oscillations at x1, and hence there is %2 ∈

(0,min{%1, dist(x1, ∂Br(x0))/4}) such that∫
B%2 (x1)

|Du− (Du)B%2 (x1)| dx ≤
δ

2n+5c
.

Set rδ := %2/2 and suppose that x2 ∈ Brδ (x1). Then∫
Brδ (x2)

|Du− (Du)Brδ (x2)| dx ≤ 2
∫
Brδ (x2)

|Du− (Du)B%2 (x1)| dx

≤ 2n+1
∫
B%2 (x1)

|Du− (Du)B%2 (x1)| dx ≤
δ

16c

and similarly

|(Du)Brδ (x2) − (Du)B2rδ (x1)| ≤

∫
Brδ (x2)

|Du− (Du)B%2 (x1)| dx ≤ δ/16.

By (8.71) and Theorem 1.2, both x1 and x2 are Lebesgue points and

|Du(x1)− (Du)B2rδ (x1)| + |Du(x2)− (Du)Brδ (x2)| ≤ δ/4.

Hence |Du(x1) − Du(x2)| < δ/2 by the triangle inequality and the above two displays.
This immediately implies (8.70), because x2 was an arbitrary point of Brδ (x1).

9. Wolff potential estimates: Proof of Theorems 1.4–1.6

In this section we shall always assume that p > 2 − 1/n, as prescribed in (1.5). We
start by proving Theorem 1.5; Theorem 1.4 will then follow as a corollary exactly as
estimate (1.10) follows from Theorem 1.2. The proof of Theorem 1.5 is actually consid-
erably simpler than the one for the analogous Theorem 1.2, although some of the ideas
are similar. Specifically, as is classical in the case of p-harmonic functions, the low-order
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regularity analysis does not need to distinguish between degenerate and nondegenerate
cases, since Du is not considered. As a consequence we only need the measure data p-
harmonic approximation in Theorem 4.1, while the corresponding nondegenerate version
of Proposition 7.1 is not needed here. This ultimately allows us to consider the full range
p > 2−1/n. We notice that the proof reported here is substantially different from the ones
originally offered [32, 58], while it partially relies on the different argument introduced
in [19].

The proof now goes in two parts. As in the case of the gradient estimates, we shall
first carry out the estimates for energy solutions

u ∈ W 1,p(�) and µ ∈ C∞(�). (9.1)

Therefore, assuming (9.1), let us now fix a ball Br ≡ Br(x0) ⊂ �, and all the other balls
will be concentric. By Lemma 5.2, for every ε ∈ (0, 1) there exists a p-harmonic map
v ≡ vr in Br/2 such that∫

Br/2

|Du−Dv| dx ≤
ε

r

∫
Br

|u− (u)Br | dx + cs

[
|µ|(Br)

rn−1

]1/(p−1)

with cs ≡ cs(n,N, p, ε). Set w = u− v. By Poincaré’s inequality it then follows that∫
Br/2

|w − (w)Br/2 | dx ≤ cr

∫
Br/2

|Du−Dv| dx

≤ εcP

∫
Br

|u− (u)Br | dx + cPcs

[
|µ|(Br)

rn−p

]1/(p−1)

with cP ≡ cP(n,N). Fix σ ∈ (0, 1/4) to be determined in a few lines. Theorem 3.3 and
the triangle inequality together with the above comparison estimate now imply∫
Bσr

|u− (u)Bσr | dx ≤

∫
Bσr

|v − (v)Bσr | dx +

∫
Bσr

|w − (w)Bσr | dx

≤ osc
Bσr

v + 2
∫
Bσr

|w − (w)Br/2 | dx

≤ cσ

∫
Br/2

|v − (v)Br/2 | dx + 21−nσ−n
∫
Br/2

|w − (w)Br/2 | dx

≤ cσ

∫
Br/2

|u− (u)Br/2 | dx + c(σ + σ
−n)

∫
Br/2

|w − (w)Br/2 | dx

≤ c̄(σ + εσ−n)

∫
Br

|u− (u)Br | dx + c̄σ
−ncs

[
|µ|(Br)

rn−p

]1/(p−1)

.

The constant c̄ ≡ c̄(n,N, p) is independent of σ and ε, while cs still depends on ε; notice
that we have used property (2.1). Choosing then

σ :=
1
4c̄

and ε :=
σ n

4c̄
,
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thereby also fixing the constant cs ≡ cs(n,N, p), we arrive at∫
Bσr

|u− (u)Bσr | dx ≤
1
2

∫
Br

|u− (u)Br | dx + c

[
|µ|(Br)

rn−p

]1/(p−1)

(9.2)

with c ≡ c(n,N, p). This time we set, for every j ∈ N ∪ {0},

Ẽj :=

∫
Bj
|u− (u)Bj | dx and Bj := Brj (x0), rj := σ

j+1r,

with r−1 ≡ r , so that applying (9.2) with r ≡ rj gives

Ẽj+1 ≤
1
2
Ẽj + c

[
|µ|(Bj )

r
n−p
j

]1/(p−1)

∀j ∈ N ∪ {0}. (9.3)

By (9.3), and proceeding as for Lemma 8.5, we can find positive constants c̃V ≡

c̃V(n,N, p) ≥ 1 and α̃V ≡ α̃V(n,N, p) ∈ (0, 1) such that∫
Bτr

|u− (u)Bτr | dx ≤ cVτ
α̃V

∫
Br

|u− (u)Br | dx + c̃V sup
0<%<r

[
|µ|(B%)

%n−p

]1/(p−1)

(9.4)

for all τ ∈ (0, 1); this is an analog of (8.37). The last two displays have been obtained
assuming (9.1). At this point we pass from energy solutions as in (9.1) to general SOLAs;
the scheme is the same of the one described in Step 1 of the proof of Lemma 8.4 to which
we refer for more details. Indeed, take now a SOLA u ∈ W 1,p−1(�) as in the statements
of Theorems 1.4–1.6, and take {uh} and {µh} as in Definition 1.1. Then we write inequal-
ities (9.3)–(9.4) for uh and µh and finally let h → ∞. Recalling (1.9) (and also (8.26))
then leads to establishing that (9.3)–(9.4) hold for the original SOLA too. From now on
this the kind of solution considered. Proceeding as in Section 8.4 and using the analog
of the property in the last display, Step 1, it now easily follows that u is VMO at x0,
that is, (1.17) holds, provided (1.16) is assumed. To proceed with the proof, summing up
inequalities in (9.3) yields

k+1∑
j=1

Ẽj ≤
1
2

k∑
j=0

Ẽj + c

k∑
j=0

[
|µ|(Bj )

r
n−p
j

]1/(p−1)

whenever k ∈ N ∪ {0}; reabsorbing terms yields

k+1∑
j=0

Ẽj ≤ 2Ẽ0 + c

k∑
j=0

[
|µ|(Bj )

r
n−p
j

]1/(p−1)

.

On the other hand, arguing as in (8.42) we have

∞∑
j=0

[
|µ|(Bj )

r
n−p
j

]1/(p−1)

≤ c

∫ r

0

[
|µ|(B%)

%n−p

]1/(p−1)
d%

%
≡ cWµ

1,p(x0, r),
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so that, combining the last two displays, we arrive at

k+1∑
j=0

Ẽj ≤ 2Ẽ0 + cW
µ
1,p(x0, r) (9.5)

for c ≡ c(n,N, p). Similarly to (8.29) and (8.55), for every m, k ∈ N such that m < k

we have

|(u)Bk − (u)Bm | ≤

k−1∑
j=m

|(u)Bj+1 − (u)Bj | ≤ σ
−n

k+1∑
j=m

Ẽj ≤ σ
−n

k+1∑
j=0

Ẽj

≤ cẼ0 + cW
µ
1,p(x0, r) ≤ 2cσ−n

∫
Br (x0)

|u− (u)Br (x0)| dx + cW
µ
1,p(x0, r), (9.6)

where σ ≡ σ(n,N, p) has been chosen in (9.6). The set of inequalities in the last display
allows us to proceed as after (8.55), thereby discovering that {(u)Bj } is a Cauchy sequence
and eventually

∃ lim
%→0

(u)B%(x0) = u(x0), (9.7)

that is, x0 is a Lebesgue point of u and moreover (1.18) follows as well. This completes
the proof of Theorem 1.5 and, as described above, Theorem 1.4 now follows as a corol-
lary. Finally, once the above results have been obtained, Theorem 1.6 follows just as
Theorem 1.3, with minor modifications.

10. Selected corollaries

In this final section we report a few corollaries of Theorems 1.1–1.6. These are of two
types, and therefore fall into two different subsections. In the first one we list those corol-
laries aimed at recovering a few well-known results from the literature. The second one
involves new results. We recall that the best possible regularity for solutions to (1.1) is of
course reached when µ ≡ 0 and does not go beyond the Hölder continuity of the gradient
for some exponent > 1. Therefore, in any case, the corollaries will not involve a better
degree of regularity for the gradient of solutions.

10.1. Known corollaries

We start with results applying in the so-called energy range, that is, when solutions belong
to W 1,p. In this case we recast some by now classical theorems for the model case (1.1).
The first one we mention is concerned with the higher order Calderón–Zygmund theory,
and it deals with a result of Iwaniec and DiBenedetto & Manfredi, which when applied to
(1.1) reads as follows:

Theorem 10.1 ([14, 28]). Let u ∈ W 1,p(�;RN ) be a weak solution to the system (1.1)
with p > 2. Then

µ ∈ L
q

loc(�) ⇒ |Du|
p−1
∈ L

nq/(n−q)

loc (�) whenever
np

np − n+ p
≤ q < n.
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The above result follows from estimate (1.10) simply by using the mapping properties
of Riesz potentials in Lebesgue spaces (see (10.2) below); for more details we refer for
instance to [25, 52]. As a matter of fact, a more general statement holds, and leads us to
consider a rather large and important family of function spaces, the Lorentz spaces. We
recall that, with � ⊂ Rn being an open set, the Lorentz space L(q, γ ) ≡ L(q, γ )(�;Rk)
with q ≥ 1 and 0 < γ <∞ is the set of all measurable maps f : �→ Rk such that∫

∞

0
(λq |{x ∈ � : |f (x)| > λ}|)γ /q

dλ

λ
<∞.

The Lorentz space L(q,∞) is by definition the weak-Lq space, also called the
Marcinkiewicz space, and denoted by Mq . This is defined by prescribing that f ∈
Mq(�) iff

sup
λ>0

λq |{x ∈ � : |f (x)| > λ}| <∞.

The local variants of such spaces are defined in the usual fashion (see for instance [52]).
We have L(q, q) ≡ Lq for every q ≥ 1. The spaces L(q, γ ) decrease in q, while increase
in γ ; moreover, they interpolate Lebesgue spaces as γ tunes q in the following sense:
whenever 0 < γ < q < r ≤ ∞ we have, with continuous embeddings,

Lr ≡ L(r, r) ⊂ L(q, γ ) ⊂ L(q, q) ⊂ L(q, r) ⊂ L(γ, γ ) ≡ Lγ .

Useful references for Lorentz spaces are for instance [25, 56]. We now have the following
extension of Theorem 10.1:

Theorem 10.2 ([4]). Let u ∈ W 1,p(�;RN ) be a weak solution to the system (1.1) with
p > 2. Then

µ ∈ L(q, γ ) ⇒ |Du|p−1
∈ L(nq/(n− q), γ )

locally whenever
np

np − n+ p
< q < n and 0 < γ ≤ ∞. (10.1)

Theorems 10.1–10.2 are a direct consequence of estimate (1.10) and of the basic mapping
property of Riesz potentials,

µ ∈ L(q, γ ) ⇒ I|µ|1 ∈ L(nq/(n− q), γ ) (10.2)

whenever 1 < q < n and 0 < γ ≤ ∞. For a discussion of these aspects we refer for
instance to [39, 52]. The following result deals with the borderline case q = n in (10.1),
yielding gradient continuity and thereby our main result in [40] as a corollary.

Theorem 10.3 ([40]). Let u ∈ W 1,p(�;RN ) be a solution to the system (1.1) with µ ∈
L(n, 1) and p > 2. Then Du is continuous in �.

This follows from Theorem 1.3, since assuming µ ∈ L(n, 1) allows one to verify assump-
tion (1.14) for every ball Br(x0) b �; see [35, 39] for this fact. We remark that the proof
in [40] of Theorem 10.3 is rather long and nontrivial.

We then mention another consequence of Theorem 1.10, this time concerned with
measure data. Thus SOLAs must be considered. This is a local version of an important
result of Dolzmann, Hungerbühler & Müller.
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Theorem 10.4 ([15, 16]). Let u ∈ W 1,p−1(�;RN ) be a SOLA to the system (1.1) for
2 < p ≤ n. Then |Du|p−1

∈Mn/(n−1) locally in �.

This simply follows from estimate (1.10) and the fact that I|µ|1 ∈Mn/(n−1) whenever µ is
a Borel measure with finite total mass. We remark that in [15, 16] more general systems
are considered through a very beautiful proof. Namely, systems featuring measurable
coefficients as for instance

− div(a(x)|Du|p−2Du) = µ

are considered, with a(·) bounded away from zero and infinity. For such systems esti-
mate (1.10) cannot hold, as already in the scalar case with µ = 0 solutions are not in
general Lipschitz continuous.

10.2. New corollaries

We now come to the new results implied by Theorems 1.1–1.3. These are theorems that
have been proved in the case of scalar equations, but whose validity in the case of systems
has remained an open issue. They now follow from Theorem 1.1 straight away.

Theorem 10.5 (Calderón–Zygmund theory below the duality exponent). Let u ∈
W 1,p−1(�;RN ) be a SOLA to the system (1.1) for 2 < p < n. Then the implication

µ ∈ L(q, γ ) ⇒ |Du|p−1
∈ L(nq/(n− q), γ ) (10.3)

holds locally in � for

1 < q ≤
np

np − n+ p
and 0 < γ ≤ ∞. (10.4)

In the case γ = q < np/(np − n + p) = (p∗)′ the implication in (10.3) recovers, in a
local fashion, the classical result in [9] that reads

µ ∈ L
q

loc(�) ⇒ |Du|
p−1
∈ L

nq/(n−q)

loc (�).

In the case 1 < q < np/(n−p) and γ = ∞we are considering the case of Marcinkiewicz
spaces and (10.3) reads

µ ∈Mq

loc(�) ⇒ |Du|
p−1
∈Mnq/(n−q)

loc (�).

This last result has originally been proved in the scalar case in [7, 30]. The full range of
Lorentz spaces and Morrey–Lorentz spaces together with the hard borderline case q =
np/(np− n+p) has been obtained in [52] in the scalar case, via a rather involved proof.
It is worth observing that the scalar techniques used in [7, 9, 30, 52] do not apply in the
vectorial case. More generally, in [52] a whole set of local estimates for various function
spaces has been obtained for the gradient in the range (10.4); several of them also extend
to the vectorial case again by means of Theorem 1.1.

We finally have the following continuity result for solutions, and this is a direct con-
sequence of Theorem 1.6. The main assumption (10.5) below forces once again the right
hand side to belong to the dual space of W 1,p, therefore the statement is about energy
solutions.
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Theorem 10.6. Let u ∈ W 1,p(�;RN ) be a weak solution to the system (1.1) with
2 < p < n. If

µ ∈ L(n/p, 1/(p − 1)), (10.5)
then u is continuous.

This follows by just observing that (10.5) yields (1.19) in every ball of � and then Theo-
rem 1.6 applies.

For further results and consequences of Theorems 1.1–1.6 we refer for instance to the
very recent paper [2].

11. Final remarks and developments

More general structures can be considered instead of the purely p-Laplacean system (1.1).
Here we briefly describe the modifications needed to treat the case (1.20) and outlined in
Remark 1.1. The part of the proof in Sections 3–6 still works with minor modifications
since it is essentially based on p-monotonicity and on the quasi-diagonal structure of the
p-Laplacean system. Both properties are satisfied by (1.20) under assumptions (1.21).
The only somewhat delicate modifications are necessary in Section 7, and now we briefly
describe them. The definition in (2.2) is modified to Ag(z) := g(|z|)z, and therefore,
replacing (2.4) and (2.5), we have

L(z) =

(
δαβδij +

g′(|z|)|z|

g(|z|)

zαi z
β
j

|z|2

)
(eα ⊗ ei)⊗ (e

β
⊗ ej )

for z 6= 0 and
∂Ag(z) = g(|z|)L(z), (11.1)

respectively. With this new definition, by using (1.21), we have

|ξ |2 ≤ (L(z) : ξ) : ξ, |L(z) : ξ | ≤
2
ν
|ξ | (11.2)

for all z, ξ , |z| 6= 0. The modifications then start from the proof of Lemma 7.2, where the
range of admissible exponents γ now depends on the number ν appearing in (1.21). More
precisely, the lemma continues to hold provided (7.21) is replaced by

0 ≤ γ ≤ ν/8. (11.3)

For this, observe that instead of (7.22) we linearize as

− div(g(|Dū|)Dū− g(|D`|)D`) = µ̄

with (7.23) which now holds with

B(x) :=

∫ 1

0
g(|D`+ sDv|)L(D`+ sDv) ds, v = ū− `, (11.4)

according to the identity (11.1), and where L(·) is as in (11). Using (1.21) and the rea-
soning from Step 4 of the proof of Lemma 7.2, we find that in (7.28) we have the new
estimate

Q ≤ 2/ν. (11.5)
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Indeed, by using (11.2) this time we have

(B(x) :Dv) :Dv ≥

∫ 1

0
g(|D`+ sDv|) ds |Dv|2,

|(B(x) :Dv) : (Id− P)Dv| ≤
2
ν

∫ 1

0
g(|D`+ sDv|) ds |Dv|2,

so that (11.5) follows. Estimate (11.5) can now be used in the estimation of I1 −QI2(ε)

from Step 2, therefore the new bound in (7.21) comes from choosing γ ≤ 1/(4Q) in
(7.37). This new choice of γ influences the size of t ≡ t (ν) and δ ≡ δ(ν) in (7.42), which
are now potentially smaller values. This eventually leads to reformulating the condition
in (7.45), which becomes

t + δ < 1+ o(n, 1/ν).

Finally, the new choice of t, δ as above influences the choice of q and θnd in the subsequent
proof of Proposition 7.1. In particular, the smaller δ affects the choice of θnd in (7.54).
Finally, the smaller t ≡ q > 1 implies a larger c in (7.65), since Calderón–Zygmund
estimates degenerate as q approaches 1 (the borderline case). The rest of the proof then
follows as in Section 8 and all the constants exhibit an additional dependence on ν. The
proofs are at this stage very similar to the ones given above.

It appears an interesting issue to consider more general structures as in (1.20), but
without the polynomial condition g(t) ≈ tp−2, in the spirit of the scalar case already
considered in [5]. This seems to be a nontrivial task and the issue will be considered in
future work.

Finally, we mention the recent paper [3], where a fractional differentiability analog of
the potential estimate appears in the scalar case. Namely, for SOLAs of the p-Laplacean
equation (1.1) the authors prove that |Du|p−2Du ∈ W

1−ε,1
loc (�) for every ε ∈ (0, 1). This

is in a sense a singular integral analog of the fractional integral estimate (1.10), as, once
again, the exponent p does not appear in the space involved. This result was originally
conjectured in [51].
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[27] Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic
Equations. Oxford Math. Monogr., Oxford Univ. Press, New York (1993) Zbl 0780.31001
MR 1207810

[28] Iwaniec, T.: Projections onto gradient fields and Lp-estimates for degenerated elliptic opera-
tors. Studia Math. 75, 293–312 (1983) Zbl 0552.35034 MR 0722254
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[30] Kilpeläinen, T., Li, G.: Estimates for p-Poisson equations. Differential Integral Equations 13,
791–800 (2000) Zbl 0970.35035 MR 1750051
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[46] Malý, J., Ziemer, W. P.: Fine Regularity of Solutions of Elliptic Partial Differential Equa-
tions. Math. Surveys Monogr. 51, Amer. Math. Soc., Providence, RI (1997) Zbl 0882.35001
MR 1461542

[47] Manfredi, J. J.: Regularity for minima of functionals with p-growth. J. Differential Equations
76, 203–212 (1988) Zbl 0674.35008 MR 0969420

[48] Maz’ya, V.: The continuity at a boundary point of the solutions of quasi-linear elliptic equa-
tions. Vestnik Leningrad. Univ. 25, no. 13, 42–55 (1970) (in Russian) Zbl 0252.35024
MR 0274948

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0780.31001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1207810
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0552.35034&format=complete
http://www.ams.org/mathscinet-getitem?mr=0722254
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1234.35121&format=complete
http://www.ams.org/mathscinet-getitem?mr=2859927
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0970.35035&format=complete
http://www.ams.org/mathscinet-getitem?mr=1750051
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0797.35052&format=complete
http://www.ams.org/mathscinet-getitem?mr=1205885
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0820.35063&format=complete
http://www.ams.org/mathscinet-getitem?mr=1264000
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1182.35222&format=complete
http://www.ams.org/mathscinet-getitem?mr=2604619
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1252.35097&format=complete
http://www.ams.org/mathscinet-getitem?mr=2900466
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1266.31011&format=complete
http://www.ams.org/mathscinet-getitem?mr=3004772
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1288.35145&format=complete
http://www.ams.org/mathscinet-getitem?mr=3184569
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1303.35120&format=complete
http://www.ams.org/mathscinet-getitem?mr=3191979
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1293.35332&format=complete
http://www.ams.org/mathscinet-getitem?mr=3187676
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1293.35332&format=complete
http://www.ams.org/mathscinet-getitem?mr=3174278
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1316.35132&format=complete
http://www.ams.org/mathscinet-getitem?mr=3247381
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1373.35065&format=complete
http://www.ams.org/mathscinet-getitem?mr=3541851
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1170.35409&format=complete
http://www.ams.org/mathscinet-getitem?mr=2285179
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1304.35727&format=complete
http://www.ams.org/mathscinet-getitem?mr=3211065
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0116.30302&format=complete
http://www.ams.org/mathscinet-getitem?mr=0161019
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0882.35001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1461542
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0674.35008&format=complete
http://www.ams.org/mathscinet-getitem?mr=0969420
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0252.35024&format=complete
http://www.ams.org/mathscinet-getitem?mr=0274948


1004 Tuomo Kuusi, Giuseppe Mingione

[49] Maz’ja, V. G., Havin, M.: Nonlinear potential theory. Russian Math. Surveys 27, 71–148
(1972) Zbl 0247.31010 MR 0409855

[50] Mingione, G.: Regularity of minima: an invitation to the dark side of the calculus of variations.
Appl. Math. 51, 355–425 (2006) Zbl 1164.49324 MR 2291779

[51] Mingione, G.: The Calderón–Zygmund theory for elliptic problems with measure data. Ann.
Scuola Norm. Sup. Pisa Cl. Sci. (4) 6, 195–261 (2007) Zbl 1178.35168 MR 2352517

[52] Mingione, G.: Gradient estimates below the duality exponent. Math. Ann. 346, 571–627
(2010) Zbl 1193.35077 MR 2578563

[53] Mingione, G.: Gradient potential estimates. J. Eur. Math. Soc. 13, 459–486 (2011)
Zbl 1217.35077 MR 2746772

[54] Mooney, C., Savin, O.: Some singular minimizers in low dimensions in the calculus of varia-
tions. Arch. Ration. Mech. Anal. 21, 1–22 (2016) Zbl 1338.49040 MR 3483890

[55] Simon, L.: Theorems on Regularity and Singularity of Energy Minimizing Maps. Birkhäuser,
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