A sharp quantitative version of Alexandrov's theorem via the method of moving planes

Received March 13, 2015

Abstract

We prove the following quantitative version of the celebrated Soap Bubble Theorem of Alexandrov. Let S be a C^{2} closed embedded hypersurface of $\mathbb{R}^{n+1}, n \geq 1$, and denote by osc (H) the oscillation of its mean curvature. We prove that there exists a positive ε, depending on n and upper bounds on the area and the C^{2}-regularity of S, such that if $\operatorname{osc}(H) \leq \varepsilon$ then there exist two concentric balls $B_{r_{i}}$ and $B_{r_{e}}$ such that $S \subset \bar{B}_{r_{e}} \backslash B_{r_{i}}$ and $r_{e}-r_{i} \leq C \operatorname{osc}(H)$, with C depending only on n and upper bounds on the surface area of S and the C^{2}-regularity of S. Our approach is based on a quantitative study of the method of moving planes, and the quantitative estimate on $r_{e}-r_{i}$ we obtain is optimal.

As a consequence, we also prove that if $\operatorname{osc}(H)$ is small then S is diffeomorphic to a sphere, and give a quantitative bound which implies that S is C^{1}-close to a sphere.

Keywords. Alexandrov Soap Bubble Theorem, method of moving planes, stability, mean curvature, pinching

Contents

1. Introduction 262
2. Notation and preliminary results 265
2.1. Classical solutions to the mean curvature equation 268
2.2. The symmetry result of Alexandrov 272
2.3. Curvatures of projected surfaces 273
3. Technical lemmas 278
4. Proof of Theorem 1.1 282
4.1. Step 1. Approximate symmetry in one direction 283
4.2. Steps 2-3. Approximate radial symmetry and conclusion 292
5. Proof of Corollary 1.2 293
References 296

1. Introduction

The Soap Bubble Theorem proved by Alexandrov [A2] has been the object of many investigations. In its simplest form it states that

The n-dimensional sphere is the only compact connected embedded hypersurface of \mathbb{R}^{n+1} with constant mean curvature.

As is well-known, the embeddedness condition is necessary, as implied by the celebrated counterexamples by Hsiang-Teng-Yu [HYY] and Wente [W]. There have been several extensions of the rigidity result of Alexandrov to more general settings. Alexandrov proved his theorem in a more general setting; in particular, the Euclidean space can be replaced by any space of constant curvature (see also [A3] where he discussed several possible generalizations). Montiel and Ros [MR] and Korevaar [K] studied the case of hypersurfaces with constant higher order mean curvatures embedded in space forms. Alexandrov's Theorem has also been studied for warped product manifolds by Montiel [Mo], Brendle [B] and Brendle and Eichmair [BE]. There are many other related results; the interested reader can refer to [CFSW, CFMN, CY, DCL, HY, Re, Ros1, Ros2, Y] and references therein.

To prove the Soap Bubble Theorem, Alexandrov introduced the method of moving planes, a very powerful technique which has been the source of many insights in analysis and differential geometry. Serrin understood that the method can be applied to partial differential equations. Indeed, in his seminal paper [Se] he obtained a symmetry result for the torsion problem which gave rise to a huge amount of results for overdetermined problems (the interest reader can consult the references in [CMS1]). Gidas, Ni and Nirenberg [GNN] refined Serrin's argument to obtain several symmetry results for positive solutions of second order elliptic equations in bounded and unbounded domains (see also [Li1] and [Li2]). The method was further employed by Caffarelli, Gidas and Spruck [CGS] to prove asymptotic radial symmetry of positive solutions for the conformal scalar curvature equation and other semilinear elliptic equations (see also [KMPS]). The moving planes were also used to obtain several celebrated results in differential geometry: Schoen [Sch] characterized the catenoid, and Meeks [Me] and Korevaar, Kusner and Solomon [KKS] showed that a complete connected properly embedded constant mean curvature surface in the Euclidean space with two annuli ends is rotationally symmetric. There are a large number of other interesting papers on these topics which are not mentioned here.

Alexandrov's proof in the Euclidean space works as follows: (i) one shows that for any direction ω there exists a critical hyperplane orthogonal to ω which is a hyperplane of symmetry for the surface S; (ii) since the center \mathcal{O} of mass of S lies on each hyperplane of symmetry, every hyperplane passing through \mathcal{O} is a hyperplane of reflection symmetry for S; (iii) since any rotation about \mathcal{O} can be written as a composition of $n+1$ reflections, S is rotationally invariant, which implies that S is the n-dimensional sphere. The crucial step in this proof is (i), which is obtained by applying the method of moving planes and the maximum principle (see Theorem A in Subsection 2.2).

In this paper we study a quantitative version of the Soap Bubble Theorem, that is, we assume that the oscillation of the mean curvature $\operatorname{osc}(H)$ is small and we prove that S
is close to a sphere. More precisely, let S be an n-dimensional, C^{2}-regular, connected, closed hypersurface embedded in \mathbb{R}^{n+1}, and denote by $|S|$ the area of S. Since S is C^{2} regular, it satisfies a uniform touching sphere condition of (optimal) radius ρ. We orient S according to the inner normal. Given $p \in S$, we denote by $H(p)$ the mean curvature of S at p, and we let

$$
\operatorname{osc}(H)=\max _{p \in S} H(p)-\min _{p \in S} H(p)
$$

Our main result is the following theorem.
Theorem 1.1. Let S be an n-dimensional, C^{2}-regular, connected, closed hypersurface embedded in \mathbb{R}^{n+1}. There exist constants $\varepsilon, C>0$ such that if

$$
\begin{equation*}
\operatorname{osc}(H) \leq \varepsilon \tag{1.1}
\end{equation*}
$$

then there are two concentric balls $B_{r_{i}}$ and $B_{r_{e}}$ such that

$$
\begin{align*}
& S \subset \bar{B}_{r_{e}} \backslash B_{r_{i}} \tag{1.2}\\
& r_{e}-r_{i} \leq C \operatorname{osc}(H) \tag{1.3}
\end{align*}
$$

The constants ε and C depend only on n and upper bounds on ρ^{-1} and $|S|$.
Under the assumption that S bounds a convex domain, there exist some results in the spirit of Theorem 1.1 in the literature. In particular, when the domain is an ovaloid, the problem was studied by Koutroufiotis [Kou], Lang [L] and Moore [Moo]. Other stability results can be found in Schneider [Sch] and Arnold [Ar]. These results were improved by Kohlmann [Ko] who proved an explicit Hölder type stability in (1.3). In Theorem 1.1, we do not consider any convexity assumption and we obtain the optimal rate of stability in (1.3), as can be proven by a simple calculation for ellipsoids.

Theorem 1.1 has a quite interesting consequence which we now explain. It is wellknown (see for instance [G]) that if every principal curvature κ_{i} of S is pinched between two positive numbers, i.e.

$$
1 / r \leq \kappa_{i} \leq(1+\delta) / r, \quad i=1, \ldots, n,
$$

then S is close to a sphere of radius r. Following Gromov [G, Remark (c), pp. 67-68], one can ask what happens when only the mean curvature is pinched. We have the following result.
Corollary 1.2. Let $\rho_{0}, A_{0}>0$ and $n \in \mathbb{N}$ be fixed. There exists a positive constant ε, depending on n, ρ_{0} and A_{0}, such that if S is a connected closed C^{2} hypersurface embedded in \mathbb{R}^{n+1} with $|S| \leq A_{0}$ and $\rho \geq \rho_{0}$, whose mean curvature H satisfies

$$
\operatorname{osc}(H)<\varepsilon,
$$

then S is diffeomorphic to a sphere. Moreover S is C^{1}-close to a sphere, i.e. there exists $a C^{1}$-map $F=\operatorname{Id}+\Psi v: \partial B_{r_{i}} \rightarrow S$ such that

$$
\begin{equation*}
\|\Psi\|_{C^{1}\left(\partial B_{r_{i}}\right)} \leq C(\operatorname{osc}(H))^{1 / 2} \tag{1.4}
\end{equation*}
$$

where C depends only on n and upper bounds on ρ^{-1} and $|S|$.

Before explaining the proof of Theorem 1.1, we give a couple of remarks on the bounds on ρ and $|S|$ in Theorem 1.1 and Corollary 1.2. The upper bound on ρ^{-1} controls the C^{2}-regularity of the hypersurface, which is crucial for obtaining an estimate like (1.3). Indeed, if we assume that ρ is not bounded from below, it is possible to construct a family of closed surfaces embedded in \mathbb{R}^{3}, not diffeomorphic to a sphere, with $\operatorname{osc}(H)$ arbitrarily small and such that (1.3) fails to hold (see Remark 5.2 and [CM]). The upper bound on $|S|$ is a control on the constants ε and C, which clearly change under dilatations.

We remark that Corollary 1.2 can be obtained by a compactness argument by using the theory of varifolds by Allard [All] and Almgren [Alm]. Indeed, by Allard's compactness theorem every sequence of closed hypersurfaces satisfying (uniformly) the assumptions of Corollary 1.2 admits a subsequence which, up to translations, converges to a hypersurface which satisfies a touching ball condition and hence is $C^{1,1}$ regular. By standard regularity theory, the hypersurface is smooth and is a sphere by the classical Alexandrov theorem. We think that also the stability estimates in Theorem 1.1 can be obtained by using Allard's regularity theorem.

There are other possible strategies to obtain quantitative estimates for almost constant mean curvature hypersurfaces and give results in the spirit of Theorem 1.1. Indeed, as already mentioned, there are several proofs of the rigidity result of Alexandrov (i.e. when H is constant). Besides the method of moving planes (which will be our approach), one could try to quantitatively study the proofs in [MR], [Re] and [Ros2], which are based on integral identities. For instance, the approach in [CM] starts from [Ros2] and finds quantitative estimates on the closeness of the hypersurface to a compound of tangent balls. As explained in [CM, Appendix A], another possible approach would be to start from the proof in [MR] and then study almost umbilical hypersurfaces, as in [DLM1] and [DLM2]. However, these approaches based on integral identities do not seem to lead to optimal estimates as in our Theorem 1.1 (see [CM] for a detailed discussion).

Our approach, instead, is based on a quantitative analysis of the method of moving planes and uses arguments from elliptic PDE theory. Since the proof of symmetry is based on the maximum principle, our proof of the stability result will make use of Harnack's and Carleson's (or boundary Harnack's) inequalities and the Hopf Lemma, which can be considered as the quantitative counterpart of the strong and boundary maximum principles. We emphasize that the stability estimate (1.3) is optimal and that our proof permits computing the constants explicitly.

A quantitative study of the method of moving planes was first performed in [ABR], where the authors obtained a stability result for Serrin's overdetermined problem [Se], and it has been used in a series of paper by the first author [CMS2, CMV1, CMV2] to study the stability of radial symmetry for Serrin's and other overdetermined problems (see also [BNST] for an approach based on integral identities).

In this paper, we follow the approach of [ABR], but the setting here is complicated by the fact that we have to deal with manifolds. As we will show, the main goal is to prove an approximate symmetry result for one (arbitrary) direction. With that at hand, the approximate radial symmetry is well-established and follows by an argument in [ABR]. To prove the approximate symmetry in one direction, we apply the method of moving planes and show that the union of the maximal cap and of its reflection provides a set
that fits S well. This is the main point of our paper and is achieved by developing the following argument. Assume that the surface and the reflected cap are tangent at some point p_{0} which is an interior point of the reflected cap, and write the two surfaces as graphs of functions in a neighborhood of p_{0}. The difference w of these two functions satisfies an elliptic equation $L w=f$, where $\|f\|_{\infty}$ is bounded by osc (H). By applying Harnack's inequality and interior regularity estimates, we have a bound on the C^{1} norm of w, which says that the two graphs are no more than some constant times osc (H) distant in C^{1} norm. It is important to observe that this estimate implies that the two surfaces are close to each other and also that the two corresponding Gauss maps are close (in some sense) in that neighborhood of p_{0}. Then we connect any point p of the reflected cap to p_{0} and we show that such closeness propagates at p. Since we are dealing with a manifold, we have to change local parametrization when moving from p_{0} to p, and we have to prove that the closeness information is preserved. By using careful estimates and making use of interior and boundary Harnack inequalities, we show that this is possible if we assume that $\operatorname{osc}(H)$ is smaller than some fixed constant.

The paper is organized as follows. In Section 2 we prove some preliminary results about hypersurfaces in \mathbb{R}^{n+1}, we recall some results on classical solutions to mean curvature type equations, and we give a sketch of the proof of the symmetry result of Alexandrov. In Section 3 we prove some technical lemmas which will be used in proving the stability result. In Sections 4 and 5 we prove Theorem 1.1 and Corollary 1.2, respectively.

2. Notation and preliminary results

In this section we collect some preliminary results. Although some of them are known, we sketch their proofs for the sake of completeness and in order to explain the notation which will be adopted.

Let S be a C^{2}-regular, connected, closed hypersurface embedded in $\mathbb{R}^{n+1}, n \geq 1$, and let Ω be the relatively compact domain of \mathbb{R}^{n+1} bounded by S. We denote by $T_{p} S$ the tangent hyperplane to S at p and by v_{p} the inward normal vector. Given a point $\xi \in \mathbb{R}^{n+1}$ and an $r>0$, we denote by $B_{r}(\xi)$ the ball in \mathbb{R}^{n+1} of radius r centered at ξ. When a ball is centered at the origin O, we simply write B_{r} instead of $B_{r}(O)$.

Let dist ${ }_{S}: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ be the distance function from S, i.e.

$$
\operatorname{dist}_{S}(\xi)= \begin{cases}\operatorname{dist}(\xi, S) & \text { if } \xi \in \Omega \\ -\operatorname{dist}(\xi, S) & \text { if } \xi \in \mathbb{R}^{n+1} \backslash \Omega\end{cases}
$$

it is clear that $S=\left\{\xi \in \mathbb{R}^{n+1}: \operatorname{dist}_{S}(\xi)=0\right\}$. Moreover, it is well-known (see e.g. [GT]) that dist ${ }_{S}$ is Lipschitz continuous with Lipschitz constant 1 , and that it is of class C^{2} in an open neighborhood of S. Therefore the implicit function theorem implies that, given a point $p \in S, S$ can be locally represented as a graph over the tangent hyperplane $T_{p} S$: there exist an open neighborhood $\mathcal{U}_{r}(p)$ of p in S and a C^{2} map $u: B_{r} \cap T_{p} S \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\mathcal{U}_{r}(p)=\left\{p+x+u(x) v_{p}: x \in B_{r} \cap T_{p} S\right\} \tag{2.1}
\end{equation*}
$$

Moreover, if $q=p+x+u(x) v_{p}$ with $x \in B_{r}(p) \cap T_{p} S$, we have

$$
\begin{equation*}
v_{q}=\frac{v_{p}-\nabla u(x)}{\sqrt{1+|\nabla u(x)|^{2}}}, \tag{2.2}
\end{equation*}
$$

where

$$
\nabla u(x)=\sum_{i=1}^{N} \partial_{e_{i}} u(x) e_{i}
$$

and $\left\{e_{1}, \ldots, e_{n}\right\}$ is an arbitrary orthonormal basis of $T_{p} S$. We notice that, according to the definition above, $\nabla u(x)$ is a vector in \mathbb{R}^{n+1} for every x in the domain of u. Moreover $v_{q} \cdot v_{p}>0$ for every $q \in B_{r} \cap T_{p} S$, and if $|\nabla u|$ is uniformly bounded in $B_{r} \cap T_{p} S$, then u can be extended to $B_{r^{\prime}} \cap T_{p} S$ with $r^{\prime}>r$.

Since S is C^{2}-regular, the domain Ω satisfies a uniform touching ball condition, and we denote by ρ the optimal radius, that is, for any $p \in S$ there exist two balls of radius ρ centered at $c^{-} \in \Omega$ and $c^{+} \in \mathbb{R}^{n+1} \backslash \bar{\Omega}$ such that $B_{\rho}\left(c^{-}\right) \subset \Omega, B_{\rho}\left(c^{+}\right) \subset \mathbb{R}^{n+1} \backslash \bar{\Omega}$, and $p \in \partial B_{\rho}\left(c^{ \pm}\right)$. The balls are called, respectively, the interior and exterior touching balls at p.

In the following lemma we show that we may assume $r=\rho$ in (2.1), and we give some bounds in terms of ρ which will be useful.

Lemma 2.1. Let $p \in S$. There exists a C^{2} map $u: B_{\rho} \cap T_{p} S \rightarrow \mathbb{R}$ such that

$$
\mathcal{U}_{\rho}(p)=\left\{p+x+u(x) v_{p}: x \in B_{\rho} \cap T_{p} S\right\}
$$

is a relatively open subset of S and

$$
\begin{align*}
& |u(x)| \leq \rho-\sqrt{\rho^{2}-|x|^{2}}, \tag{2.3}\\
& |\nabla u(x)| \leq \frac{|x|}{\sqrt{\rho^{2}-|x|^{2}}}, \tag{2.4}
\end{align*}
$$

for every $x \in B_{\rho} \cap T_{p} S$. Moreover

$$
\begin{equation*}
v_{p} \cdot v_{q} \geq \frac{1}{\rho} \sqrt{\rho^{2}-|x|^{2}} \quad \text { and } \quad\left|v_{p}-v_{q}\right| \leq \sqrt{2} \frac{|x|}{\rho} \tag{2.5}
\end{equation*}
$$

for every $q=p+x+u(x) \nu_{p}$ in $\mathcal{U}_{\rho}(p)$.
Proof. By the implicit function theorem, there exist $r>0, u: B_{r} \cap T_{p} S \rightarrow \mathbb{R}$ and $\mathcal{U}_{r}(p)$ as in (2.1). We may assume that $r \leq \rho$. The bound (2.3) in $B_{r} \cap T_{p} S$ easily follows from the definition of the interior and exterior touching balls at p. We now prove the estimate (2.4) in $B_{r} \cap T_{p} S$, which allows us to enlarge the domain of u to $B_{\rho} \cap T_{p} S$. Let

$$
q=p+x+u(x) v_{p}
$$

with $|x|<r$ be an arbitrary point of $\mathcal{U}_{r}(p)$ (notice that $v_{p} \cdot v_{q}>0$). Since

$$
B_{\rho}\left(p+\rho v_{p}\right) \cap B_{\rho}\left(q-\rho v_{q}\right)=\emptyset
$$

we have

$$
\left|p+\rho v_{p}-q+\rho v_{q}\right| \geq 2 \rho
$$

Analogously, $B_{\rho}\left(p-\rho \nu_{p}\right) \cap B_{\rho}\left(q+\rho \nu_{q}\right)=\emptyset$ gives

$$
\left|q+\rho v_{q}-p+\rho v_{p}\right| \geq 2 \rho
$$

By adding the squares of the last two inequalities we obtain

$$
|p-q|^{2}+2 \rho^{2}\left(v_{p} \cdot v_{q}\right) \geq 2 \rho^{2}
$$

and from (2.3) we get (2.5). From (2.2) and (2.5) we obtain (2.4) in $B_{r} \cap T_{p} S$. Since $|\nabla u|$ is bounded in $\bar{B}_{r} \cap T_{p} S$, we can extend u to a larger ball where (2.4) is still satisfied. It is clear that we can choose $r=\rho$ and (2.3)-(2.5) hold.
Given $p, q \in S$ we denote by $d_{S}(p, q)$ their intrinsic distance inside S, and if A is an arbitrary subset of S, we define

$$
d_{S}(p, A)=\inf _{q \in A} d_{S}(p, q)
$$

Lemma 2.2. Let $p \in S, q \in \mathcal{U}_{\rho}(p)$ and let x be the orthogonal projection of q onto the hyperplane $T_{p} S$. Then

$$
\begin{equation*}
|x| \leq d_{S}(p, q) \leq \rho \arcsin (|x| / \rho) \tag{2.6}
\end{equation*}
$$

Proof. The first inequality is trivial. In order to prove the second inequality we consider the curve $\gamma:[0,1] \rightarrow S$ joining p to q defined by $\gamma(t)=p+t x+u(t x) v_{p}, t \in[0,1]$. Then

$$
\dot{\gamma}(t)=x+(\nabla u(t x) \cdot x) v_{p}
$$

since $x \in T_{p} S$, by the Cauchy-Schwarz inequality we obtain

$$
|\dot{\gamma}(t)| \leq|x| \sqrt{1+|\nabla u(t x)|^{2}} .
$$

Therefore inequality (2.4) implies

$$
|\dot{\gamma}(t)| \leq \frac{\rho|x|}{\sqrt{\rho^{2}-t^{2}|x|^{2}}}
$$

Since $d_{S}(p, q) \leq \int_{0}^{1}|\dot{\gamma}(t)| d t$, we obtain

$$
d_{S}(p, q) \leq|x| \rho \int_{0}^{1} \frac{1}{\sqrt{\rho^{2}-t^{2}|x|^{2}}} d t
$$

which gives (2.6).
Let $p \in S$ and let $u: B_{\rho} \cap T_{p} S \rightarrow S$ be as in Lemma 2.1. It is well-known (see [GT]) that u is a classical solution to

$$
\begin{equation*}
\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=n H \quad \text { in } B_{\rho} \cap T_{p} S \tag{2.7}
\end{equation*}
$$

where H is the mean curvature of S regarded as a map on $B_{\rho} \cap T_{p} S$. We notice that $\nabla u \in T_{p} S$ and the divergence is meant in local coordinates on $T_{p} S$: if $\left\{e_{1}, \ldots, e_{n}\right\}$ is an orthonormal basis of $T_{p} S$ and $F=\sum_{i=1}^{n} F_{i} e_{i}$, then

$$
\operatorname{div} F=\sum_{i=1}^{n} \frac{\partial F_{i}}{\partial e_{i}}
$$

Moreover, (2.7) is uniformly elliptic once u is regarded as a regular map in an open set of \mathbb{R}^{n} and has bounded gradient, since

$$
\begin{equation*}
|\xi|^{2} \leq \frac{\partial}{\partial \zeta_{j}}\left(\frac{\zeta_{i}}{\sqrt{1+|\zeta|^{2}}}\right) \xi_{i} \xi_{j} \leq\left(1+|\zeta|^{2}\right)|\xi|^{2} \tag{2.8}
\end{equation*}
$$

for every $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right), \zeta=\left(\zeta_{1}, \ldots, \zeta_{n}\right)$ in \mathbb{R}^{n}.

2.1. Classical solutions to the mean curvature equation

In this subsection we collect some results about classical solutions to (2.7) which will be used in the next sections.

Let B_{r} be the ball of \mathbb{R}^{k} centered at the origin and having radius r. Given a differentiable map $u: B_{r} \rightarrow \mathbb{R}$, we denote by $D u$ the gradient of u in \mathbb{R}^{k} :

$$
D u=\left(\frac{\partial u}{\partial x_{1}}, \ldots, \frac{\partial u}{\partial x_{k}}\right)
$$

We remark that this notation differs from the one in the rest of the paper, where we use the ∇ symbol to denote a vector in \mathbb{R}^{n+1}.

Let $H_{0}, H_{1} \in C^{0}\left(B_{r}\right)$ and u_{0} and u_{1} be two classical solutions of

$$
\begin{equation*}
\operatorname{div}\left(\frac{D u_{j}}{\sqrt{1+\left|D u_{j}\right|^{2}}}\right)=k H_{j} \quad \text { in } B_{r}, j=0,1 \tag{2.9}
\end{equation*}
$$

It is well-known (see [GT]) that $w=u_{1}-u_{0}$ satisfies the linear elliptic equation

$$
\begin{equation*}
L w=k\left(H_{1}-H_{0}\right) \tag{2.10}
\end{equation*}
$$

where

$$
\begin{equation*}
L w=\sum_{i, j=1}^{k} \frac{\partial}{\partial x_{j}}\left(a^{i j}(x) \frac{\partial w}{\partial x_{i}}\right) \tag{2.11}
\end{equation*}
$$

with

$$
\begin{aligned}
a^{i j}(x) & =\left.\int_{0}^{1} \frac{\partial}{\partial \zeta_{j}}\left(\frac{\zeta_{i}}{\sqrt{1+|\zeta|^{2}}}\right)\right|_{\zeta=D u_{t}(x)} d t \\
u_{t}(x) & =t u_{1}(x)+(1-t) u_{0}(x), \quad x \in B_{r}
\end{aligned}
$$

From (2.8), we find that

$$
\begin{equation*}
|\xi|^{2} \leq a^{i j}(x) \xi_{i} \xi_{j} \leq|\xi|^{2} \int_{0}^{1}\left(1+\left|D u_{t}(x)\right|^{2}\right) d t \tag{2.12}
\end{equation*}
$$

where we have used the Einstein summation convention. The following Harnack type inequality will be one of the crucial tools for proving the stability result.

Lemma 2.3. Let $u_{j}, j=0,1$, be classical solutions of (2.9) with $u_{1}-u_{0} \geq 0$ in B_{r}, and assume that

$$
\begin{equation*}
\left\|D u_{j}\right\|_{C^{1}\left(B_{r}\right)} \leq M, \quad j=0,1, \tag{2.13}
\end{equation*}
$$

for some positive constant M. Then there exists a constant K_{1}, depending only on the dimension k and M, such that

$$
\begin{equation*}
\left\|u_{1}-u_{0}\right\|_{C^{1}\left(B_{r / 4}\right)} \leq K_{1}\left(\inf _{B_{r / 2}}\left(u_{1}-u_{0}\right)+\left\|H_{1}-H_{0}\right\|_{C^{0}\left(B_{r}\right)}\right) \tag{2.14}
\end{equation*}
$$

Proof. We have already observed that $w=u_{1}-u_{0}$ satisfies (2.10) in B_{r}. From (2.12) and (2.13), we find that $L w$ is uniformly elliptic with continuous bounded coefficients:

$$
|\xi|^{2} \leq a^{i j}(x) \xi_{i} \xi_{j} \leq|\xi|^{2}\left(1+M^{2}\right)
$$

and

$$
\left|\frac{\partial}{\partial x_{j}} a^{i j}(x)\right| \leq M^{\prime}
$$

for some positive M^{\prime} depending only on M.
From [GT, Theorems 8.17 and 8.18], we obtain the following Harnack inequality:

$$
\sup _{B_{r / 2}} w \leq C_{1}\left(\inf _{B_{r / 2}} w+\left\|H_{1}-H_{0}\right\|_{C^{0}\left(B_{r}\right)}\right) .
$$

Then we use [GT, Theorem 8.32] to obtain

$$
|w|_{C^{1, \alpha}\left(B_{r / 4}\right)} \leq C_{2}\left(\|w\|_{C^{0}\left(B_{r / 2}\right)}+\left\|H_{1}-H_{0}\right\|_{C^{0}\left(B_{r / 2}\right)}\right),
$$

where $|\cdot|_{C^{1, \alpha}\left(B_{r / 4}\right)}$ is the $C^{1, \alpha}$ seminorm in $B_{r / 4}$ with $\alpha \in(0,1)$. By combining the last two inequalities, we obtain (2.14) at once.
Another crucial tool for our result is the following boundary Harnack type inequality (or Carleson estimate [CS]).

Lemma 2.4. Let E be a domain in \mathbb{R}^{k} and let T be an open subset of ∂E which is of class C^{2}. Let $u_{j} \in C^{2}(\bar{E}), j=0,1$, be solutions of

$$
\begin{equation*}
\operatorname{div}\left(\frac{D u_{j}}{\sqrt{1+\left|D u_{j}\right|^{2}}}\right)=k H_{j} \quad \text { in } E, j=0,1, \tag{2.15}
\end{equation*}
$$

satisfying $\left\|D u_{j}\right\|_{C^{1}(E)} \leq M$ for some positive M. Let $x_{0} \in T$ and $r>0$ be such that $B_{r}\left(x_{0}\right) \cap \partial E \subset T$, and assume that

$$
u_{1}-u_{0} \geq 0 \quad \text { in } B_{r}\left(x_{0}\right) \cap E, \quad u_{1}-u_{0} \equiv 0 \quad \text { on } B_{r} \cap \partial E .
$$

Assume further that e_{1} is the interior normal to E at x_{0}. Then there exists a constant $K_{2}>0$ such that

$$
\begin{equation*}
\sup _{B_{r / 4}\left(x_{0}\right) \cap E}\left(u_{1}-u_{0}\right) \leq K_{2}\left(\left(u_{1}-u_{0}\right)\left(x_{0}+\frac{r}{2} e_{1}\right)+\left\|H_{1}-H_{0}\right\|_{C^{0}\left(B_{r}\right)}\right), \tag{2.16}
\end{equation*}
$$

where the constant K_{2} depends only on the dimension k, M and the C^{2}-regularity of T.
Proof. The proof is analogous to the one of Lemma 2.3, where we use [BCN, Theorem 1.3] and [GT, Corollary 8.36] in place of [GT, Theorems 8.17, 8.18 and 8.32].

We conclude this subsection with a quantitative version of the Hopf Lemma. We start with a statement which is valid for a general second order elliptic operator of the form

$$
\begin{equation*}
\mathcal{L} w=\sum_{i, j=1}^{k} a^{i j} w_{x_{i} x_{j}}+\sum_{i=1}^{k} b^{i} w_{x_{i}} \tag{2.17}
\end{equation*}
$$

satisfying the ellipticity conditions

$$
\begin{equation*}
a^{i j} \zeta_{i} \zeta_{j} \geq \lambda|\zeta|^{2} \quad \text { and } \quad\left|a^{i j}\right|,\left|b^{i}\right| \leq \Lambda, \quad i, j=1, \ldots, k, \tag{2.18}
\end{equation*}
$$

for some $\lambda, \Lambda>0$.

Lemma 2.5. Let $r>0$ and $\gamma \geq 0$. Assume that $w \in C^{2}\left(B_{r}\right) \cap C^{0}\left(\bar{B}_{r}\right)$ fulfills the conditions

$$
\mathcal{L} w \leq \gamma \quad \text { and } \quad w \geq 0 \quad \text { in } B_{r},
$$

with \mathcal{L} given by (2.17). Then there exists a positive constant C depending on k, λ, Λ, and an upper bound on γ such that for any $x_{0} \in \partial B_{r}$ we have

$$
\begin{equation*}
\sup _{B_{r / 2}} w \leq C\left(\frac{w\left((1-t / r) x_{0}\right)}{t}+\gamma\right) \quad \text { for any } 0<t \leq r / 2 . \tag{2.19}
\end{equation*}
$$

Moreover, if $w\left(x_{0}\right)=0$ then

$$
\begin{equation*}
\sup _{B_{r / 2}} w \leq C\left(\frac{\partial w\left(x_{0}\right)}{\partial v}+\gamma\right), \tag{2.20}
\end{equation*}
$$

where v denotes the inward normal to ∂B_{r}

Proof. In the annulus $A=B_{r} \backslash \bar{B}_{r / 2}$, we consider the auxiliary function

$$
v(x)=\left(\min _{\bar{B}_{r / 2}} w\right) \frac{e^{-\alpha|x|^{2}}-e^{-\alpha r^{2}}}{e^{-\alpha(r / 2)^{2}}-e^{-\alpha r^{2}}}+e^{\beta|x|^{2}}-e^{\beta r^{2}}
$$

where

$$
\alpha=\frac{(k+r \sqrt{k}) \Lambda}{2 \lambda^{2}}, \quad \beta=\gamma\left[k \lambda-\sqrt{k} \Lambda r+\sqrt{(k \lambda-\sqrt{k} \Lambda r)^{2}+\gamma \lambda r^{2}}\right]^{-1}
$$

Here, the constants α and β are chosen in such a way that $\mathcal{L} v \geq \gamma$. We notice that

$$
\begin{equation*}
\frac{v\left((1-t / r) x_{0}\right)}{t} \geq \frac{\alpha r e^{-\alpha r^{2}}}{e^{-\alpha(r / 2)^{2}}-e^{-\alpha r^{2}}}\left(\frac{\min }{\bar{B}_{r / 2}} w\right)-2 \beta r e^{\beta r^{2}} \tag{2.21}
\end{equation*}
$$

Since $v=0$ on ∂B_{r} and $v \leq \min _{\partial B_{r / 2}} w$ on $\partial B_{r / 2}$, the function $w-v$ satisfies

$$
\begin{cases}\mathcal{L}(w-v) \leq 0 & \text { in } A \\ w-v \geq 0 & \text { on } \partial A\end{cases}
$$

Hence, by the maximum principle, $w-v \geq 0$ in \bar{A}, and from (2.21) we obtain

$$
\begin{equation*}
\min _{\bar{B}_{r / 2}} w \leq \frac{e^{3 \alpha r^{2} / 4}-1}{\alpha r}\left(\frac{w\left((1-t / r) x_{0}\right)}{t}+2 \beta r e^{\beta r^{2}}\right) \tag{2.22}
\end{equation*}
$$

for $0<t<r / 2$. As in the proof of Lemma 2.3, we use [GT, Theorems 8.17 and 8.18] to get

$$
\frac{\max }{\bar{B}_{r / 2}} w \leq C_{1}\left(\frac{\min }{\bar{B}_{r / 2}} w+\gamma\right),
$$

and from (2.22) we obtain (2.19) and (2.20).
We will use Lemma 2.5 in the following form.
Lemma 2.6. Let E, T, u_{0}, u_{1}, M, and x_{0} be as in Lemma 2.4, with

$$
u_{1}-u_{0} \geq 0 \quad \text { in } E .
$$

Assume that there exists $B_{r}(c) \subset E$ with $x_{0} \in \partial B_{r}(c) \cap T$. Let $\ell=\left(c-x_{0}\right) / r$. Then there exists a constant K_{3} such that

$$
\begin{equation*}
\left\|u_{1}-u_{0}\right\|_{C^{1}\left(B_{r / 4}(c)\right)} \leq K_{3}\left(\frac{\left(u_{1}-u_{0}\right)\left(x_{0}+t \ell\right)}{t}+\left\|H_{1}-H_{0}\right\|_{C^{0}\left(B_{r}(c)\right)}\right) \tag{2.23}
\end{equation*}
$$

for every $t \in(0, r / 2)$, and

$$
\begin{equation*}
\left\|u_{1}-u_{0}\right\|_{C^{1}\left(B_{r / 4}(c)\right)} \leq K_{3}\left(\frac{\partial\left(u_{1}-u_{0}\right)}{\partial \ell}\left(x_{0}\right)+\left\|H_{1}-H_{0}\right\|_{C^{0}\left(B_{r}(c)\right)}\right) \tag{2.24}
\end{equation*}
$$

for $t=0$. The constant K_{3} depends only on the dimension k, M, ρ, and an upper bound on $\left\|H_{1}-H_{0}\right\|_{C^{0}\left(B_{r}(c)\right)}$.

Proof. As shown in the proof of Lemma 2.3, $w=u_{1}-u_{0}$ satisfies (2.10), which is uniformly elliptic. Moreover, by letting

$$
\gamma=\left\|H_{1}-H_{0}\right\|_{C^{0}\left(B_{r}(c)\right)},
$$

we have $L w \leq \gamma$. Hence, we can apply Lemma 2.5 , and conclude the proof by using Lemma 2.3.

2.2. The symmetry result of Alexandrov

In order to make the paper self-contained, we give a sketch of the proof of the Soap Bubble Theorem by Alexandrov. This will be the occasion to set up some necessary notation.

Let S be a C^{2}-regular, connected, closed hypersurface embedded in $\mathbb{R}^{n+1}, n \geq 1$, and let Ω be the relatively compact domain of \mathbb{R}^{n+1} bounded by S. Let $\omega \in \mathbb{R}^{n+1}$ be a unit vector and $\lambda \in \mathbb{R}$ a parameter. For an arbitrary set A, we define the following objects:

$$
\begin{array}{ll}
\pi_{\lambda}=\left\{\xi \in \mathbb{R}^{n+1}: \xi \cdot \omega=\lambda\right\}, & \text { a hyperplane orthogonal to } \omega, \\
A^{\lambda}=\{p \in A: p \cdot \omega>\lambda\}, & \text { the right-hand cap of } A, \\
\xi^{\lambda}=\xi-2(\xi \cdot \omega-\lambda) \omega, & \text { the reflection of } \xi \text { about } \pi_{\lambda}, \tag{2.25}\\
A_{\lambda}=\left\{p \in \mathbb{R}^{n+1}: p^{\lambda} \in A^{\lambda}\right\}, & \text { the reflected cap about } \pi_{\lambda}, \\
\hat{A}_{\lambda}=\{p \in A: p \cdot \omega<\lambda\}, & \text { the portion of } A \text { in the left half-plane. }
\end{array}
$$

Set $\mathcal{M}=\max \{p \cdot \omega: p \in S\}$, the extent of S in the direction ω; if $\lambda<\mathcal{M}$ is close to \mathcal{M}, the reflected cap Ω_{λ} is contained in Ω. Set

$$
\begin{equation*}
m=\inf \left\{\mu: \Omega_{\lambda} \subset \Omega \text { for all } \lambda \in(\mu, \mathcal{M})\right\} \tag{2.26}
\end{equation*}
$$

Then for $\lambda=m$ at least one of the following two cases occurs:
(i) S_{m} becomes internally tangent to S at some point $p \in S \backslash \pi_{m}$;
(ii) π_{m} is orthogonal to S at some point $p \in S \cap \pi_{m}$.

Theorem A (Alexandrov Soap Bubble Theorem). Let S be a C^{2}-regular, closed, connected hypersurface embedded in \mathbb{R}^{n+1}. If the mean curvature H of S is constant, then S is a sphere.

Proof. Let ω be a fixed direction. We apply the method of moving planes in the direction ω and we find a critical position for $\lambda=m$.

If case (i) occurs, then we locally write S_{m} and S as graphs of functions u_{1} and u_{0}, respectively, over $B_{r} \cap T_{p} S$ (which coincides with $T_{p} S_{m}$), where p is the tangency point. It is clear that $w=u_{1}-u_{0}$ is non-negative, and since H is constant, w satisfies

$$
L w=0 \quad \text { in } B_{r} \cap T_{p} S
$$

for some $r>0$, where L is given by (2.11). Since $w(0)=0$, by the strong maximum principle we obtain $w \equiv 0$ in $B_{r} \cap T_{p} S$, that is, S and S_{m} coincide in an open neighborhood of p.

If case (ii) occurs, then we locally write S_{m} and S as the graphs of functions u_{1} and u_{0}, respectively, over $T_{p} S \cap\{x \cdot \omega \leq m\}$. As for case (i), we find that there exists $r>0$ such that

$$
\begin{cases}L w=0 & \text { in } B_{r} \cap T_{p} S \cap\{x \cdot \omega<m\} \\ w=0 & \text { on } B_{r} \cap T_{p} S \cap\{x \cdot \omega=m\}\end{cases}
$$

Since $\nabla w(0)=0$, from the Hopf Lemma (see for instance [GT]) we deduce that $w \equiv 0$ in $B_{r} \cap T_{p} S \cap\{x \cdot \omega \leq m\}$.

Hence, in both cases (i) and (ii) the set of tangency points (that is, those points for which case (i) or (ii) occurs) is open. Since it is also closed and non-empty, we must have $S_{m}=\hat{S}_{m}$, that is, S is symmetric about the hyperplane π_{m}. Since ω is arbitrary, we find that S is symmetric in every direction.

Up to a translation, we can assume that the origin O is the center of mass of S. Since O belongs to every axis of symmetry and every rotation can be written as a composition of reflections, we see that S is invariant under rotations, which implies that it is a sphere.

2.3. Curvatures of projected surfaces

Before giving the results of this subsection, we need to recall some basic facts about hypersurfaces in \mathbb{R}^{n+1}, in particular about the interplay between the normal and the principal curvatures. Let U be an orientable hypersurface of class C^{2} embedded in \mathbb{R}^{n+1} (which in the proof of Theorem 1.1 will be an open subset of the surface S). The choice of an orientation on U is equivalent to the choice of a Gauss map $v: U \rightarrow \mathbb{S}^{n}$ (in this general context there is no canonical orientation). Fixing a point $q \in U$, we denote by $W_{q}: T_{q} U \rightarrow T_{q} U$ the shape operator $W_{q}=-d v_{q}$. It is symmetric and its eigenvalues $\kappa_{i}(q)$ are the principal curvatures of U at q. We assume that $\kappa_{1}(q) \leq \cdots \leq \kappa_{n}(q)$. The first and the last principal curvature can be obtained as the minimum and maximum of the normal curvature. Here we recall that, given a non-zero vector $v \in T_{q} U$, its normal curvature $\kappa(q, v)$ is defined as

$$
\kappa(q, v)=\frac{1}{|v|^{2}} W_{q}(v) \cdot v
$$

$\kappa(q, v)$ can be alternatively written in terms of curves as

$$
\kappa(q, v)=\frac{1}{|\dot{\alpha}(0)|^{2}} v_{\alpha(0)} \cdot \ddot{\alpha}(0)
$$

where $\alpha: I \rightarrow U$ is an arbitrary curve satisfying $\alpha(0)=0$ and $\dot{\alpha}(0)=v$.
In order to perform a quantitative study of moving planes, we need to handle the following situation: given a hypersurface U of class C^{2} in \mathbb{R}^{n+1}, we consider its intersection U^{\prime} with an affine hyperplane π_{1} (in the proof of Theorem $4.1, \pi_{1}$ will be the critical hyperplane in the direction ω). If π_{1} intersects U transversally, $U^{\prime}=U \cap \pi_{1}$ is a hypersurface of class C^{2} of π_{1} and we consider its projection $U^{\prime \prime}$ onto another hyperplane π_{2} of \mathbb{R}^{n+1} (which will be tangent to the reflected cap at some point close to the critical hyperplane). An example in \mathbb{R}^{3} is shown in Figure 1. The next two propositions allow us

Fig. 1. In the figure U is the paraboloid $z=x^{2}+y^{2}, \pi_{1}$ is the affine plane $z=2+8 y$ and π_{2} is the plane $z=0$. In this case U^{\prime} is the ellipse in π_{1}, while $U^{\prime \prime}$ is the circle projected in π_{2}.
to control the principal curvatures of $U^{\prime \prime}$ in terms of the principal curvatures of U and the normal vectors to U and U^{\prime}.

Proposition 2.7. Let U be an orientable hypersurface of class C^{2} embedded in \mathbb{R}^{n+1} with principal curvatures $\kappa_{j}, j=1, \ldots, n$, and Gauss map v. Let π be a hyperplane of \mathbb{R}^{n+1} intersecting U transversally and let $U^{\prime}=U \cap \pi$. Then U^{\prime} is an orientable hypersurface of class C^{2} embedded in π, and once a Gauss map $v^{\prime}: U^{\prime} \rightarrow \mathbb{S}^{n-1}$ is fixed, its principal curvatures κ_{i}^{\prime} satisfy

$$
\begin{equation*}
\frac{1}{v_{q} \cdot v_{q}^{\prime}} \kappa_{1}(q) \leq \kappa_{i}^{\prime}(q) \leq \frac{1}{v_{q} \cdot v_{q}^{\prime}} \kappa_{n}(q) \tag{2.27}
\end{equation*}
$$

for every $q \in U^{\prime}$ and $i=1, \ldots, n-1$.
Proof. First of all we observe that U^{\prime} is of class C^{2} by the implicit function theorem, and it is orientable since the map $v^{\prime}: U^{\prime} \rightarrow \mathbb{S}^{n-1}$ defined by

$$
\begin{equation*}
v_{q}^{\prime}=(-1)^{n+1} \operatorname{vers}\left(*\left(*\left(v_{q} \wedge \omega\right) \wedge \omega\right)\right) \tag{2.28}
\end{equation*}
$$

is a Gauss map on U^{\prime}, where $*$ denotes the Hodge "star" operator in \mathbb{R}^{n+1} computed with respect to the standard metric and the standard orientation.

In order to prove (2.27), fix $q \in U^{\prime}$ and consider an arbitrary unit vector $v \in T_{q} U^{\prime}$. Let $\kappa(q, v)$ be the normal curvature of U at (q, v). Then

$$
\kappa(q, v)=v_{q} \cdot \ddot{\alpha}(0)
$$

where α is an arbitrary smooth curve in U^{\prime} parametrized by arc length and such that $\alpha(0)=q$ and $\dot{\alpha}(0)=v$. Since v_{q} is orthogonal to $T_{q} U^{\prime}$, it belongs to the plane generated by ω and ν_{q}^{\prime} and we can write

$$
v_{q}=\left(v_{q}^{\prime} \cdot \omega\right) \omega+\left(v_{q} \cdot v_{q}^{\prime}\right) v_{q}^{\prime}
$$

Therefore

$$
\kappa(q, v)=v_{q} \cdot \ddot{\alpha}(0)=\left(v_{q} \cdot v_{q}^{\prime}\right)\left(v_{q}^{\prime} \cdot \ddot{\alpha}(0)\right)=\left(v_{q} \cdot v_{q}^{\prime}\right) \kappa^{\prime}(q, v)
$$

where $\kappa^{\prime}(q, v)$ is the normal curvature of U^{\prime} at (q, v), and the claim follows.
We observe that in Proposition 2.7 we can choose v to be the Gauss map defined by (2.28) and have

$$
\begin{equation*}
v_{q} \cdot v_{q}^{\prime}=\sqrt{1-\left(v_{q} \cdot \omega\right)^{2}} \tag{2.29}
\end{equation*}
$$

Indeed, we fix a positive oriented orthonormal basis $\left\{e_{1}, \ldots, e_{n}, v_{q}\right\}$ of \mathbb{R}^{n+1} such that the first n vectors are an orthonormal basis of $T_{q} U$ and $\left\langle e_{1}, \ldots, e_{n-1}\right\rangle=\omega^{\perp}$. Then

$$
\left|*\left(*\left(v_{q} \wedge \omega\right) \wedge \omega\right)\right|=\left|*\left(v_{q} \wedge \omega\right) \wedge \omega\right|=\omega \cdot e_{n}
$$

and

$$
\left(\omega \cdot e_{n}\right)\left(v_{q} \cdot v_{q}^{\prime}\right)=(-1)^{n+1} *\left(*\left(v_{q} \wedge \omega\right) \wedge \omega\right) \cdot v_{q}=(-1)^{n+1} *\left(v_{q} \wedge \omega\right) \wedge \omega \cdot * v_{q}
$$

Moreover,

$$
*\left(v_{q} \wedge \omega\right)=-\left(\omega \cdot e_{n}\right) e_{1} \wedge \cdots \wedge e_{n-1}, \quad * v_{q}=(-1)^{n} e_{1} \wedge \cdots \wedge e_{n}
$$

and

$$
v_{q} \cdot v_{q}^{\prime}=\left(e_{1} \wedge \cdots \wedge e_{n-1} \wedge \omega\right) \cdot\left(e_{1} \wedge \cdots \wedge e_{n}\right)=\omega \cdot e_{n}=\sqrt{1-\left(v_{q} \cdot \omega\right)^{2}}
$$

as required.
Therefore, if v_{q}^{\prime} is given by (2.28), then (2.27) reads

$$
\begin{equation*}
\frac{1}{\sqrt{1-\left(v_{q} \cdot \omega\right)^{2}}} \kappa_{1}(q) \leq \kappa_{i}^{\prime}(q) \leq \frac{1}{\sqrt{1-\left(v_{q} \cdot \omega\right)^{2}}} \kappa_{n}(q) \tag{2.30}
\end{equation*}
$$

for $i=1, \ldots, n-1$.
Proposition 2.8. Let ω_{1} and ω_{2} be unit vectors in \mathbb{R}^{n+1}, denote by π_{1} a hyperplane orthogonal to ω_{1}, and let π_{2} be the hyperplane orthogonal to ω_{2} passing through the origin of \mathbb{R}^{n+1}. Let U^{\prime} be a C^{2}-regular oriented hypersurface of π_{1} such that ω_{2} is not tangent to U^{\prime} at any point. Denote by κ_{i}^{\prime}, for $i=1, \ldots, n-1$, the principal curvatures of U^{\prime} and denote by ν^{\prime} the normal vector to U^{\prime}. Then the orthogonal projection $U^{\prime \prime}$ of U^{\prime} onto π_{2} is a C^{2}-regular hypersurface of π_{2} with a canonical orientation. Moreover, for any $q \in U^{\prime}$ we have

$$
\begin{equation*}
\left|\kappa_{i}^{\prime \prime}(\operatorname{pr}(q))\right| \leq \frac{\left|\omega_{1} \cdot \omega_{2}\right|}{\left[\left(\omega_{1} \cdot \omega_{2}\right)^{2}+\left(\omega_{2} \cdot v_{q}^{\prime}\right)^{2}\right]^{3 / 2}} \max \left\{\left|\kappa_{1}^{\prime}(q)\right|,\left|\kappa_{n-1}^{\prime}(q)\right|\right\} \tag{2.31}
\end{equation*}
$$

for every $i=1, \ldots, n-1$, where $\operatorname{pr}(q)$ is the projection of q onto π_{2}, and $\left\{\kappa_{i}^{\prime \prime}\right\}$ are the principal curvatures of $U^{\prime \prime}$.

Proof. If X is a local positive oriented parametrization of U^{\prime}, then $Y=X-\left(X \cdot \omega_{2}\right) \omega_{2}$ is a local parametrization of $U^{\prime \prime}$, and

$$
\nu^{\prime \prime} \circ Y:=\operatorname{vers}\left(*\left(Y_{1} \wedge \cdots \wedge Y_{n-1} \wedge \omega_{2}\right)\right)
$$

defines a Gauss map for $U^{\prime \prime}$, where Y_{k} is the $k^{\text {th }}$ derivative of Y with respect to the coordinates of its domain. Therefore $U^{\prime \prime}$ is a C^{2}-regular hypersurface of π_{2} oriented by the map $v^{\prime \prime}$.

Now we prove inequalities (2.31). Fix a point $q \in U^{\prime}$ and let $\operatorname{pr}(q)=q-\left(q \cdot \omega_{2}\right) \omega_{2}$ be its projection onto $U^{\prime \prime}$. Let X be a local positive oriented parametrization of U^{\prime} around q and $Y=X-\left(X \cdot \omega_{2}\right) \omega_{2}$ be the induced parametrization of $U^{\prime \prime}$ around $\operatorname{pr}(q)$.

Let $\beta:(-\delta, \delta) \rightarrow U^{\prime \prime}$ be an arbitrary regular curve contained in $U^{\prime \prime}$ such that $\beta(0)=$ $\operatorname{pr}(q)$ and let

$$
v=\frac{\dot{\beta}(0)}{|\dot{\beta}(0)|}, \quad g=\frac{1}{|\dot{\beta}|^{2}} v_{\beta}^{\prime \prime} \cdot \ddot{\beta}
$$

Then

$$
g(0)=\kappa^{\prime \prime}(\operatorname{pr}(q), v),
$$

where $\kappa^{\prime \prime}(\operatorname{pr}(q), v)$ is the normal curvature of $U^{\prime \prime}$ at (q, v). The curve β can be seen as the projection of a regular curve α in U^{\prime} passing through p. Since $v_{\beta}^{\prime \prime}$ is orthogonal to ω_{2}, we have

$$
g=\frac{1}{|\dot{\beta}|^{2}} v_{\beta}^{\prime \prime} \cdot \ddot{\alpha}
$$

Note that since

$$
Y_{k}=X_{k}-\left(X_{k} \cdot \omega_{2}\right) \omega_{2},
$$

we have

$$
v^{\prime \prime} \circ Y=\operatorname{vers}\left(*\left(X_{1} \wedge \cdots \wedge X_{n-1} \wedge \omega_{2}\right)\right)
$$

and

$$
g=\frac{\left(*\left(X_{1}(\alpha) \wedge \cdots \wedge X_{n-1}(\alpha) \wedge \omega_{2}\right)\right) \cdot \ddot{\alpha}}{|\dot{\beta}|^{2}\left|X_{1}(\alpha) \wedge \cdots \wedge X_{n-1}(\alpha) \wedge \omega_{2}\right|} .
$$

Now, it is easy to prove that
$\left(*\left(X_{1}(\alpha) \wedge \cdots \wedge X_{n-1}(\alpha) \wedge \omega_{2}\right)\right) \cdot \ddot{\alpha}=\left(\omega_{1} \cdot \omega_{2}\right) *\left(X_{1}(\alpha) \wedge \cdots \wedge X_{n-1}(\alpha) \wedge \omega_{1}\right) \cdot \ddot{\alpha}$,
and therefore

$$
g=\frac{\omega_{1} \cdot \omega_{2}}{|\dot{\beta}|^{2}} \frac{\left(*\left(X_{1}(\alpha) \wedge \cdots \wedge X_{n-1}(\alpha) \wedge \omega_{1}\right)\right) \cdot \ddot{\alpha}}{\left|X_{1}(\alpha) \wedge \cdots \wedge X_{n-1}(\alpha) \wedge \omega_{2}\right|}
$$

which implies

$$
g=\left(v_{\alpha}^{\prime} \cdot \ddot{\alpha}\right) \frac{\omega_{1} \cdot \omega_{2}}{|\dot{\beta}|^{2}} \frac{\left|X_{1}(\alpha) \wedge \cdots \wedge X_{n-1}(\alpha) \wedge \omega_{1}\right|}{\left|X_{1}(\alpha) \wedge \cdots \wedge X_{n-1}(\alpha) \wedge \omega_{2}\right|} .
$$

We may assume that α is parametrized by arc length and so

$$
|\dot{\beta}|^{2}=1-\left(\dot{\alpha} \cdot \omega_{2}\right)^{2},
$$

which implies

$$
g=\left(v_{\alpha}^{\prime} \cdot \ddot{\alpha}\right) \frac{\omega_{1} \cdot \omega_{2}}{1-\left(\dot{\alpha} \cdot \omega_{2}\right)^{2}} \frac{\left|X_{1}(\alpha) \wedge \cdots \wedge X_{n-1}(\alpha) \wedge \omega_{1}\right|}{\left|X_{1}(\alpha) \wedge \cdots \wedge X_{n-1}(\alpha) \wedge \omega_{2}\right|}
$$

Moreover a standard computation yields

$$
\frac{\left|X_{1}(\alpha) \wedge \cdots \wedge X_{n-1}(\alpha) \wedge \omega_{1}\right|}{\left|X_{1}(\alpha) \wedge \cdots \wedge X_{n-1}(\alpha) \wedge \omega_{2}\right|}=\frac{1}{\left(\left(\omega_{1} \cdot \omega_{2}\right)^{2}+\left(\omega_{2} \cdot v_{\alpha}\right)^{2}\right)^{1 / 2}}
$$

and hence

$$
g(0)=\kappa^{\prime}(q, \dot{\alpha}(0)) \frac{\omega_{1} \cdot \omega_{2}}{\left(\left(\omega_{1} \cdot \omega_{2}\right)^{2}+\left(\omega_{2} \cdot v_{q}^{\prime}\right)^{2}\right)^{1 / 2}} \frac{1}{1-\left(\dot{\alpha}(0) \cdot \omega_{2}\right)^{2}}
$$

where $\kappa^{\prime}(q, \dot{\alpha}(0))$ is the normal curvature of U^{\prime} at $(q, \dot{\alpha}(0))$. Therefore

$$
\begin{align*}
\kappa_{1}^{\prime \prime}(\operatorname{pr}(q)) & =\frac{\omega_{1} \cdot \omega_{2}}{\left(\left(\omega_{1} \cdot \omega_{2}\right)^{2}+\left(\omega_{2} \cdot v_{q}^{\prime}\right)^{2}\right)^{1 / 2}} \inf _{v \in \mathbb{S}_{q}^{n-1}} \frac{\kappa^{\prime}(q, v)}{1-\left(v \cdot \omega_{2}\right)^{2}}, \tag{2.32}\\
\kappa_{n-1}^{\prime \prime}(\operatorname{pr}(q)) & =\frac{\omega_{1} \cdot \omega_{2}}{\left(\left(\omega_{1} \cdot \omega_{2}\right)^{2}+\left(\omega_{2} \cdot v_{q}^{\prime}\right)^{2}\right)^{1 / 2}} \sup _{v \in \mathbb{S}_{q}^{n-1}} \frac{\kappa^{\prime}(q, v)}{1-\left(v \cdot \omega_{2}\right)^{2}}, \tag{2.33}
\end{align*}
$$

where $\mathbb{S}_{q}^{n-1}=\left\{v \in T_{q} U^{\prime}:|v|=1\right\}$. Since

$$
\left|\kappa_{i}^{\prime \prime}(\operatorname{pr}(q))\right| \leq \max \left\{\left|\kappa_{1}^{\prime \prime}(\operatorname{pr}(q))\right|\left|\kappa_{n-1}^{\prime \prime}(\operatorname{pr}(q))\right|\right\}, \quad i=1, \ldots, n-1,
$$

from (2.32) and (2.33) we obtain

$$
\left|\kappa_{i}^{\prime \prime}(\operatorname{pr}(q))\right| \leq \frac{\left|\omega_{1} \cdot \omega_{2}\right|}{\left(\left(\omega_{1} \cdot \omega_{2}\right)^{2}+\left(\omega_{2} \cdot v_{q}^{\prime}\right)^{2}\right)^{1 / 2}} \sup _{v \in \mathbb{S}_{q}^{n-1}} \frac{\left|\kappa^{\prime}(q, v)\right|}{1-\left(v \cdot \omega_{2}\right)^{2}}
$$

and since $\mathbb{R}^{n+1}=T_{q} U^{\prime} \oplus\left\langle v_{q}^{\prime}\right\rangle \oplus\left\langle\omega_{2}\right\rangle$ with

$$
1-\left(v \cdot \omega_{2}\right)^{2} \geq\left(\omega_{1} \cdot \omega_{2}\right)^{2}+\left(\omega_{2} \cdot v_{q}\right)^{2}
$$

we have

$$
\left|\kappa_{i}^{\prime \prime}(\operatorname{pr}(q))\right| \leq \frac{\left|\omega_{1} \cdot \omega_{2}\right|}{\left(\left(\omega_{1} \cdot \omega_{2}\right)^{2}+\left(\omega_{2} \cdot v_{q}^{\prime}\right)^{2}\right)^{3 / 2}} \sup _{v \in \mathbb{S}_{q}^{n-1}}\left|\kappa^{\prime}(q, v)\right|
$$

for every $i=1, \ldots, n-1$, which implies (2.31).

3. Technical lemmas

Let S be a connected closed C^{2}-regular hypersurface embedded in \mathbb{R}^{n+1} and let ρ be the radius of the uniform touching sphere.

Let S_{m} and π_{m} be as in (2.25) and let $\partial S_{m}=S \cap \pi_{m}$. It will be useful to define

$$
\begin{equation*}
S_{m}^{\delta}=\left\{p \in S_{m}: d_{S}\left(p, \partial S_{m}\right)>\delta\right\} \quad \text { for } \delta>0 \tag{3.1}
\end{equation*}
$$

Lemma 3.1. Let $0<\delta<\rho$ and set $\sigma=\rho \sin (\delta / \rho)$. Then:
(i) For any $p \in S_{m}^{\delta}$ we have $\mathcal{U}_{\sigma}(p) \subset S_{m}$.
(ii) For any $q \in S_{m} \backslash S_{m}^{\delta}$ there exist $p \in \partial S_{m}$ and $x \in B_{\delta} \cap T_{p} S$ such that

$$
q=p+x+u(x) v_{p}
$$

Here u and \mathcal{U} are as in (2.1).
Proof. (i) Let $x \in B_{\sigma} \cap T_{p} S$ and let $q=p+x+u(x) v_{p}$. Since

$$
d_{S}\left(q, \partial S_{m}\right) \geq d_{S}\left(p, \partial S_{m}\right)-d_{S}(p, q)
$$

(2.6) implies

$$
d_{S}\left(q, \partial S_{m}\right) \geq \delta-\rho \arcsin (|x| / \rho)
$$

The assumption $|x|<\sigma$ implies the conclusion.
(ii) Let $p \in \partial S_{m}$ be such that $d_{S}\left(q, \partial S_{m}\right)=d_{S}(p, q)$, and let x be the orthogonal projection of q onto $T_{p} S$. Since $|x| \leq d_{S}(p, q)<\delta$ and $\delta<\rho$, we have $|x|<\rho$ and Lemma 2.1 implies the statement.

In the next lemma we show that any two points in S_{m}^{δ} can be joined by a piecewise geodesic curve, and we give a bound on its length. An analogous lemma was proved in [ABR] in the special case when S_{m}^{δ} is contained in a hyperplane.

Lemma 3.2. Let $0<\delta<\rho$, and set

$$
\begin{equation*}
L=\frac{|S| 2^{n}}{\omega_{n} \delta^{n-1}} \tag{3.2}
\end{equation*}
$$

where ω_{n} is the volume of the unit ball in \mathbb{R}^{n}. Let p, q be in a connected component of S_{m}^{δ}. Then there exists a piecewise geodesic path $\gamma:[0,1] \rightarrow S_{m}^{\delta / 2}$ satisfying $\gamma(0)=p$ and $\gamma(1)=q$ and with length bounded by L. Moreover, γ can be built by joining \mathcal{N} minimal geodesics of length δ, with

$$
\begin{equation*}
\mathcal{N} \delta \leq L \tag{3.3}
\end{equation*}
$$

and one minimal geodesic of length $\leq \delta$.
Proof. We can join p and q by a path $\tilde{\gamma}:[0,1] \rightarrow S_{m}^{\delta}$ such that $\tilde{\gamma}(0)=p$ and $\tilde{\gamma}(1)=q$. Given a point $z_{0} \in S$, we denote by $D_{r}\left(z_{0}\right)$ the set of points on S with intrinsic distance from z_{0} less than r, i.e.

$$
D_{r}\left(z_{0}\right)=\left\{z \in S: d_{S}\left(z, z_{0}\right)<r\right\}
$$

When $r<\rho$, (2.6) implies

$$
\begin{equation*}
\left|D_{r}(p)\right| \geq \omega_{n} r^{n} \tag{3.4}
\end{equation*}
$$

Then we consider the increasing sequence $\left\{t_{0}, t_{1}, \ldots, t_{I}\right\}$ in $[0,1]$ recursively defined as follows: $t_{0}=0$, and

$$
\begin{equation*}
t_{i+1}=\inf \left\{t \in[0,1]: D_{\delta / 2}(\tilde{\gamma}(s)) \cap \bigcup_{j=0}^{i} D_{\delta / 2}\left(\tilde{\gamma}\left(t_{j}\right)\right)=\emptyset, \forall s \in[t, 1]\right\} \tag{3.5}
\end{equation*}
$$

if the set in braces is non-empty, and $t_{i+1}=t_{I}$ otherwise. Therefore $\left\{t_{0}, t_{1}, \ldots, t_{I}\right\}$ is an increasing sequence in $[0,1]$ satisfying

$$
\begin{equation*}
D_{\delta / 2}\left(\tilde{\gamma}\left(t_{i}\right)\right) \cap D_{\delta / 2}\left(\tilde{\gamma}\left(t_{j}\right)\right)=\emptyset \quad \text { for } i \neq j, i, j=0, \ldots, I \tag{3.6}
\end{equation*}
$$

and

$$
D_{\delta / 2}\left(\tilde{\gamma}\left(t_{i}\right)\right) \subset S_{m}^{\delta / 2}, \quad i=0, \ldots, I
$$

We complete the sequence by adding $t_{I+1}=1$ as the last term. Since

$$
\left|\bigcup_{i=0}^{I} D_{\delta / 2}\left(\tilde{\gamma}\left(t_{i}\right)\right)\right| \leq|S|
$$

from (3.4) and (3.6) we obtain

$$
\begin{equation*}
I+1 \leq \frac{2^{n}}{\omega_{n} \delta^{n}}|S| \tag{3.7}
\end{equation*}
$$

From (3.5), it is clear that

$$
\bar{D}_{\delta / 2}\left(\tilde{\gamma}\left(t_{i}\right)\right) \cap \bigcup_{j=0}^{i-1} \bar{D}_{\delta / 2}\left(\tilde{\gamma}\left(t_{j}\right)\right) \neq \emptyset
$$

for every $i=1, \ldots, I$. Let

$$
\sigma(i)=\max \left\{j>i: \bar{D}_{\delta / 2}\left(\tilde{\gamma}\left(t_{i}\right)\right) \cap \bar{D}_{\delta / 2}\left(\tilde{\gamma}\left(t_{j}\right)\right) \neq \emptyset\right\}
$$

Then we set $\sigma^{2}(i)=\sigma(\sigma(i)), \sigma^{3}(i)=\sigma(\sigma(\sigma(i)))$ and so on, and fix $\tau \in \mathbb{N}$ such that $\sigma^{\tau}(0)=I$. We define γ_{1} as a minimal geodesic joining p and $\tilde{\gamma}\left(t_{\sigma(0)}\right)$ and such that

$$
\gamma_{1} \subset \bar{D}_{\delta / 2}(p) \cup \bar{D}_{\delta / 2}\left(\tilde{\gamma}\left(t_{\sigma(0)}\right)\right)
$$

for $i=2, \ldots, \tau$, we let γ_{i} be a minimal geodesic joining $\tilde{\gamma}\left(t_{\sigma^{i}(0)}\right)$ and $\tilde{\gamma}\left(t_{\sigma^{i+1}(0)}\right)$ and such that

$$
\gamma_{i} \subset \bar{D}_{\delta / 2}\left(\tilde{\gamma}\left(t_{\sigma^{i}(0)}\right)\right) \cup \bar{D}_{\delta / 2}\left(\tilde{\gamma}\left(t_{\sigma^{i+1}(0)}\right)\right)
$$

Moreover, we let $\gamma_{\tau+1}$ be a minimal geodesic joining $\tilde{\gamma}\left(t_{I}\right)$ and q and such that

$$
\gamma_{\tau+1} \subset \bar{D}_{\delta / 2}\left(\tilde{\gamma}\left(t_{\sigma^{\tau+1}(0)}\right)\right) \cup \bar{D}_{\delta / 2}(q)
$$

Let γ be the piecewise geodesic obtained as the union of $\gamma_{1}, \ldots, \gamma_{\tau+1}$. It is clear that each γ_{i} has length δ for $i=1, \ldots, \tau$, and $\leq \delta$ for $i=\tau+1$. Since $\tau \leq I$, from (3.7) we obtain

$$
\text { length }(\gamma) \leq(\tau+1) \delta \leq \frac{2^{n}}{\omega_{n} \delta^{n-1}}|S|
$$

which implies (3.2) and (3.3), and the proof is complete.
It will be useful to define the following two numbers:

$$
\begin{align*}
& \varepsilon_{0}=\min \left(\frac{1}{2}, \frac{\rho}{16 L} \sin \frac{\delta}{2 \rho}\right), \tag{3.8}\\
& N_{0}=1+\left[\log _{\left(1-\varepsilon_{0}\right)} \frac{1}{2}\right], \tag{3.9}
\end{align*}
$$

where L is given by (3.2) and $[\cdot]$ is the integer part function. We have the following lemma.

Lemma 3.3. Let $\delta \in(0, \rho), \varepsilon \in\left(0, \varepsilon_{0}\right)$ with ε_{0} given by (3.8), and set

$$
\begin{equation*}
r_{i}=(1-\varepsilon)^{i} \rho \sin \frac{\delta}{2 \rho} \tag{3.10}
\end{equation*}
$$

for $i \in \mathbb{N}$. Let p and q be any two points in a connected component of S_{m}^{δ}. Then there exist an integer $N \leq N_{0}$ with N_{0} given by (3.9) and a sequence $\left\{p_{1}, \ldots, p_{N}\right\}$ of points in $S_{m}^{\delta / 2}$ such that

$$
\begin{align*}
& p, q \in \bigcup_{i=0}^{n} \overline{\mathcal{U}}_{r_{i} / 4}\left(p_{i}\right) \tag{3.11}\\
& \mathcal{U}_{r_{0}}\left(p_{i}\right) \subset S_{m}, \quad i=0, \ldots, N, \tag{3.12}\\
& p_{i+1} \in \overline{\mathcal{U}_{r_{i} / 4}\left(p_{i}\right)}, \quad i=0, \ldots, N-1, \tag{3.13}
\end{align*}
$$

where $\mathcal{U}_{r_{i}}\left(p_{i}\right)$ are defined as in (2.1).
Proof. Let γ be a path as in Lemma 3.2 and denote by s its arc length. Set $p_{0}=p$ and define $p_{i}=\gamma\left(r_{i} / 4\right)$ for each $i=1, \ldots, N-1$, and $p_{N}=q$. Here, N is the largest integer such that

$$
\sum_{i=0}^{N-1} \frac{r_{i}}{4} \leq L
$$

Since $\varepsilon<\varepsilon_{0}$, we have

$$
\sum_{i=0}^{N_{0}-1} \frac{r_{i}}{4}>2 L
$$

and hence such an N exists and we can assume that $N \leq N_{0}$, where N_{0} is defined by (3.9). Since $\gamma \subset S_{m}^{\delta / 2}$, the assertion of the theorem easily follows from (2.6).

For a fixed direction $\ell \in \mathbb{S}^{n}$, we denote by ℓ^{\perp} the orthogonal subspace to ℓ, i.e.

$$
\ell^{\perp}=\left\{z \in \mathbb{R}^{n+1}: z \cdot \ell=0\right\}
$$

Lemma 3.4. Let $p \in S$ and $u: B_{r} \cap T_{p} S \rightarrow \mathbb{R}$ be a C^{2} map as in (2.1) with $r<\rho$. Let $\ell \in \mathbb{S}^{n}$ be such that

$$
\begin{equation*}
v_{p} \cdot \ell>0 \quad \text { and } \quad\left|\ell-v_{p}\right|<\varepsilon \tag{3.14}
\end{equation*}
$$

for some $0 \leq \varepsilon<1$. There exists a C^{2} function $v: B_{r \sqrt{1-\varepsilon^{2}}} \cap \ell^{\perp} \rightarrow \mathbb{R}$ such that the set

$$
\begin{equation*}
V=\left\{p+y+v(y) \ell: y \in B_{r \sqrt{1-\varepsilon^{2}}} \cap \ell^{\perp}\right\} \tag{3.15}
\end{equation*}
$$

is contained in $\mathcal{U}_{r}(p)$. Moreover,

$$
\begin{equation*}
\|v\|_{\infty} \leq\|u\|_{\infty}+\sqrt{2} \varepsilon r . \tag{3.16}
\end{equation*}
$$

Proof. Let $q=p+x+u(x) v_{p}$ be a point in $\mathcal{U}_{r}(p)$ with

$$
\begin{equation*}
|x|<r \sqrt{1-\varepsilon^{2}} \tag{3.17}
\end{equation*}
$$

By the implicit function theorem, if $v_{q} \cdot \ell>0$, then S can be locally represented as the graph of a function near q over the hyperplane ℓ^{\perp}. Let $A \in \mathrm{SO}(n+1)$ be a special orthogonal matrix such that $A v_{p}=\ell$, and let $y \in \ell^{\perp}$ be such that $y=A x$. Since $A \in \mathrm{SO}(n+1)$, we have $|x|=|y|$ and so

$$
|y|<r \sqrt{1-\varepsilon^{2}}
$$

From the triangle and Cauchy-Schwarz inequalities we have

$$
v_{q} \cdot \ell \geq v_{q} \cdot v_{p}-\left|\ell-v_{p}\right|
$$

(2.5) and (3.14) yield

$$
v_{q} \cdot \ell \geq \sqrt{1-|x|^{2} / \rho^{2}}-\varepsilon
$$

which implies that $v_{q} \cdot \ell>0$ on account of (3.17). Therefore any point $q \in V$ can be written both as $q=p+x+u(x) v_{p}$ and as $q=p+y+v(y) \ell$ for some $x \in T_{p} S$ and $y \in \ell^{\perp}$. In particular

$$
y+v(y) \ell=x+u(x) v_{p}
$$

and since $y=A x$, we have

$$
(I-A) x+u(x) v_{p}=v(y) \ell
$$

By taking the scalar product with ℓ, we readily obtain

$$
\begin{equation*}
|v(\xi)| \leq|I-A||x|+|u(x)| \tag{3.18}
\end{equation*}
$$

The matrix A can be chosen such that $|I-A| \leq 2 \sqrt{1-\ell \cdot v_{p}} \leq \sqrt{2} \varepsilon$, and (3.18) implies the last part of the statement.
It will be important to compare the normal vectors to two surfaces which are graphs of functions over the same domain. We have the following lemma.

Lemma 3.5. Let $u_{1}, u_{2} \in C^{1}\left(B_{r} \cap e_{n+1}^{\perp}\right)$ and assume that

$$
\left|\nabla u_{2}\left(x_{0}\right)-\nabla u_{1}\left(x_{0}\right)\right|<\varepsilon
$$

for some $x_{0} \in B_{r} \cap e_{n+1}^{\perp}$. Let $p_{i}=x_{0}+u_{i}\left(x_{0}\right) e_{n+1}, i=1$, 2. Then

$$
\begin{equation*}
\left|v_{p_{1}}-v_{p_{2}}\right| \leq \frac{1}{2} \sqrt{5} \varepsilon, \tag{3.19}
\end{equation*}
$$

where

$$
v_{p_{i}}=\frac{-\nabla u_{i}\left(x_{0}\right)+e_{n+1}}{\sqrt{1+\left|\nabla u_{i}\left(x_{0}\right)\right|^{2}}}
$$

is the inward normal to the graph of u_{i} at $p_{i}, i=1,2$.
Proof. Since the eigenvalues of the Hessian of the function $x \mapsto \sqrt{1+|x|^{2}}$ are uniformly bounded by 1 , its gradient is Lipschitz continuous with constant 1 and we have

$$
\begin{equation*}
\left|\frac{\nabla u_{1}(x)}{\sqrt{1+\left|\nabla u_{1}(x)\right|^{2}}}-\frac{\nabla u_{2}(x)}{\sqrt{1+\left|\nabla u_{2}(x)\right|^{2}}}\right| \leq\left|\nabla u_{1}(x)-\nabla u_{2}(x)\right| . \tag{3.20}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\left|\frac{1}{\sqrt{1+\left|\nabla u_{1}(x)\right|^{2}}}-\frac{1}{\sqrt{1+\left|\nabla u_{2}(x)\right|^{2}}}\right| \leq \frac{1}{2}| | \nabla u_{1}(x)\left|-\left|\nabla u_{2}(x)\right|\right| . \tag{3.21}
\end{equation*}
$$

From the triangle inequality and from (3.20) and (3.21) we readily obtain (3.19).

4. Proof of Theorem 1.1

The proof of Theorem 1.1 relies upon a quantitative study of the method of moving planes and it consists of several steps, which we now sketch.
Step 1. We fix a direction ω, apply the method of moving planes, and find a critical position which defines a critical hyperplane π_{m}, as described in Subsection 2.2. By using the smallness of $\operatorname{osc}(H)$, we can prove that (up to a connected component) the surface S and the reflected cap S_{m} are close. Hence, the union of the cap and the reflected cap provides a symmetric set in the direction ω which gives information about the approximate symmetry of S in that direction. It is important to notice that the estimates do not depend on the chosen direction.
Step 2. We apply Step 1 in $n+1$ orthogonal directions and we obtain a point \mathcal{O} as the intersection of the corresponding $n+1$ critical hyperplanes. Since the estimates in Step 1 do not depend on the direction, the point \mathcal{O} can be chosen as an approximate center of symmetry. Moreover, any critical hyperplane in any other direction is less than some constant times osc (H) away from \mathcal{O}.
Step 3. Again by using the estimates in Step 1, we can define two balls centered at \mathcal{O} such that estimate (1.3) holds.
We notice that once we have the approximate symmetry in one direction, i.e. Step 1, then the argument for proving Steps 2 and 3 is well-established [ABR, Section 4]. In the following we will prove Step 1, which is our main result of this section, and for the sake of completeness, we give a sketch of the proof for Steps 2 and 3.

4.1. Step 1. Approximate symmetry in one direction

We apply the moving plane procedure as described in Subsection 2.2. Let $\omega \in \mathbb{S}^{n}$ be a direction in \mathbb{R}^{n+1} and let S_{m}, \hat{S}_{m} be defined as in (2.25). Let p_{0} be a tangency point between S_{m} and \hat{S}_{m}, and denote by Σ and $\hat{\Sigma}$ the connected components of S_{m} and \hat{S}_{m}, respectively, containing p_{0} or having p_{0} on their boundary. Let S^{*} be the reflection of S about π_{m}. For a point p in S (or S^{*}), we denote by v_{p} the normal vector to S (or to S^{*}) at p. We will use this notation when it does not lead to ambiguity: the choice of the vector normal and of the surface is implied by the point itself. If $p \in S \cap S^{*}$ is a point of tangency between S and S^{*}, then the normal vector at p is the same for both the surfaces, and the notation is coherent. When ambiguity occurs, i.e. for non-tangency points in $S \cap S^{*}$, we will specify the dependence on the surface. For points on $\partial \Sigma$ (or $\partial \hat{\Sigma}$) we will denote by v the Gauss map on $\partial \Sigma$ (or $\partial \hat{\Sigma}$) which is induced by the one on $S^{*}($ or $S)$.

The main goal of Step 1 is to prove the following result of approximate symmetry in one direction.

Theorem 4.1. There exists a positive constant ε such that if $\operatorname{osc}(H) \leq \varepsilon$, then for any $p \in \Sigma$ there exists $\hat{p} \in \hat{\Sigma}$ such that

$$
\begin{equation*}
|p-\hat{p}|+\left|v_{p}-v_{\hat{p}}\right| \leq C \operatorname{osc}(H) \tag{4.1}
\end{equation*}
$$

Here, the constants ε and C depend only on $n, \rho,|S|$ and do not depend on the direction ω.
Before giving the proof of Theorem 4.1, we provide two preliminary results about the geometry of Σ. For $t>0$ we set

$$
\Sigma^{t}=\left\{p \in \Sigma: d_{\Sigma}(p, \partial \Sigma)>t\right\}
$$

The following two lemmas show some conditions implying that Σ^{t} is connected for t small enough.

Lemma 4.2. Assume that there exists $\mu \leq 1 / 2$ such that

$$
\begin{equation*}
v_{p} \cdot \omega \leq \mu \tag{4.2}
\end{equation*}
$$

for every p on the boundary of Σ. Then Σ^{t} is connected for any $0<t \leq t_{0}$, where

$$
t_{0}=\frac{\rho}{2 \sqrt{n}} \sqrt{1-2 \mu^{2}}
$$

Proof. Let S^{*} be the reflection of S about π_{m}. We notice that, by construction of the moving planes, Σ and π_{m} enclose a bounded simply connected domain of \mathbb{R}^{n+1}. Moreover, $v_{p} \cdot \omega \geq 0$ on $\partial \Sigma$ and (4.2) implies that π_{m} intersects S^{*} transversally. Hence, the boundary of Σ is a manifold of class C^{2}. We prove that the boundary of Σ^{t} lies in a tubular neighborhood of the boundary of Σ in S^{*}. Then, since Σ is connected, any two points in Σ^{t} can be joined by a curve in Σ which can be pushed into Σ^{t} by using the normal vector field to the boundary Σ.

Following Section 2.3, we denote the boundary of Σ by Σ^{\prime} and we orient Σ^{\prime} by the Gauss map satisfying

$$
v_{p} \cdot v_{p}^{\prime}=1-\left(v_{p} \cdot \omega\right)^{2}
$$

(see (2.28)). Hence, from (4.2), we have

$$
v_{p} \cdot v_{p}^{\prime} \geq 1-\mu^{2}
$$

Since the principal curvatures of S are bounded by ρ^{-1}, from Proposition 2.7 the principal curvatures κ_{i}^{\prime} of Σ^{\prime} satisfy

$$
\begin{equation*}
\left|\kappa_{i}^{\prime}\right| \leq \frac{1}{\rho\left(1-\mu^{2}\right)}, \quad i=1, \ldots, n-1 \tag{4.3}
\end{equation*}
$$

From Lemma 3.4, we can write S^{*} as the graph of a function $u: B_{r} \cap\left(v_{p}^{\prime}\right)^{\perp} \rightarrow \mathbb{R}$ with $r=\rho \sqrt{1-2 \mu^{2}}$. Moreover, (4.3) and Lemma 2.1 imply that Σ^{\prime} is locally the graph of u restricted to $B_{r} \cap T_{p} \Sigma^{\prime}$. Taking into account that $\left(\nu_{p}^{\prime}\right)^{\perp}=T_{p} \Sigma^{\prime} \oplus\langle\omega\rangle$, we consider the subset of S^{*} given by

$$
Q(p)=\left\{q=p+\xi+s \omega+u(\xi+s \omega) v_{p}^{\prime}: \xi \in B_{r} \cap T_{p} \Sigma^{\prime},|s| \leq t_{0}\right\}
$$

which contains a tubular neighborhood of $\Sigma^{\prime} \cap B_{t_{0}}(p)$ of radius at least t_{0}. Hence, the set $\mathcal{Q}=\bigcup_{p \in \Sigma^{\prime}} Q(p)$ contains a tubular neighborhood of Σ^{\prime} in S^{*} of radius at least t_{0}, which concludes the proof.

Lemma 4.3. Let $0<\delta \leq \rho(8 \sqrt{n})^{-1}$. If there exists a connected component Γ^{δ} of Σ^{δ} satisfying

$$
0 \leq v_{p} \cdot \omega \leq 1 / 8 \quad \text { for any } p \in \partial \Gamma^{\delta}
$$

then Σ^{δ} is connected.
Proof. To simplify the notation we let $\mu_{0}=1 / 8$. Notice that the interior and exterior touching balls at every boundary point of Γ^{δ} intersect π_{m}. By using this argument and after elementary but tedious calculations, we can prove that for any $q \in \Sigma \backslash \Gamma^{\delta}$,

$$
d_{\Sigma}\left(q, \Gamma^{\delta}\right) \leq \rho \arcsin \left(\left(1+2 \mu_{0}\right) \delta / \rho\right)
$$

In particular, for any $q \in \partial \Sigma$ there exists $p \in \partial \Sigma^{\delta}$ such that

$$
d_{\Sigma}(q, p) \leq \rho \arcsin \left(\left(1+2 \mu_{0}\right) \delta / \rho\right)
$$

and from Lemma 2.1 we obtain

$$
\left|v_{p}-v_{q}\right| \leq \sqrt{2} \arcsin \left(\left(1+2 \mu_{0}\right) \delta / \rho\right)
$$

By writing $v_{q} \cdot \omega=v_{p} \cdot \omega-\left(v_{q}-v_{p}\right) \cdot \omega$ and by the triangle inequality we get

$$
\left|v_{q} \cdot \omega\right| \leq \mu_{0}+\sqrt{2} \arcsin \left(\left(1+2 \mu_{0}\right) \delta / \rho\right)
$$

our assumptions on δ imply the following (rougher but simpler) bound:

$$
\left|v_{q} \cdot \omega\right| \leq 2 \mu_{0}+1 / 2
$$

Now we use Lemma 4.2 by setting $\mu=2 \mu_{0}+1 / 2$ and taking $\delta \leq t_{0}$.
Now, we focus on the proof of Theorem 4.1. It will be divided into four cases, which we study in the consecutive subsections. In each case, δ will be fixed to be

$$
\delta=\min \left(\frac{\rho}{2^{6}}, \frac{\rho}{8 \sqrt{n}}\right) .
$$

Moreover, the constants ε and C can be chosen as

$$
\varepsilon=\min \left\{\varepsilon_{0}, \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right\} \quad \text { and } \quad C=\frac{5}{4} C_{1} K_{1} K_{2} K_{3} .
$$

Here, ε_{0} is given by (3.8), and $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$ and C_{1} will be defined below. Moreover, K_{1}, K_{2}, K_{3} are given by Lemmas 2.3, 2.4, 2.6, respectively, where M is chosen according to Lemma 2.1 by assuming that $|x| \leq \rho / 2$. Hence, the constants ε and C depend only on n and upper bounds on ρ^{-1} and $|S|$.
4.1.1. Case 1: $d_{\Sigma}\left(p_{0}, \partial \Sigma\right)>\delta$ and $d_{\Sigma}(p, \partial \Sigma) \geq \delta$. In this case we assume that p_{0} and p are interior points of Σ, which are more than δ away from $\partial \Sigma$. We remark that in this case, p_{0} is an interior touching point between Σ and $\hat{\Sigma}$, so that case (i) in the method of moving planes occurs. We first assume that p_{0} and p are in the same connected component of Σ^{δ}; then Lemma 4.3 will be used to show that Σ^{δ} is in fact connected.

Let

$$
r_{0}=\rho \sin \frac{\delta}{2 \rho}
$$

Since p and p_{0} are in a connected component of Σ^{δ}, there exist: $\left\{p_{1}, \ldots, p_{N}\right\}$ in the connected component of $\Sigma^{\delta / 2}$ containing p_{0}, a chain $\left\{\mathcal{U}_{r_{0}}\left(p_{i}\right)\right\}_{i=0}^{N}$ of open subsets of Σ and a sequence of maps $u_{i}: B_{r_{0}} \cap T_{p_{i}} \Sigma \rightarrow \mathbb{R}, i=0, \ldots, N$, as in Lemma 3.3, where $r_{i}=(1-\varepsilon)^{i} r_{0}$. We notice that Σ and $\hat{\Sigma}$ are tangent at p_{0}, and in particular the normal vectors to Σ and $\hat{\Sigma}$ at p_{0} coincide. We stress that $\hat{\Sigma} \subset S$, and since $r_{0}<\rho$, from Lemma 2.1 we know that S is locally represented near p_{0} as the graph of a map $\hat{u}_{0}: B_{r_{0}} \cap T_{p_{0}} S \rightarrow \mathbb{R}$.

Lemma 2.1 implies that $\left|\nabla u_{0}\right|,\left|\nabla \hat{u}_{0}\right| \leq M$ in $B_{r_{0}} \cap T_{p_{0}} \Sigma$, where M is some constant which depends only on r_{0}, i.e. only on ρ. Now, we use Lemma 2.3: since $u_{0}(0)=\hat{u}_{0}(0)$ and $u_{0} \geq \hat{u}_{0}$, (2.14) gives

$$
\begin{equation*}
\left\|u_{0}-\hat{u}_{0}\right\|_{C^{1}\left(B_{r_{0} / 4} \cap T_{p_{0}} \Sigma\right)} \leq K_{1} \operatorname{osc}(H) \tag{4.4}
\end{equation*}
$$

where K_{1} depends only on n and M. We notice that from (3.13) we have $p_{1} \in \overline{\mathcal{U}}_{r_{0} / 4}\left(p_{0}\right)$. Let x_{1} be the projection of p_{1} onto $T_{p_{0}} \Sigma$ and let

$$
\hat{p}_{1}^{*}:=p_{0}+x_{1}+\hat{u}_{0}\left(x_{1}\right) v_{p_{0}} \in \hat{\Sigma}
$$

From (4.4) we obtain

$$
\left|\nabla u_{0}\left(x_{1}\right)-\nabla \hat{u}_{0}\left(x_{1}\right)\right| \leq K_{1} \operatorname{osc}(H),
$$

and therefore Lemma 3.5 yields

$$
\begin{equation*}
\left|v_{p_{1}}-v_{\hat{p}_{1}^{*}}\right| \leq \frac{1}{2} \sqrt{5} K_{1} \operatorname{osc}(H) \tag{4.5}
\end{equation*}
$$

Let \hat{p}_{1} be the nearest point to p_{1} in $\hat{\Sigma}$ which can be written as $\hat{p}_{1}=p_{1}-\tau \nu_{p_{1}}$ for some $\tau \geq 0$. Since $\left|x_{1}\right| \leq r_{0} / 4$, from (2.5) we have $v_{p} \cdot v_{p_{1}} \geq \sqrt{1-\left(r_{0} / \rho\right)^{2}}$. From (4.4), (4.5) and by a simple geometrical argument, we obtain

$$
\tau \leq \frac{2 K_{1} \operatorname{osc}(H)}{v_{p} \cdot v_{p_{1}}} \quad \text { and } \quad\left|x_{1}-\hat{x}_{1}\right| \leq 2 K_{1} \frac{\delta}{4 \rho} \operatorname{osc}(H)
$$

where \hat{x}_{1} is the projection of \hat{p}_{1} onto $T_{p_{0}} \Sigma$. This implies that

$$
\begin{equation*}
\left|p_{1}-\hat{p}_{1}\right|+\left|v_{p_{1}}-v_{\hat{p}_{1}}\right| \leq c K_{1} \operatorname{osc}(H), \tag{4.6}
\end{equation*}
$$

where c depends only on n and ρ.
As already mentioned, we have a local parametrization of Σ in a neighborhood of p_{1} as the graph of the C^{2} function $u_{1}: B_{r_{0}} \cap T_{p_{1}} \Sigma \rightarrow \mathbb{R}$. Lemma 3.4 and (4.5) imply that S can be locally parametrized by the graph of a function $\hat{u}_{1}: B_{r_{1}} \cap T_{p_{1}} \Sigma \rightarrow \mathbb{R}$, where $r_{1}<r_{0} \sqrt{1-c^{2} K_{1}^{2} \varepsilon^{2}}$ since $\varepsilon \leq \varepsilon_{1}$ with

$$
\begin{equation*}
\varepsilon_{1}=\left(1+c^{2} K_{1}^{2}\right)^{-1} \tag{4.7}
\end{equation*}
$$

From the definition of \hat{p}_{1}, (4.6) and since $u_{1}-\hat{u}_{1} \geq 0$ by construction, we find that

$$
0 \leq u_{1}(0)-\hat{u}_{1}(0) \leq c K_{1} \operatorname{osc}(H) .
$$

We use Lemma 2.3 to deduce that

$$
\begin{equation*}
\left\|u_{1}-\hat{u}_{1}\right\|_{C^{1}\left(B_{r_{1} / 4} \cap T_{p_{1}} \Sigma\right)} \leq K_{1}\left[c K_{1}+1\right] \operatorname{osc}(H) . \tag{4.8}
\end{equation*}
$$

Now, (4.8) is the analogue of (4.4) with p_{1} instead of p_{0}, and we can iterate until we obtain two functions $u_{N}, \hat{u}_{N}: B_{r_{N}} \cap T_{p} \Sigma \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\left\|u_{N}-\hat{u}_{N}\right\|_{C^{1}\left(B_{r_{N} / 4} \cap T_{p} \Sigma\right)} \leq C_{1} \operatorname{Osc}(H) . \tag{4.9}
\end{equation*}
$$

A choice of \hat{p} as in the statement of Theorem 4.1 is then given by $\hat{p}=p+\hat{u}_{N}(0) \nu_{p}$, since (4.1) is implied by (4.9) and Lemma 3.5.

We notice that a choice of the constant C_{1} in (4.9) is given by

$$
\begin{equation*}
C_{1}=\left(c K_{1}+1\right)^{N_{0}+1} \tag{4.10}
\end{equation*}
$$

where N_{0} is given by (3.9). Hence the constant C_{1} depends only on $n, \delta / \rho$, and an upper bound on $|S|$.

Once we have (4.9) for any p in a connected component of Σ^{δ}, we have in fact

$$
\nu_{q} \cdot \omega \leq 1 / 8
$$

for any point q at the boundary of such a connected component, as follows from
Lemma 4.4. Let $q \in \Sigma$ be such that $d_{\Sigma}(q, \partial \Sigma) \leq \delta$. Assume that the point $\hat{q}=q-\alpha v_{q}$ is on $\hat{\Sigma}$ and

$$
\begin{equation*}
\left|v_{q}-v_{\hat{q}}\right| \leq \alpha \tag{4.11}
\end{equation*}
$$

with $\alpha+2 \delta<\rho$. Then

$$
\begin{equation*}
0 \leq v_{q} \cdot \omega \leq \sqrt{8 \delta^{2} / \rho^{2}+\alpha / 2} \tag{4.12}
\end{equation*}
$$

Proof. Let q^{m} be the reflection of q about π_{m} and let

$$
t=v_{q} \cdot \omega
$$

By construction of the moving planes, it is clear that $t \geq 0$ and the first inequality in (4.12) follows. We denote by $\nu_{q^{m}}$ the inner normal vector to S at q^{m}. Since $v_{q} \cdot \omega=-v_{q^{m}} \cdot \omega$ and $v_{q}-v_{q^{m}}=2 t \omega$, we have

$$
\begin{equation*}
v_{q} \cdot v_{q^{m}}=1-2 t^{2} \tag{4.13}
\end{equation*}
$$

We notice that q^{m} and \hat{q} both lie in S and $\left|q^{m}-\hat{q}\right| \leq \alpha+2 \delta$, which implies that $\hat{q} \in \mathcal{U}_{\rho}\left(q^{m}\right)$ provided that $\alpha+2 \delta<\rho$. Hence, (2.5) yields

$$
v_{\hat{q}} \cdot v_{q^{m}} \geq \sqrt{1-\left(\frac{\alpha+2 \delta}{\rho}\right)^{2}}
$$

From (4.11) and (4.13) we find that

$$
1-2 t^{2} \geq \sqrt{1-\left(\frac{\alpha+2 \delta}{\rho}\right)^{2}}-\alpha
$$

which gives

$$
t^{2} \leq \frac{1}{2}\left(\frac{\alpha+2 \delta}{\rho}\right)^{2}+\frac{\alpha}{2}
$$

and we obtain the second inequality in (4.12).
The conclusion of Case 1 follows from the following argument. From (4.9) we know that for any q on the boundary of the connected component of Σ^{δ} containing p_{0} there exists $\hat{q} \in \hat{\Sigma}$ such that

$$
|q-\hat{q}|+\left|v_{q}-v_{\hat{q}}\right| \leq C_{1} \operatorname{osc}(H)
$$

We apply Lemma 4.4 by letting $\alpha=C_{1} \operatorname{osc}(H)$; since $\varepsilon \leq \varepsilon_{2}$ with

$$
\varepsilon_{2} \leq 1 /\left(2^{6} C_{1}\right)
$$

we obtain $0 \leq v_{q} \cdot \omega \leq 1 / 8$. Hence, from Lemma 4.3 we find that Σ^{δ} is connected.
4.1.2. Case 2: $d_{\Sigma}\left(p_{0}, \partial \Sigma\right) \geq \delta$ and $d_{\Sigma}(p, \partial \Sigma)<\delta$. Here the idea consists in extending the estimate of Subsection 4.1 .1 to the whole Σ. This will be done by using Carleson type estimates given by Lemma 2.4. We remark that its application is not trivial, since we need more information on how S intersects π_{m}.

Following (2.25), for a given point $p \in \Sigma$ such that $d_{\Sigma}(p, \partial \Sigma) \leq \delta$, we denote by p^{m} the point of S obtained by reflecting p about π_{m}. The surface S can be locally written as the graph of a function $u: B_{\rho} \cap T_{p} S \rightarrow \mathbb{R}$. For $0<r<\rho$, we define $U_{r}^{*}(p)$ as the reflection of $\mathcal{U}_{r}\left(p^{m}\right)$ about π_{m} and we denote by $U_{r}(p)$ the subset of Σ obtained by

$$
U_{r}(p)=U_{r}^{*}(p) \cap\left\{q \in \mathbb{R}^{n+1}: q \cdot \omega<m\right\} .
$$

Moreover, we denote by E_{r} the open subset of $B_{r} \cap T_{p} \Sigma$ such that

$$
\begin{equation*}
U_{r}(p)=\left\{p+x+u(x) v_{p}: x \in E_{r}\right\} . \tag{4.14}
\end{equation*}
$$

The next result is a consequence of Propositions 2.7 and 2.8.
Lemma 4.5. Let $q \in \Sigma$ be such that $d_{\Sigma}(q, \partial \Sigma)=\delta$ and $0 \leq \nu_{q} \cdot \omega \leq 1 / 4$. Let $U^{\prime}=U_{\sqrt{2} \rho / 8}^{*}(q) \cap \pi_{m}$ and $U^{\prime \prime}$ be the orthogonal projection of U^{\prime} onto $T_{q} \Sigma$. Then $U^{\prime \prime}$ is a hypersurface of class C^{2} of $T_{q} \Sigma$ whose principal curvatures are bounded by

$$
\mathcal{K}=4 \delta / \rho^{2} .
$$

Proof. We notice that since $d_{\Sigma}(q, \partial \Sigma)=\delta$, we have $U^{\prime} \neq \emptyset$. Let $\zeta \in U^{\prime}$. Since the projection $\operatorname{pr}(\zeta)$ of ζ on $T_{q} \Sigma$ is in $\bar{B}_{\sqrt{2} \rho / 8}$, from (2.5) we know that

$$
\begin{equation*}
\left|v_{q}-v_{\zeta}\right| \leq 1 / 4 \tag{4.15}
\end{equation*}
$$

Since $\nu_{\zeta} \cdot \omega=\nu_{q} \cdot \omega+\left(v_{\zeta}-v_{q}\right) \cdot \omega$, we have

$$
\begin{equation*}
\left|\nu_{\zeta} \cdot \omega\right| \leq 1 / 2, \tag{4.16}
\end{equation*}
$$

which implies that π_{m} intersects $U_{\sqrt{2} \rho / 8}^{*}(q)$ transversally, and so $U^{\prime \prime}$ is a hypersurface of $T_{q} \Sigma$. Since the principal curvatures of S are bounded by $1 / \rho$, (2.31) implies that the principal curvatures of $U^{\prime \prime}$ satisfy

$$
\left|\kappa_{i}^{\prime \prime}(\operatorname{pr}(\zeta))\right| \leq \frac{1}{\rho\left|v_{\zeta} \cdot v_{\zeta}^{\prime}\right|} \cdot \frac{\omega \cdot v_{q}}{\left[\left(\omega \cdot v_{q}\right)^{2}+\left(v_{q} \cdot v_{\zeta}^{\prime}\right)^{2}\right]^{3 / 2}}, \quad i=1, \ldots, n-1
$$

where v^{\prime} is the Gauss map of U^{\prime} viewed as a hypersurface of π_{m} satisfying

$$
\begin{equation*}
v_{\zeta} \cdot v_{\zeta}^{\prime}=\sqrt{1-\left(v_{\zeta} \cdot \omega\right)^{2}} . \tag{4.17}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\left|\kappa_{i}^{\prime \prime}(\operatorname{pr}(\zeta))\right| \leq \frac{\omega \cdot v_{q}}{\rho\left|v_{\zeta} \cdot v_{\zeta}^{\prime}\right|\left|v_{q} \cdot v_{\zeta}^{\prime}\right|^{3}}, \quad i=1, \ldots, n-1 . \tag{4.18}
\end{equation*}
$$

From (4.16) and (4.17), we obtain

$$
\begin{equation*}
v_{\zeta} \cdot v_{\zeta}^{\prime} \geq \sqrt{3} / 2 \tag{4.19}
\end{equation*}
$$

By writing $v_{q} \cdot v_{\zeta}^{\prime}=\left(v_{q}-v_{\zeta}\right) \cdot v_{\zeta}^{\prime}+v_{\zeta} \cdot v_{\zeta}^{\prime}$ and using (4.15) and (4.19) we get

$$
v_{q} \cdot v_{\zeta}^{\prime} \geq 1 / 2
$$

and from (4.18) and (4.19) we obtain the assertion.
In the next lemma we give a bound which will be useful later.
Lemma 4.6. Let q and α be as in Lemma 4.4. Then

$$
\begin{equation*}
0 \leq \nu_{\zeta} \cdot \omega \leq \sqrt{8 \delta^{2} / \rho^{2}+\alpha / 2}+(\sqrt{2} / \rho) d_{\Sigma}(q, \zeta) \tag{4.20}
\end{equation*}
$$

for any $\zeta \in \bar{U}_{\rho}(q)$, where $U_{\rho}(q)$ is defined as in (4.14).
Proof. Let $\zeta \in \bar{U}_{\rho}(q)$. By construction we have $\nu_{\zeta} \cdot \omega \geq 0$. Since

$$
v_{\zeta} \cdot \omega \leq v_{q} \cdot \omega+\left|v_{\zeta}-v_{q}\right|
$$

from (2.5) and (4.12) we get the assertion.
Now we are ready to prove Theorem 4.1 for Case 2. Let

$$
\varepsilon_{3}=\delta /\left(\rho C_{1}\right)
$$

where C_{1} is given by (4.10). We assume that $d_{\Sigma}\left(p_{0}, \partial \Sigma\right) \geq \delta$ and $d_{\Sigma}(p, \partial \Sigma)<\delta$. By arguing as in Case 1, we see that Σ^{δ} is connected. Let $q \in \Sigma$ and $\bar{p} \in \partial \Sigma$ be such that

$$
d_{\Sigma}(p, q)+d_{\Sigma}(p, \partial \Sigma)=\delta \quad \text { and } \quad d_{\Sigma}(p, \bar{p})=d_{\Sigma}(p, \partial \Sigma)
$$

(we notice that our choice of δ implies that q and \bar{p} exist).
Since $d_{\Sigma}(q, \partial \Sigma)=\delta$, from Case 1 we find that there exists $\hat{q} \in \hat{\Sigma}$ such that

$$
\begin{equation*}
|q-\hat{q}|+\left|v_{q}-v_{\hat{q}}\right| \leq C_{1} \operatorname{osc}(H) \tag{4.21}
\end{equation*}
$$

(see (4.9)). From the proof of Case 1, it is clear that \hat{q} can be chosen as

$$
\hat{q}=q-\alpha v_{q}
$$

for some $0 \leq \alpha \leq C_{1} \operatorname{osc}(H)$. Let

$$
\begin{equation*}
r=\rho / 8 \tag{4.22}
\end{equation*}
$$

We define the sets $U_{r}(q) \subset \Sigma, E_{r} \subseteq B_{r} \cap T_{q} \Sigma$, and the map $u: E_{r} \rightarrow \mathbb{R}$ as in (4.14) with q in place of p. Since $\hat{q} \in \hat{\Sigma} \subset S$ and $\left|v_{q}-v_{\hat{q}}\right| \leq C_{1} \operatorname{osc}(H)$, from Lemma 3.4 we infer that S can be locally written (around \hat{q}) as the graph of a function \hat{u} over $T_{q} \Sigma \cap B_{\rho \sqrt{1-C_{1}^{2} \varepsilon_{3}^{2}}}$ and in particular over $T_{q} \Sigma \cap B_{r}$ (which is justified by our choice of ε_{3}).

We notice that Lemma 2.2 implies that $p, \bar{p} \in \bar{U}_{r}(q)$. Let ∂E_{r} be the boundary of E_{r} in $T_{q} \Sigma$ and let $\bar{x} \in \partial E_{r}$ be the projection of \bar{p}. Since $d_{\Sigma}(q, \bar{p})=\delta$, from Lemma 2.2 we have

$$
\begin{equation*}
\rho \sin (\delta / \rho) \leq|\bar{x}| \leq \delta \tag{4.23}
\end{equation*}
$$

Fig. 2. Case 2 in the proof of Theorem 4.1. The shadow region is $B_{\delta}(\bar{x}) \cap E_{r}$.

Let $U^{\prime}=U_{r}^{*}(q) \cap \pi_{m}$ and let $U^{\prime \prime}$ be the projection of U^{\prime} onto $T_{q} \Sigma$ (as in Lemma 4.5). Notice that by definition, $U^{\prime \prime} \subset \partial E_{r}$, and in particular $u=\hat{u}$ on $U^{\prime \prime}$. From Lemmas 4.4 and 4.5 , the principal curvatures of $U^{\prime \prime}$ are uniformly bounded by \mathcal{K}. We notice that our choice of δ implies that $\mathcal{K} \leq 1 /(16 \rho)$.

Let x be the projection of p over $T_{q} \Sigma$. From (4.23) we have $B_{4 \delta}(\bar{x}) \cap \partial E_{r} \subset U^{\prime \prime}$ and we can apply Lemma 2.4 to deduce that

$$
\begin{equation*}
\sup _{B_{\delta}(\bar{x}) \cap E_{r}}(u-\hat{u}) \leq K_{2}((u-\hat{u})(\bar{y})+\operatorname{osc}(H)) \tag{4.24}
\end{equation*}
$$

with $\bar{y}=\bar{x}+2 \delta v_{\bar{x}}^{\prime \prime}$, where $\nu_{\bar{x}}^{\prime \prime}$ is the interior normal to $U^{\prime \prime}$ at \bar{x} (see Figure 2). We notice that $x \in B_{\delta}(\bar{x}) \cap E_{r}$, and so from (4.24) we find that

$$
\begin{equation*}
(u-\hat{u})(x) \leq K_{2}((u-\hat{u})(\bar{y})+\operatorname{osc}(H)) . \tag{4.25}
\end{equation*}
$$

Since $2 \delta<\mathcal{K}^{-1}$, the point \bar{y} has distance 2δ from the boundary of E_{r}, and by Lemma 2.2 the point

$$
\bar{q}=q+\bar{y}+u(\bar{y}) \nu_{q}
$$

satisfies

$$
d_{\Sigma}(\bar{q}, \partial \Sigma) \geq 2 \delta
$$

Hence, from Case 1 (applied to p_{0} and \bar{q}) we obtain the estimate

$$
(u-\hat{u})(\bar{y}) \leq C_{1} \operatorname{osc}(H),
$$

and from (4.25) we get

$$
(u-\hat{u})(x) \leq C_{1} K_{2} \operatorname{osc}(H) .
$$

By letting $\hat{p}=q+x+\hat{u}(x) v_{q}$, and since $d_{\Sigma}(p, \partial \Sigma)>0$, a standard application of Lemmas 2.3 and 3.5 yields the estimate

$$
|p-\hat{p}|+\left|v_{p}-v_{\hat{p}}\right| \leq \frac{1}{2} \sqrt{5} C_{1} K_{1} K_{2} \operatorname{osc}(H)
$$

and the proof of Case 2 is complete.
4.1.3. Case 3: $0<d_{\Sigma}\left(p_{0}, \partial \Sigma\right)<\delta$. Since p_{0} is the tangency point, it is easy to show that the center of the interior touching sphere of radius ρ to S at p_{0} lies in the half-space $\left\{q \in \mathbb{R}^{n+1}: q \cdot \omega \leq m\right\}$ (see for instance [CMV1, Lemma 2.1]). From this, and since

$$
\left|p_{0} \cdot \omega-m\right| \leq d_{\Sigma}\left(p_{0}, \partial \Sigma\right) \leq \delta,
$$

by Lemma 4.4 (with $\alpha=0$) we obtain

$$
v_{p_{0}} \cdot \omega \leq 3 \delta / \rho
$$

As in Case 2 (with q replaced by p_{0}), we locally write Σ and $\hat{\Sigma}$ as the graphs of functions $u, \hat{u}: E_{r} \rightarrow \mathbb{R}$, respectively, where $E_{r} \subseteq T_{p_{0}} \Sigma$ is defined as in the introduction to this subsection, and r is given by (4.22). Moreover, we denote by $U^{\prime \prime}$ the portion of ∂E_{r} which is obtained by projecting $U_{r}^{*}\left(p_{0}\right) \cap \pi_{m}$ onto $T_{p_{0}} \Sigma$. We remark that $u=\hat{u}$ on $U^{\prime \prime}$ and that the principal curvatures of $U^{\prime \prime}$ are bounded by \mathcal{K}.

Let $\bar{x} \in U^{\prime \prime}$ be a point such that

$$
|\bar{x}|=\min _{x \in U^{\prime \prime}}|x| .
$$

Notice that $|\bar{x}| \leq d_{\Sigma}\left(p_{0}, \partial \Sigma\right)<\delta$. Let $v_{\bar{x}}^{\prime \prime}$ be the interior normal to $U^{\prime \prime}$ at \bar{x}, and set

$$
y=\bar{x}+2 \delta v_{\bar{x}}^{\prime \prime}
$$

(see Figure 3). We notice that the principal curvatures of $U^{\prime \prime}$ are bounded by \mathcal{K}, and

Fig. 3. Case 3 in the proof of Theorem 4.1.
$2 \delta \leq \mathcal{K}^{-1}$ and the ball $B_{2 \delta}(y) \cap T_{p_{0}} \Sigma$ is contained in E_{r} and tangent to $U^{\prime \prime}$ at \bar{x}, with $\nu_{\bar{x}}^{\prime \prime}=-\bar{x} /|\bar{x}|$. Hence, the origin O of $T_{p_{0}} \Sigma$ (i.e. the projection of p_{0} over $T_{p_{0}} \Sigma$) lies in the annulus $\left(B_{2 \delta}(y) \backslash B_{\delta}(y)\right) \cap T_{p_{0}} \Sigma$. Therefore, we can apply (2.23) (where we set $x_{0}=\bar{x}$, $c=y$ and $r=2 \delta$), and since $u(0)=\hat{u}(0)$, we find that

$$
\begin{equation*}
\|u-\hat{u}\|_{C^{1}\left(B_{\delta / 2}(y) \cap T_{p_{0}} \Sigma\right)} \leq K_{3} \operatorname{osc}(H) . \tag{4.26}
\end{equation*}
$$

Let

$$
q=p_{0}+y+u(y) v_{p_{0}} \quad \text { and } \quad \hat{q}=p_{0}+y+\hat{u}(y) v_{p_{0}} .
$$

We notice that (4.26) and Lemma 3.5 imply that

$$
|q-\hat{q}|+\left|v_{q}-v_{\hat{q}}\right| \leq \frac{1}{2} \sqrt{5} K_{3} \operatorname{osc}(H) .
$$

Since y has distance 2δ from ∂E_{r}, we have $d_{\Sigma}(q, \partial \Sigma) \geq 2 \delta$, and we can apply Cases 1 and 2 to conclude the proof.
4.1.4. Case 4: $p_{0} \in \partial \Sigma$. This case is the limiting case of Case 3 for $d_{\Sigma}\left(p_{0}, \partial \Sigma\right) \rightarrow 0$. Indeed, in this case we can write Σ and $\hat{\Sigma}$ as graphs of functions over a half-ball on $T_{p_{0}} \Sigma$. Hence the argument used in Case 3 can be easily adapted by using (2.24) instead of (2.23).

4.2. Steps 2-3. Approximate radial symmetry and conclusion

We consider $n+1$ orthogonal directions e_{1}, \ldots, e_{n+1}, and we denote by $\pi_{1}, \ldots, \pi_{n+1}$ the corresponding critical hyperplanes. Let

$$
\mathcal{O}=\bigcap_{i=1}^{n+1} \pi_{i}
$$

and denote by $\mathcal{R}(p)$ the reflection of p in \mathcal{O}. The following lemma extends Theorem 4.1.
Lemma 4.7. For any $p \in S$ there exists $q \in S$ such that

$$
|\mathcal{R}(p)-q| \leq(n+1) C \operatorname{osc}(H) .
$$

Proof. We write $\mathcal{R}=\mathcal{R}_{n+1} \circ \cdots \circ \mathcal{R}_{1}$, where \mathcal{R}_{i} is the reflection about $\pi_{i}, i=$ $1, \ldots, N+1$. By iterating Theorem $4.1 n+1$ times, we conclude the proof.

As in [ABR, Proposition 6], for every direction ω,

$$
\begin{equation*}
\operatorname{dist}\left(\mathcal{O}, \pi_{m}\right) \leq C \operatorname{osc}(H) \tag{4.27}
\end{equation*}
$$

where π_{m} is the critical hyperplane in the direction ω and C is a constant that depends only on ρ and $\operatorname{diam} S=\max _{p, q \in S}|p-q|$. We notice that diam S can be bounded in terms of $|S|$ and ρ^{-1}. Indeed, let $p, q \in S$ be such that $|p-q|=\operatorname{diam} S$. By arguing as in the
proof of Lemma 3.2, we can find a piecewise geodesic path on S joining p and q, and with length bounded by (3.2) (with $\delta=\rho / 2$ there); therefore,

$$
\operatorname{diam} S \leq \frac{|S| 2^{2 n}}{\omega_{n} \rho^{n-1}}
$$

Hence, the constant C in (4.27) can be bounded in terms of the dimension n and upper bounds on ρ^{-1} and $|S|$.

Finally, the bound on the difference of the radii (1.3) of the approximating balls is obtained by arguing as in [ABR, Proposition 7]. Indeed, if we define

$$
r_{i}=\min _{p \in S}|p-\mathcal{O}| \quad \text { and } \quad r_{e}=\max _{p \in S}|p-\mathcal{O}|
$$

and assume that the minimum and maximum are attained at p_{i} and p_{e}, respectively, we obtain

$$
r_{e}-r_{i} \leq 2 \operatorname{dist}(\mathcal{O}, \pi)
$$

where π is the critical hyperplane in the direction $\left(p_{e}-p_{i}\right) /\left|p_{e}-p_{i}\right|$. By (4.27) we conclude the proof.

5. Proof of Corollary 1.2

Lemma 5.1. Let S be a closed C^{2} hypersurface embedded in \mathbb{R}^{n+1} and assume

$$
S \subset \bar{B}_{r_{e}} \backslash B_{r_{i}} \quad \text { with } r_{e}-r_{i} \leq 2 \rho
$$

Then

$$
\frac{p}{|p|} \cdot v_{p} \leq-1+\frac{1}{\rho}\left(r_{e}-r_{i}\right) \quad \text { for every } p \in S
$$

Proof. Without loss of generality we may assume that $B_{r_{e}}$ and $B_{r_{i}}$ are centered at the origin. Let $p \in S$ and let c^{-}and c^{+}be the centers of the interior and the exterior touching balls of radius ρ tangent at p, respectively. Then

$$
\left|c^{-}+\frac{c^{-}}{\left|c^{-}\right|} \rho\right|=\sup _{q \in B_{\rho}\left(c^{-}\right)}|q| \leq r_{e}, \quad\left|c^{+}-\frac{c^{+}}{\left|c^{+}\right|} \rho\right|=\inf _{q \in B_{\rho}\left(c^{+}\right)}|q| \geq r_{i}
$$

and so

$$
\left|c^{-}+\frac{c^{-}}{\left|c^{-}\right|} \rho\right|^{2}-\left|c^{+}-\frac{c^{+}}{\left|c^{+}\right|} \rho\right|^{2} \leq r_{e}^{2}-r_{i}^{2}
$$

Therefore

$$
\left|c^{-}\right|^{2}+2 \rho\left|c^{-}\right|-\left|c^{+}\right|^{2}+2 \rho\left|c^{+}\right| \leq r_{e}^{2}-r_{i}^{2}
$$

Taking into account that $c^{+}=p-\rho v_{p}$ and $c^{-}=p+\rho v_{p}$, we get

$$
4 \rho p \cdot v_{p}+2 \rho\left(\left|c^{-}\right|+\left|c^{+}\right|\right) \leq r_{e}^{2}-r_{i}^{2}
$$

and so

$$
\frac{p}{|p|} \cdot v(p) \leq-\frac{\left|c^{-}\right|+\left|c^{+}\right|}{2|p|}+\frac{r_{e}+r_{i}}{4 \rho|p|}\left(r_{e}-r_{i}\right)
$$

Since $\left|c^{-}\right|+\left|c^{+}\right| \geq\left|c^{-}+c^{+}\right|=2|\rho|$, and $r_{e}=r_{i}+\left(r_{e}-r_{i}\right) \leq|p|+\left(r_{e}-r_{i}\right)$, we have

$$
\frac{p}{|p|} \cdot v_{p} \leq-1+\frac{r_{e}-r_{i}}{2 \rho}+\frac{\left(r_{e}-r_{i}\right)^{2}}{4 \rho^{2}} \leq-1+\frac{r_{e}-r_{i}}{\rho}
$$

as required.
Proof of Corollary 1.2. Step 1: S is diffeomorphic to a sphere. In view of Theorem 1.1, there exist $\tilde{\varepsilon}$ and C such that if $\operatorname{osc}(H)<\tilde{\varepsilon}$, then (1.2) and (1.3) hold. We may assume the concentric balls $B_{r_{e}}$ and $B_{r_{i}}$ are centered in the origin. Let

$$
\begin{equation*}
\varepsilon=\min \{\tilde{\varepsilon}, \rho /(2 C)\} \tag{5.1}
\end{equation*}
$$

Hence the assumptions in Lemma 5.1 are satisfied. We consider the map $\varphi: S \rightarrow \partial B_{r_{i}}$ defined by

$$
\varphi(p)=r_{i} p /|p|
$$

We show that φ a diffeomorphism. It is clear that φ is smooth. Since $B_{r_{i}}$ is contained in the bounded domain enclosed by S, φ is surjective. Indeed, if $\zeta \in \partial B_{r_{i}}$, then

$$
\operatorname{dist}_{S}(\zeta) \leq 0, \quad \operatorname{dist}_{S}\left(\left(r_{e}-r_{i}\right) \zeta\right) \geq 0
$$

and, by continuity, there exists a $t \geq 0$ such that $\operatorname{dist}_{S}((1+t) \zeta)=0$, i.e. $\zeta \in \varphi(S)$. Hence, assumption (1.1) plays a role only for proving the injectivity of φ. Let $p, q \in S$ and assume for contradiction that $\varphi(p)=\varphi(q)$. Then we may assume that $|p|<|q|$. Let $c^{+}=p-\rho v_{p}$ be the center of the exterior touching ball to S at p. Since $p /|p|=q /|q|$, we have

$$
\left|q-c^{+}\right|^{2}=\left|(|q|-|p|) \frac{p}{|p|}+\rho v(p)\right|^{2}=(|q|-|p|)^{2}+\rho^{2}+2 \rho(|q|-|p|) \frac{p}{|p|} \cdot v_{p}
$$

From Lemma 5.1 and since $|q|-|p| \leq r_{e}-r_{i}$, we obtain
$\left|q-c^{+}\right|^{2} \leq\left(r_{e}-r_{i}\right)^{2}+\rho^{2}+2 \rho\left(r_{e}-r_{i}\right)\left(-1+\frac{r_{e}-r_{i}}{\rho}\right)=\rho^{2}-\left(r_{e}-r_{i}\right)\left(2 \rho-3\left(r_{e}-r_{i}\right)\right)$.
The choice of ε as in (5.1) implies that $\left|q-c^{+}\right|<\rho$, which gives a contradiction.
Step 2: proof of (1.4). We denote by $F: \partial B_{r_{i}} \rightarrow S$ the inverse of the map $\varphi: S \rightarrow \partial B_{r_{i}}$ considered in the first step. We can write $F(\zeta)=\zeta+\Psi(\zeta) \zeta / r_{i}$ for every ζ in $\partial B_{r_{i}}$, and from Step 1 and Theorem 1.1 it follows that $\|\Psi\|_{C^{0}\left(\partial B_{r_{i}}\right)} \leq C \operatorname{osc}(H)$. In order to prove a quantitative bound on the C^{0}-norm of the derivatives of Ψ, we work in the same fashion as in the proof of Lemma 3.4.

Let ζ be a fixed point on $\partial B_{r_{i}}$ and set $p=F(\zeta)$ (i.e. $\left.\zeta=r_{i} p /|p|\right)$. Let T_{ζ} and T_{p} be the tangent spaces to $\partial B_{r_{i}}$ at ζ and to S at p, respectively. We can locally write S around p as

$$
q=p+x+u(x) v_{p}
$$

where x belongs to a small neighborhood of the origin O and u is a C^{2} map satisfying $u(O)=0$ and $\nabla u(O)=0$. Without loss of generality, we can assume that $\zeta=r_{i} e_{n+1}$ so that

$$
T_{\zeta}=\left\{x \in \mathbb{R}^{n+1}: x_{n+1}=0\right\}
$$

and we locally write $\partial B_{r_{i}}$ as $\zeta^{\prime}=\zeta+x+\eta(x) \nu_{\zeta}$, where $\eta(x)=r_{i}-\sqrt{r_{i}^{2}-|x|^{2}}$.
As in the proof of Lemma 3.4, we can choose $A \in \operatorname{SO}(n+1)$ satisfying $A(\zeta)=-r_{i} \nu_{p}$ (we recall that $\nu_{\zeta}=-\zeta / r_{i}$), and we can locally write

$$
\begin{equation*}
p+A x+u(A x) v_{p}=p+x+v(x) \nu_{\zeta} \tag{5.2}
\end{equation*}
$$

furthermore, A is such that

$$
\begin{equation*}
|A-I| \leq 2 \sqrt{1-v_{\zeta} \cdot v_{p}} \tag{5.3}
\end{equation*}
$$

We first prove that

$$
\begin{equation*}
\partial_{x_{k}} \psi(O)=-\frac{1}{r_{i}} \partial_{x_{k}} v(O), \quad k=1, \ldots, n \tag{5.4}
\end{equation*}
$$

Indeed, by setting $\psi=\Psi \circ \eta$, we have

$$
p+x+v(x) v_{\zeta}=\eta(x)-\psi(x) v_{\eta(x)}
$$

which implies

$$
p \cdot v_{\eta(x)}+x \cdot v_{\eta(x)}+v(x) v_{\zeta} \cdot v_{\eta(x)}-\eta(x) \cdot v_{\eta(x)}=-\psi(x)
$$

i.e.

$$
\frac{1}{r_{i}} p \cdot \eta(x)+\frac{1}{r_{i}} x \cdot \eta(x)+\frac{1}{r_{i}} v(x) v_{\zeta} \cdot \eta(x)-r_{i}=\psi(x)
$$

where we have used $v_{\eta(x)}=-\eta(x) / r_{i}$. From $\eta(O)=\zeta$ and $v(O)=0$ we obtain (5.4).
Now, we give a bound on the derivatives of v at O in terms of the difference $r_{e}-r_{i}$. We notice that (5.2) implies

$$
v(x)=(A-I) x \cdot v_{\zeta}+u(A x) v_{p} \cdot v_{\zeta}
$$

and since $|\nabla u(O)|=0$, we obtain

$$
\left|\partial_{x_{k}} v(O)\right| \leq|A-I|, \quad k=1, \ldots, n
$$

From (5.3) and Lemma 5.1 we deduce that

$$
\left|\partial_{x_{k}} v(O)\right| \leq 2 \sqrt{\frac{r_{e}-r_{i}}{\rho}}, \quad k=1, \ldots, n
$$

and from (1.3) and (5.4) we find (1.4).

Remark 5.2. As emphasized in the Introduction, if we assume that ρ is not bounded from below, it is possible to construct a family of closed surfaces embedded in \mathbb{R}^{3}, not diffeomorphic to a sphere, with $\operatorname{osc}(H)$ arbitrarily small and such that (1.3) fails. For instance one can consider the following example, suggested by A. Ros, obtained by gluing pieces of suitable small perturbations of unduloids.

Acknowledgments. The authors wish to thank Manuel Del Pino, Francesco Maggi, Antonio Ros and Susanna Terracini for enlightening remarks and useful discussions. The problem was suggested to the first author by Rolando Magnanini, whose interest in this work is also gratefully acknowledged. Morerover, the authors would like to thank also Bang-Yen Chen, Barbara Nelli, Paolo Piccione, Fabio Podestà and Paolo Salani for useful conversations. We also thank the anonymous referees for their remarks and for suggesting an improvement of Corollary 1.2.

The paper was completed while the first author was visiting "The Institute for Computational Engineering and Sciences" (ICES) of The University of Texas at Austin, and he wishes to thank the institute for hospitality and support. The first author has been supported by the NSF-DMS Grant 1361122, the "Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni" (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) and the project FIRB 2013 "Geometrical and Qualitative Aspects of PDE".

The second author was supported by the project FIRB "Geometria differenziale e teoria geometrica delle funzioni", the project PRIN "Varietà reali e complesse: geometria, topologia e analisi armonica" and by GNSAGA of INdAM.

References

[ABR] Aftalion, A., Busca, J., Reichel, W.: Approximate radial symmetry for overdetermined boundary value problems. Adv. Differential Equations 4, 907-932 (1999) Zbl 0951.35046 MR 1729395
[A1] Aleksandrov, A. D.: Uniqueness theorems for surfaces in the large II. Vestnik Leningrad Univ. 12, no. 7, 15-44 (1957) (in Russian); English transl.: Amer. Math. Soc. Transl. (2) 21, 354-388 (1962) Zbl 0122.39601 MR 0102111
[A2] Aleksandrov, A. D.: Uniqueness theorems for surfaces in the large V. Vestnik Leningrad Univ. 13, no. 19, 5-8 (1958) (in Russian); English transl.: Amer. Math. Soc. Transl. (2) 21, 412-415 (1962) Zbl 0119.16603 MR 0102114
[A3] Alexandrov, A. D.: A characteristic property of spheres. Ann. Mat. Pura Appl. 58, 303315 (1962) Zbl 0107.15603 MR 0143162
[All] Allard, W. K.: On the first variation of a varifold. Ann. of Math. 95, 417-491 (1972) Zbl 0252.49028 MR 0307015
[Alm] Almgren, F. J., Jr.: Plateau's Problem. An Invitation to Varifold Geometry. Benjamin, New York (1966) Zbl 0165.13201 MR 0190856
[Ar] Arnold, R.: On the Alexandrov-Fenchel inequality and the stability of the sphere. Monatsh. Math. 155, 1-11 (1993)
[BCN] Berestycki, H., Caffarelli, L. A., Nirenberg, L.: Inequalities for second-order elliptic equations with applications to unbounded domains I. Duke Math. J. 81, 467-494 (1996) Zbl 0860.35004 MR 1395408
[BNST] Brandolini, B., Nitsch, C., Salani, P., Trombetti, C.: On the stability of the Serrin problem. J. Differential Equations 245, 1566-1583 (2008) Zbl 1173.35019 MR 2436453
[B] Brendle, S.: Constant mean curvature surfaces in warped product manifolds. Publ. Math. Inst. Hautes Études Sci. 117, 247-269 (2013) Zbl 1273.53052 MR 3090261
[BE] Brendle, S., Eichmair, M.: Isoperimetric and Weingarten surfaces in the Schwarzschild manifold. J. Differential Geom. 94, 387-407 (2013) Zbl 1282.53053 MR 3080487
[CFSW] Cabré, X., Fall, M., Sola-Morales, J., Weth, T.: Curves and surfaces with constant nonlocal mean curvature: meeting Alexandrov and Delaunay. J. Reine Angew. Math., to appear; arXiv:1503.00469
[CGS] Caffarelli, L., Gidas, B., Spruck, J.: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm. Pure Appl. Math. 42, 271-297 (1989) Zbl 0702.35085 MR 0982351
[CS] Caffarelli, L., Salsa, S.: A Geometric Approach to Free Boundary Problems. Grad. Stud. Math. 68, Amer. Math. Soc., Providence, RI (2005) Zbl 1083.35001 MR 2145284
[CY] Christodoulou, D., Yau, S. T.: Some remarks on the quasi-local mass. In: Mathematics and General Relativity (Santa Cruz, CA, 1986), Contemp. Math. 71, Amer. Math. Soc., 9-14 (1988) Zbl 0685.53050 MR 0954405
[CFMN] Ciraolo, G., Figalli, A., Maggi, F., Novaga, M.: Rigidity and sharp stability estimates for hypersurfaces with constant and almost-constant nonlocal mean curvature. J. Reine Angew. Math., to appear; arXiv:1503.00653
[CM] Ciraolo, G., Maggi, F.: On the shape of compact hypersurfaces with almost constant mean curvature. Comm. Pure Appl. Math. 70, 665-716 (2017) Zbl 1368.53004 MR 3628882
[CMS1] Ciraolo, G., Magnanini, R., Sakaguchi, S.: Symmetry of minimizers with a level surface parallel to the boundary. J. Eur. Math. Soc. 17, 2789-2804 (2015) Zbl 1335.49059 MR 3420522
[CMS2] Ciraolo, G., Magnanini, R., Sakaguchi, S.: Solutions of elliptic equations with a level surface parallel to the boundary: Stability of the radial configuration. J. Anal. Math. 128, 337-353 (2016) Zbl 1338.35132 MR 3481178
[CMV1] Ciraolo, G., Magnanini, R., Vespri, V.: Hölder stability for Serrin's overdetermined problem. Ann. Mat. Pura Appl. 195, 1333-1345 (2016) Zbl 1348.35146 MR 3522349
[CMV2] Ciraolo, G., Magnanini, R., Vespri, V.: Symmetry and linear stability in Serrin's overdetermined problem via the stability of the parallel surface problem. arXiv:1501.07531 (2015)
[DLM1] De Lellis, C., Müller, S.: Optimal rigidity estimates for nearly umbilical surfaces. J. Differential Geom. 69, 75-110 (2005) Zbl 1087.53004 MR 2169583
[DLM2] De Lellis, C., Müller, S.: A C^{0} estimate for nearly umbilical surfaces. Calc. Var. Partial Differential Equations 26, 283-296 (2006) Zbl 1100.53005 MR 2232206
[DCL] Do Carmo, M. P., Lawson, H. P.: On the Alexandrov-Bernstein theorems in hyperbolic space. Duke Math. J. 50, 995-1003 (1983) Zbl 0534.53049 MR 0726314
[GNN] Gidas, B., Ni, W. M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68, 209-243 (1979) Zbl 0425.35020 MR 0544879
[GT] Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order, Springer, Berlin (1977) Zbl 0361.35003 MR 0473443
[G] Gromov, M.: Stability and pinching. In: Geometry Seminars. Sessions on Topology and Geometry of Manifolds (Bologna, 1990), Univ. Stud. Bologna, Bologna, 55-97 (1992) Zbl 0780.53028 MR 1196723
[HYY] Hsiang, W.-Y., Teng, Z.-H., Yu, W.-C.: New examples of constant mean curvature immersions of $(2 k-1)$-spheres into Euclidean $2 k$-space, Ann. of Math. (2) 117, 609-625 (1983) Zbl 0522.53052 MR 0701257
[HY] Huisken, G., Yau, S.-T.: Definition of center of mass for isolated physical systems and unique foliations by stable spheres with constant mean curvature, Invent. Math. 124, 281311 (1996) Zbl 0858.53071 MR 1369419
[Ko] Kohlmann, P.: Curvature measures and stability. J. Geom. 68, 142-154 (2000) Zbl 0981.52003 MR 1779846
[K] Korevaar, N. J.: Sphere theorems via Alexandrov for constant Weingarten curvature hypersurfaces-Appendix to a note of A. Ros. J. Differential Geom. 27, 221-223 (1988) Zbl 0638.53052
[KKS] Korevaar, N. J., Kusner, R., Solomon, B.: The structure of complete embedded surfaces with constant mean curvature. J. Differential Geom. 30, 465-503 (1989) Zbl 0726.53007 MR 1010168
[KMPS] Korevaar, N. J., Mazzeo, R., Pacard, F., Schoen, R.: Refined asymptotics for constant scalar curvature metrics with isolated singularities. Invent. Math. 135, 233-272 (1999) Zbl 0958.53032 MR 1666838
[Kou] Koutroufiotis, D.: Ovaloids which are almost spheres. Comm. Pure Appl. Math. 24, 289300 (1971) Zbl 0205.52502 MR 0282318
[L] Lang, U.: Diameter bounds for convex surfaces with pinched mean curvature. Manuscripta Math. 86, 15-22 (1995) Zbl 0821.53004 MR 1314146
[Li1] Li, C.: Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on bounded domains. Comm. Partial Differential Equations 16, 491-526 (1991) Zbl 0735.35005 MR 1104108
[Li2] Li, C.: Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains. Comm. Partial Differential Equations 16, 585-615 (1991) Zbl 0741.35014 MR 1113099
[Me] Meeks, W., III: The topology and geometry of embedded surfaces of constant mean curvature. J. Differential Geom. 27, 539-552 (1988) Zbl 0617.53007
[Mo] Montiel, S.: Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds. Indiana Univ. Math. J. 48, 711-748 (1999) Zbl 0973.53048 MR 1722814
[MR] Montiel, S., Ros, A.: Compact hypersurfaces: The Alexandrov theorem for higher order mean curvatures, In: Differential Geometry, Pitman Monogr. Surveys Pure Appl. Math. 52, Longman Sci. Tech., 279-296 (1991) Zbl 0723.53032 MR 1173047
[Moo] Moore, J. D.: Almost spherical convex hypersurfaces. Trans. Amer. Math. Soc. 180, 347358 (1973) Zbl 0268.53029 MR 0320964
[Re] Reilly, R.: Applications of the Hessian operator in a Riemannian manifold. Indiana Univ. Math. J. 26, 459-472 (1977) Zbl 0391.53019 MR 0474149
[Ros1] Ros, A.: Compact hypersurfaces with constant scalar curvature and a congruence theorem. J. Differential Geom. 27, 215-220 (1988) Zbl 0638.53051 MR 0925120
[Ros2] Ros, A.: Compact hypersurfaces with constant higher order mean curvatures. Rev. Mat. Iberoamer. 3, 447-453 (1987) Zbl 0673.53003 MR 0996826
[Sc] Schneider, R.: A stability estimate for the Aleksandrov-Fenchel inequality, with an application to mean curvature, Manuscripta Math. 69, 291-300 (1990) Zbl 0713.52003 MR 1078360
[Sch] Schoen, R.: Uniqueness, symmetry, and embeddedness of minimal surfaces. J. Differential Geom. 18, 791-809 (1983) Zbl 0575.53037 MR 0730928
[Se] Serrin, J.: A symmetry problem in potential theory. Arch. Ration. Mech. Anal. 43, 304318 (1971) Zbl 0222.31007 MR 0333220
[W] Wente, H. C.: Counterexample to a conjecture of H. Hopf. Pacific J. Math. 121, 193-243 (1986) Zbl 0586.53003 MR 0815044
[Y] Yau, S.-T.: Submanifolds with constant mean curvature I. Amer. J. Math. 96, 346-366 (1974) Zbl 0304.53041 MR 0370443

