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Abstract. We prove the following quantitative version of the celebrated Soap Bubble Theorem of
Alexandrov. Let S be a C2 closed embedded hypersurface of Rn+1, n ≥ 1, and denote by osc(H)
the oscillation of its mean curvature. We prove that there exists a positive ε, depending on n and
upper bounds on the area and the C2-regularity of S, such that if osc(H) ≤ ε then there exist two
concentric balls Bri and Bre such that S ⊂ Bre \ Bri and re − ri ≤ C osc(H), with C depending
only on n and upper bounds on the surface area of S and the C2-regularity of S. Our approach
is based on a quantitative study of the method of moving planes, and the quantitative estimate on
re − ri we obtain is optimal.

As a consequence, we also prove that if osc(H) is small then S is diffeomorphic to a sphere,
and give a quantitative bound which implies that S is C1-close to a sphere.

Keywords. Alexandrov Soap Bubble Theorem, method of moving planes, stability, mean curva-
ture, pinching
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1. Introduction

The Soap Bubble Theorem proved by Alexandrov [A2] has been the object of many in-
vestigations. In its simplest form it states that

The n-dimensional sphere is the only compact connected embedded hypersurface
of Rn+1 with constant mean curvature.

As is well-known, the embeddedness condition is necessary, as implied by the cele-
brated counterexamples by Hsiang–Teng–Yu [HYY] and Wente [W]. There have been
several extensions of the rigidity result of Alexandrov to more general settings. Alexan-
drov proved his theorem in a more general setting; in particular, the Euclidean space can
be replaced by any space of constant curvature (see also [A3] where he discussed sev-
eral possible generalizations). Montiel and Ros [MR] and Korevaar [K] studied the case
of hypersurfaces with constant higher order mean curvatures embedded in space forms.
Alexandrov’s Theorem has also been studied for warped product manifolds by Montiel
[Mo], Brendle [B] and Brendle and Eichmair [BE]. There are many other related results;
the interested reader can refer to [CFSW, CFMN, CY, DCL, HY, Re, Ros1, Ros2, Y] and
references therein.

To prove the Soap Bubble Theorem, Alexandrov introduced the method of moving
planes, a very powerful technique which has been the source of many insights in analysis
and differential geometry. Serrin understood that the method can be applied to partial dif-
ferential equations. Indeed, in his seminal paper [Se] he obtained a symmetry result for
the torsion problem which gave rise to a huge amount of results for overdetermined prob-
lems (the interest reader can consult the references in [CMS1]). Gidas, Ni and Nirenberg
[GNN] refined Serrin’s argument to obtain several symmetry results for positive solutions
of second order elliptic equations in bounded and unbounded domains (see also [Li1]
and [Li2]). The method was further employed by Caffarelli, Gidas and Spruck [CGS] to
prove asymptotic radial symmetry of positive solutions for the conformal scalar curvature
equation and other semilinear elliptic equations (see also [KMPS]). The moving planes
were also used to obtain several celebrated results in differential geometry: Schoen [Sch]
characterized the catenoid, and Meeks [Me] and Korevaar, Kusner and Solomon [KKS]
showed that a complete connected properly embedded constant mean curvature surface
in the Euclidean space with two annuli ends is rotationally symmetric. There are a large
number of other interesting papers on these topics which are not mentioned here.

Alexandrov’s proof in the Euclidean space works as follows: (i) one shows that for
any direction ω there exists a critical hyperplane orthogonal to ω which is a hyperplane of
symmetry for the surface S; (ii) since the center O of mass of S lies on each hyperplane
of symmetry, every hyperplane passing through O is a hyperplane of reflection symmetry
for S; (iii) since any rotation about O can be written as a composition of n+1 reflections,
S is rotationally invariant, which implies that S is the n-dimensional sphere. The crucial
step in this proof is (i), which is obtained by applying the method of moving planes and
the maximum principle (see Theorem A in Subsection 2.2).

In this paper we study a quantitative version of the Soap Bubble Theorem, that is, we
assume that the oscillation of the mean curvature osc(H) is small and we prove that S
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is close to a sphere. More precisely, let S be an n-dimensional, C2-regular, connected,
closed hypersurface embedded in Rn+1, and denote by |S| the area of S. Since S is C2-
regular, it satisfies a uniform touching sphere condition of (optimal) radius ρ. We orient
S according to the inner normal. Given p ∈ S, we denote by H(p) the mean curvature of
S at p, and we let

osc(H) = max
p∈S

H(p)−min
p∈S

H(p).

Our main result is the following theorem.

Theorem 1.1. Let S be an n-dimensional, C2-regular, connected, closed hypersurface
embedded in Rn+1. There exist constants ε, C > 0 such that if

osc(H) ≤ ε, (1.1)

then there are two concentric balls Bri and Bre such that

S ⊂ Bre \ Bri , (1.2)
re − ri ≤ C osc(H). (1.3)

The constants ε and C depend only on n and upper bounds on ρ−1 and |S|.

Under the assumption that S bounds a convex domain, there exist some results in the
spirit of Theorem 1.1 in the literature. In particular, when the domain is an ovaloid, the
problem was studied by Koutroufiotis [Kou], Lang [L] and Moore [Moo]. Other stability
results can be found in Schneider [Sch] and Arnold [Ar]. These results were improved by
Kohlmann [Ko] who proved an explicit Hölder type stability in (1.3). In Theorem 1.1, we
do not consider any convexity assumption and we obtain the optimal rate of stability in
(1.3), as can be proven by a simple calculation for ellipsoids.

Theorem 1.1 has a quite interesting consequence which we now explain. It is well-
known (see for instance [G]) that if every principal curvature κi of S is pinched between
two positive numbers, i.e.

1/r ≤ κi ≤ (1+ δ)/r, i = 1, . . . , n,

then S is close to a sphere of radius r . Following Gromov [G, Remark (c), pp. 67–68], one
can ask what happens when only the mean curvature is pinched. We have the following
result.

Corollary 1.2. Let ρ0, A0 > 0 and n ∈ N be fixed. There exists a positive constant ε, de-
pending on n, ρ0 and A0, such that if S is a connected closed C2 hypersurface embedded
in Rn+1 with |S| ≤ A0 and ρ ≥ ρ0, whose mean curvature H satisfies

osc(H) < ε,

then S is diffeomorphic to a sphere. Moreover S is C1-close to a sphere, i.e. there exists
a C1-map F = Id+9ν : ∂Bri → S such that

‖9‖C1(∂Bri )
≤ C(osc(H))1/2 (1.4)

where C depends only on n and upper bounds on ρ−1 and |S|.
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Before explaining the proof of Theorem 1.1, we give a couple of remarks on the bounds
on ρ and |S| in Theorem 1.1 and Corollary 1.2. The upper bound on ρ−1 controls the
C2-regularity of the hypersurface, which is crucial for obtaining an estimate like (1.3).
Indeed, if we assume that ρ is not bounded from below, it is possible to construct a family
of closed surfaces embedded in R3, not diffeomorphic to a sphere, with osc(H) arbitrarily
small and such that (1.3) fails to hold (see Remark 5.2 and [CM]). The upper bound on
|S| is a control on the constants ε and C, which clearly change under dilatations.

We remark that Corollary 1.2 can be obtained by a compactness argument by using the
theory of varifolds by Allard [All] and Almgren [Alm]. Indeed, by Allard’s compactness
theorem every sequence of closed hypersurfaces satisfying (uniformly) the assumptions
of Corollary 1.2 admits a subsequence which, up to translations, converges to a hyper-
surface which satisfies a touching ball condition and hence is C1,1 regular. By standard
regularity theory, the hypersurface is smooth and is a sphere by the classical Alexandrov
theorem. We think that also the stability estimates in Theorem 1.1 can be obtained by
using Allard’s regularity theorem.

There are other possible strategies to obtain quantitative estimates for almost constant
mean curvature hypersurfaces and give results in the spirit of Theorem 1.1. Indeed, as
already mentioned, there are several proofs of the rigidity result of Alexandrov (i.e. when
H is constant). Besides the method of moving planes (which will be our approach), one
could try to quantitatively study the proofs in [MR], [Re] and [Ros2], which are based
on integral identities. For instance, the approach in [CM] starts from [Ros2] and finds
quantitative estimates on the closeness of the hypersurface to a compound of tangent
balls. As explained in [CM, Appendix A], another possible approach would be to start
from the proof in [MR] and then study almost umbilical hypersurfaces, as in [DLM1] and
[DLM2]. However, these approaches based on integral identities do not seem to lead to
optimal estimates as in our Theorem 1.1 (see [CM] for a detailed discussion).

Our approach, instead, is based on a quantitative analysis of the method of moving
planes and uses arguments from elliptic PDE theory. Since the proof of symmetry is based
on the maximum principle, our proof of the stability result will make use of Harnack’s
and Carleson’s (or boundary Harnack’s) inequalities and the Hopf Lemma, which can be
considered as the quantitative counterpart of the strong and boundary maximum princi-
ples. We emphasize that the stability estimate (1.3) is optimal and that our proof permits
computing the constants explicitly.

A quantitative study of the method of moving planes was first performed in [ABR],
where the authors obtained a stability result for Serrin’s overdetermined problem [Se],
and it has been used in a series of paper by the first author [CMS2, CMV1, CMV2] to
study the stability of radial symmetry for Serrin’s and other overdetermined problems
(see also [BNST] for an approach based on integral identities).

In this paper, we follow the approach of [ABR], but the setting here is complicated
by the fact that we have to deal with manifolds. As we will show, the main goal is to
prove an approximate symmetry result for one (arbitrary) direction. With that at hand, the
approximate radial symmetry is well-established and follows by an argument in [ABR].
To prove the approximate symmetry in one direction, we apply the method of moving
planes and show that the union of the maximal cap and of its reflection provides a set
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that fits S well. This is the main point of our paper and is achieved by developing the
following argument. Assume that the surface and the reflected cap are tangent at some
point p0 which is an interior point of the reflected cap, and write the two surfaces as
graphs of functions in a neighborhood of p0. The difference w of these two functions
satisfies an elliptic equation Lw = f , where ‖f ‖∞ is bounded by osc(H). By applying
Harnack’s inequality and interior regularity estimates, we have a bound on the C1 norm
ofw, which says that the two graphs are no more than some constant times osc(H) distant
in C1 norm. It is important to observe that this estimate implies that the two surfaces are
close to each other and also that the two corresponding Gauss maps are close (in some
sense) in that neighborhood of p0. Then we connect any point p of the reflected cap to p0
and we show that such closeness propagates at p. Since we are dealing with a manifold,
we have to change local parametrization when moving from p0 to p, and we have to prove
that the closeness information is preserved. By using careful estimates and making use
of interior and boundary Harnack inequalities, we show that this is possible if we assume
that osc(H) is smaller than some fixed constant.

The paper is organized as follows. In Section 2 we prove some preliminary results
about hypersurfaces in Rn+1, we recall some results on classical solutions to mean curva-
ture type equations, and we give a sketch of the proof of the symmetry result of Alexan-
drov. In Section 3 we prove some technical lemmas which will be used in proving the
stability result. In Sections 4 and 5 we prove Theorem 1.1 and Corollary 1.2, respectively.

2. Notation and preliminary results

In this section we collect some preliminary results. Although some of them are known,
we sketch their proofs for the sake of completeness and in order to explain the notation
which will be adopted.

Let S be a C2-regular, connected, closed hypersurface embedded in Rn+1, n ≥ 1, and
let � be the relatively compact domain of Rn+1 bounded by S. We denote by TpS the
tangent hyperplane to S at p and by νp the inward normal vector. Given a point ξ ∈ Rn+1

and an r > 0, we denote by Br(ξ) the ball in Rn+1 of radius r centered at ξ . When a ball
is centered at the origin O, we simply write Br instead of Br(O).

Let distS : Rn+1
→ R be the distance function from S, i.e.

distS(ξ) =

{
dist(ξ, S) if ξ ∈ �,
− dist(ξ, S) if ξ ∈ Rn+1

\�;

it is clear that S = {ξ ∈ Rn+1
: distS(ξ) = 0}. Moreover, it is well-known (see e.g. [GT])

that distS is Lipschitz continuous with Lipschitz constant 1, and that it is of class C2 in
an open neighborhood of S. Therefore the implicit function theorem implies that, given
a point p ∈ S, S can be locally represented as a graph over the tangent hyperplane TpS:
there exist an open neighborhood Ur(p) of p in S and a C2 map u : Br ∩ TpS → R such
that

Ur(p) = {p + x + u(x)νp : x ∈ Br ∩ TpS}. (2.1)
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Moreover, if q = p + x + u(x)νp with x ∈ Br(p) ∩ TpS, we have

νq =
νp −∇u(x)√
1+ |∇u(x)|2

, (2.2)

where

∇u(x) =

N∑
i=1

∂eiu(x)ei

and {e1, . . . , en} is an arbitrary orthonormal basis of TpS. We notice that, according to
the definition above, ∇u(x) is a vector in Rn+1 for every x in the domain of u. Moreover
νq · νp > 0 for every q ∈ Br ∩ TpS, and if |∇u| is uniformly bounded in Br ∩ TpS, then
u can be extended to Br ′ ∩ TpS with r ′ > r .

Since S is C2-regular, the domain � satisfies a uniform touching ball condition, and
we denote by ρ the optimal radius, that is, for any p ∈ S there exist two balls of radius ρ
centered at c− ∈ � and c+ ∈ Rn+1

\� such that Bρ(c−) ⊂ �, Bρ(c+) ⊂ Rn+1
\�, and

p ∈ ∂Bρ(c
±). The balls are called, respectively, the interior and exterior touching balls

at p.
In the following lemma we show that we may assume r = ρ in (2.1), and we give

some bounds in terms of ρ which will be useful.

Lemma 2.1. Let p ∈ S. There exists a C2 map u : Bρ ∩ TpS → R such that

Uρ(p) = {p + x + u(x)νp : x ∈ Bρ ∩ TpS}

is a relatively open subset of S and

|u(x)| ≤ ρ −
√
ρ2 − |x|2, (2.3)

|∇u(x)| ≤
|x|√

ρ2 − |x|2
, (2.4)

for every x ∈ Bρ ∩ TpS. Moreover

νp · νq ≥
1
ρ

√
ρ2 − |x|2 and |νp − νq | ≤

√
2
|x|

ρ
(2.5)

for every q = p + x + u(x)νp in Uρ(p).

Proof. By the implicit function theorem, there exist r > 0, u : Br ∩ TpS → R and Ur(p)
as in (2.1). We may assume that r ≤ ρ. The bound (2.3) in Br ∩ TpS easily follows from
the definition of the interior and exterior touching balls at p. We now prove the estimate
(2.4) in Br ∩ TpS, which allows us to enlarge the domain of u to Bρ ∩ TpS. Let

q = p + x + u(x)νp

with |x| < r be an arbitrary point of Ur(p) (notice that νp · νq > 0). Since

Bρ(p + ρνp) ∩ Bρ(q − ρνq) = ∅,
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we have
|p + ρνp − q + ρνq | ≥ 2ρ.

Analogously, Bρ(p − ρνp) ∩ Bρ(q + ρνq) = ∅ gives

|q + ρνq − p + ρνp| ≥ 2ρ.

By adding the squares of the last two inequalities we obtain

|p − q|2 + 2ρ2(νp · νq) ≥ 2ρ2,

and from (2.3) we get (2.5). From (2.2) and (2.5) we obtain (2.4) in Br ∩ TpS. Since |∇u|
is bounded in Br ∩ TpS, we can extend u to a larger ball where (2.4) is still satisfied. It is
clear that we can choose r = ρ and (2.3)–(2.5) hold. ut

Given p, q ∈ S we denote by dS(p, q) their intrinsic distance inside S, and if A is an
arbitrary subset of S, we define

dS(p,A) = inf
q∈A

dS(p, q).

Lemma 2.2. Let p ∈ S, q ∈ Uρ(p) and let x be the orthogonal projection of q onto the
hyperplane TpS. Then

|x| ≤ dS(p, q) ≤ ρ arcsin(|x|/ρ). (2.6)

Proof. The first inequality is trivial. In order to prove the second inequality we consider
the curve γ : [0, 1] → S joining p to q defined by γ (t) = p + tx + u(tx)νp, t ∈ [0, 1].
Then

γ̇ (t) = x + (∇u(tx) · x)νp;

since x ∈ TpS, by the Cauchy–Schwarz inequality we obtain

|γ̇ (t)| ≤ |x|
√

1+ |∇u(tx)|2.

Therefore inequality (2.4) implies

|γ̇ (t)| ≤
ρ|x|√

ρ2 − t2|x|2
.

Since dS(p, q) ≤
∫ 1

0 |γ̇ (t)| dt , we obtain

dS(p, q) ≤ |x|ρ

∫ 1

0

1√
ρ2 − t2|x|2

dt,

which gives (2.6). ut

Let p ∈ S and let u : Bρ ∩TpS → S be as in Lemma 2.1. It is well-known (see [GT]) that
u is a classical solution to

div
(

∇u√
1+ |∇u|2

)
= nH in Bρ ∩ TpS, (2.7)
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where H is the mean curvature of S regarded as a map on Bρ ∩ TpS. We notice that
∇u ∈ TpS and the divergence is meant in local coordinates on TpS: if {e1, . . . , en} is an
orthonormal basis of TpS and F =

∑n
i=1 Fiei , then

divF =
n∑
i=1

∂Fi

∂ei
.

Moreover, (2.7) is uniformly elliptic once u is regarded as a regular map in an open set
of Rn and has bounded gradient, since

|ξ |2 ≤
∂

∂ζj

(
ζi√

1+ |ζ |2

)
ξiξj ≤ (1+ |ζ |2)|ξ |2 (2.8)

for every ξ = (ξ1, . . . , ξn), ζ = (ζ1, . . . , ζn) in Rn.

2.1. Classical solutions to the mean curvature equation

In this subsection we collect some results about classical solutions to (2.7) which will be
used in the next sections.

Let Br be the ball of Rk centered at the origin and having radius r . Given a differen-
tiable map u : Br → R, we denote by Du the gradient of u in Rk:

Du =

(
∂u

∂x1
, . . . ,

∂u

∂xk

)
.

We remark that this notation differs from the one in the rest of the paper, where we use
the ∇ symbol to denote a vector in Rn+1.

Let H0, H1 ∈ C
0(Br) and u0 and u1 be two classical solutions of

div
(

Duj√
1+ |Duj |2

)
= kHj in Br , j = 0, 1. (2.9)

It is well-known (see [GT]) that w = u1 − u0 satisfies the linear elliptic equation

Lw = k(H1 −H0), (2.10)

where

Lw =

k∑
i,j=1

∂

∂xj

(
aij (x)

∂w

∂xi

)
(2.11)

with

aij (x) =

∫ 1

0

∂

∂ζj

(
ζi√

1+ |ζ |2

)∣∣∣∣
ζ=Dut (x)

dt,

ut (x) = tu1(x)+ (1− t)u0(x), x ∈ Br .
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From (2.8), we find that

|ξ |2 ≤ aij (x)ξiξj ≤ |ξ |
2
∫ 1

0
(1+ |Dut (x)|2) dt, (2.12)

where we have used the Einstein summation convention. The following Harnack type
inequality will be one of the crucial tools for proving the stability result.

Lemma 2.3. Let uj , j = 0, 1, be classical solutions of (2.9) with u1−u0 ≥ 0 in Br , and
assume that

‖Duj‖C1(Br )
≤ M, j = 0, 1, (2.13)

for some positive constant M . Then there exists a constant K1, depending only on the
dimension k and M , such that

‖u1 − u0‖C1(Br/4)
≤ K1

(
inf
Br/2
(u1 − u0)+ ‖H1 −H0‖C0(Br )

)
. (2.14)

Proof. We have already observed that w = u1 − u0 satisfies (2.10) in Br . From (2.12)
and (2.13), we find that Lw is uniformly elliptic with continuous bounded coefficients:

|ξ |2 ≤ aij (x)ξiξj ≤ |ξ |
2(1+M2),

and ∣∣∣∣ ∂∂xj aij (x)
∣∣∣∣ ≤ M ′

for some positive M ′ depending only on M .
From [GT, Theorems 8.17 and 8.18], we obtain the following Harnack inequality:

sup
Br/2

w ≤ C1

(
inf
Br/2

w + ‖H1 −H0‖C0(Br )

)
.

Then we use [GT, Theorem 8.32] to obtain

|w|C1,α(Br/4)
≤ C2(‖w‖C0(Br/2)

+ ‖H1 −H0‖C0(Br/2)
),

where | · |C1,α(Br/4)
is the C1,α seminorm in Br/4 with α ∈ (0, 1). By combining the last

two inequalities, we obtain (2.14) at once. ut

Another crucial tool for our result is the following boundary Harnack type inequality (or
Carleson estimate [CS]).

Lemma 2.4. Let E be a domain in Rk and let T be an open subset of ∂E which is of
class C2. Let uj ∈ C2(E), j = 0, 1, be solutions of

div
(

Duj√
1+ |Duj |2

)
= kHj in E, j = 0, 1, (2.15)
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satisfying ‖Duj‖C1(E) ≤ M for some positive M . Let x0 ∈ T and r > 0 be such that
Br(x0) ∩ ∂E ⊂ T , and assume that

u1 − u0 ≥ 0 in Br(x0) ∩ E, u1 − u0 ≡ 0 on Br ∩ ∂E.

Assume further that e1 is the interior normal to E at x0. Then there exists a constant
K2 > 0 such that

sup
Br/4(x0)∩E

(u1 − u0) ≤ K2

(
(u1 − u0)

(
x0 +

r

2
e1

)
+ ‖H1 −H0‖C0(Br )

)
, (2.16)

where the constant K2 depends only on the dimension k, M and the C2-regularity of T .

Proof. The proof is analogous to the one of Lemma 2.3, where we use [BCN, Theorem
1.3] and [GT, Corollary 8.36] in place of [GT, Theorems 8.17, 8.18 and 8.32]. ut

We conclude this subsection with a quantitative version of the Hopf Lemma. We start
with a statement which is valid for a general second order elliptic operator of the form

Lw =
k∑

i,j=1

aijwxixj +

k∑
i=1

biwxi (2.17)

satisfying the ellipticity conditions

aij ζiζj ≥ λ|ζ |
2 and |aij |, |bi | ≤ 3, i, j = 1, . . . , k, (2.18)

for some λ,3 > 0.

Lemma 2.5. Let r > 0 and γ ≥ 0. Assume that w ∈ C2(Br) ∩ C
0(Br) fulfills the

conditions

Lw ≤ γ and w ≥ 0 in Br ,

with L given by (2.17). Then there exists a positive constant C depending on k, λ,3, and
an upper bound on γ such that for any x0 ∈ ∂Br we have

sup
Br/2

w ≤ C

(
w((1− t/r)x0)

t
+ γ

)
for any 0 < t ≤ r/2. (2.19)

Moreover, if w(x0) = 0 then

sup
Br/2

w ≤ C

(
∂w(x0)

∂ν
+ γ

)
, (2.20)

where ν denotes the inward normal to ∂Br .
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Proof. In the annulus A = Br \ Br/2, we consider the auxiliary function

v(x) =
(

min
Br/2

w
) e−α|x|2 − e−αr2

e−α(r/2)
2
− e−αr

2 + e
β|x|2
− eβr

2
,

where

α =
(k + r

√
k)3

2λ2 , β = γ
[
kλ−

√
k 3r +

√
(kλ−

√
k 3r)2 + γ λr2]−1

.

Here, the constants α and β are chosen in such a way that Lv ≥ γ. We notice that

v((1− t/r)x0)

t
≥

αre−αr
2

e−α(r/2)
2
− e−αr

2

(
min
Br/2

w
)
− 2βreβr

2
. (2.21)

Since v = 0 on ∂Br and v ≤ min∂Br/2 w on ∂Br/2, the function w − v satisfies{
L(w − v) ≤ 0 in A,
w − v ≥ 0 on ∂A.

Hence, by the maximum principle, w − v ≥ 0 in A, and from (2.21) we obtain

min
Br/2

w ≤
e3αr2/4

− 1
αr

(
w((1− t/r)x0)

t
+ 2βreβr

2
)

(2.22)

for 0 < t < r/2. As in the proof of Lemma 2.3, we use [GT, Theorems 8.17 and 8.18] to
get

max
Br/2

w ≤ C1

(
min
Br/2

w + γ
)
,

and from (2.22) we obtain (2.19) and (2.20). ut

We will use Lemma 2.5 in the following form.

Lemma 2.6. Let E, T , u0, u1, M , and x0 be as in Lemma 2.4, with

u1 − u0 ≥ 0 in E.

Assume that there exists Br(c) ⊂ E with x0 ∈ ∂Br(c) ∩ T . Let ` = (c − x0)/r . Then
there exists a constant K3 such that

‖u1 − u0‖C1(Br/4(c))
≤ K3

(
(u1 − u0)(x0 + t`)

t
+ ‖H1 −H0‖C0(Br (c))

)
(2.23)

for every t ∈ (0, r/2), and

‖u1 − u0‖C1(Br/4(c))
≤ K3

(
∂(u1 − u0)

∂`
(x0)+ ‖H1 −H0‖C0(Br (c))

)
(2.24)

for t = 0. The constant K3 depends only on the dimension k, M , ρ, and an upper bound
on ‖H1 −H0‖C0(Br (c))

.
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Proof. As shown in the proof of Lemma 2.3, w = u1 − u0 satisfies (2.10), which is
uniformly elliptic. Moreover, by letting

γ = ‖H1 −H0‖C0(Br (c))
,

we have Lw ≤ γ . Hence, we can apply Lemma 2.5, and conclude the proof by using
Lemma 2.3. ut

2.2. The symmetry result of Alexandrov

In order to make the paper self-contained, we give a sketch of the proof of the Soap Bubble
Theorem by Alexandrov. This will be the occasion to set up some necessary notation.

Let S be a C2-regular, connected, closed hypersurface embedded in Rn+1, n ≥ 1, and
let � be the relatively compact domain of Rn+1 bounded by S. Let ω ∈ Rn+1 be a unit
vector and λ ∈ R a parameter. For an arbitrary set A, we define the following objects:

πλ = {ξ ∈ Rn+1
: ξ · ω = λ}, a hyperplane orthogonal to ω,

Aλ = {p ∈ A : p · ω > λ}, the right-hand cap of A,
ξλ = ξ − 2(ξ · ω − λ)ω, the reflection of ξ about πλ,
Aλ = {p ∈ Rn+1

: pλ ∈ Aλ}, the reflected cap about πλ,
Âλ = {p ∈ A : p · ω < λ}, the portion of A in the left half-plane.

(2.25)

Set M = max{p ·ω : p ∈ S}, the extent of S in the direction ω; if λ <M is close to M,
the reflected cap �λ is contained in �. Set

m = inf{µ : �λ ⊂ � for all λ ∈ (µ,M)}. (2.26)

Then for λ = m at least one of the following two cases occurs:

(i) Sm becomes internally tangent to S at some point p ∈ S \ πm;
(ii) πm is orthogonal to S at some point p ∈ S ∩ πm.

Theorem A (Alexandrov Soap Bubble Theorem). Let S be a C2-regular, closed, con-
nected hypersurface embedded in Rn+1. If the mean curvature H of S is constant, then
S is a sphere.

Proof. Let ω be a fixed direction. We apply the method of moving planes in the direction
ω and we find a critical position for λ = m.

If case (i) occurs, then we locally write Sm and S as graphs of functions u1 and u0,
respectively, over Br ∩ TpS (which coincides with TpSm), where p is the tangency point.
It is clear that w = u1 − u0 is non-negative, and since H is constant, w satisfies

Lw = 0 in Br ∩ TpS

for some r > 0, where L is given by (2.11). Since w(0) = 0, by the strong maximum
principle we obtainw ≡ 0 inBr∩TpS, that is, S and Sm coincide in an open neighborhood
of p.
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If case (ii) occurs, then we locally write Sm and S as the graphs of functions u1 and
u0, respectively, over TpS ∩ {x · ω ≤ m}. As for case (i), we find that there exists r > 0
such that {

Lw = 0 in Br ∩ TpS ∩ {x · ω < m},

w = 0 on Br ∩ TpS ∩ {x · ω = m}.

Since ∇w(0) = 0, from the Hopf Lemma (see for instance [GT]) we deduce that w ≡ 0
in Br ∩ TpS ∩ {x · ω ≤ m}.

Hence, in both cases (i) and (ii) the set of tangency points (that is, those points for
which case (i) or (ii) occurs) is open. Since it is also closed and non-empty, we must have
Sm = Ŝm, that is, S is symmetric about the hyperplane πm. Since ω is arbitrary, we find
that S is symmetric in every direction.

Up to a translation, we can assume that the origin O is the center of mass of S. Since
O belongs to every axis of symmetry and every rotation can be written as a composition
of reflections, we see that S is invariant under rotations, which implies that it is a sphere.

ut

2.3. Curvatures of projected surfaces

Before giving the results of this subsection, we need to recall some basic facts about hy-
persurfaces in Rn+1, in particular about the interplay between the normal and the principal
curvatures. Let U be an orientable hypersurface of class C2 embedded in Rn+1 (which in
the proof of Theorem 1.1 will be an open subset of the surface S). The choice of an orien-
tation onU is equivalent to the choice of a Gauss map ν : U → Sn (in this general context
there is no canonical orientation). Fixing a point q ∈ U , we denote by Wq : TqU → TqU

the shape operatorWq = −dνq . It is symmetric and its eigenvalues κi(q) are the principal
curvatures of U at q. We assume that κ1(q) ≤ · · · ≤ κn(q). The first and the last principal
curvature can be obtained as the minimum and maximum of the normal curvature. Here
we recall that, given a non-zero vector v ∈ TqU , its normal curvature κ(q, v) is defined
as

κ(q, v) =
1
|v|2

Wq(v) · v.

κ(q, v) can be alternatively written in terms of curves as

κ(q, v) =
1

|α̇(0)|2
να(0) · α̈(0)

where α : I → U is an arbitrary curve satisfying α(0) = 0 and α̇(0) = v.
In order to perform a quantitative study of moving planes, we need to handle the

following situation: given a hypersurface U of class C2 in Rn+1, we consider its intersec-
tion U ′ with an affine hyperplane π1 (in the proof of Theorem 4.1, π1 will be the critical
hyperplane in the direction ω). If π1 intersects U transversally, U ′ = U ∩ π1 is a hyper-
surface of class C2 of π1 and we consider its projection U ′′ onto another hyperplane π2
of Rn+1 (which will be tangent to the reflected cap at some point close to the critical
hyperplane). An example in R3 is shown in Figure 1. The next two propositions allow us
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Fig. 1. In the figure U is the paraboloid z = x2
+ y2, π1 is the affine plane z = 2+ 8y and π2 is

the plane z = 0. In this case U ′ is the ellipse in π1, while U ′′ is the circle projected in π2.

to control the principal curvatures of U ′′ in terms of the principal curvatures of U and the
normal vectors to U and U ′.

Proposition 2.7. Let U be an orientable hypersurface of class C2 embedded in Rn+1

with principal curvatures κj , j = 1, . . . , n, and Gauss map ν. Let π be a hyperplane
of Rn+1 intersecting U transversally and let U ′ = U ∩ π . Then U ′ is an orientable
hypersurface of class C2 embedded in π , and once a Gauss map ν′ : U ′→ Sn−1 is fixed,
its principal curvatures κ ′i satisfy

1
νq · ν′q

κ1(q) ≤ κ
′

i(q) ≤
1

νq · ν′q
κn(q) (2.27)

for every q ∈ U ′ and i = 1, . . . , n− 1.

Proof. First of all we observe that U ′ is of class C2 by the implicit function theorem, and
it is orientable since the map ν′ : U ′→ Sn−1 defined by

ν′q = (−1)n+1 vers(∗(∗(νq ∧ ω) ∧ ω)) (2.28)

is a Gauss map on U ′, where ∗ denotes the Hodge “star” operator in Rn+1 computed with
respect to the standard metric and the standard orientation.

In order to prove (2.27), fix q ∈ U ′ and consider an arbitrary unit vector v ∈ TqU ′.
Let κ(q, v) be the normal curvature of U at (q, v). Then

κ(q, v) = νq · α̈(0)

where α is an arbitrary smooth curve in U ′ parametrized by arc length and such that
α(0) = q and α̇(0) = v. Since νq is orthogonal to TqU ′, it belongs to the plane generated
by ω and ν′q and we can write

νq = (ν
′
q · ω)ω + (νq · ν

′
q)ν
′
q .
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Therefore

κ(q, v) = νq · α̈(0) = (νq · ν′q)(ν
′
q · α̈(0)) = (νq · ν

′
q)κ
′(q, v),

where κ ′(q, v) is the normal curvature of U ′ at (q, v), and the claim follows. ut

We observe that in Proposition 2.7 we can choose ν to be the Gauss map defined by (2.28)
and have

νq · ν
′
q =

√
1− (νq · ω)2. (2.29)

Indeed, we fix a positive oriented orthonormal basis {e1, . . . , en, νq} of Rn+1 such that
the first n vectors are an orthonormal basis of TqU and 〈e1, . . . , en−1〉 = ω

⊥ . Then

|∗(∗(νq ∧ ω) ∧ ω)| = |∗(νq ∧ ω) ∧ ω| = ω · en

and

(ω · en)(νq · ν
′
q) = (−1)n+1

∗(∗(νq ∧ ω) ∧ ω) · νq = (−1)n+1
∗(νq ∧ ω) ∧ ω · ∗νq .

Moreover,

∗(νq ∧ ω) = −(ω · en)e1 ∧ · · · ∧ en−1, ∗νq = (−1)n e1 ∧ · · · ∧ en,

and

νq · ν
′
q = (e1 ∧ · · · ∧ en−1 ∧ ω) · (e1 ∧ · · · ∧ en) = ω · en =

√
1− (νq · ω)2,

as required.
Therefore, if ν′q is given by (2.28), then (2.27) reads

1√
1− (νq · ω)2

κ1(q) ≤ κ
′

i(q) ≤
1√

1− (νq · ω)2
κn(q) (2.30)

for i = 1, . . . , n− 1.

Proposition 2.8. Let ω1 and ω2 be unit vectors in Rn+1, denote by π1 a hyperplane
orthogonal to ω1, and let π2 be the hyperplane orthogonal to ω2 passing through the
origin of Rn+1. Let U ′ be a C2-regular oriented hypersurface of π1 such that ω2 is not
tangent to U ′ at any point. Denote by κ ′i , for i = 1, . . . , n − 1, the principal curvatures
of U ′ and denote by ν′ the normal vector to U ′. Then the orthogonal projection U ′′ of U ′

onto π2 is a C2-regular hypersurface of π2 with a canonical orientation. Moreover, for
any q ∈ U ′ we have

|κ ′′i (pr(q))| ≤
|ω1 · ω2|

[(ω1 · ω2)2 + (ω2 · ν′q)
2]3/2

max{|κ ′1(q)|, |κ
′

n−1(q)|} (2.31)

for every i = 1, . . . , n − 1, where pr(q) is the projection of q onto π2, and {κ ′′i } are the
principal curvatures of U ′′.



276 Giulio Ciraolo, Luigi Vezzoni

Proof. If X is a local positive oriented parametrization of U ′, then Y = X − (X · ω2)ω2
is a local parametrization of U ′′, and

ν′′ ◦ Y := vers(∗(Y1 ∧ · · · ∧ Yn−1 ∧ ω2))

defines a Gauss map for U ′′, where Yk is the kth derivative of Y with respect to the co-
ordinates of its domain. Therefore U ′′ is a C2-regular hypersurface of π2 oriented by the
map ν′′.

Now we prove inequalities (2.31). Fix a point q ∈ U ′ and let pr(q) = q−(q ·ω2)ω2 be
its projection onto U ′′. Let X be a local positive oriented parametrization of U ′ around q
and Y = X − (X · ω2)ω2 be the induced parametrization of U ′′ around pr(q).

Let β : (−δ, δ)→ U ′′ be an arbitrary regular curve contained in U ′′ such that β(0) =
pr(q) and let

v =
β̇(0)
|β̇(0)|

, g =
1
|β̇|2

ν′′β · β̈.

Then
g(0) = κ ′′(pr(q), v),

where κ ′′(pr(q), v) is the normal curvature of U ′′ at (q, v). The curve β can be seen as
the projection of a regular curve α in U ′ passing through p. Since ν′′β is orthogonal to ω2,
we have

g =
1
|β̇|2

ν′′β · α̈.

Note that since
Yk = Xk − (Xk · ω2)ω2,

we have
ν′′ ◦ Y = vers(∗(X1 ∧ · · · ∧Xn−1 ∧ ω2))

and
g =

(∗(X1(α) ∧ · · · ∧Xn−1(α) ∧ ω2)) · α̈

|β̇|2|X1(α) ∧ · · · ∧Xn−1(α) ∧ ω2|
.

Now, it is easy to prove that

(∗(X1(α) ∧ · · · ∧Xn−1(α) ∧ ω2)) · α̈ = (ω1 · ω2) ∗(X1(α) ∧ · · · ∧Xn−1(α) ∧ ω1) · α̈,

and therefore

g =
ω1 · ω2

|β̇|2

(∗(X1(α) ∧ · · · ∧Xn−1(α) ∧ ω1)) · α̈

|X1(α) ∧ · · · ∧Xn−1(α) ∧ ω2|
,

which implies

g = (ν′α · α̈)
ω1 · ω2

|β̇|2

|X1(α) ∧ · · · ∧Xn−1(α) ∧ ω1|

|X1(α) ∧ · · · ∧Xn−1(α) ∧ ω2|
.

We may assume that α is parametrized by arc length and so

|β̇|2 = 1− (α̇ · ω2)
2,
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which implies

g = (ν′α · α̈)
ω1 · ω2

1− (α̇ · ω2)2
|X1(α) ∧ · · · ∧Xn−1(α) ∧ ω1|

|X1(α) ∧ · · · ∧Xn−1(α) ∧ ω2|
.

Moreover a standard computation yields

|X1(α) ∧ · · · ∧Xn−1(α) ∧ ω1|

|X1(α) ∧ · · · ∧Xn−1(α) ∧ ω2|
=

1
((ω1 · ω2)2 + (ω2 · να)2)1/2

,

and hence

g(0) = κ ′(q, α̇(0))
ω1 · ω2

((ω1 · ω2)2 + (ω2 · ν′q)
2)1/2

1
1− (α̇(0) · ω2)2

,

where κ ′(q, α̇(0)) is the normal curvature of U ′ at (q, α̇(0)). Therefore

κ ′′1 (pr(q)) =
ω1 · ω2

((ω1 · ω2)2 + (ω2 · ν′q)
2)1/2

inf
v∈Sn−1

q

κ ′(q, v)

1− (v · ω2)2
, (2.32)

κ ′′n−1(pr(q)) =
ω1 · ω2

((ω1 · ω2)2 + (ω2 · ν′q)
2)1/2

sup
v∈Sn−1

q

κ ′(q, v)

1− (v · ω2)2
, (2.33)

where Sn−1
q = {v ∈ TqU

′
: |v| = 1}. Since

|κ ′′i (pr(q))| ≤ max{|κ ′′1 (pr(q))| |κ ′′n−1(pr(q))|}, i = 1, . . . , n− 1,

from (2.32) and (2.33) we obtain

|κ ′′i (pr(q))| ≤
|ω1 · ω2|

((ω1 · ω2)2 + (ω2 · ν′q)
2)1/2

sup
v∈Sn−1

q

|κ ′(q, v)|

1− (v · ω2)2
,

and since Rn+1
= TqU

′
⊕ 〈ν′q〉 ⊕ 〈ω2〉 with

1− (v · ω2)
2
≥ (ω1 · ω2)

2
+ (ω2 · νq)

2,

we have

|κ ′′i (pr(q))| ≤
|ω1 · ω2|

((ω1 · ω2)2 + (ω2 · ν′q)
2)3/2

sup
v∈Sn−1

q

|κ ′(q, v)|

for every i = 1, . . . , n− 1, which implies (2.31). ut
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3. Technical lemmas

Let S be a connected closed C2-regular hypersurface embedded in Rn+1 and let ρ be the
radius of the uniform touching sphere.

Let Sm and πm be as in (2.25) and let ∂Sm = S ∩ πm. It will be useful to define

Sδm = {p ∈ Sm : dS(p, ∂Sm) > δ} for δ > 0. (3.1)

Lemma 3.1. Let 0 < δ < ρ and set σ = ρ sin(δ/ρ). Then:

(i) For any p ∈ Sδm we have Uσ (p) ⊂ Sm.
(ii) For any q ∈ Sm \ Sδm there exist p ∈ ∂Sm and x ∈ Bδ ∩ TpS such that

q = p + x + u(x)νp.

Here u and U are as in (2.1).

Proof. (i) Let x ∈ Bσ ∩ TpS and let q = p + x + u(x)νp. Since

dS(q, ∂Sm) ≥ dS(p, ∂Sm)− dS(p, q),

(2.6) implies
dS(q, ∂Sm) ≥ δ − ρ arcsin(|x|/ρ).

The assumption |x| < σ implies the conclusion.
(ii) Let p ∈ ∂Sm be such that dS(q, ∂Sm) = dS(p, q), and let x be the orthogonal

projection of q onto TpS. Since |x| ≤ dS(p, q) < δ and δ < ρ, we have |x| < ρ and
Lemma 2.1 implies the statement. ut

In the next lemma we show that any two points in Sδm can be joined by a piecewise
geodesic curve, and we give a bound on its length. An analogous lemma was proved in
[ABR] in the special case when Sδm is contained in a hyperplane.

Lemma 3.2. Let 0 < δ < ρ, and set

L =
|S|2n

ωnδn−1 (3.2)

where ωn is the volume of the unit ball in Rn. Let p, q be in a connected component of Sδm.
Then there exists a piecewise geodesic path γ : [0, 1] → S

δ/2
m satisfying γ (0) = p and

γ (1) = q and with length bounded by L. Moreover, γ can be built by joining N minimal
geodesics of length δ, with

N δ ≤ L, (3.3)

and one minimal geodesic of length ≤ δ.

Proof. We can join p and q by a path γ̃ : [0, 1] → Sδm such that γ̃ (0) = p and γ̃ (1) = q.
Given a point z0 ∈ S, we denote by Dr(z0) the set of points on S with intrinsic distance
from z0 less than r , i.e.

Dr(z0) = {z ∈ S : dS(z, z0) < r}.
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When r < ρ, (2.6) implies
|Dr(p)| ≥ ωnr

n. (3.4)

Then we consider the increasing sequence {t0, t1, . . . , tI } in [0, 1] recursively defined as
follows: t0 = 0, and

ti+1 = inf
{
t ∈ [0, 1] : Dδ/2(γ̃ (s)) ∩

i⋃
j=0

Dδ/2(γ̃ (tj )) = ∅, ∀s ∈ [t, 1]
}

(3.5)

if the set in braces is non-empty, and ti+1 = tI otherwise. Therefore {t0, t1, . . . , tI } is an
increasing sequence in [0, 1] satisfying

Dδ/2(γ̃ (ti)) ∩Dδ/2(γ̃ (tj )) = ∅ for i 6= j, i, j = 0, . . . , I, (3.6)

and
Dδ/2(γ̃ (ti)) ⊂ S

δ/2
m , i = 0, . . . , I.

We complete the sequence by adding tI+1 = 1 as the last term. Since∣∣∣ I⋃
i=0

Dδ/2(γ̃ (ti))

∣∣∣ ≤ |S|,
from (3.4) and (3.6) we obtain

I + 1 ≤
2n

ωnδn
|S|. (3.7)

From (3.5), it is clear that

Dδ/2(γ̃ (ti)) ∩

i−1⋃
j=0

Dδ/2(γ̃ (tj )) 6= ∅

for every i = 1, . . . , I . Let

σ(i) = max{j > i : Dδ/2(γ̃ (ti)) ∩Dδ/2(γ̃ (tj )) 6= ∅}.

Then we set σ 2(i) = σ(σ(i)), σ 3(i) = σ(σ(σ (i))) and so on, and fix τ ∈ N such that
σ τ (0) = I . We define γ1 as a minimal geodesic joining p and γ̃ (tσ(0)) and such that

γ1 ⊂ Dδ/2(p) ∪Dδ/2(γ̃ (tσ(0)));

for i = 2, . . . , τ , we let γi be a minimal geodesic joining γ̃ (tσ i (0)) and γ̃ (tσ i+1(0)) and
such that

γi ⊂ Dδ/2(γ̃ (tσ i (0))) ∪Dδ/2(γ̃ (tσ i+1(0))).

Moreover, we let γτ+1 be a minimal geodesic joining γ̃ (tI ) and q and such that

γτ+1 ⊂ Dδ/2(γ̃ (tσ τ+1(0))) ∪Dδ/2(q).
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Let γ be the piecewise geodesic obtained as the union of γ1, . . . , γτ+1. It is clear that
each γi has length δ for i = 1, . . . , τ , and ≤ δ for i = τ + 1. Since τ ≤ I , from (3.7) we
obtain

length(γ ) ≤ (τ + 1)δ ≤
2n

ωnδn−1 |S|,

which implies (3.2) and (3.3), and the proof is complete. ut

It will be useful to define the following two numbers:

ε0 = min
(

1
2
,
ρ

16L
sin

δ

2ρ

)
, (3.8)

N0 = 1+
[

log(1−ε0)

1
2

]
, (3.9)

where L is given by (3.2) and [·] is the integer part function. We have the following
lemma.

Lemma 3.3. Let δ ∈ (0, ρ), ε ∈ (0, ε0) with ε0 given by (3.8), and set

ri = (1− ε)iρ sin
δ

2ρ
(3.10)

for i ∈ N. Let p and q be any two points in a connected component of Sδm . Then there
exist an integer N ≤ N0 with N0 given by (3.9) and a sequence {p1, . . . , pN } of points
in Sδ/2m such that

p, q ∈
⋃n
i=0 U ri/4(pi), (3.11)

Ur0(pi) ⊂ Sm, i = 0, . . . , N, (3.12)

pi+1 ∈ Uri/4(pi), i = 0, . . . , N − 1, (3.13)

where Uri (pi) are defined as in (2.1).

Proof. Let γ be a path as in Lemma 3.2 and denote by s its arc length. Set p0 = p and
define pi = γ (ri/4) for each i = 1, . . . , N − 1, and pN = q. Here, N is the largest
integer such that

N−1∑
i=0

ri

4
≤ L.

Since ε < ε0, we have
N0−1∑
i=0

ri

4
> 2L,

and hence such an N exists and we can assume that N ≤ N0, where N0 is defined by
(3.9). Since γ ⊂ Sδ/2m , the assertion of the theorem easily follows from (2.6). ut
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For a fixed direction ` ∈ Sn, we denote by `⊥ the orthogonal subspace to `, i.e.

`⊥ = {z ∈ Rn+1
: z · ` = 0}.

Lemma 3.4. Let p ∈ S and u : Br ∩ TpS → R be a C2 map as in (2.1) with r < ρ. Let
` ∈ Sn be such that

νp · ` > 0 and |`− νp| < ε (3.14)

for some 0 ≤ ε < 1. There exists a C2 function v : B
r
√

1−ε2 ∩ `
⊥
→ R such that the set

V = {p + y + v(y)` : y ∈ B
r
√

1−ε2 ∩ `
⊥
} (3.15)

is contained in Ur(p). Moreover,

‖v‖∞ ≤ ‖u‖∞ +
√

2 εr. (3.16)

Proof. Let q = p + x + u(x)νp be a point in Ur(p) with

|x| < r
√

1− ε2. (3.17)

By the implicit function theorem, if νq · ` > 0, then S can be locally represented as the
graph of a function near q over the hyperplane `⊥. Let A ∈ SO(n + 1) be a special
orthogonal matrix such that Aνp = `, and let y ∈ `⊥ be such that y = Ax. Since
A ∈ SO(n+ 1), we have |x| = |y| and so

|y| < r
√

1− ε2.

From the triangle and Cauchy–Schwarz inequalities we have

νq · ` ≥ νq · νp − |`− νp|;

(2.5) and (3.14) yield
νq · ` ≥

√
1− |x|2/ρ2

− ε,

which implies that νq · ` > 0 on account of (3.17). Therefore any point q ∈ V can be
written both as q = p + x + u(x)νp and as q = p + y + v(y)` for some x ∈ TpS and
y ∈ `⊥. In particular

y + v(y)` = x + u(x)νp,

and since y = Ax, we have

(I − A)x + u(x)νp = v(y)`.

By taking the scalar product with `, we readily obtain

|v(ξ)| ≤ |I − A| |x| + |u(x)|. (3.18)

The matrixA can be chosen such that |I−A| ≤ 2
√

1− ` · νp ≤
√

2 ε, and (3.18) implies
the last part of the statement. ut

It will be important to compare the normal vectors to two surfaces which are graphs of
functions over the same domain. We have the following lemma.
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Lemma 3.5. Let u1, u2 ∈ C
1(Br ∩ e

⊥

n+1) and assume that

|∇u2(x0)−∇u1(x0)| < ε

for some x0 ∈ Br ∩ e
⊥

n+1. Let pi = x0 + ui(x0)en+1, i = 1, 2. Then

|νp1 − νp2 | ≤
1
2

√
5 ε, (3.19)

where

νpi =
−∇ui(x0)+ en+1√

1+ |∇ui(x0)|2

is the inward normal to the graph of ui at pi , i = 1, 2.

Proof. Since the eigenvalues of the Hessian of the function x 7→
√

1+ |x|2 are uniformly
bounded by 1, its gradient is Lipschitz continuous with constant 1 and we have∣∣∣∣ ∇u1(x)√

1+ |∇u1(x)|2
−

∇u2(x)√
1+ |∇u2(x)|2

∣∣∣∣ ≤ |∇u1(x)−∇u2(x)|. (3.20)

Moreover,∣∣∣∣ 1√
1+ |∇u1(x)|2

−
1√

1+ |∇u2(x)|2

∣∣∣∣ ≤ 1
2

∣∣|∇u1(x)| − |∇u2(x)|
∣∣. (3.21)

From the triangle inequality and from (3.20) and (3.21) we readily obtain (3.19). ut

4. Proof of Theorem 1.1

The proof of Theorem 1.1 relies upon a quantitative study of the method of moving planes
and it consists of several steps, which we now sketch.
Step 1. We fix a direction ω, apply the method of moving planes, and find a critical po-

sition which defines a critical hyperplane πm, as described in Subsection 2.2. By
using the smallness of osc(H), we can prove that (up to a connected component)
the surface S and the reflected cap Sm are close. Hence, the union of the cap and
the reflected cap provides a symmetric set in the direction ω which gives infor-
mation about the approximate symmetry of S in that direction. It is important to
notice that the estimates do not depend on the chosen direction.

Step 2. We apply Step 1 in n + 1 orthogonal directions and we obtain a point O as the
intersection of the corresponding n + 1 critical hyperplanes. Since the estimates
in Step 1 do not depend on the direction, the point O can be chosen as an ap-
proximate center of symmetry. Moreover, any critical hyperplane in any other
direction is less than some constant times osc(H) away from O.

Step 3. Again by using the estimates in Step 1, we can define two balls centered at O
such that estimate (1.3) holds.

We notice that once we have the approximate symmetry in one direction, i.e. Step 1,
then the argument for proving Steps 2 and 3 is well-established [ABR, Section 4]. In the
following we will prove Step 1, which is our main result of this section, and for the sake
of completeness, we give a sketch of the proof for Steps 2 and 3.
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4.1. Step 1. Approximate symmetry in one direction

We apply the moving plane procedure as described in Subsection 2.2. Let ω ∈ Sn be
a direction in Rn+1 and let Sm, Ŝm be defined as in (2.25). Let p0 be a tangency point
between Sm and Ŝm, and denote by 6 and 6̂ the connected components of Sm and Ŝm,
respectively, containing p0 or having p0 on their boundary. Let S∗ be the reflection of S
about πm. For a point p in S (or S∗), we denote by νp the normal vector to S (or to S∗)
at p. We will use this notation when it does not lead to ambiguity: the choice of the vector
normal and of the surface is implied by the point itself. If p ∈ S∩S∗ is a point of tangency
between S and S∗, then the normal vector at p is the same for both the surfaces, and the
notation is coherent. When ambiguity occurs, i.e. for non-tangency points in S ∩ S∗, we
will specify the dependence on the surface. For points on ∂6 (or ∂6̂) we will denote by ν
the Gauss map on ∂6 (or ∂6̂) which is induced by the one on S∗ (or S).

The main goal of Step 1 is to prove the following result of approximate symmetry in
one direction.

Theorem 4.1. There exists a positive constant ε such that if osc(H) ≤ ε, then for any
p ∈ 6 there exists p̂ ∈ 6̂ such that

|p − p̂| + |νp − νp̂| ≤ C osc(H). (4.1)

Here, the constants ε andC depend only on n, ρ, |S| and do not depend on the direction ω.

Before giving the proof of Theorem 4.1, we provide two preliminary results about the
geometry of 6. For t > 0 we set

6t = {p ∈ 6 : d6(p, ∂6) > t}.

The following two lemmas show some conditions implying that 6t is connected for t
small enough.

Lemma 4.2. Assume that there exists µ ≤ 1/2 such that

νp · ω ≤ µ (4.2)

for every p on the boundary of 6. Then 6t is connected for any 0 < t ≤ t0, where

t0 =
ρ

2
√
n

√
1− 2µ2.

Proof. Let S∗ be the reflection of S about πm. We notice that, by construction of the mov-
ing planes, 6 and πm enclose a bounded simply connected domain of Rn+1. Moreover,
νp ·ω ≥ 0 on ∂6 and (4.2) implies that πm intersects S∗ transversally. Hence, the bound-
ary of 6 is a manifold of class C2. We prove that the boundary of 6t lies in a tubular
neighborhood of the boundary of 6 in S∗. Then, since 6 is connected, any two points
in 6t can be joined by a curve in 6 which can be pushed into 6t by using the normal
vector field to the boundary 6.
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Following Section 2.3, we denote the boundary of 6 by 6′ and we orient 6′ by the
Gauss map satisfying

νp · ν
′
p = 1− (νp · ω)2

(see (2.28)). Hence, from (4.2), we have

νp · ν
′
p ≥ 1− µ2.

Since the principal curvatures of S are bounded by ρ−1, from Proposition 2.7 the principal
curvatures κ ′i of 6′ satisfy

|κ ′i | ≤
1

ρ(1− µ2)
, i = 1, . . . , n− 1. (4.3)

From Lemma 3.4, we can write S∗ as the graph of a function u : Br ∩ (ν′p)
⊥
→ R with

r = ρ
√

1− 2µ2. Moreover, (4.3) and Lemma 2.1 imply that 6′ is locally the graph of u
restricted to Br ∩ Tp6′. Taking into account that (ν′p)

⊥
= Tp6

′
⊕ 〈ω〉, we consider the

subset of S∗ given by

Q(p) = {q = p + ξ + sω + u(ξ + sω)ν′p : ξ ∈ Br ∩ Tp6
′, |s| ≤ t0},

which contains a tubular neighborhood of 6′ ∩Bt0(p) of radius at least t0. Hence, the set
Q =

⋃
p∈6′ Q(p) contains a tubular neighborhood of6′ in S∗ of radius at least t0, which

concludes the proof. ut

Lemma 4.3. Let 0 < δ ≤ ρ(8
√
n)−1. If there exists a connected component 0δ of 6δ

satisfying
0 ≤ νp · ω ≤ 1/8 for any p ∈ ∂0δ ,

then 6δ is connected.

Proof. To simplify the notation we let µ0 = 1/8. Notice that the interior and exterior
touching balls at every boundary point of 0δ intersect πm. By using this argument and
after elementary but tedious calculations, we can prove that for any q ∈ 6 \ 0δ ,

d6(q, 0
δ) ≤ ρ arcsin((1+ 2µ0)δ/ρ).

In particular, for any q ∈ ∂6 there exists p ∈ ∂6δ such that

d6(q, p) ≤ ρ arcsin((1+ 2µ0)δ/ρ),

and from Lemma 2.1 we obtain

|νp − νq | ≤
√

2 arcsin((1+ 2µ0)δ/ρ).

By writing νq · ω = νp · ω − (νq − νp) · ω and by the triangle inequality we get

|νq · ω| ≤ µ0 +
√

2 arcsin((1+ 2µ0)δ/ρ);
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our assumptions on δ imply the following (rougher but simpler) bound:

|νq · ω| ≤ 2µ0 + 1/2.

Now we use Lemma 4.2 by setting µ = 2µ0 + 1/2 and taking δ ≤ t0. ut

Now, we focus on the proof of Theorem 4.1. It will be divided into four cases, which we
study in the consecutive subsections. In each case, δ will be fixed to be

δ = min
(
ρ

26 ,
ρ

8
√
n

)
.

Moreover, the constants ε and C can be chosen as

ε = min{ε0, ε1, ε2, ε3} and C = 5
4C1K1K2K3.

Here, ε0 is given by (3.8), and ε1, ε2, ε3 and C1 will be defined below. Moreover,K1,K2,

K3 are given by Lemmas 2.3, 2.4, 2.6, respectively, where M is chosen according to
Lemma 2.1 by assuming that |x| ≤ ρ/2. Hence, the constants ε and C depend only on n
and upper bounds on ρ−1 and |S|.

4.1.1. Case 1: d6(p0, ∂6) > δ and d6(p, ∂6) ≥ δ. In this case we assume that p0
and p are interior points of 6, which are more than δ away from ∂6. We remark that
in this case, p0 is an interior touching point between 6 and 6̂, so that case (i) in the
method of moving planes occurs. We first assume that p0 and p are in the same connected
component of 6δ; then Lemma 4.3 will be used to show that 6δ is in fact connected.

Let

r0 = ρ sin
δ

2ρ
.

Since p and p0 are in a connected component of 6δ , there exist: {p1, . . . , pN } in the
connected component of 6δ/2 containing p0, a chain {Ur0(pi)}Ni=0 of open subsets of 6
and a sequence of maps ui : Br0 ∩ Tpi6 → R, i = 0, . . . , N , as in Lemma 3.3, where
ri = (1−ε)ir0. We notice that6 and 6̂ are tangent at p0, and in particular the normal vec-
tors to 6 and 6̂ at p0 coincide. We stress that 6̂ ⊂ S, and since r0 < ρ, from Lemma 2.1
we know that S is locally represented near p0 as the graph of a map û0 : Br0 ∩Tp0S → R.

Lemma 2.1 implies that |∇u0|, |∇û0| ≤ M in Br0 ∩ Tp06, where M is some constant
which depends only on r0, i.e. only on ρ. Now, we use Lemma 2.3: since u0(0) = û0(0)
and u0 ≥ û0, (2.14) gives

‖u0 − û0‖C1(Br0/4∩Tp06)
≤ K1osc(H), (4.4)

whereK1 depends only on n andM . We notice that from (3.13) we have p1 ∈ U r0/4(p0).
Let x1 be the projection of p1 onto Tp06 and let

p̂∗1 := p0 + x1 + û0(x1)νp0 ∈ 6̂.
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From (4.4) we obtain
|∇u0(x1)−∇û0(x1)| ≤ K1osc(H),

and therefore Lemma 3.5 yields

|νp1 − νp̂∗1
| ≤

1
2

√
5K1 osc(H). (4.5)

Let p̂1 be the nearest point to p1 in 6̂ which can be written as p̂1 = p1 − τνp1 for some
τ ≥ 0. Since |x1| ≤ r0/4, from (2.5) we have νp · νp1 ≥

√
1− (r0/ρ)2. From (4.4), (4.5)

and by a simple geometrical argument, we obtain

τ ≤
2K1 osc(H)
νp · νp1

and |x1 − x̂1| ≤ 2K1
δ

4ρ
osc(H),

where x̂1 is the projection of p̂1 onto Tp06. This implies that

|p1 − p̂1| + |νp1 − νp̂1 | ≤ cK1 osc(H), (4.6)

where c depends only on n and ρ.
As already mentioned, we have a local parametrization of 6 in a neighborhood of p1

as the graph of the C2 function u1 : Br0 ∩ Tp16 → R. Lemma 3.4 and (4.5) imply that
S can be locally parametrized by the graph of a function û1 : Br1 ∩ Tp16 → R, where

r1 < r0

√
1− c2K2

1ε
2 since ε ≤ ε1 with

ε1 = (1+ c2K2
1 )
−1. (4.7)

From the definition of p̂1, (4.6) and since u1 − û1 ≥ 0 by construction, we find that

0 ≤ u1(0)− û1(0) ≤ cK1 osc(H).

We use Lemma 2.3 to deduce that

‖u1 − û1‖C1(Br1/4∩Tp16)
≤ K1[cK1 + 1] osc(H). (4.8)

Now, (4.8) is the analogue of (4.4) with p1 instead of p0, and we can iterate until we
obtain two functions uN , ûN : BrN ∩ Tp6→ R such that

‖uN − ûN‖C1(BrN /4∩Tp6)
≤ C1osc(H). (4.9)

A choice of p̂ as in the statement of Theorem 4.1 is then given by p̂ = p + ûN (0)νp,
since (4.1) is implied by (4.9) and Lemma 3.5.

We notice that a choice of the constant C1 in (4.9) is given by

C1 = (cK1 + 1)N0+1, (4.10)

where N0 is given by (3.9). Hence the constant C1 depends only on n, δ/ρ, and an upper
bound on |S|.
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Once we have (4.9) for any p in a connected component of 6δ , we have in fact

νq · ω ≤ 1/8

for any point q at the boundary of such a connected component, as follows from

Lemma 4.4. Let q ∈ 6 be such that d6(q, ∂6) ≤ δ. Assume that the point q̂ = q −ανq
is on 6̂ and

|νq − νq̂ | ≤ α (4.11)

with α + 2δ < ρ. Then
0 ≤ νq · ω ≤

√
8δ2/ρ2 + α/2. (4.12)

Proof. Let qm be the reflection of q about πm and let

t = νq · ω.

By construction of the moving planes, it is clear that t ≥ 0 and the first inequality in (4.12)
follows. We denote by νqm the inner normal vector to S at qm. Since νq · ω = −νqm · ω
and νq − νqm = 2tω, we have

νq · νqm = 1− 2t2. (4.13)

We notice that qm and q̂ both lie in S and |qm − q̂| ≤ α + 2δ, which implies that
q̂ ∈ Uρ(qm) provided that α + 2δ < ρ. Hence, (2.5) yields

νq̂ · νqm ≥

√
1−

(
α + 2δ
ρ

)2

.

From (4.11) and (4.13) we find that

1− 2t2 ≥

√
1−

(
α + 2δ
ρ

)2

− α,

which gives

t2 ≤
1
2

(
α + 2δ
ρ

)2

+
α

2
,

and we obtain the second inequality in (4.12). ut

The conclusion of Case 1 follows from the following argument. From (4.9) we know that
for any q on the boundary of the connected component of 6δ containing p0 there exists
q̂ ∈ 6̂ such that

|q − q̂| + |νq − νq̂ | ≤ C1 osc(H).

We apply Lemma 4.4 by letting α = C1 osc(H); since ε ≤ ε2 with

ε2 ≤ 1/(26C1),

we obtain 0 ≤ νq · ω ≤ 1/8. Hence, from Lemma 4.3 we find that 6δ is connected.
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4.1.2. Case 2: d6(p0, ∂6) ≥ δ and d6(p, ∂6) < δ. Here the idea consists in extending
the estimate of Subsection 4.1.1 to the whole6. This will be done by using Carleson type
estimates given by Lemma 2.4. We remark that its application is not trivial, since we need
more information on how S intersects πm.

Following (2.25), for a given point p ∈ 6 such that d6(p, ∂6) ≤ δ, we denote by pm

the point of S obtained by reflecting p about πm. The surface S can be locally written
as the graph of a function u : Bρ ∩ TpS → R. For 0 < r < ρ, we define U∗r (p) as the
reflection of Ur(pm) about πm and we denote by Ur(p) the subset of 6 obtained by

Ur(p) = U
∗
r (p) ∩ {q ∈ Rn+1

: q · ω < m}.

Moreover, we denote by Er the open subset of Br ∩ Tp6 such that

Ur(p) = {p + x + u(x)νp : x ∈ Er}. (4.14)

The next result is a consequence of Propositions 2.7 and 2.8.

Lemma 4.5. Let q ∈ 6 be such that d6(q, ∂6) = δ and 0 ≤ νq · ω ≤ 1/4. Let
U ′ = U∗√

2ρ/8
(q) ∩ πm and U ′′ be the orthogonal projection of U ′ onto Tq6. Then U ′′ is

a hypersurface of class C2 of Tq6 whose principal curvatures are bounded by

K = 4δ/ρ2.

Proof. We notice that since d6(q, ∂6) = δ, we have U ′ 6= ∅. Let ζ ∈ U ′. Since the
projection pr(ζ ) of ζ on Tq6 is in B√2ρ/8, from (2.5) we know that

|νq − νζ | ≤ 1/4. (4.15)

Since νζ · ω = νq · ω + (νζ − νq) · ω, we have

|νζ · ω| ≤ 1/2, (4.16)

which implies that πm intersects U∗√
2ρ/8

(q) transversally, and so U ′′ is a hypersurface
of Tq6. Since the principal curvatures of S are bounded by 1/ρ, (2.31) implies that the
principal curvatures of U ′′ satisfy

|κ ′′i (pr(ζ ))| ≤
1

ρ|νζ · ν
′
ζ |
·

ω · νq

[(ω · νq)2 + (νq · ν
′
ζ )

2]3/2
, i = 1, . . . , n− 1,

where ν′ is the Gauss map of U ′ viewed as a hypersurface of πm satisfying

νζ · ν
′
ζ =

√
1− (νζ · ω)2. (4.17)

Hence,
|κ ′′i (pr(ζ ))| ≤

ω · νq

ρ|νζ · ν
′
ζ | |νq · ν

′
ζ |

3 , i = 1, . . . , n− 1. (4.18)

From (4.16) and (4.17), we obtain

νζ · ν
′
ζ ≥
√

3/2. (4.19)
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By writing νq · ν′ζ = (νq − νζ ) · ν
′
ζ + νζ · ν

′
ζ and using (4.15) and (4.19) we get

νq · ν
′
ζ ≥ 1/2,

and from (4.18) and (4.19) we obtain the assertion. ut

In the next lemma we give a bound which will be useful later.

Lemma 4.6. Let q and α be as in Lemma 4.4. Then

0 ≤ νζ · ω ≤
√

8δ2/ρ2 + α/2+ (
√

2/ρ)d6(q, ζ ) (4.20)

for any ζ ∈ Uρ(q), where Uρ(q) is defined as in (4.14).

Proof. Let ζ ∈ Uρ(q). By construction we have νζ · ω ≥ 0. Since

νζ · ω ≤ νq · ω + |νζ − νq |,

from (2.5) and (4.12) we get the assertion. ut

Now we are ready to prove Theorem 4.1 for Case 2. Let

ε3 = δ/(ρC1)

where C1 is given by (4.10). We assume that d6(p0, ∂6) ≥ δ and d6(p, ∂6) < δ. By
arguing as in Case 1, we see that 6δ is connected. Let q ∈ 6 and p̄ ∈ ∂6 be such that

d6(p, q)+ d6(p, ∂6) = δ and d6(p, p̄) = d6(p, ∂6)

(we notice that our choice of δ implies that q and p̄ exist).
Since d6(q, ∂6) = δ, from Case 1 we find that there exists q̂ ∈ 6̂ such that

|q − q̂| + |νq − νq̂ | ≤ C1 osc(H) (4.21)

(see (4.9)). From the proof of Case 1, it is clear that q̂ can be chosen as

q̂ = q − ανq

for some 0 ≤ α ≤ C1 osc(H). Let
r = ρ/8. (4.22)

We define the sets Ur(q) ⊂ 6, Er ⊆ Br ∩ Tq6, and the map u : Er → R as in (4.14)
with q in place of p. Since q̂ ∈ 6̂ ⊂ S and |νq − νq̂ | ≤ C1 osc(H), from Lemma
3.4 we infer that S can be locally written (around q̂) as the graph of a function û over
Tq6 ∩ B

ρ
√

1−C2
1ε

2
3

and in particular over Tq6 ∩ Br (which is justified by our choice
of ε3).

We notice that Lemma 2.2 implies that p, p̄ ∈ U r(q). Let ∂Er be the boundary of Er
in Tq6 and let x̄ ∈ ∂Er be the projection of p̄. Since d6(q, p̄) = δ, from Lemma 2.2 we
have

ρ sin(δ/ρ) ≤ |x̄| ≤ δ. (4.23)
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Tq6

Er

U ′′

4δ

2δ

O
x̄

ȳ

x

Fig. 2. Case 2 in the proof of Theorem 4.1. The shadow region is Bδ(x̄) ∩ Er .

Let U ′ = U∗r (q) ∩ πm and let U ′′ be the projection of U ′ onto Tq6 (as in Lemma 4.5).
Notice that by definition, U ′′ ⊂ ∂Er , and in particular u = û on U ′′. From Lemmas 4.4
and 4.5, the principal curvatures of U ′′ are uniformly bounded by K. We notice that our
choice of δ implies that K ≤ 1/(16ρ).

Let x be the projection of p over Tq6. From (4.23) we have B4δ(x̄)∩ ∂Er ⊂ U
′′ and

we can apply Lemma 2.4 to deduce that

sup
Bδ(x̄)∩Er

(u− û) ≤ K2
(
(u− û)(ȳ)+ osc(H)

)
(4.24)

with ȳ = x̄ + 2δν′′x̄ , where ν′′x̄ is the interior normal to U ′′ at x̄ (see Figure 2). We notice
that x ∈ Bδ(x̄) ∩ Er , and so from (4.24) we find that

(u− û)(x) ≤ K2
(
(u− û)(ȳ)+ osc(H)

)
. (4.25)

Since 2δ < K−1, the point ȳ has distance 2δ from the boundary of Er , and by Lemma
2.2 the point

q̄ = q + ȳ + u(ȳ)νq

satisfies
d6(q̄, ∂6) ≥ 2δ.

Hence, from Case 1 (applied to p0 and q̄) we obtain the estimate

(u− û)(ȳ) ≤ C1 osc(H),

and from (4.25) we get
(u− û)(x) ≤ C1K2 osc(H).
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By letting p̂ = q + x + û(x)νq , and since d6(p, ∂6) > 0, a standard application of
Lemmas 2.3 and 3.5 yields the estimate

|p − p̂| + |νp − νp̂| ≤
1
2

√
5C1K1K2 osc(H),

and the proof of Case 2 is complete.

4.1.3. Case 3: 0 < d6(p0, ∂6) < δ. Since p0 is the tangency point, it is easy to show
that the center of the interior touching sphere of radius ρ to S at p0 lies in the half-space
{q ∈ Rn+1

: q · ω ≤ m} (see for instance [CMV1, Lemma 2.1]). From this, and since

|p0 · ω −m| ≤ d6(p0, ∂6) ≤ δ,

by Lemma 4.4 (with α = 0) we obtain

νp0 · ω ≤ 3δ/ρ.

As in Case 2 (with q replaced by p0), we locally write 6 and 6̂ as the graphs of
functions u, û : Er → R, respectively, where Er ⊆ Tp06 is defined as in the introduction
to this subsection, and r is given by (4.22). Moreover, we denote by U ′′ the portion of
∂Er which is obtained by projecting U∗r (p0) ∩ πm onto Tp06. We remark that u = û on
U ′′ and that the principal curvatures of U ′′ are bounded by K.

Let x̄ ∈ U ′′ be a point such that

|x̄| = min
x∈U ′′
|x|.

Notice that |x̄| ≤ d6(p0, ∂6) < δ. Let ν′′x̄ be the interior normal to U ′′ at x̄, and set

y = x̄ + 2δν′′x̄

(see Figure 3). We notice that the principal curvatures of U ′′ are bounded by K, and

Tp06

Er

U ′′

2δ

O
x̄

yδ

Fig. 3. Case 3 in the proof of Theorem 4.1.
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2δ ≤ K−1 and the ball B2δ(y) ∩ Tp06 is contained in Er and tangent to U ′′ at x̄, with
ν′′x̄ = −x̄/|x̄|. Hence, the originO of Tp06 (i.e. the projection of p0 over Tp06) lies in the
annulus (B2δ(y) \ Bδ(y)) ∩ Tp06. Therefore, we can apply (2.23) (where we set x0 = x̄,
c = y and r = 2δ), and since u(0) = û(0), we find that

‖u− û‖C1(Bδ/2(y)∩Tp06)
≤ K3 osc(H). (4.26)

Let
q = p0 + y + u(y)νp0 and q̂ = p0 + y + û(y)νp0 .

We notice that (4.26) and Lemma 3.5 imply that

|q − q̂| + |νq − νq̂ | ≤
1
2

√
5K3 osc(H).

Since y has distance 2δ from ∂Er , we have d6(q, ∂6) ≥ 2δ, and we can apply Cases 1
and 2 to conclude the proof.

4.1.4. Case 4: p0 ∈ ∂6. This case is the limiting case of Case 3 for d6(p0, ∂6) → 0.
Indeed, in this case we can write 6 and 6̂ as graphs of functions over a half-ball on
Tp06. Hence the argument used in Case 3 can be easily adapted by using (2.24) instead
of (2.23).

4.2. Steps 2–3. Approximate radial symmetry and conclusion

We consider n + 1 orthogonal directions e1, . . . , en+1, and we denote by π1, . . . , πn+1
the corresponding critical hyperplanes. Let

O =
n+1⋂
i=1

πi,

and denote by R(p) the reflection of p in O. The following lemma extends Theorem 4.1.

Lemma 4.7. For any p ∈ S there exists q ∈ S such that

|R(p)− q| ≤ (n+ 1)C osc(H).

Proof. We write R = Rn+1 ◦ · · · ◦ R1, where Ri is the reflection about πi , i =
1, . . . , N + 1. By iterating Theorem 4.1 n+ 1 times, we conclude the proof. ut

As in [ABR, Proposition 6], for every direction ω,

dist(O, πm) ≤ C osc(H), (4.27)

where πm is the critical hyperplane in the direction ω and C is a constant that depends
only on ρ and diam S = maxp,q∈S |p−q|. We notice that diam S can be bounded in terms
of |S| and ρ−1. Indeed, let p, q ∈ S be such that |p − q| = diam S. By arguing as in the
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proof of Lemma 3.2, we can find a piecewise geodesic path on S joining p and q, and
with length bounded by (3.2) (with δ = ρ/2 there); therefore,

diam S ≤
|S|22n

ωnρn−1 .

Hence, the constant C in (4.27) can be bounded in terms of the dimension n and upper
bounds on ρ−1 and |S|.

Finally, the bound on the difference of the radii (1.3) of the approximating balls is
obtained by arguing as in [ABR, Proposition 7]. Indeed, if we define

ri = min
p∈S
|p −O| and re = max

p∈S
|p −O|,

and assume that the minimum and maximum are attained at pi and pe, respectively, we
obtain

re − ri ≤ 2 dist(O, π),

where π is the critical hyperplane in the direction (pe − pi)/|pe − pi |. By (4.27) we
conclude the proof.

5. Proof of Corollary 1.2

Lemma 5.1. Let S be a closed C2 hypersurface embedded in Rn+1 and assume

S ⊂ Bre \ Bri with re − ri ≤ 2ρ.

Then
p

|p|
· νp ≤ −1+

1
ρ
(re − ri) for every p ∈ S.

Proof. Without loss of generality we may assume that Bre and Bri are centered at the
origin. Let p ∈ S and let c− and c+ be the centers of the interior and the exterior touching
balls of radius ρ tangent at p, respectively. Then∣∣∣∣c− + c−

|c−|
ρ

∣∣∣∣ = sup
q∈Bρ (c−)

|q| ≤ re,

∣∣∣∣c+ − c+

|c+|
ρ

∣∣∣∣ = inf
q∈Bρ (c+)

|q| ≥ ri,

and so ∣∣∣∣c− + c−

|c−|
ρ

∣∣∣∣2 − ∣∣∣∣c+ − c+

|c+|
ρ

∣∣∣∣2 ≤ r2
e − r

2
i .

Therefore
|c−|2 + 2ρ|c−| − |c+|2 + 2ρ|c+| ≤ r2

e − r
2
i .

Taking into account that c+ = p − ρνp and c− = p + ρνp, we get

4ρ p · νp + 2ρ(|c−| + |c+|) ≤ r2
e − r

2
i ,
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and so
p

|p|
· ν(p) ≤ −

|c−| + |c+|

2|p|
+
re + ri

4ρ|p|
(re − ri).

Since |c−| + |c+| ≥ |c−+ c+| = 2|ρ|, and re = ri + (re − ri) ≤ |p| + (re − ri), we have

p

|p|
· νp ≤ −1+

re − ri

2ρ
+
(re − ri)

2

4ρ2 ≤ −1+
re − ri

ρ
,

as required. ut

Proof of Corollary 1.2. Step 1: S is diffeomorphic to a sphere. In view of Theorem 1.1,
there exist ε̃ and C such that if osc(H) < ε̃, then (1.2) and (1.3) hold. We may assume
the concentric balls Bre and Bri are centered in the origin. Let

ε = min{ε̃, ρ/(2C)}. (5.1)

Hence the assumptions in Lemma 5.1 are satisfied. We consider the map ϕ : S → ∂Bri
defined by

ϕ(p) = rip/|p|.

We show that ϕ a diffeomorphism. It is clear that ϕ is smooth. Since Bri is contained in
the bounded domain enclosed by S, ϕ is surjective. Indeed, if ζ ∈ ∂Bri , then

distS(ζ ) ≤ 0, distS((re − ri)ζ ) ≥ 0,

and, by continuity, there exists a t ≥ 0 such that distS((1 + t)ζ ) = 0, i.e. ζ ∈ ϕ(S).
Hence, assumption (1.1) plays a role only for proving the injectivity of ϕ. Let p, q ∈ S
and assume for contradiction that ϕ(p) = ϕ(q). Then we may assume that |p| < |q|. Let
c+ = p − ρνp be the center of the exterior touching ball to S at p. Since p/|p| = q/|q|,
we have

|q − c+|2 =

∣∣∣∣(|q| − |p|) p|p| + ρν(p)
∣∣∣∣2 = (|q| − |p|)2 + ρ2

+ 2ρ(|q| − |p|)
p

|p|
· νp.

From Lemma 5.1 and since |q| − |p| ≤ re − ri , we obtain

|q−c+|2 ≤ (re−ri)
2
+ρ2
+2ρ(re−ri)

(
−1+

re − ri

ρ

)
= ρ2
−(re−ri)(2ρ−3(re−ri)).

The choice of ε as in (5.1) implies that |q − c+| < ρ, which gives a contradiction.

Step 2: proof of (1.4). We denote by F : ∂Bri → S the inverse of the map ϕ : S → ∂Bri
considered in the first step. We can write F(ζ ) = ζ +9(ζ)ζ/ri for every ζ in ∂Bri , and
from Step 1 and Theorem 1.1 it follows that ‖9‖C0(∂Bri )

≤ C osc(H). In order to prove a

quantitative bound on the C0-norm of the derivatives of 9, we work in the same fashion
as in the proof of Lemma 3.4.
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Let ζ be a fixed point on ∂Bri and set p = F(ζ ) (i.e. ζ = rip/|p|). Let Tζ and Tp
be the tangent spaces to ∂Bri at ζ and to S at p, respectively. We can locally write S
around p as

q = p + x + u(x)νp,

where x belongs to a small neighborhood of the origin O and u is a C2 map satisfying
u(O) = 0 and ∇u(O) = 0. Without loss of generality, we can assume that ζ = rien+1 so
that

Tζ = {x ∈ Rn+1
: xn+1 = 0},

and we locally write ∂Bri as ζ ′ = ζ + x + η(x)νζ , where η(x) = ri −
√
r2
i − |x|

2.
As in the proof of Lemma 3.4, we can chooseA ∈ SO(n+1) satisfyingA(ζ ) = −riνp

(we recall that νζ = −ζ/ri), and we can locally write

p + Ax + u(Ax)νp = p + x + v(x)νζ ; (5.2)

furthermore, A is such that

|A− I | ≤ 2
√

1− νζ · νp. (5.3)

We first prove that

∂xkψ(O) = −
1
ri
∂xkv(O), k = 1, . . . , n. (5.4)

Indeed, by setting ψ = 9 ◦ η, we have

p + x + v(x)νζ = η(x)− ψ(x)νη(x),

which implies

p · νη(x) + x · νη(x) + v(x)νζ · νη(x) − η(x) · νη(x) = −ψ(x),

i.e.
1
ri
p · η(x)+

1
ri
x · η(x)+

1
ri
v(x)νζ · η(x)− ri = ψ(x),

where we have used νη(x) = −η(x)/ri . From η(O) = ζ and v(O) = 0 we obtain (5.4).
Now, we give a bound on the derivatives of v at O in terms of the difference re − ri .

We notice that (5.2) implies

v(x) = (A− I )x · νζ + u(Ax)νp · νζ ,

and since |∇u(O)| = 0, we obtain

|∂xkv(O)| ≤ |A− I |, k = 1, . . . , n.

From (5.3) and Lemma 5.1 we deduce that

|∂xkv(O)| ≤ 2
√
re − ri

ρ
, k = 1, . . . , n,

and from (1.3) and (5.4) we find (1.4). ut
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Remark 5.2. As emphasized in the Introduction, if we assume that ρ is not bounded
from below, it is possible to construct a family of closed surfaces embedded in R3, not
diffeomorphic to a sphere, with osc(H) arbitrarily small and such that (1.3) fails. For
instance one can consider the following example, suggested by A. Ros, obtained by gluing
pieces of suitable small perturbations of unduloids.
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