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Abstract. We provide a near-complete classification of the Lorentz spaces 3ϕ for which the se-
quence {Sn}n∈N of partial Fourier sums is almost everywhere convergent along lacunary subse-
quences. Moreover, under mild assumptions on the fundamental function ϕ, we identify 3ϕ :=
L log logL log log log logL as the largest Lorentz space on which the lacunary Carleson operator
is bounded as a map to L1,∞. As a consequence,

• we disprove a conjecture stated by Konyagin in his 2006 ICM address;
• we provide a negative answer to an open question related to the Halo conjecture.

Our proof relies on a newly introduced concept of a “Cantor multi-tower embedding,” a special
geometric configuration of tiles that can arise within the time-frequency tile decomposition of the
Carleson operator. This geometric structure plays an important role in the behavior of Fourier se-
ries near L1, being responsible for the unboundedness of the weak-L1 norm of a “grand maximal
counting function” associated with the mass levels.

Keywords. Time-frequency analysis, Carleson’s Theorem, lacunary subsequences, pointwise con-
vergence

1. Introduction

1.1. Historical background

In this paper we address the problem of pointwise convergence of Fourier series along
lacunary subsequences. Regarded in a broader context, the problem of pointwise conver-
gence of Fourier series has a rich history, tracing back to the cornerstone set by Fourier in
his study on heat propagation [14]. Since then, there has been a series of major advance-
ments, of which we only mention those closest to our topic: in 1873 du Bois-Reymond
[12] offered an example of a continuous function whose Fourier series diverges on the
set of rational points. This surprising result stimulated the search for new grounds upon
which one could reformulate the question of pointwise convergence for larger classes of
functions by focusing only on the “almost everywhere” behavior of the series, and thus
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allowing for pathologies on “negligible” sets (of “measure 0”). The appropriate setting
was developed by Lebesgue in his theory of integration [29]. Within this new framework,
Luzin [34] conjectured that if a function f is square integrable then its Fourier series
converges to f Lebesgue-almost everywhere. In 1922, Kolmogorov [19] constructed an
example of an L1-integrable function whose Fourier series diverges almost everywhere,
suggesting that Luzin’s conjecture may be false. However, after several decades of mis-
conceptions, in 1966, the breakthrough work of L. Carleson [5] confirmed the conjecture.
Shortly thereafter, Hunt [17] extended the techniques of [5], showing that Carleson’s re-
sult holds for any f ∈ Lp(T) as long as 1 < p <∞.

At this point, we should mention that though not providing a new result, the sec-
ond proof of the almost everywhere convergence of the Fourier series for L2 functions
offered by C. Fefferman [13] marked a fundamental advancement in understanding the
topic described here. A third proof of Luzin’s conjecture was given in 2000 by Lacey
and Thiele [28] using the tools they developed to address the boundedness of the bilinear
Hilbert transform [26], [27].

1.2. Formulation of the main problem(s); context

We start this section by formulating (at first in a looser language) one of the main open
questions in the area of Fourier series:

Main Question. What can be said about the (almost everywhere) pointwise convergence
of Fourier series between the two known cases for the Lebesgue spaces Lp(T):

• p = 1, divergence of Fourier series (Kolmogorov),
• p > 1, convergence of Fourier series (Carleson–Hunt)?

In order to make this Main Question precise, let us first introduce the following:

Definition 1.1. Let Y be a r.i. (quasi-)Banach space.1 We say that Y is a C-space if there
exists C0 = C0(Y ) > 0 such that the Carleson operator C : C∞(T)→ L∞(T) defined2

by

Cf (x) := sup
N∈N

∣∣∣∣∫
T
e2πiN(x−y) cot(π(x − y))f (y) dy

∣∣∣∣, (1.1)

obeys the relation3

‖Cf ‖1,∞ ≤ C0‖f ‖Y ∀f ∈ Y. (1.2)

With this definition, the Main Question can be reformulated as follows:

1 For basic definitions and concepts of the theory of rearrangement invariant Banach spaces,
including Lorentz spaces, see the Appendix.

2 Depending on the context, we identify the torus T = R/Z with either [−1/2, 1/2] or [0, 1].
3 Recall that the weak-L1 quasinorm is given by ‖f ‖1,∞ := supλ>0 λ|{x | |f (x)| > λ}|.
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Open Problem A. (1) Give a satisfactory description of the Lorentz spaces Y ⊆ L1(T)
that are also C-spaces. Describe the maximal Lorentz C-space Y0, if such exists.

(2) Let Y be a r.i. (quasi-)Banach space. Provide necessary and sufficient conditions
for Y to be a C-space.

The best known results relating to the above problem are:

• On the negative side: Konyagin [23], [24] proved that if φ(u) = o
(
u

√
log u

log log u

)
as

u → ∞ then the space φ(L) = 3φ̄ is not a C-space, where φ̄(t) :=
∫ t

0 sφ(1/s) ds.
Thus, there exists f ∈ φ(L) with

lim
m→∞

Smf (x) = ∞ for all x ∈ T, (1.3)

where Smf stands for the mth partial Fourier sum associated with f .
• On the positive side: Antonov [1] showed that (1.2) holds for the Lorentz space
Y = L logL log log logL; later Arias-de-Reyna [3] showed that Y can be enlarged
to a rearrangement invariant quasi-Banach space, named QA, and strictly containing4

L logL log log logL.

We add here that the first results along these lines were obtained on the negative side by
Chen [8], Prohorenko [35] and Körner [25], and on the positive side by Sjölin [36] and
Soria [38], [39].

It is worth noting that all the progress mentioned above on the positive side in-
volved tools from extrapolation theory. Recently, using methods that rely entirely on
time-frequency arguments, the author was able to reprove all the positive results by a
unified approach [30].

Now recall that both the maximal Hardy–Littlewood operator and the (maximal)
Hilbert transform are bounded from L logL to L1. At a heuristic level, the Carleson op-
erator may be thought of as a superposition of the maximal Hardy–Littlewood operator
and modulated copies of the (maximal) Hilbert transform. Thus, one is naturally led to
the following

Conjecture 1. The Lorentz space Y = L logL is a C-space.

As a simplified model for better understanding the difficulties of Open Problem A (and
of the conjecture above) one can formulate its lacunary version. Recall that a sequence
{nj }j∈N ⊂ N is called lacunary if

lim
j→∞

nj+1

nj
> 1. (1.4)

4 For an interesting study of the properties of QA and relationship(s) between Antonov and
Arias-de-Reyna spaces, see [7]. In the same paper, the authors prove that under suitable conditions
on the function ϕ the space 3ϕ = L logL log log logL is the largest Lorentz space contained
in QA.
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Now, by analogy with the previous situation, we first introduce the following

Definition 1.2. Let Z be a r.i. (quasi-)Banach space.

(i) Assume {nj }j∈N ⊂ N is a lacunary sequence. We say that Z is a C{nj }jL -space if there
exists C1 = C1(Z, {nj }j ) > 0 such that the {nj }j∈N-lacunary Carleson operator
defined by

C
{nj }j
lac : C∞(T)→ L∞(T)

with

C
{nj }j
lac f (x) := sup

j∈N

∣∣∣∣∫
T
e2πinj (x−y) cot(π(x − y))f (y) dy

∣∣∣∣, (1.5)

obeys
‖C
{nj }j
lac f ‖1,∞ ≤ C1‖f ‖Z ∀f ∈ Z. (1.6)

(ii) We say that Z is a CL-space if it is a C{nj }jL -space for any lacunary sequence {nj }j∈N.
Throughout the paper, if Z is a CL-space, we will (often) express this as5

‖Clacf ‖1,∞ . ‖f ‖Z ∀f ∈ Z, (1.7)

where Clac stands for “the generic” lacunary Carleson operator.6

We can now formulate the analogue of Open Problem A:

Open Problem B. (1) Give a satisfactory description of the Lorentz spaces Z that are
also CL-spaces. Describe the maximal Lorentz CL-space Z0, if such exists.7

(2) Let Z be a r.i. (quasi-)Banach space. Provide necessary and sufficient conditions
for Z to be a CL-space.

In a more general context, initial progress on this problem was made by Zygmund [42]
who showed that Z = L logL is a Lorentz CL-space. On the negative side, Konyagin
[21] proved that if φ : R+ → R+ is an increasing function with φ(0) = 0 and φ(u) =
o(u log log u) as u→∞ then φ(L) = 3φ̄ is not a CL-space. This last result was reproved
later in a slightly modified context by Antonov [2].8

In his invited talk at the 2006 International Congress of Mathematicians in Madrid,
Konyagin stated the following

Conjecture 2 (Konyagin, [22]). The Lorentz space L log logL is a CL-space.

5 Given A,B > 0, we write A . B and B & A to mean that there exists C > 0 such that
A ≤ CB and B ≤ CA respectively.

6 In (1.7), the implicit constant is allowed to depend on the specific choice of the lacunary se-
quence and on the space Z but not on the function f ∈ Z.

7 One can formulate a more specific question by prescribing a lacunary sequence {nj }j∈N and
asking for a satisfactory description of the Lorentz spaces Z that are also C{nj }j

L
-spaces.

8 As an immediate application of the concepts developed in this paper, one can obtain a simplified
proof of the results in [21] and [2]—see Section 13.
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At this point, we should say that one can phrase an analogue of the above conjecture for
Walsh–Fourier series (is it true that (1.7) holds for Z = L log logL with Clac replaced by
the lacunary Walsh–Carleson operator?). In this latter context, Do and Lacey [11] were
the first to make progress by showing that if one takes Z = L log logL log log logL then
(1.7) holds for the Walsh form of the lacunary Carleson operator. Their proof relies on a
projection argument which is not transferable to the Fourier series case.9

In [31], we were able to prove the following

Theorem 1.3 ([31]). Let W be the quasi-Banach space defined by10

W := {f : T→ C | f measurable, ‖f ‖W <∞},

where

‖f ‖W := inf

 ∞∑
j=1

(1+ log j)‖fj‖1 log log
4‖fj‖∞
‖fj‖1

∣∣∣∣∣∣
f =

∑
∞

j=1 fj ,∑
∞

j=1 |fj | <∞ a.e.,
fj ∈ L

∞(T)

 .
Then

‖Clacf ‖1,∞ . ‖f ‖W . (1.8)

Thus Z =W is a CL-space. Moreover, it contains L log logL log log logL.

Taking Theorem 1.3 above as a black-box, Di Plinio [9] proved that the space
L log logL log log log logL is a CL-space. Indeed, relying entirely11 on standard extra-
polation techniques, he showed that

Z′ := L log logL log log log logL ⊆W,

which in view of (1.8) immediately implies that Z′ is a CL-space.

1.3. Main results

In this section we present the main results of the paper. They are based on a new concept
of “Cantor multi-tower embedding” (CME) whose nature will be detailed in the next
subsection. With these being said, we state the following

Main Theorem 1. There exists a lacunary sequence {nj }j and a sequence {fk}k∈N of
(positive) functions such that:

• each fk is in L∞(T) with
‖fk‖L log logL ≈ 1; (1.9)

9 In the same paper, using previous results from extrapolation theory, the authors proved that the
Walsh form of (1.7) holds for a slightly larger quasi-Banach space Z = QD . This last space turns
out to be isomorphic to the space W introduced in [31], though we have designed W by different
means independent of extrapolation theory.
10 Throughout the paper, log k stands for log2 k.
11 The difficult combinatorial and time-frequency techniques are nedeed precisely in order to show

that W is a CL-space. The present paper shows that Theorem 1.3 cannot be essentially improved.
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• we have
lim
k→∞
‖fk‖L log logL log log log logL = ∞; (1.10)

• there exists an absolute constant C > 0 such that for any k ∈ N,

‖C
{nj }j
lac fk‖L1,∞ ≥ C‖fk‖L log logL log log log logL. (1.11)

The next result states that the conclusion of the above theorem remains true for any lacu-
nary sequence {nj }j . More precisely one has

Theorem 1.4. Given any lacunary sequence {nj }j , there exists a sequence {fk}k∈N of
(positive) functions such that (1.9)–(1.11) hold.

Main Theorem 2.
(1) Define ϕ0 : [0, 1] → R+ by

ϕ0(s) := s log log
17
s

log log log log
17
s
.

Let ϕ : [0, 1] → R+ be a non-decreasing concave function with ϕ(0) = 0.

(i) If lims→0+ ϕ(s)/ϕ0(s) > 0 then 3ϕ is a CL-space.
(ii) If lims→0+ ϕ(s)/ϕ0(s) = 0 then 3ϕ is not a CL-space.

(iii) If lims→0+ ϕ(s)/ϕ0(s) = 0 < lims→0+ ϕ(s)/ϕ0(s) then both scenarios are
possible.

(2) Let ϕ : [0, 1] → R+ be a quasi-concave function. Consider the following statements:

(A) The function ϕ obeys∫ 1

0

−sϕ′′0 (s)

ϕ(s)
ds ≈

∫ 1

0

ϕ0(s)

ϕ(s)

ds

s log 4
s

log log 4
s

<∞. (1.12)

(B) Any r.i. Banach space X with fundamental function ϕX = ϕ is a CL-space.

Then:

(i) (A) implies (B);
(ii) (B) implies lims→0+ ϕ0(s)/ϕ(s) = 0;

(iii) if there exists ε > 0 such that s 7→ ϕ0(s)/ϕ(s) is increasing on (0, ε) then
(A) is equivalent to (B).

Remark. In fact, one can derive Main Theorem 2 from Main Theorem 1 and Theorem
1.5 below. However, we prefer to give special attention to Main Theorems 1 and 2 since
these statements include the more conceptual nature of our results.

Theorem 1.5. Let k ∈ N and let {rj }1≤j≤k be positive real numbers. For 1 ≤ j ≤ k

define yj = 2− log j 22j
. Then, for any xj ∈ (yj+1, yj ], one can construct measurable sets

Fj ⊂ T such that:

• the sets {Fj }j≤k are pairwise disjoint;
• |Fj | = xj ;
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• there exist absolute constants C1 ≥ C2 > 0 such that the function

fk :=

k∑
j=1

rjχFj (1.13)

obeys the estimate

C2‖fk‖W ≤ ‖C
{2j }j
lac fk‖1,∞ ≤ C1‖fk‖W . (1.14)

Consequences of Main Theorems 1 and 2. From point (1)(iii) of Main Theorem 2 (see
also the corresponding proof) one can deduce that there exist (infinitely many) Lorentz
CL-spaces 3ϕ such that

L log logL log log log logL ( 3ϕ (W.

While these 3ϕ spaces are non-canonical, their fundamental functions ϕ still share at
infinitely many space locations the same structure as that of ϕ0. Thus, under suitable,
mild conditions on ϕ, 3ϕ0 becomes the largest Lorentz CL-space, this being simply the
content of the following:

Corollary 1.6 (Maximal characterization). Let ϕ : [0, 1] → R+ be a non-decreasing
concave function with ϕ(0) = 0. Assume that

lim
s→0+

ϕ(s)

ϕ0(s)
∈ [0,∞] exists. (1.15)

Then the largest Lorentz CL-space 3ϕ for which ϕ obeys (1.15) is

Z0 = L log logL log log log logL.

Taking in (1.15) the function ϕ(s) = s log log 4
s
, one further deduces

Corollary 1.7 (Resolution of Konyagin’s conjecture). Conjecture 2 is false.

At this point, we record this observation, surprising at first glance:

Observation 1.8. Define12

• the {nj }j -lacunary Lacey–Thiele discretized Carleson periodic model by

C̃{nj }j f (x) := sup
j∈N

∣∣∣ ∑
P∈P0,0,0,+

〈f, φPl 〉φPl (x)χωPu (nj )

∣∣∣; (1.16)

• the {nj }j -lacunary discretized Walsh–Carleson operator by

C̃
{nj }j
W f (x) = sup

j∈N

∣∣∣∑
R∈R
〈f,wRl 〉wRl (x)χωRu (nj )

∣∣∣. (1.17)

12 For more on the definitions, notation and properties of the discrete Carleson and Walsh models
see Section 12.
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• the {nj }j -lacunary Walsh–Carleson operator by

C
{nj }j
W f (x) := sup

j∈N

∣∣∣ nj∑
k=0

〈f,wk〉wk(x)

∣∣∣, (1.18)

where wN (x) stands for the N th Walsh mode regarded as a periodic function on R;
• the {nj }j -lacunary averaged Walsh–Carleson model by

C
{nj }j
AW f (x) := sup

j∈N

∣∣∣∣∫
T
wnj (x)wnj (−y) cot(π(x − y))f (y) dy

∣∣∣∣. (1.19)

(It is worth mentioning that Thiele [41] proved that, unlike the Fourier case, there is no
distinction between the discretized and the standard (non-discretized) Walsh–Carleson
operator, that is, C

{nj }j
W f = C̃

{nj }j
W f .)

Now the following are true:

• Theorem 1.4 holds for the operator C
{nj }j
AW (and obviously for C{nj }j );

• Theorem 1.4 does not hold for the operators C̃{nj }j and C
{nj }j
W .

All these facts will be discussed in great detail in Section 12. Notice that this is the first
time when we are witnessing a sharp distinction between the behavior of the Carleson op-
erator and that of the corresponding Lacey–Thiele discretized Carleson model. This also
provides a first instance when Fefferman’s type discretization—which leaves the Carleson
operator unchanged—is a necessity and not a choice.

Observation 1.9. The next corollary answers an open question related to the so called
Halo conjecture13 (see [16]), regarding whether or not, given a sublinear, translation
invariant operator T , the following are equivalent:

• T is of restricted weak type (3ϕ, L1);
• T is of weak type (3ϕ, L1).

Here 3ϕ is some generic Lorentz space.

Corollary 1.10 (Restricted weak type does not imply weak type). The {2j }j∈N-lacunary
Carleson operator obeys the following:

• C
{2j }j
lac is a sublinear, translation invariant operator.

• (Theorem 1.3, [31]) C
{2j }j
lac is of restricted weak type (L log logL,L1); thus there exists

an absolute constant C > 0 such that

‖C
{2j }j
lac χE‖1,∞ ≤ C|E| log log

4
|E|

(1.20)

for any measurable set E ⊆ T.

• (Main Theorem 1) C
{2j }j
lac is not of weak type (L log logL,L1).

13 For more details on the connections between the Halo conjecture and pointwise convergence of
Fourier series the interested reader is referred to [37], [38] and [16].
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The next result explains why extrapolation techniques are not suitable for attempting
to prove sharp bounds near L1 for the (lacunary) Carleson operator (see also Observa-
tion 1.12).

Indeed, if one attempts to regard L1,∞ as a limiting space of the scale {Lp,∞}p>1, one
obtains the following:

Corollary 1.11 (Limitations of extrapolation theory). The {2j }j∈N-lacunary Carleson
operator obeys:

• There exists c > 0 such that for any 1 < p ≤ 2,

‖C
{2j }j
lac f ‖p,∞ ≤ c log

(
2+

1
p − 1

)
‖f ‖p. (1.21)

• There exists no C > 0 such that

‖C
{2j }j
lac f ‖1,∞ ≤ C‖f ‖L log logL ∀f ∈ L log logL. (1.22)

The fact that (1.21) holds can be easily derived from [31, proof of Theorem 1] as noticed
in [10].

Now standard interpolation/extrapolation14 results show that if (1.22) were true then
(1.21) would immediately follow. However in the light of our Main Theorems 1 and 2
this implication is false, that is, (1.21) does not imply (1.22).

Observation 1.12. As a consequence of the last two corollaries we have the following
conclusion: No general equivalence15 can be established between weak-L1 type bounds
and either the corresponding restricted weak-type L1 bounds or weak-Lp bounds (p>1).
Moreover, extrapolation theory by itself is not suitable to provide sharp answers to end-
point questions on pointwise convergence of Fourier series near L1. To get such answers,
one needs to take advantage of the special structure of the Carleson operator and hence to
exploit time-frequency analysis methods.

Finally, in relation to some previous work of the author, we have:

Corollary 1.13 (Lack of uniform control for Calderón–Zygmund tile partition). The
question raised in [30] has a negative answer. More precisely, with the notation therein,
there is no absolute constant C > 0 such that, for α ∈ N,

‖T Pαf ‖1 ≤ C‖f ‖1 ∀f ∈ L1(T).

Moreover, there exists f ∈ L1(T) such that if one partitions Pα =
⋃N
n=1 Pαn with each Pαn

having constant mass (i.e. A(P ) ≈ 2−n for any P ∈ Pαn) then

‖T Pαf ‖1,∞ & N‖f ‖1.

14 See [10, Section 1] for details.
15 For large classes of operators that include the family of (maximal) operators associated with

partial Fourier sums.
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1.4. The fundamental idea

In this subsection we will describe, at a philosophical level, a key aspect of the present
work—that of introducing the concept of a “Cantor multi-tower embedding” (CME)16:

• What is it? It refers to a special geometric configuration of a set of tiles that, poten-
tially, could be part of the time-frequency decomposition of the (lacunary) Carleson
operator. The essence of this geometric configuration is that it is an extremizer for the
L1,∞ norm of a “grand maximal counting function” (see (6.3)–(6.3)), a new object,
which turns out to play a fundamental role in the behavior of the pointwise conver-
gence of Fourier series near L1.
The existence of such tile configurations is a manifestation of the “mass transfer” phe-
nomenon from “heavy” tiles (P ∈ Pn with n ∈ N close to 1) to “light” tiles (i.e. P ∈ Pn
for large n ∈ N) that is capable of realizing a Cantor set structure for each of the sets
E(P ) corresponding to a P within the given tile configuration.
Thus, in constructing a CME, a key role is played by the structure of the sets E(P )
and not only by their relative size.
• Context within the literature. This particular configuration of tiles and the central

role played by the corresponding grand maximal counting function are novel facts,
which, to the author’s knowledge, do not have a direct counterpart in the previous time-
frequency literature. However, the more elementary concept of a counting function has
been used in many time-frequency papers, and in the framework of the Carleson oper-
ator it was first considered in [13].
Regarded in a broader context, the idea of studying extreme geometric configurations
along with their potential key role in deciding the answer to a (harmonic analysis)
problem has been successfully applied in many instances. Two such classical examples
are given by

– the (un)boundedness properties of certain (sub)linear operators, e.g. Besicovitch/
Kakeya sets related to the ball multiplier or Bochner–Riesz problems;

– special topological/additive structure properties of sets, e.g. Cantor sets.

• What is its purpose? Based on the geometric location of the tiles within a CME, and
in particular on the lacunary structure of the frequencies, we will first split the mass
parameter n into dyadic blocks. Then, for each block, say Bj , we will construct a cor-
responding set Fj ⊂ T that realizes the alignment of the sign of all the components
{T ∗P 1(x)|x∈Fj }P∈Fj where Fj is the collection of all tiles P inside the above mentioned
CME that have mass parameter n ∈ Bj . In the process we will make essential use of
the fact that the exponentials {e2j 2πi·

}j∈N oscillate independently in [0, 1], behaving
similarly to a sequence of i.i.d. random variables. As a consequence, we will be able
to “erase” the sign of the operators associated to various trees (of tiles), transforming

16 We warn the reader that these explanations can be truly understood only by experts in the time-
frequency area since this concept lies deeply at the heart of the time-frequency methods involved
in analyzing the boundedness properties of the Carleson operator. A reader unfamiliar with these
techniques might choose to skip this subsection and return to it only after being gradually exposed
to the construction of our counterexample.
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the adjoint lacunary Carleson operator restricted to this tile configuration into a posi-
tive operator. At this point, taking the input function f =

∑
j rjχFj with {rj } arbitrary

positive coefficients and {Fj } as above, one concludes that

‖Clacf ‖1,∞ ≈ ‖f ‖W .

The precise definition of CME is somewhat intricate at the technical and notational level,
and therefore we will defer it until later (see Definition 7.2 below). For the time being,
sacrificing a bit in the way of rigor, we state the following

Theorem 1.14 (Existence). The CME structures are compatible with the tile decompo-
sition of the (lacunary) Carleson operator.

More precisely, these structures can arise within the process of the time-frequency de-
composition of the (lacunary) Carleson operator and are composed by tiles that, on the
one hand, contain some prescribed “amount” of the graph of the measurable function N
appearing in the linearization of the operator and, on the other hand, have some specific
relative position to one another. That is why the existence of such structures within the
time-frequency decomposition process is non-trivial.

1.5. Remarks

1) The present paper sheds new light on the topic of pointwise convergence of Fourier
series near L1:

• Our Main Theorem 2 establishes near-optimal necessary and sufficient conditions for
a Lorentz space3ϕ to be a CL-space. It also provides a very good description of when,
given a quasi-convex function ϕ, any r.i. Banach space X with ϕX = ϕ is a CL-space.
Moreover, it essentially states (see (1.14)) that the largest r.i. quasi-Banach space on
which Clac is L1,∞-bounded is the space W introduced in [31].
In the literature regarding the (almost everywhere) pointwise convergence of Fourier
series, almost sharp results of this type constitute a novelty.
• A second item is the method of approaching the difficult problem of pointwise conver-

gence of Fourier series near L1. Until very recently, all progress on this topic, on the
positive side, was based on extrapolation theory.
Using a different perspective—relying only on time-frequency reasonings—the author
reproved [30] the best current positive results. The present paper goes beyond offering
an alternative approach, as our results (Main Theorems 1 and 2) cannot17 be attained by
pure extrapolation methods. Thus, in the context of L1 methods, this constitutes a first
instance when the efficiency of time-frequency techniques is overtaking the canonical
extrapolation approach used until now and serves for the idea advocated by the author
that in order to make substantial progress on the problem of convergence of Fourier
series near L1, one needs to leave the general extrapolation theory framework and
make essential use of the special structure of the (lacunary) Carleson operator.

17 See for example Corollaries 1.10 and 1.11.
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• Thirdly, the spaces Y = L logL log log logL and Y = QA (i.e. the best known positive
results for Open Problem A), viewed for a long time as mere byproducts of extrapola-
tion techniques, are now revealed to be direct manifestations of the “positive behavior”
of the operators associated with generic CME. Indeed, as a consequence of the ideas
introduced here18 we have the following

Informal principle. The oscillation and mass transference from heavy to light tiles
encapsulated in a generic CME structure represent the real challenge in advancing on
Open Problem A. If one can reduce the behavior of the adjoint Carleson operator re-
stricted to a general CME to the corresponding positive operator (i.e. the absolute sum
of the operators associated with the maximal, weight-uniform trees within it) then, es-
sentially, the largest Lorentz C-space is precisely Antonov’s spaceL logL log log logL.
If on the contrary, considering phase oscillation, one can remove (due to extra cance-
lation) the threat represented by the operators associated with these geometric struc-
tures, then Conjecture 1 can be answered affirmatively.

In view of this heuristic, we can now summarize as follows:
In the lacunary situation, based on the existence of CME configurations and on the
oscillatory independence of the lacunary trigonometric system {e2j 2πi·

}j∈N, one will be
able to reduce the adjoint lacunary Carleson operator restricted to this special geometric
configuration of tiles (and applied to a special input function) to the corresponding
positive operator. Thus, as mentioned earlier, one concludes that W is essentially the
largest CL-space.
In the general situation (i.e. that of the full sequence of partial Fourier sums), while
one can easily adapt the extremal tile configuration to the new context, there is no ana-
logue of the oscillatory independence of the lacunary trigonometric system. Thus the
frequency locations of the tiles play now a determinative role in the boundedness prop-
erties of the Carleson operator: if one forms the positive counterpart19 of the adjoint
of C associated with a generic CME—call it C∗+—then one discovers that, essentially,
the largest r.i. quasi-Banach space for which C+ is weak-L1 bounded is given by QA
(notice the analogy with the lacunary case). Conversely, improving on Antonov’s and
Arias-de-Reyna’s results would require precisely showing that there is some cancela-
tion inside the operators associated with a CME. This is the key point where techniques
from additive combinatorics might play an important role.
As a last remark, one may notice the following interesting analogy: in both the case of
the Carleson operator and that of the bilinear Hilbert transform, the current technology
(producing the best results to date) stops at the point where one needs to consider the
sign/oscillation of some terms associated to particular structures:
– in the Carleson operator case, the current methods cannot do better than provide

bounds for the positive adjoint Carleson operator C∗+ restricted to a generic CME;

18 We here skip detailed explanations as this goes beyond the purpose of the current paper; how-
ever, in forthcoming work, we will clarify many of the considerations discussed in the informal
principle.
19 See the informal principle for the way in which this positive operator is defined.
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– in the bilinear Hilbert transform case (see e.g. [27]), the current methods can only
deal with estimating the absolute values of the elementary building blocks in the
Gabor decomposition of the model operator.

This is the point where we believe that further progress (in either of the directions)
requires innovative ideas—very likely connected with the additive combinatorial struc-
ture of the frequencies of the trees in the time-frequency decomposition of the cor-
responding operators. Though not in the same context or of similar nature, the paper
[40] is a confirmation of the usefulness of additive combinatorics techniques in related
time-frequency problems.

2) Passing now to the negative results (i.e. finding “the smallest” r.i. Banach spaceX with
L logL ⊆ X ⊂ L1 on which we have divergence of Fourier series), it is likely that part
of the ideas in the present paper will help to improve the result(s) in [23] and [24].

3) Finally, as briefly mentioned earlier, the geometry of the tile configuration introduced
here is in fact the expression of the behavior of a specific “grand maximal counting func-
tion” near L1. Though we will not detail this subject here, it is worth saying that this
function controls each of the counting functions of order n (n ∈ N), i.e. those functions
that count the number of top maximal trees of mass 2−n above each point x ∈ [0, 1].
One should also add that the BMO behavior of each of these counting functions of order
n played a fundamental role in removing the exceptional sets in the discretization of the
Carleson operator. This last fact generated a first direct proof (i.e. without using inter-
polation, see [32]) of the strong L2 boundedness of the (polynomial) Carleson operator
(for an earlier approach on weak-L2 bounds and strong Lp bounds with 1 < p < 2 see
also [33]).

We plan to detail many of the above considerations regarding pointwise convergence
of the full sequence of partial Fourier sums near L1 in a subsequent paper.

Observation 1.15. In what follows we will build a sequence of steps to construct a sharp
counterexample to the conjecture of Konyagin. We proceed as follows:

• Section 2 presents a very brief overview of the nature of the counterexample.
• Section 3 reviews the discretization of the Carleson operator following Fefferman’s

approach [13]. It turns out to be important that this is an exact discretization of the
Carleson operator, unlike the one provided by Lacey and Thiele [28].
• Section 4 introduces the main definitions required for our further reasonings; it is tech-

nically involved.
• In Section 5 we present the main heuristic for our approach and also test the efficiency

of the definitions and concepts introduced in Section 4 on a toy model of our problem
that already strengthens the best results known to date; it is aimed to prepare the reader
for the very technical sections to follow (especially Sections 7–10);
• Section 6 discusses a key concept introduced in the present paper: the grand maximal

counting function.
• Section 7 presents the generic construction of a Cantor multi-tower embedding (CME).
• Section 8 explains in detail the construction of the input functions corresponding to the

sets {Fj }kj=k/2+1.
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• Section 9 is meant to eliminate “the background noise” arising from the error terms; it
can be skipped at the first reading.
• Section 10 contains the proof of Main Theorem 1.
• Section 11 presents the proof of Main Theorem 2 and can be read independently of all

the other sections; it relies on extrapolation techniques.
• Section 12 was added at the request of the referee and does not contribute “per se”

to either Main Theorems 1 or 2; it can be completely skipped at the first reading. It
explains the sharp contrast between the behavior of the (lacunary) Carleson operator
(using Fefferman’s discretization) and the corresponding behavior of the Lacey–Thiele
discretized Carleson model and the (lacunary) Walsh–Carleson operator respectively.
• Section 13 presents several final remarks.
• Finally in the Appendix we recall several standard facts about rearrangement invariant

Banach spaces.

We encourage the reader to be patient with the sequence of technical definitions that will
soon follow and, at their first glance through the paper, focus more on the main heuristics
and “big picture” information provided in Sections 2, 5 and 6.

2. Construction of the counterexample—an overview

In this section we present the general strategy for proving Corollary 1.7.
We will show that for each k = 22K withK ∈ N large, there exists a function fk ∈ L∞

with the following properties:

• fk is given by an expression of the form

fk =

k∑
j=k/2+1

2log k 22j

χFj , (2.1)

where χFj designates the characteristic function of Fj and each set Fj has some pre-
scribed properties that will be detailed shortly;
• the L log logL norm is under control:

‖fk‖L log logL ≈ 1.

• the weak-L1 norm of C
{2j }j
lac fk is large:

‖C
{2j }j
lac fk‖L1,∞ & log k.

The construction of each Fj requires some technicalities and will be detailed later. As of
now, we limit ourselves to revealing the following properties:

• Fj ⊆ [0, 1] is a measurable set;

• |Fj | ≈ 2− log k 22j
· 2−j · 1

k
;

• Fj has a finite Cantor type structure.
(2.2)
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We end this section by mentioning that the construction of the sets {Fj }j will directly
depend on the choice of the measurable function N in the linearization of the {2j }j -
lacunary Carleson operator (see next section). Consequently, understanding/designing the
structure of the set P of tiles appearing in the decomposition of the {2j }j -lacunary Car-

leson operator C
{2j }j
lac is a precondition for assigning the precise properties to each Fj .

3. Discretization of our operator

Let us first recall the main object of our study20

C
{2j }j
lac f (x) ≈ sup

j∈N

∣∣∣∣∫
T

1
x − y

e2πi2j (x−y)f (y) dy

∣∣∣∣. (3.1)

Applying Fefferman’s discretization [13], we follow the same steps as in [31]:

• We linearize our operator and write

Tf (x) :=

∫
T

1
x − y

e−2πiN(x)yf (y) dy,

where N : T → {2j }j∈N is a measurable function. (Here, for technical reasons, we
erase the term N(x)x in the phase of the exponential, as later in the proof this will
simplify the structure of the adjoint operators T ∗.)
• We use the dilation symmetry of the kernel and express

1
y
=

∑
k≥0

ψk(y) ∀0 < |y| < 1,

where ψk(y) := 2kψ(2ky) (with k ∈ N) and ψ is an odd C∞ function such that

suppψ ⊆ {y ∈ R | 2 < |y| < 8}. (3.2)

• We write21

Tf (x) =
∑
k∈N

∫
T
e−2πiN(x)yψk(x − y)f (y) dy.

• For each k ∈ N, we partition the time-frequency plane into tiles (rectangles of area
one) of the form P = [ω, I ] with ω, I dyadic intervals (with respect to the canonical
dyadic grids on R and [0, 1] respectively) such that |ω| = |I |−1

= 2k . The set of all
such tiles will be denoted by P̄k . Further, we set P̄ =

⋃
k∈N P̄k .

20 Standard reasoning reduces the study ofClac to the corresponding operator having cot(π(x−y))
replaced by 1

x−y .
21 Throughout the paper we use the convention that 0 ∈ N, thus N = {0, 1, 2, . . .}.
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• To each P = [ω, I ] ∈ P̄ we assign the set

E(P ) := {x ∈ I | N(x) ∈ ω},

responsible for the mass (or “weight”) of the tile, |E(P )|/|I |. The mass concept will
later play a key role in partitioning the set P̄.
• For P = [ω, I ] ∈ P̄k with k ∈ N we define the operators

TP f (x) =

{∫
T
e−2πiN(x)yψk(x − y)f (y) dy

}
χE(P )(x), (3.3)

and conclude that

Tf (x) =
∑
P∈P̄

TP f (x). (3.4)

Notice that if we think of N : T → {2j }j as a predefined measurable function then the
above decomposition is independent of the function f .

Observation 3.1. For P = [ωP , IP ] ∈ P̄ let c(IP ) be the center of the interval IP and
define IP ∗ = [c(IP ) − 17

2 |IP |, c(IP )−
3
2 |IP |] ∪ [c(IP )+

3
2 |IP |, c(IP )+

17
2 |IP |]. From

(3.2) and (3.3), we deduce that

supp TP ⊆ IP , (3.5)

while the adjoint operator of TP denoted by T ∗P obeys22

supp T ∗P ⊆ IP ∗ . (3.6)

As a consequence, if P1, P2 ⊂ P are such that IP1 ⊂ IP2 and |IP1 | ≤ 2−10
|IP2 |, then

supp T ∗P1
∩ supp T ∗P2

= ∅. (3.7)

By standard reasoning we will be able to arrange that the following holds: if P1, P2 ∈ P̄
and |IP1 | 6= |IP2 | then |IP1 | ≤ 2−10

|IP2 | or |IP2 | ≤ 2−10
|IP1 |. Thus (3.7) is automatically

guaranteed if IP1 ( IP2 .

We will make repeated use of this observation in our construction process.

Notation. Throughout the paper, if I is a (dyadic) interval of center c(I ), and d > 0
a positive constant, then dI designates the interval having the same center c(I ) and
length |dI | := d|I |. Also, if P = [ω, I ] and a > 0 then we define the tile-dilation
aP := [aω, I ].

22 This is a direct consequence of (3.5) and of the fact that ψk is compactly supported.
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4. Main definitions and preparations

In this section we will introduce several of the basic concepts which will be used later in
the proof. The first three definitions were introduced in [13], while Definitions 4.5 and
4.6 were first developed in [32].

Definition 4.1 (weighting the tiles). We define the mass of P = [ω, I ] ∈ P̄ as

A(P ) := sup
P ′=[ω′,I ′]∈P̄

I⊆I ′

|E(P ′)|

|I ′|

1
(1+ dist(10ω, 10ω′)/|ω|)N0

(4.1)

where N0 is a fixed large natural number and if A,B ⊆ R then we write dist(A,B) =
infa∈A, b∈B |a − b|.

We also refer to the restricted mass or r-mass of P = [ω, I ] ∈ P̄ as

A0(P ) := |E(P )|/|IP |.

Definition 4.2 (ordering the tiles). Let Pj = [ωj , Ij ] ∈ P̄ with j ∈ {1, 2}. We say that
P1 ≤ P2 if I1 ⊆ I2 and ω1 ⊇ ω2. We write P1 < P2 if P1 ≤ P2 and |I1| < |I2|.

Notice that ≤ defines a partial order relation on the set P̄.

Observation 4.3. We will define various families of tiles with prescribed analytic and ge-
ometric properties (relating to the mass of a tile and to the order relation ≤, respectively).
In order to do so, we will introduce several refinements of the set P̄, always keeping in
mind that the analytic and geometric properties that we will describe are strongly influ-
enced by the key fact

Image(N) ⊆ {2j }j∈N. (4.2)
Let us first define

P(0) := {P ∈ P̄ | 0 ∈ 100ωP }, P̄0 := {P ∈ P̄\P(0) | A0(P ) = 0}, P := P̄\(P(0)∪P̄0).

For n ∈ N, we further set

Pn := {P ∈ P | A(P ) ∈ (2−n−1, 2−n]}. (4.3)

From now on, we will say that a tile P has weight n if P ∈ Pn.
Later on, in our construction of a CME, will be useful to impose the following re-

striction on the measurable function N :

Image(N) ⊆ {2222k
+100m

}
m∈{0,...,log k 22k−1}

, (4.4)

where we recall that k ∈ N is a fixed large parameter.
Also we will ask that each tile P ∈ P obeys

A(P ) ≥ 2−22k
. (4.5)

Consequently, we deduce that
P =

⋃
n≤22k

Pn. (4.6)

In particular we will only work under the assumption that P is finite.
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Definition 4.4 (tree). We say that a set P ⊂ P of tiles is a tree with top P0 ∈ P if:

(1) P ≤ P0 for all P ∈ P;
(2) if P1, P2 ∈ P and P1 ≤ P ≤ P2 then P ∈ P.

Definition 4.5 (sparse tree). We say that a tree P ⊂ P is sparse if for any P ∈ P we
have ∑

P ′∈P
IP ′⊆IP

|IP ′ | ≤ C|IP |, (4.7)

where C > 0 is an absolute constant.

Definition 4.6 (forest; L∞ control over union of trees). Fix n ∈ N. We say that P ⊆ Pn
is an L∞-forest (of nth generation) if:

(i) P is a collection of separated trees, i.e. P =
⋃
j∈N Pj with each Pj a tree with top

Pj = [ωj , Ij ] and such that

∀j ′ 6= j, P ∈ Pj 2P � 10Pj ′; (4.8)

(ii) the counting function
NP (x) :=

∑
j

χIj (x) (4.9)

obeys the estimate ‖NP‖L∞ . 2n.

Further, if P ⊆ Pn only consists of sparse separated trees then we refer to P as a sparse
L∞-forest.

Observation 4.7. In this paper we focus on the decomposition of our set P of tiles into
L∞-forests with some prescribed properties (see below). For this reason, unlike for the
preceding tile decompositions in [32] and [30] (where we have introduced the concept of
a BMO-forest), we will refer to an L∞-forest simply as a forest.

Definition 4.8 (generalized forest, GF). Let r, n ∈ N with r ≤ n. We say that P ⊆ P is
a generalized forest of generation (r, n) if we can decompose

P =
n⋃
j=r

P[j ] (4.10)

so that:

• each P[j ] is an (L∞-)forest of j th generation;
• if P[j ] =

⋃
l Pl[j ] is the decomposition of P[j ] into maximal separated trees, then

for any pair (j, j ′) with r ≤ j < j ′ ≤ n, any l and any P ∈ Pl[j ] there exist l′ and
P ′ ∈ Pl′ [j ′] such that P ≤ P ′.

Definition 4.9 (saturated generalized forest, SGF). Let r, n ∈ N with r ≤ n. We say that
P ⊆ P is a saturated generalized forest of generation (r, n) if:

• P is a GF of generation (r, n);
• if there is a P ∈ Pj such that P > P ′ for some P ′ ∈ P[j ], then P ∈ P[j ];
• if there is a P ∈ Pj such that P < P ′ for some P ′ ∈ P[j ], then P ∈ P[j ].
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Observation 4.10. All the previous definitions make perfect sense in a general context,
with no particular restriction on the linearization function N . The structures introduced
in the next two definitions, though, are not present (in a non-trivial form) for an arbitrary
choice ofN . However, in the context of this paper, we will have the liberty of choosingN ,
and thus guarantee their existence. The precise form of the definitions below is chosen in
order to simplify as much as possible the general tile-configuration of the counterexample.
For other, more general purposes, the requirements in these definitions can be significantly
relaxed.

Definition 4.11 (uniform saturated generalized forest, USGF). Let r, n ∈ N with r ≤ n.
We say that P ⊆ P is a uniform saturated generalized forest of generation (r, n) if:

• P is a SGF of generation (r, n);
• for each j ∈ {r, . . . , n} there exists Cj ∈ (0, 1] such that

|I
P
j
l

| = Cj ∀l,

where, with the notation above, P jl stands for the top of Pl[j ].

Definition 4.12 (uniform saturated generalized top-forest, USGTF). We say that P ⊆ P
is a uniform saturated generalized top-forest of generation (r, n) if P is a USGF of gen-
eration (r, n) and each tree Pl[j ] in the definition above consists of just a single tile, its
top.

In this paper we will only work with a special type of USGTF’s. We will describe their
properties in what follows, but first we need some more notation.

If J ⊆ [0, 1] is a dyadic interval and m ∈ N, then we define

Im(J ) := {I ⊆ J | I dyadic, |I | = |J |2−m}. (4.11)

From now on, we will always apply the following convention: if {Is}s is a collection of
disjoint dyadic space intervals, then the indexing s reflects the relative position of these
intervals in [0, 1] from left to right, i.e., if s1 < s2 then c(Is1) < c(Is2).

Observation 4.13. In what follows we will use an alternative description of a tile P =
[ω, I ], namely P := I × α, where ω = [l(ω), r(ω)) and α := l(ω). This is justified
since knowing I and l(ω) completely determines P (recall that the area of the rectangle

determined by P is always assumed to be one). Notice that due to the definition of C
{2j }j
lac

we can always assume that l(ω) ∈ {2j }j∈N.

Observation 4.14. From now on, whenever we refer to a family F ⊂ P as a USGTF (of
generation (r, n)) we will specify three sets of parameters, which, following the algorithm
described below, will completely determine F :
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The three sets of parameters:

• the collection of disjoint dyadic same-length space
intervals

ITop(F) := {Ij }j .
• the collection of distinct frequencies (arranged in

increasing order)

α(F) := {αu}2
n−1

u=1 .

• the collection of disjoint dyadic (same-length)
space intervals

IBtm(F) :=
⋃
j

In−r(Ij ).

(4.12)

The algorithm (which completely determines F). We define F to be the USGTF (of gen-
eration (r, n)) obeying:

• The collection of tiles of weight n in F , denoted by F[n], is given by

F[n] := {I × α | I ∈ ITop(F)& α ∈ α(F)}.

Also each P ∈ F[n] has
A(P ) = A0(P ) = 2−n. (4.13)

• The collection of tiles of weight r in F , denoted by F[r], is given by

F[r] :=
⋃
j

2n−r⋃
l=1

{
Il × α | Il ∈ In−r(Ij )& α ∈ {α(l−1)2r−1+1, . . . , αl 2r−1}

}
.

As before, we require that P ∈ F[r] implies

A(P ) = A0(P ) = 2−r . (4.14)

Thus, if P ∈ F[n], we impose the condition that

there exists a unique P ′ ∈ F[r] such that P ′ < P, (4.15)

and on top of that we require
E(P ) = E(P ′). (4.16)

Thanks to the above requirements, with a particular emphasis on (4.15) and (4.16), all the
tiles in the intermediate families {F[l]}r<l<n are now completely determined.

Thus, F is indeed completely determined by the three sets of parameters in (4.12)
once we agree that we always run the above algorithm.

Notation. Let A = {Aj }j ,B = {Bk}k be two collections of disjoint dyadic intervals. We
write A ≺ B if each Aj contained in some Bk. Also we define

Ã :=
⋃
j

Aj .



Pointwise convergence of Fourier series (I). On a conjecture of Konyagin 1675

If Alt
j designates the left child of the interval Aj then we set

Alt
:= {Alt

j }j .

The same convention applies to Art, the collection of right children of the intervals in A.
Recalling the definition of Im(J ) in (4.11), for A as before we set

Im(A) =
⋃
j

Im(Aj ).

Also, for J a dyadic interval, if Im(J ) = {Il}l then I lt
m(J ) := {I

lt
l }l and Irt

m(J ) := {I
rt
l }l .

Further, I lt
m(A) =

⋃
j I lt

m(Aj ), and similarly for Irt
m(A).

If A = IBtm(F) for F a USGTF, then we set ĨBtm(F) = Ã, IrtBtm(F) = Art and
IltBtm(F) = Alt. With the obvious changes, the same applies to A = ITop(F).

Definition 4.15 (tower). We say that P ⊆ P is a tower of generation (r, n) if there exists
m ∈ N, m ≥ 1, such that P =

⋃m
l=1 Pl and

• each Pl is a USGTF of generation (r, n);
• ITop(Pl+1) ≺ IBtm(Pl) for any l ∈ {1, . . . , m− 1}.

The two items above imply that for all l 6= l′ and all P ∈ Pl and P ′ ∈ Pl′ one has

P � P ′ and P ′ � P. (4.17)

In particular23

l 6= l′ ⇒ α(Pl) ∩ α(Pl′) = ∅. (4.18)

The number of USGTF’s is called the height of the tower P , while ĨTop(P1) stands for
its basis; we write

Height(P) = m and Basis(P) = ĨTop(P1).

Definition 4.16 (multi-tower). We say that M ⊆ P is a multi-tower of generation (r, n)
if one can decompose it as M =

⋃
lMl in such a way that

• each Ml is a tower of generation (r, n);
• Basis(Ml) ∩ Basis(Ml′) = ∅ for any l 6= l′.

Definition 4.17 (multi-tower embedding). If F1,F2 are two (multi-)towers, with F j of
generation (rj , nj ), we say that F1 embeds into F2, and write F1 @ F2, if

n1 ≤ r2, ∀P ∈ F1
[n1] ∃P

′
∈ F2
[r2] P ≤ P ′.

In particular, if F1 and F2 are USGTF’s, we must have

ITop(F1) ≺ IBtm(F2) and α(F1) ⊂ α(F2).

This finishes the preparations for presenting the main components of our proof.

23 If (4.18) were not true then a ∈ α(Pl) ∩ α(Pl′) would imply that there exist P ∈ Pl and
P ′ ∈ Pl′ with α(P ) = α(P ′) = a; this together with the second item in Definition 4.15 would
imply P ≤ P ′ or P ′ ≤ P , contradicting (4.17).
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5. Heuristics and a warm-up example

In order to smooth out the transition between two technical sections of our paper and to
help clarify the “big picture” in our reasonings, we start with

Main Heuristic. Our aim is to design some special function N that will give rise to a
family of embedded multi-towers, i.e., a multi-tower chain with respect to the embedding
relation “@”. This chain will loosely have the form

F =
⋃

k/2<j≤k

Fj , (5.1)

such that

• each Fj is a multi-tower of generation (2j−1, 2j );
• Fj @ Fj+1.

At the informal level, a (lacunary) CME will be a chain that maximizes the L1,∞ norm of
a grand maximal counting function, a notion that will be our main focus in the section
to follow.
As a consequence of this requirement, for F a CME and a generic tile P ∈ F , the set
E(P ) has a Cantor-type distribution inside IP .

Next, we would like to motivate the necessity of considering the CME concept and why
we were required to develop the notions of multi-tower and chain of multi-towers. For
this, we will first discuss a simpler toy model, naturally developing from our introductory
discussion in Section 1.

As mentioned in the Introduction, from [21] (see also [2]) we know that if φ :
R+ → R+ is increasing with φ(0) = 0 and φ(u) = o(u log log u) as u → ∞ then
φ(L) = 3φ̄ is not a CL-space. This result can now be easily deduced from the following
stronger claim:

Proposition 5.1. There exists an absolute constant C > 0 and a sequence {Fk}k∈N of
measurable sets with the following properties:

• Fk ⊆ T with |Fk| → 0 as k→∞;
• for any k ∈ N,

‖C
{2j }j
lac χFk‖1,∞ ≥ C|Fk| log log

4
|Fk|

. (5.2)

The idea of the proof relies on the newly introduced concept of tower: we let Fk be a
tower of height 1 that is a single USGTF! More precisely, using the language introduced
in Observation 4.14, we define the collection Fk of tiles to be the USGTF of generation
(0, 2k) given by the following characteristics:

• the collection of disjoint dyadic same-length space intervals

ITop(Fk) := {[0, 1]};
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• the collection of distinct frequencies24

α(Fk) := {2222k
+100m

}
m∈{1,...,22k }

;

• the collection of disjoint dyadic (same-length) space intervals

IBtm(Fk) :=
⋃
j

I2k ([0, 1]).

Next, one can construct a set Fk with the following properties:
• the size given by

|Fk| ≈ 2−22k

,

• the structure such that25∫
Re(χFkT

∗

P (1))(·) ≈
∫
|χFkT

∗

P (1)(·)| for all P ∈ Fk .

Then, recalling that Fk[n] stands for the tiles in Fk of weight n, we conclude that

‖C
{2j }j
lac χFk‖1,∞ &

2k∑
n=1

∑
P∈Fk[n]

2−n
|IP ∩ Fk|

|IP |
|IP | ≥ 2k|Fk|, (5.3)

thus proving our proposition.

Observation 5.2. We stress here that for the proof of the above proposition there was no
need to consider a chain of towers since we were not aiming at the extra log log log log
term in (5.2); equivalently, our reasoning involved a single characteristic function of a
set instead of an input function fk expressed as in (2.1), as a linear combination of ≈ k
characteristic functions of sets. It is thus natural that once we turn to proving our Main
Theorem 1, we need to consider the more involved concept of multi-tower and finally that
of CME.

6. The grand maximal counting function

As announced, in this section we will elaborate on and motivate the introduction of the
new concept of grand maximal counting function, which is defined as

N := sup
j

Nj , (6.1)

where, recalling (4.3), we set

Nj :=
1

2j−1

2j∑
n=2j−1+1

1
2n−1

∑
P∈Pmax

n

χIP , (6.2)

with Pmax
n designating the maximal tiles26 P in Pn such that A(P ) > 2−n−1.

24 One can notice that here we made a minor modification of the USGTF model described in Ob-
servation 4.14 by requiring that the stack of tiles having mass 2k have height 22k instead of 22k−1.
25 The mechanism of realizing the size and structure conditions of Fk is described in full general-

ity (i.e. in the multi-tower case) in Section 8.1, and thus it will not be detailed here.
26 Relative to “≤”.
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Observation 6.1. The motivation for defining the counting functions Nj and N origi-
nates in [32] where the author used a complex greedy algorithm (involving more basic
counting functions) in order to remove the exceptional sets arising in the time-frequency
discretization and to provide direct strong (2, 2) bounds for the (standard) Carleson opera-
tor. Notice that Nj roughly controls the average spacial density location27 of the maximal
trees of mass parameter n ≈ 2j , while N picks the worst (largest) such density loca-
tion among all the possible dyadic mass scales. The normalization factor 1/2j−1 in (6.2)
preserves a uniform control of the BMO norm of Nj , that is, ‖Nj‖BMO(T) ≤ 10 for any
j ∈ N.

We move now to a further elaboration of the Main Heuristic whose key message is: “a
CME is a chain that maximizes the L1,∞ norm of the grand maximal counting function”.

Observation 6.2. Define the k-truncated grand maximal counting function as

N [k] := sup
1≤j≤k

Nj , (6.3)

and notice that under the assumptions (4.4)–(4.6) we trivially have

N [2k] = N . (6.4)

Next, as a consequence of [32], for each j ∈ N with j ≤ 2k we have

‖Nj‖BMO . 1. (6.5)

This, together with the standard John–Nirenberg inequality, gives, as we will see momen-
tarily,

‖N [2k]‖1,∞ ≤ ‖N [2k]‖1 . log k. (6.6)

The crux of our main results is that one can construct special configurations inside P,
corresponding to chains as in (5.1), such that the inequality (6.6) can be reversed. In these
instances, one can thus show that

‖N [2k]‖1,∞ ≈ log k. (6.7)

We now start a more detailed analysis of the properties of the grand maximal counting
function N by first presenting a short proof of (6.6).

For this we start by defining

N n :=
1

2n−1

∑
P∈Pmax

n

χIP ,

and notice that

Nj =
1

2j−1

2j∑
n=2j−1+1

N n. (6.8)

27 That is, the number of maximal trees sitting above a point x as x runs through the interval [0, 1].
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Following the reasoning in [32], we find that for every n ∈ N the function N n belongs to
BMO(T) with

‖N n‖BMO(T) ≤ 10.

Now, since Nj is an arithmetic mean of functions of the type N n, we further deduce that

‖Nj‖BMO(T) ≤ 10, (6.9)

and hence applying the John–Nirenberg inequality we find that there exists a universal
constant c > 0 such that for any γ > 0 and j ∈ N,

|{x ∈ T | Nj (x) > γ }| ≤ e−cγ . (6.10)

Next, for any C > 0, we have

‖N [k]‖1 ≤ C log k +
k∑

j=1

‖Nj |Nj>C log k‖1. (6.11)

Choosing now in (6.10) γ = C log k with C = 1/c and inserting it in (6.11) we deduce
that

‖N [k]‖1 ≤ (C + 1) log k, (6.12)

thus proving (6.6).
We pass now to the proof of (6.7). (For the moment, the reader is invited to think of F

in the more vague terms described in the Main Heuristic corresponding to (5.1); later on,
if desired, one can consult the precise version given in Definition 7.2.)

Recall that we want to show that if for a given large k ∈ N the family P contains a
family F = F(k) of tiles as in (5.1) which is also a CME, then there exists C̄ > 0 such
that

‖N [k]‖1,∞ ≥ C̄ log k. (6.13)

First we present the heuristic for why one would believe such a statement. This is based
on the following list of loosely stated observations:

• for γ � C log k the level sets {{Nj > γ }}kj=1 do not significantly
contribute to the norm ‖N [k]‖1,∞;
• similarly, for γ � C log k the level sets {{Nj < γ }}kj=1 cannot

provide an estimate of type (6.13);

(6.14)

• there exists a set P of tiles such that for suitable absolute positive constants C1, C2,

|{Nj > C1 log k}| ≥ C2/k ∀k/2 < j ≤ k. (6.15)
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The first two items are just simple consequences of (6.10) and (6.11). The third item will
be a direct byproduct of the construction of the CME F =

⋃k
j=k/2+1 Fj presented in the

next section.
Now, if on top of property (6.15) one could arrange that the functions {Nj }kj=k/2+1 be-

haved morally as if they were independent random variables, then we would immediately
conclude that

|{N [k] > C1 log k}| &
k∑

j=k/2+1

|{Nj > C1 log k}|
(6.15)
≥ C2/2, (6.16)

thus proving (6.13).
The main point of the construction in Section 6 is that the CME as given by Definition

7.2 provides exactly the mutual independence behavior of {Nj }kj=k/2+1 mentioned above.
Properties (6.15) and (6.16) will be a byproduct of the construction of F presented

in the next section (see Definition 7.2). Indeed, writing, with the usual notation, F =⋃k
j=k/2+1 Fj , one will be able to decompose each multi-tower Fj into a controlled num-

ber of towers, namely Fj =
⋃log k
l=1 F l

j , and then deduce the key properties28

|Basis(F log k
j )| ≥ c̄/k ∀j ∈ {k/2+ 1, . . . , k} (6.17)

and

Basis(F log k
j1

) ∩ Basis(F log k
j2

) = ∅ ∀j1 6= j2 ∈ {k/2+ 1, . . . , k}, (6.18)

where c̄ > 0 is an absolute constant.
Relations (6.17) and (6.18) will then imply29

• for all j ∈ {k/2+ 1, . . . , k} and m ∈ {2j−1
+ log log k, . . . , 2j },

|{Nm ≥ log k}| ≥ c̄/k, (6.19)

• for all m1 ∈ {2j1−1
+ log log k, . . . , 2j1}, m2 ∈ {2j2−1

+ log log k, . . . , 2j2} and j1 6=

j2 ∈ {k/2+ 1, . . . , k} one has

{Nm1 ≥ log k} ∩ {Nm2 ≥ log k} = ∅. (6.20)

This ends our discussion on the motivation and main properties of the grand maximal
counting function.

28 In what follows we refer to Basis(F log k
j

) as
⋃

F log k,r
j

ĨTop(F log k,r
j

) where F log k,r
j

ranges

through the decomposition of F log k
j

into maximal USGTF’s. For more details, consult Section 7.
29 The appearance of the log log k term is a technical artifact resulting from the construction of a

CME in Section 7. For a further illuminating discussion on this topic see item 2) in Section 13.
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7. The structure of the set E := {E(P )}P∈P. Definition of CME

In this section we will make a certain choice for N . This will not be done directly but
through the structure that we impose on the set P of tiles. More precisely, as described
above, we will run an algorithm for constructing a chain of multi-towers with some pre-
scribed properties, this way giving rise to the concept of CME.

We start with several general observations/heuristics:

• Our construction of the tile configurations will focus on the set30

F ≈
2k⋃

j=2k/2
Pj .

Later we will show that, as a consequence of our choice of the tile structure, the con-
tribution of the tiles in P \ F to the L1,∞ “norm” of our operator T is small in an
appropriate sense.
• Depending on the mass parameter, we will partition the set F into k/2 (dyadic) levels

(preparing thus the future generations):

F =
k⋃

l=k/2+1

Fl with Fl ≈
2l⋃

j=2l−1+1

Pj .

• Our main task will be to design our set of tiles in such a way that each Fl is a multi-
tower of generation (roughly) (2l−1

+ 1, 2l) and of height log k. This construction will
be realized through an inductive process that will move downwards from l = k to
l = k/2+ 1.

We now present an outline of this process:

• At the first stage, we will design

Fk =
log k⋃
l=1

F l
k

so that Fk is a tower of generation (roughly) (2k−1
+1, 2k) and of height log k. For this

we require that

30 In reality the set F will have a more complicated structure; for example, F will also contain
tiles from the families {Pj }j<2k/2 . Indeed, during the construction we will express F =

⋃k
j=k/2 Fj

with each tower Fj further decomposed as Fj =
⋃log k
l=1 F l

j
. While each of the families {F l

j
}
log k−2
l=1

will only have tiles in
⋃
j≥2k/2 Pj , the remaining families F log k−1

j
and F log k

j
will also contain tiles

from
⋃
j<2k/2 Pj . However, as described in Section 9, the tile set

⋃
j<2k/2 Pj will play a secondary

role in the behavior of ‖Tfk‖1,∞.
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– each F l
k is a USGTF of generation31

≈ (2k−1
+ 1, 2k);

– the set of frequencies α(F l
k) sits entirely below and is largely separated from that

corresponding to α(F l+1
k );

– ITop(F l+1
k ) ≺ IBtm(F l

k).

• In general, having constructed the (multi-)tower Fj+1 of generation (2j +1, 2j+1) and
height log k we will divide it into maximal USGTF’s {Fj+1,r}r and within each Fj+1,r
we will embed a specially designed multi-tower Fj [Fj+1,r ] of generation (2j−1

+1, 2j )
and height log k.
• We will repeat this algorithm until we exhaust the family F by reaching the level j =
k/2+ 1.

Now, let us make the above description precise.

First stage: Constructing the tower Fk . As mentioned before, we will split our fam-
ily Fk into log k sets,

Fk =
log k⋃
l=1

F l
k,

with each F l
k being a USGTF of generation (2k−1

+ log log k, 2k) (except for F log k−1
k

and F log k
k , which are USGTF’s of generation (1, 2k)). Based on the description made in

the previous section it will be enough to specify three parameters: the top, the bottom and
the frequency set of each F l

k . We will proceed by induction.

Step 1: Defining F1
k . The key parameters of F1

k are:

• the top

ITop(F1
k ) := {[0, 1]},

• the frequency set

α(F1
k ) := {2

222k
+100m

}
m∈{0,22k−1−1},

• the bottom

IBtm(F1
k ) := I2k−1−log log k([0, 1]).

31 In the actual construction process, for technical reasons, we will require that F l
k

be a USGTF of
generation (2k−1

+ log log k, 2k). The same observation applies to the other multi-towers at level j ,
i.e. the actual generation will be (2j−1

+log log k, 2j ). The appearance of log log k relies on the fol-
lowing loose statement: within the structure formed by the tiles at the bottom scale of each USGTF
of generation (2j−1

+ log log k, 2j ) we can embed towers of generation (2j−2
+ log log k, 2j−1)

and height precisely log k, this being the height threshold that plays an important role in our proof.
Another way of saying this is that the bottom structure—mass and number of tiles at the bottom—
of a USGTF determines the height of a tower of a given (smaller) generation that can be embedded
within it.
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Step 2: Defining F2
k . The parameters of F2

k are

ITop(F2
k ) := Irt

2k−1−log log k([0, 1]),

α(F2
k ) := {2

222k
+100m

}
m∈{22k−1,22k−1},

IBtm(F2
k ) := I2k−1−log log k[Irt

2k−1−log log k([0, 1])].

Step l: Defining F l
k from F l−1

k (2 ≤ l ≤ log k − 2). Assume that F l−1
k has

ITop(F l−1
k ) := I,

α(F l−1
k ) := {2222k

+100m
}
m∈{(l−2)22k−1,(l−1)22k−1−1},

IBtm(F l−1
k ) := I2k−1−log log k[I].

Then F l
k is given by

ITop(F l
k) := Irt

2k−1−log log k[I],

α(F l
k) := {2

222k
+100m

}
m∈{(l−1)22k−1,l 22k−1−1},

IBtm(F l
k) := I2k−1−log log k[Irt

2k−1−log log k[I]].

Steps log k − 1 and log k: Defining F log k−1
k and F log k

k . For the last two USGTF’s we
make some minor changes. We will require that both F log k−1

k and F log k−1
k be of genera-

tion (1, 2k), and assuming that we are given F log k−2
k we define F log k−1

k by setting

ITop(F log k−1
k ) := Irt

0 [IBtm(F log k−2
k )],

α(F log k−1
k ) := {2222k

+100m
}
m∈{(log k−2)22k−1,(log k−1)22k−1−1},

IBtm(F log k−1
k ) := I2k−1[ITop(F log k−1

k )].

Finally, the set F log k
k is given by

ITop(F log k
k ) := ITop(F log k−1

k ),

α(F log k
k ) := {2222k

+100m
}
m∈{(log k−1)22k−1,log k 22k−1−1},

IBtm(F log k
k ) := IBtm(F log k−1

k ).

This ends the process of defining the set Fk .

Second stage: Constructing the family Fk−1. We start with the following observation:
the family Fk−1 has log k disjoint components according to the information carried by
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the graph of N within each of the previously constructed families {F l
k}l∈{1,...,log k}. Thus

we actually have

Fk−1 =

log k⋃
l=1

Fk−1[F l
k].

For the particular case l = log k−1 and l = log k we have already determined Fk−1[F l
k],

since the sets F l
k are themselves completely determined (up to tiles of mass one) by

the requirement that they be USGTF’s of generation (1, 2k). (This is in contrast with
the case l < log k − 1 where we only require that F l

k be a USGTF of generation
(2k−1

+ log log k, 2k).)
Thus it only remains to discuss the construction of the families {Fk−1[F l

k]}
log k−2
l=1 .

In our algorithm we will demand that each Fk−1[F l
k] be a multi-tower of generation

(2k−2
+ log log k, 2k−1) and height log k embedded into F l

k .
In what follows, we will only detail the construction of Fk−1[F1

k ] since the remaining
multi-towers are constructed in the same way by adapting the reasonings for F1

k to the
case of F l

k .
Recall now the properties of F1

k :

ITop(F1
k ) := {[0, 1]},

α(F1
k ) := {2

222k
+100m

}
m∈{0,22k−1−1},

IBtm(F1
k ) := I2k−1−log log k([0, 1]).

Write now
IBtm(F1

k ) = IltBtm(F1
k ) ∪ IrtBtm(F1

k ),

and further express

IltBtm(F1
k ) = {Js}

22k−1
−log log k

s=1 .

(Recall here the index convention: s1 < s2 implies c(Js1) < c(Js2).)
Fix such an interval Js and consider the set

Ilog log k(Js) = {I
s
r }

log k
r=1 .

We then define the family Fk−1[F1
k ][Js] consisting of log k towers,

Fk−1[F1
k ][Js] =

log k⋃
r=1

Fk−1[F1
k ][I

s
r ].

Each tower can be decomposed as

Fk−1[F1
k ][I

s
r ] =

log k⋃
l1=1

F l1
k−1[F

1
k ][I

s
r ],

with each F l1
k−1[F

1
k ][I

s
r ] a USGTF.

To see this, we first describe the maximal USGTF within each of the towers (l1 = 1):
F1
k−1[F

1
k ][I

s
r ] is a USGTF of generation (2k−2

+ log log k, 2k−1) with
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ITop(F1
k−1[F

1
k ][I

s
r ]) := {I

s
r },

α(F1
k−1[F

1
k ][I

s
r ])

:= {2222k
+100m

}
m∈{(s−1)(log k 22k−1−1)+(r−1)(22k−1−1),(s−1)(log k 22k−1−1)+r22k−1−1−1},

IBtm(F1
k−1[F

1
k ][I

s
r ]) := I2k−2−log log k(I

s
r ).

Now, once we have established the base of each tower, the rest of the procedure should
follow the lines of the tower construction described at Stage 1. For clarity we will specify
the following:

Assume we have constructed F l1−1
k−1 [F

1
k ][I

s
r ]. Then for l1 ≤ log k − 2, F l1

k−1[F
1
k ][I

s
r ]

is a USGTF of generation (2k−2
+ log log k, 2k−1) with

ITop(F l1
k−1[F

1
k ][I

s
r ]) := IrtBtm(F l1−1

k−1 [F
1
k ][I

s
r ]),

α(F l1
k−1[F

1
k ][I

s
r ]) := {2

222k
+100m

}m∈Ak,r,s,l1
,

IBtm(F l1
k−1[F

1
k ][I

s
r ]) := I2k−2−log log k(ITop(F l1

k−1[F
1
k ][I

s
r ]))

where

Ak,r,s,l1 :=

(s−1)(log k 22k−1
−1)+(r+l1−1)22k−1

−1
−1⋃

m=(s−1)(log k 22k−1−1)+(r−1+l1−1)(22k−1−1)

{m} if r + l1 − 1 ≤ log k, (7.1)

Ak,r,s,l1 :=

(s−1)(log k 22k−1
−1)+(r+l1−1−log k)22k−1

−1
−1⋃

m=(s−1)(log k 22k−1−1)+(r−1+l1−1−log k)(22k−1−1)

{m} otherwise. (7.2)

The construction of F l1
k−1[F

1
k ][I

s
r ]with l1 ∈ {log k−1, log k} follows a similar pattern

with the following changes (see also the corresponding changes at the First Stage):
F log k−1
k−1 [F1

k ][I
s
r ] is a USGTF of generation (1, 2k−1) with

ITop(F log k−1
k−1 [F1

k ][I
s
r ]) := IrtBtm(F log k−2

k−1 [F1
k ][I

s
r ]),

α(F log k−1
k−1 [F1

k ][I
s
r ]) := {2

222k
+100m

}m∈Ak,r,s,log k−1 ,

IBtm(F log k−1
k−1 [F1

k ][I
s
r ]) := I2k−1−1(ITop(F log k−1

k−1 [F1
k ][I

s
r ])),

where we preserve the definitions (7.1) and (7.2).
F log k
k−1 [F

1
k ][I

s
r ] is a USGTF of generation (1, 2k−1) with

ITop(F log k
k−1 [F

1
k ][I

s
r ]) := ITop(F log k−1

k−1 [F1
k ][I

s
r ]),

α(F log k
k−1 [F

1
k ][I

s
r ]) := {2

222k
+100m

}m∈Ak,r,s,log k ,

IBtm(F log k
k−1 [F

1
k ][I

s
r ]) := IBtm(F log k−1

k−1 [F1
k ][I

s
r ]).
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Observation 7.1. Notice the following key property of our construction:

α(F l1
k−1[F

1
k ][I

s
r ]) ∩ α(F

l1
k−1[F

1
k ][I

s
r ′ ]) = ∅ ∀r 6= r ′ and ∀l1.

Moreover, for each r, s, the sets {α(F l1
k−1[F

1
k ][I

s
r ])}

log k
l1=1 form a partition of the frequency

set {2222k
+100m

}
m∈{(s−1)(log k 22k−1−1),s log k 22k−1−1−1}.

This ends the process of defining Fk and Fk−1. We now repeat this algorithm and further
construct by induction Fk−2, . . . ,Fk/2+1.

Third stage: Constructing a generic tower Fj , k/2 + 1 ≤ j ≤ k − 2. Assume we
have constructed the multi-tower Fj+1 of height log k. We first write as before its layer
decomposition

Fj+1 =

log k⋃
l=1

F l
j+1.

For the sake of clarity, we mention here the process of obtaining {F l
j+1}l . Thus, F1

j+1
consists of the union of maximal USGTF’s of generation (2j + log log k, 2j+1),

F1
j+1 =

⋃
m

F1,m
j+1,

such that

– ĨTop(F1,m
j+1) is maximal with respect to inclusion among all the sets ĨTop(A) with A a

maximal USGTF inside Fj+1;
– the sets {ĨTop(F1,m

j+1)}m are pairwise disjoint.

Erase now F1
j+1 from Fj+1 and repeat the above algorithm to obtain F2

j+1. Continue this
process inductively. (Notice that once we reach l = log k − 1, the generation of maximal
USGTF’s in the decomposition of F l

j+1 changes to (1, 2j+1).) From our construction this
process will end in precisely log k steps.

With this done, fix a family F l
j+1 (here we assume l ≤ log k − 2, otherwise trivial

considerations), and, with the previous notation, write

F l
j+1 =

⋃
m

F l,m
j+1.

Now taking IltBtm(F l,m
j+1) = {Js}s , and then

Ilog log k(Js) = {I
s
r }

log k
r=1 ,

we can initiate the same algorithm as in the case of the construction of Fk−1 above.
Adapting the description made at the second stage we have: given Js , we design precisely
log k towers, each tower being

– of generation (2j−1
+ log log k, 2j ) and height log k;

– embedded in F l,m
j+1;

– with basis equal to the corresponding I sr in the partition of Js .
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To make things clear, for each Js , we will construct the family Fj [F l,m
j+1][Js] consisting

of log k towers,

Fj [F l,m
j+1][Js] =

log k⋃
r=1

Fj [F l,m
j+1][I

s
r ].

Again as in the case of Fk−1, we have

Fj [F l,m
j+1][I

s
r ] =

log k⋃
l1=1

F l1
j [F

l,m
j+1][I

s
r ],

with F l1
j [F

l,m
j+1][I

s
r ] a USGTF of generation (2j−1

+ log log k, 2j ) (excepting the cases
l1 = log k − 1 and l1 = log k).

For expository reasons we will no longer give further details of this construction,
since one follows the same steps (with obvious changes) as in the second stage of our
construction.

In this way, by repeating the above algorithms, our construction process ends by spec-
ifying the multi-towers

{Fj }j∈{k/2+1,...,k}.

Lastly, just to specify the set of tiles P ∈ Pn with n ≤ 2k/2 (though this information is
not in any way essential for our later reasonings), we slightly modify the structure of the
last constructed family Fk/2+1 by requiring that all the maximal USGTF’s that sit inside
are of generation (1, 2k/2+1).

Definition 7.2. We say that F ⊂ P is a (lacunary) Cantor Multi-tower Embedding
(CME) if

F =
k⋃

l=k/2+1

Fj , (7.3)

with Fj constructed as above.

Notice that as a byproduct of the above construction process we find that Theorem 1.14
holds.

Observation 7.3. One could relax many of the requirements in Definition 7.2 above.
For example, the lacunary structure of the frequencies of each Fj as well as the dyadic
splitting of the mass parameter (when forming the generations) are just an expression of
the particular operator considered in this paper, i.e. the lacunary Carleson operator. Also,
the precise number of multi-towers (in this case k/2) is irrelevant in general and should
be adapted to the nature of the problem under discussion. Thus, the CME structure can
easily be adapted to the study of pointwise convergence of the full sequence of partial
Fourier sums near L1.

However, the key property that should be present in every variation on the theme
generated by Definition 7.2 is that a CME structure is required to have a tile configuration
that maximizes the L1,∞ norm of a grand maximal counting function similar to (6.3).
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8. Construction of the set(s) Fj

In this section we will focus on defining the sets {Fj }kj=k/2+1 appearing in the definition
of f . Each set Fj will be constructed independently. Its structure will be completely
determined solely by the normal component of the family Fj , as given below:

Definition 8.1. Let j ∈ {k/2+ 1, k} and Fj be constructed as before. Partition

Fj =
⋃
r

Fj,r

into maximal USGTF’s. Set now

Fnm
j,r := {P ∈ Fj,r | IP ∗ ∩ (R \ ĨTop(Fj,r)) = ∅}. (8.1)

We then define the normal component of Fj as

Fnm
j :=

⋃
r

Fnm
j,r , (8.2)

with the boundary component of Fj given by

Fbd
j := Fj \ Fnm

j . (8.3)

8.1. Construction of Fk

As mentioned previously, we will only work with the collection Fk .
Recall now the following key property:

ITop(F l
k) = IrtBtm(F l−1

k ) ∀2 ≤ l ≤ log k − 1. (8.4)

As a consequence,

|ĨTop(F l
k)| =

1
2 |ĨBtm(F l−1

k )| ∀2 ≤ l ≤ log k − 1. (8.5)

We next specify the size of Fk and its approximate location. We impose on Fk the follow-
ing conditions:

• the total measure of Fk is |Fk| ≈ 2− log k 22k
· 2−k · 1

k
;

• Fk ⊂ ĨTop(F log k−1
k ) = ĨTop(F log k

k );
• for any P ∈ F log k−1

k ∪ F log k
k with IP ∈ IBtm(F log k−1

k ) ∪ IBtm(F log k
k ) one has

|IP ∩ Fk|

|IP |
≈ 2log k

|Fk|. (8.6)
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It remains now to specify the concrete location of Fk inside each of the intervals IP
mentioned in (8.6).

First we notice that from our construction, IBtm(F log k−1
k ) = IBtm(F log k

k ), and
IBtm(F log k

k ) consists of pairwise disjoint intervals. Given this, it will be enough to spec-
ify the structure of Fk inside a given I ∈ IBtm(F log k

k ).

Now, fixing I ∈ IBtm(F log k
k ), our set Fk inside I will be determined by

• the frequencies of tiles P ∈ Fnm
k ;

• the sign on I of the functions e−2πil(ωP ) ·T ∗P (χ[0,1])(·).

Notice that given the choice of our frequencies for the tiles inside P, i.e.

{2222k
+100m

}
m∈{0,...,log k 22k−1−1},

we know that for any P ∈ Fk , T ∗P is highly oscillatory on I ∗P , or equivalently the oscilla-
tion period of e2πil(ωP )· is much smaller than |IP |.

Now the process of constructing I ∩Fk will follow a fractal pattern: we will start with
the tiles at the lowest frequency and as we move up the frequency scale we will trim more
and more from the possible location(s) of I ∩Fk inside I . (A detailed construction is only
done for the j = k case; with some small adaptations, everything can be repeated for a
general Fj ).

Here are three key observations derived from Observation 3.1 (see properties (3.6),
(3.7)) and Observation 4.14:

• the frequencies {e2πi(2222k
+100m) ·

}
m∈{0,...,log k 22k−1−1} are oscillating

independently;
• for each P ∈ Fnm

k , e−2πil(ωP ) ·T ∗P (χ[0,1])(·) keeps the same sign32

on I , and moreover due to the smoothing effect of the convolution is
morally constant on I ;
• if P, P ′ ∈ Fnm

k (P 6= P ′) are such that l(ωP ) = l(ωP ′) then

supp T ∗P ∩ supp T ∗P ′ = ∅.

(8.7)

We start by focussing on the first level of our (multi-)tower, F1
k . In this USGTF we have

22k−1 frequencies.
Making use of observations (8.7) above, we see that the following function is well

defined:

S[I,F1
k ] : α(F

1
k )→ {−1, 1},

32 This is because in definition (3.3) the function ψk is smooth, odd with xψk(x) ≥ 0 for any
x ∈ R and χ[0,1] ≥ 0.
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where S[I,F1
k ](a) = 1 if

T ∗P ≡ 0 on I ∀P ∈ F1
k ∩ F

nm
k with l(ωP ) = a, (8.8)

and33

S[I,F1
k ](a) := sgn

(∫
I

e−2πiaxT ∗P (χ[0,1])(x) dx

)
(8.9)

if there exists (see the observation below) a tile P ∈ F1
k ∩ F

nm
k such that

l(ωP ) = a and T ∗P (χ[0,1]) is not 0 a.e. on I. (8.10)

Observation 8.2. Under the assumptions made in Observation 3.1, if a tile P obeying
(8.10) exists, then it is unique; however, this last fact is not actually essential in defining
S[I,F1

k ] since the sign of the expression defined in the RHS of (8.9) remains the same
for all the tiles P ∈ F1

k ∩ F
nm
k obeying (8.10).

Next, for a ∈ α(F1
k ), we let

UF1
k
[I ](a) := {x ∈ I | sgn(Re(e2πiax)) = S[I,F1

k ](a)}. (8.11)

Note that UF1
k
[I ](a) is a union of disjoint, equidistant, same-size dyadic intervals. More-

over,

a, b ∈ α(F1
k ) with a < b ⇒ |UF1

k
[I ](a) ∩ UF1

k
[I ](b)| = 1

2 |UF1
k
[I ](a)|. (8.12)

We now simply impose the following requirement on Fk:

I ∩ Fk ⊆
⋂

a∈α(F1
k )

UF1
k
[I ](a). (8.13)

The ends the process of restricting the location of Fk relative to the first level F1
k .

Naturally, the same idea is further extended inside each of the higher level USGTF’s
{F l

k}l≤log k . At the end of this inductive process, putting together all the levels, one con-
cludes

I ∩ Fk ⊆

log k⋂
l=1

⋂
a∈α(F l

k)

UF l
k
[I ](a), (8.14)

where UF l
k
[I ](a) for a ∈ α(F l

k) designates the obvious notational extension from the case
l = 1.

Let us write ⋃
m

Um(I )

for the decomposition of
⋂log k
l=1

⋂
a∈α(F l

k)
UF l

k
[I ](a) into maximal (disjoint) dyadic inter-

vals.

33 Notice that from (3.3) and (8.10) the expression to which the sign function is applied in (8.9) is
always real.
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Notice that from (8.12) and (8.14) one has

∣∣∣⋃
m

Um(I )

∣∣∣/|I | ≈ 2− log k (22k−1). (8.15)

Also, if a0 = a0(I, k) ∈ α(Fk) stands for the minimal l(ωP )with P ∈ Fk and IP ⊇ I
then let

UFk [I ](a0) =
⋃
l

Rl (8.16)

be the decomposition of UFk [I ](a0) into maximal disjoint dyadic intervals (as one can

easily notice, for j = k we actually have a0 = 2222k

). Notice that the intervals {Rl}l have
the same length and are equidistant inside I . Moreover

|UFk [I ](a0)| = |I |/2. (8.17)

Then, we can finally determine Fk (up to small perturbations within each Um(I )) by
requiring that for any I ∈ IBtm(F log k

k ) the following hold:

• the set Fk obeys (8.14), or equivalently

I ∩ Fk ⊂
⋃
m

Um(I );

• the set I ∩ Fk is equidistributed inside {Um(I )}m, i.e.

|Um(I ) ∩ Fk| = |Um′(I ) ∩ Fk| ∀m,m
′.

(8.18)

• for each Rl ⊂ I one has

|Rl ∩ Fk|/|Rl | ≈ 2log k
|Fk|; (8.19)

as a consequence, from (8.16), (8.17) and (8.19), one immediately has

|I ∩ Fk|/|I | ≈ 2−k · 2− log k22k

≈ 2log k
|Fk|; (8.20)

• inside each Um(I ) the set Um(I ) ∩ Fk consists of a single dyadic interval called from
now on Um(I, Fk); its position is irrelevant for our purposes but for clarity pick this
dyadic interval so that its left end-point is the center of Um(I ).

This ends the construction of Fk .
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8.2. Construction of an arbitrary Fj

In the general situation, we start by decomposing the multi-tower Fj into maximal towers:

• first we apply the layer decomposition Fj =
⋃log k
l=1 F l

j ;

• then we decompose each F l
j into maximal USGTF’s, F l

j =
⋃
m F l,m

j ;
• finally we form the maximal chains (of length log k) which are precisely the maximal

towers we were looking for.
For each such maximal tower we repeat the main steps from the j = k case. Since this
process is pretty straightforward, we will not give further details. Putting together the
set specifications relative to each maximal tower, at the end of the day, we will have
constructed the set Fj .

8.3. Consequences of the construction

In this section we analyze how the presence of a CME structure within P and the adapted
construction of {Fj }j reflects on the properties of our operator T (or T ∗).

In the next section, we will prove

Proposition 8.3 (heuristic). The main component of our operator T relative to the
‖ · ‖1,∞ norm is given by

TM(fk) :=
∑

k/2<j≤k

∑
P∈Fnm

j

TP (2log k 22j

χFj ). (8.21)

In what follows we want to present a glimpse of the methods that we will employ in order
to prove our main result. As expected, the fundamental role in our reasonings will be
played by
• the properties of our CME F =

⋃k
j=k/2+1 Fj ;

• the properties of the sets {Fj }kj=k/2+1.
As a consequence of the above items based on the dual formulation∫

TM(fk) =

∫
fkT

∗

M(1), (8.22)

we make the following fundamental observation:

the real part of the function fkT ∗M(1) is a positive function whose integral is
bounded from below by ‖fk‖L log logL log log log logL.

This is the main reason for proving34

34 It is worth noticing that in general one can show a much stronger estimate for the full operator
Clac since we know that in particular ‖Hf ‖1 ≈ ‖f ‖L logL where H is the Hilbert transform.
However, relative to the L1 norm, our operator TM becomes an error term due to the specific
choice of our CME. Indeed, one can trivially modify the proof of Lemma 8.4 and find that in
fact ‖TM (fk)‖1 ≈ ‖fk‖L log logL log log log logL ≈ log k. In this context, the main contribution
is given by the operator representing the tiles at frequency 0, that is, the operator TO (see the
notation/definitions from the next section). Notice that TO behaves as a variant of the maximal
Hilbert transform.
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Lemma 8.4 (L1 blowup). With the previous notation,

‖TM(fk)‖1 & log k. (8.23)

Proof. Based on the construction of our sets Fj and of our family of tiles, we have

Claim. We have∫
Re(χFj T

∗

P (1))(·) ≥
1

500

∫
χFj (·)

∣∣∣∣∫ ψP (· − y)χE(P )(y) dy

∣∣∣∣
=

1
500

∫
|χFj T

∗

P (1)(·)| (8.24)

for all35 P ∈ Fnm
j \ (F

log k−1
j ∪ F log k

j ).

Proof of claim. We will appeal repeatedly to the fundamental relations (8.8)–(8.15). As-
sume without loss of generality that

P ∈ Fnm
j ∩ F

l
j for some l ∈ {1, . . . , log k − 2}. (8.25)

Now, from the construction of Fj we know that Fj ⊆ ĨBtm(F log k
j ). As a consequence,∫

Re(χFj T
∗

P (1))(·) =
∑

I∈ĨBtm(F log k
j )

∫
I

Re(χFj T
∗

P (1))(·). (8.26)

Next, from our assumption (8.25), we have ĨBtm(F log k
j )∩ I ∗P 6=∅, and if I ∈ IBtm(F log k

j )

with I ∩ I ∗P 6= ∅ then I ⊆ I ∗P and |I | < 2−1000
|IP | as long as k is large enough.

Thus, it is enough to restrict our attention to a fixed I ∈ IBtm(F log k
j ) with I ⊆ I ∗P .

Define now

JP :=
{
J dyadic

∣∣ J ⊂ I ∗P , |J | = 1
4 l(ωP )

−1}. (8.27)

Notice that from our construction of the CME F we know that J ∈ JP implies |J | � |I |.
With the notation from Section 6 we define36

UP [I ] :=
⋃
J∈JP
J⊂I

{x ∈ J | sgn(Re(e2πil(ωP )x)) = S[J,F l
j ](l(ωP ))}. (8.28)

Observe that there exists a subcollection of intervals inside I and belonging to JP , de-
noted by J +P [I ], such that

UP [I ] =
⋃

J∈J +P [I ]
J. (8.29)

35 The condition P ∈ Fnm
j
\ (F log k−1

j
∪ F log k

j
) could be relaxed here at the expense of some

extra technicalities.
36 Notice that definition (8.9) can be extended from I ∈ IBtm(F l

j
) to any (dyadic) interval

J ∈ JP .
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Moreover, as a consequence of our Fj construction,

I ∩ Fj = UP [I ] ∩ Fj . (8.30)

Now due to the choice of the distribution of our frequencies (recall (4.4)), any two distinct
frequencies l(ω1) > l(ω2) in our CME must obey l(ω1) ≥ 210l(ω2). Fix now J ∈ J +P [I ].
Then, from our construction of the set Fj we deduce the following uniformity-of-distri-
bution condition:

|J1 ∩ Fj | = |J2 ∩ Fj | = 2−5
|J ∩ Fj | ∀J1, J2 ∈ I5(J ). (8.31)

This implies that for any J ∈ J +P [I ],∫
J

Re(χFj T
∗

P (1))(·) ≥
1
4

∫
χ
Fj∩

1
16 J
(·)

∣∣∣∣∫ ψP (· − y)χE(P )(y) dy

∣∣∣∣. (8.32)

Thus, as a consequence of (8.32), (8.30), (8.8), (8.9) and (8.26),∫
Re(χFj T

∗

P (1))(·) =
∑

I∈IBtm(F log k
j )

I⊆I∗P

∑
J∈J +P [I ]

∫
J

|Re(χFj T
∗

P (1))(·)|

≥

∑
I∈IBtm(F log k

j )

I⊆I∗P

∑
J∈J +P [I ]

1
4

∫
χ
Fj∩

1
16 J
(·)

∣∣∣∣∫ ψP (· − y)χE(P )(y) dy

∣∣∣∣
≥

1
500

∫
χFj (·)

∣∣∣∣∫ ψP (· − y)χE(P )(y) dy

∣∣∣∣. (8.33)

This concludes the proof of our claim.

Now, from (8.24), we deduce that∫
Re
( ∑
k/2<j≤k

∑
P∈Fnm

j

2log k 22j

χFj T
∗

P (1)
)
≈

∫ ∑
k/2<j≤k

∑
P∈Fnm

j

2log k 22j

χFj |T
∗

P (1)|.

(8.34)
Thus,∣∣∣∣∫ TM(fk)

∣∣∣∣ & ∑
k/2<j≤k

∑
P∈Fnm

j

2log k 22j

|Fj ∩ I
∗

P |
|E(P )|

|IP |

=

∑
k/2<j≤k

∑
1≤l≤log k

2j∑
r=2j−1+log log k

2log k 22j ∑
P∈Fnm,l

j [r]

|Fj ∩ I
∗

P |

|IP |

|E(P )|

|IP |
|IP |

&
∑

k/2<j≤k

∑
1≤l≤log k

2log k 22j

2j
|Fj ∩ ĨTop(F l

j )|

|ĨTop(F l
j )|

|ĨTop(F l
j )|

& log k
∑

k/2<j≤k

2log k 22j

2j |Fj | ≈ ‖fk‖L log logL log log log logL,
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where for the third relation we have used the fact that |Fj ∩ I ∗P |/|IP | ≈ |Fj ∩ ĨTop(F l
j )|/

|ĨTop(F l
j )| for all P ∈ Fnm,l

j [r]. ut

Our goal in this paper will be to show that the above lemma remains true if one replaces
in (8.23) the L1 norm with an L1,∞ estimate.

9. Removing the small terms

As already announced, in this section we show that the contribution of the (T − TM)(fk)
component of the operator is small. More precisely, we will prove that

‖(T − TM)(fk)‖1,∞ . ‖fk‖L log logL. (9.1)

For this, let us first introduce some notation. Set

TO(fk) :=
∑
P∈P(0)

TP (fk), T0(fk) :=
∑
P∈P0

TP (fk),

TR,<(fk) :=
∑

k/2<j≤k

∑
n<2j−1+log log k

∑
P∈Pn\Fj

TP (2log k 22j

χFj ),

TR,>(fk) :=
∑

k/2<j≤k

∑
n>2j

∑
P∈Pn

TP (2log k 22j

χFj ),

T bd
R (fk) :=

∑
k/2<j≤k

∑
P∈Fbd

j

TP (2log k 22j

χFj ).

Also recall the formula

TM(fk) :=
∑

k/2<j≤k

∑
P∈Fnm

j

TP (2log k 22j

χFj ).

With this, we obviously have

T (fk) = TO(fk)+ T0(fk)+ TR,<(fk)+ T
bd
R (fk)+ TM(fk)+ TR,>(fk). (9.2)

We will show that

‖TO(fk)‖1,∞ . ‖fk‖L1 , (9.3)
‖T0(fk)‖1,∞ . ‖fk‖L1 , (9.4)
‖TR,>(fk)‖1 . ‖fk‖L log logL, (9.5)
‖TR,<(fk)‖1 . ‖fk‖L log logL, (9.6)

‖T bd
R (fk)‖1 . ‖fk‖L log logL. (9.7)

The first relation is just a consequence of the simple geometric observation that the
tiles in P(0) form a tree—though in this case the tree concept must be slightly modified, by
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replacing the first item in Definition 4.4 with the more relaxed requirement 100P ≤ P0.
As a consequence, T0 behaves essentially like the maximal Hilbert transform which we
know to be bounded from L1 to L1,∞.37 Thus (9.3) holds.

Next, (9.4) is a direct consequence of [30, Theorem 1.1(b)].
For (9.6), we start by decomposing

TR,<(fk) = T
nm
R,<(fk)+ T

bd
R,<(fk),

where
T nm
R,<(fk) :=

∑
k/2<j≤k

∑
l<j

∑
P∈Fnm

l \Fj
TP (2log k 22j

χFj ).

From the construction of {Fj }j and F we have

T nm
R,<(fk) = 0. (9.8)

For the boundary term, we proceed as follows: First, fixing j , for any n < 2j−1
+log log k

we set

Fbd
<j [n] := {P ∈ Pn | P /∈ Fj and IP ∗ ∩ Fj 6= ∅}, J bd

<j [n] := {IP | P ∈ Fbd
<j [n]}.

Further, we define
Fbd
<j :=

⋃
n<2j−1+log log k

Fbd
<j [n].

The key observation here is the following Carleson packing property38: for any n <

2j−1
+ log log k and J ∈ J bd

<j [n], ∑
I∈
⋃
r≤n J bd

<j [r]

I⊂1000J

|I | . |J |. (9.9)

With this in mind, we have

‖T bd
R,<(fk)‖1 ≤

∥∥∥ ∑
k/2<j≤k

∑
P∈Fbd

<j

TP (2log k 22j

χFj )

∥∥∥
1

.
∑

k/2<j≤k

∑
P∈Fbd

<j

2log k 22j |IP ∗ ∩ Fj |

|IP |

|E(P )|

|IP |
|IP | .

∑
k/2<j≤k

2log k 22j

2log k
|Fj | . k‖fk‖1.

Thus (9.6) holds.
The proof of (9.7) is similar in spirit to that of (9.6); we omit the details.

37 A stronger estimate that implies the L1
→ L1,∞ bound for a tree is the content of [30,

Lemma 6.2].
38 The Carleson packing property can be viewed as a BMO-type condition arising naturally from

the concept of a Carleson measure; for more details, see [6].
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We pass now to (9.5). To prove this statement we need to essentially re-do one of the
main components of the proof in [31]. Setting

TR,>[j ] :=
∑
n>2j

∑
P∈Pn

TP (2log k 22j

χFj ), (9.10)

it is enough to show that

‖TR,>[j ]‖1 . 2log k 22j

|Fj |2j , (9.11)

since

TR,>(fk) =
∑

k/2<j≤k

TR,>[j ].

Proceeding as in [31], and using the properties of the set Fj (corresponding to the ana-
logue of (8.18)), we follow the steps below:

• First, for some g ∈ L∞(T) with ‖g‖∞ = 1, we write

‖TR,>[j, 2]‖1 = 2log k 22j
∫
χFj T

∗

R,>[j, 2](g)

where

T ∗R,>[j, 2](g) :=
∑
n≥2j

∑
P∈Pn

T ∗P (g).

• Next, for f ∈ L1(T) and I ∈ IBtm(F log k
j ), define

LI (f ) :=
∫
I
f

|I |
χI , L(f ) :=

∑
I∈IBtm(F log k

j )

LI (f ).

• Define the operator

T ∗R,>[av, j, 2](g)(·) :=
∑
n≥2j

∑
P∈Pn

e2πil(ωP ) · L(T ∗
P 0(g))(·), (9.12)

where P 0 stands for the shift of P to the real axis (zero frequency) and if |IP | = 2−k

then T ∗
P 0(g)(x) = −

∫
ψk(x − y)χE(P )(y)g(y) dy is the corresponding shift of the

operator T ∗P (g).
• We now have the key relation (see [31])

‖T ∗R,>[j, 2](g)‖L1(Fj )
. ‖T ∗R,>[av, j, 2](g)‖L1(Fj )

+ |Fj |. (9.13)
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• Next, we decompose Pn =
⋃

P into maximal trees, and then, for each I ∈ IBtm(F log k
j )

and n ≥ 2j , we further deduce

∣∣∣∣∫
I∩Fj

∑
P∈Pn

e2πil(ωP ) ·LI (T P0∗

(g))(·)

∣∣∣∣
. ‖S∗Pn(g)‖L2(I )

{∑
P∈Pn

|〈χFj∩I , e
2πil(ωP ) ·〉|2

|I |

}1/2

, (9.14)

where S∗Pn is the square function associated with Pn, given by

S∗Pn :=
{∑
P∈Pn
|T P∗
|
2
}1/2

,

and we use the convention T P
:=
∑
P∈P TP and T P0

stands for the shift of T P at the
0 frequency.
• Recall now Zygmund’s inequality:

∥∥∥∑
j

aj e
imj x

∥∥∥
exp(L2(T))

.
{∑
j

|aj |
2
}1/2

(9.15)

for any lacunary sequence {mj }j ⊂ N. Applying this (see also [11], [31] for a similar
treatment) one has

{∑
P∈Pn

|〈χFj∩I , e
2πil(ωP ) ·〉|2

|I |

}1/2

.
|I ∩ Fj |

|I |

(
1+ log

|I |

|I ∩ Fj |

)1/2

|I |1/2. (9.16)

• Due to the global control of the L2 norm of S∗Pn in terms of the mass parameter n we
have ∥∥∥ ∑

I∈IBtm(F log k
j )

χIS∗Pn
∥∥∥

2
. 2−n/2. (9.17)

• Now, putting together the j analogue of (8.18) with (9.13), (9.14), (9.16) and (9.17),
one concludes

‖T ∗R,>[j, 2](g)‖L1(Fj )
. |Fj | + |Fj |

∑
n≥2j

2−n/2k(log k 22j )1/2 . k2
|Fj |. (9.18)

Thus, we have actually improved on (9.5), proving that in fact

‖TR,>(fk)‖1 . ‖fk‖L(log log logL)2 . (9.19)
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10. Proof of Main Theorem 1

In this section we will prove the key result of our paper, encoded in the following

Theorem 10.1 (L1,∞ blowup). With the previous notation,39

‖TM(fk)‖1,∞ & log k. (10.1)

Proof. To prove (10.1) we need to show that there exists G ⊂ [0, 1] such that for every
major set G′ ⊂ G (i.e. |G′| ≈ |G|), one has∣∣∣∣∫

G′
TM(fk)

∣∣∣∣ & log k. (10.2)

In order to match Theorem 10.1 with relation (1.11) we need to make a “wise” choice
of G. Recall relations (9.3) and (9.4). In particular, choosing G0 = [0, 1] we can find a
major set G ⊆ G0 such that |G| ≥ 1− 100−1000 and∫

G

(|TO(fk)| + |T0(fk)|) . ‖fk‖1. (10.3)

Main Proposition. Taking G as above, for any G′ ⊆ G with |G′| ≥ 1 − 10−1000 we
have ∣∣∣∣∫ fkT

∗

M(χG′)

∣∣∣∣ & log k. (10.4)

If we assume that this holds, then, putting together (9.2)–(9.7), (10.3) and (10.4), we
deduce Main Theorem 1, and hence Corollary 1.7.

Now we start the proof of the Main Proposition. First, from the previous discussion,∣∣∣∣∫ fkT
∗

M(χG′)

∣∣∣∣ ≥ ∫ fk Re(T ∗M(χG′)) &
∑

k/2<j≤k

2log k 22j ∑
P∈Fj

∫
χFj |T

∗

P (χG′)|.

(Strictly speaking in the definition of TM we only have to deal with the normal compo-
nents of F , namely {Fnm

j }j ; however, since in the previous section, we proved that the
term involving the boundary component is an error term, in the following estimates we
will allow terms arising from considering the full family F .)

With this observation we begin the analysis of the structure of the multi-tower Fj . As
usual, we first apply the layer decomposition

Fj =
log k⋃
l=1

F l
j .

Next, we decompose each F l
j into maximal USGTF’s:

F l
j =

⋃
m

F l,m
j .

39 Notice that as a consequence of Theorem 1, we actually have ‖TM (fk)‖1,∞ ≈ log k.
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We then introduce the following notation:

E(F l,m
j ) :=

⋃
P∈F l,m

j

E(P ), G′(F l,m
j ) := E(F l,m

j ) ∩G′.

Also we set

T Fj :=
log k∑
l=1

T
F l
j , T

F l
j :=

∑
m

T
F l,m
j , where T

F l,m
j :=

∑
P∈F l,m

j

TP .

We first claim that if
|G′(F l,m

j )| ≥ 1
2 |E(F

l,m
j )|, (10.5)

then there exists an absolute constant40 c > 10−3 such that∣∣∣∣∫ χFj (T
F l,m
j )∗(χG′)

∣∣∣∣ ≥ c2j |Fj ∩ ĨTop(F l,m
j )|. (10.6)

This is a direct consequence of the special properties of the family F resulting from our
construction.

Indeed, first notice that F l,m
j [2

j−1
+ log log k] is precisely the bottom of the fam-

ily F l,m
j (i.e. the time intervals of these tiles form precisely the set IBtm(F l,m

j )).
Set now

AG
′

0 (P ) := |E(P ) ∩G
′
|/|IP |,

and let the heavy component of F l,m
j [2

j−1
+ log log k] be

F l,m
j [2

j−1
+ log log k](H) :=

{
P ∈ F l,m

j [2
j−1
+ log log k]

∣∣ AG′0 (P ) ≥
1
4A0(P )

}
.

Now, from (10.5), we must have

#F l,m
j [2

j−1
+ log log k](H) ≥ 1

4 #F l,m
j [2

j−1
+ log log k]. (10.7)

Observe now that from our construction, more precisely from the USGTF properties
(4.13)–(4.16), we have: given I ∈ ITop(F l,m

j ), a ∈ α(F l,m
j ) and s ∈ [2j−1

+log log k, 2j ]

there exists a unique P = [ωP , IP ] ∈ F l,m
j such that

• IP ⊆ I ;
• l(ωP ) = a;
• A0(P ) ∈ [2−s, 2−s+1).

(10.8)

Moreover, E(P ) = E(P ′) for any P, P ′ ∈ F l,m
j with IP , IP ′ ⊆ I and l(ωP ) =

l(ωP ′) = a.

40 The value of the constant c here is not relevant. The condition c > 10−3, while not at all
fundamental for the reasonings to follow, can be easily verified and is used only to give explicit
quantitative bounds of the sort of (10.37). Alternatively, one can choose to work with unspecified
constants c but then the statement of the Main Proposition above must be adjusted correspondingly.
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Thus, if for each I ∈ ITop(F l,m
j ) and a ∈ α(F l,m

j ) we specify the information

E(P̄ ) ∩ G′ carried by the unique tile P̄ = [ωP̄ , IP̄ ] ∈ F l,m
j [2

j−1
+ log log k] with

l(ωP̄ ) = a and IP̄ ⊆ I , we will then have determined the entire structure of the fam-
ily F l,m

j .
Define now

F l,m
j (H) := {P ∈ F l,m

j | ∃P ′ ∈ F l,m
j [2

j−1
+ log log k](H) with P ′ ≤ P },

F l,m
j [s](H) := F l,m

j (H) ∩ F l,m
j [s].

Then from our previous observations (10.8) and the geometry of our tiles in F l,m
j we find

that

Ñ l,m
j (H) :=

1
2j−1

2j∑
s=2j−1+log log k

∑
P∈F l,m

j [s](H)

1
2s−1χIP

obeys
‖Ñ l,m

j (H)‖1 ≥ 10−2
|ĨTop(F l,m

j )|. (10.9)

Since ∣∣∣∣∫ χFj (T
F l,m
j )∗(χG′)

∣∣∣∣ & ∑
P∈F l,m

j (H)

∫
χFj |T

∗

P (χG′)|

and

|I ∗P ∩ Fj |

|I ∗P |
≈
|ĨTop(F l,m

j ) ∩ Fj |

|ĨTop(F l,m
j )|

≈ 2l |Fj | ∀P ∈ F l,m
j ∩ Fnm

j , (10.10)

we deduce that (10.9) implies (10.6).
Moreover, combining (10.6) with (10.10) and (2.2), we have

2log k 22j
∣∣∣∣∫ χFj (T

F l,m
j )∗(χG′)

∣∣∣∣ ≥ c1
k

2l |ĨTop(F l,m
j )|. (10.11)

Define now

Hl
j :=

⋃
m

F l,m
j satisfies (10.5)

F l,m
j , (10.12)

Hj :=
⋃
l

Hl
j , (10.13)

H :=
⋃
j

Hj . (10.14)

Then, using (10.11), one deduces that∫
fk Re(T ∗M(χG′)) &

1
k

∑
F l,m
j ∈H

2l |ĨTop(F l,m
j )|+

∑
F l,m
j /∈H

2log k 22j
∫
χFj |(T

F l,m
j )∗(χG′)|.

(10.15)
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Take now a very large constant C > 0 (C > 2100 is enough). To reach a contradiction
assume that ∑

F l,m
j ∈H

2l |ĨTop(F l,m
j )| <

k log k
C

, (10.16)

since otherwise we are done. Set

V lj :=
∑

F l,m
j ∈F

l
j

2l |ĨTop(F l,m
j )|, (10.17)

V lj (H) :=
∑

F l,m
j ∈H

l
j

2l |ĨTop(F l,m
j )|, (10.18)

V lj (L) :=
∑

F l,m
j ∈F

l
j \H

l
j

2l |ĨTop(F l,m
j )|. (10.19)

Notice that
V lj = V lj (H)+ V lj (L).

On the one hand, from the construction of F we know that

V lj ≥ 2−50
∀j, l. (10.20)

On the other hand, reformulating (10.16) we have

k∑
j=k/2+1

log k∑
l=1

V lj (H) <
k log k
C

. (10.21)

Let now
D :=

{
j ∈ {k/2+ 1, . . . , k}

∣∣ ∃l, V lj (L) ≥ V lj (H)
}
. (10.22)

Then, as a consequence of (10.20) and (10.16), we have

#D ≥ k/100. (10.23)

For j ∈ D, let lj be the smallest value of l that appears in (10.22). Set

E(j, lj ) :=
⋃

F
lj ,m

j ∈F
lj
j \H

lj
j

E(F lj ,m

j ),

G′(j, lj ) :=
⋃

F
lj ,m

j ∈F
lj
j \H

lj
j

G′(F lj ,m

j ),

Aj := E(j, lj ) \G′(j, lj ).

Also define

Nj (x) :=
1

2j−1 − log log k

2j∑
n=2j−1+log log k+1

1
2n−1

∑
P∈Fj [n]

χIP . (10.24)
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Then, for any j ∈ D, we have

• |Aj | ≥ 1
2 |E(j, lj )| ≥

1
1000

∑
F
lj ,m

j ∈F
lj
j

|ĨTop(F lj ,m

j )|;

• Aj ⊆ {x | Nj (x) ≥ lj } ;
• |Aj | ≥ 1

1000 |{x | Nj (x) ≥ lj }|.
(10.25)

Let us now turn our attention to the level sets of the function(s) Nj .
For l ∈ {1, . . . , log k} we decompose the set

Clj := {x | Nj (x) ≥ l} (10.26)

into maximal disjoint (dyadic) intervals,

Clj =
⋃
r

Clj (r). (10.27)

Now, from our construction of the CME F , we have the following key properties:

• if j1 ≥ j2 then for any pairs (l1, r1), (l2, r2),

either C
l2
j2
(r2) ⊂ C

l1
j1
(r1) or C

l2
j2
(r2) ∩ C

l1
j1
(r1) = ∅;

• if we set Cl1j1
(r1)[j2, l2] :=

⋃
C
l2
j2
(r2)⊂C

l1
j1
(r1)

C
l2
j2
(r2) then we have the

John–Nirenberg type condition

|C
l1
j1
(r1)[j2, l2]| < 2−l2+10

|C
l1
j1
(r1)|.

(10.28)

Indeed, properties (10.28) rely on the key observation that given any Clj (r),

∃F l,m
j ∃!I ∈ ITop(F l,m

j ), I = Clj (r). (10.29)

Now the first item in (10.28) is a direct consequence of (10.29) and of the construction
of F which requires

if j1 ≥ j2 then for every Is ∈ ITop(F ljs ,ms
js

) with s ∈ {1, 2} we have

either I1 ∩ I2 = ∅ or I2 ⊂ I1.
(10.30)

The second item in (10.28) follows from (10.29), (10.30) and

if l1 ≤ l2 then for all k/2 < j ≤ k and Is ∈ ITop(F ls ,ms
j ) with s ∈ {1, 2},

either I1 ∩ I2 = ∅ or I2 ⊂ I1 with |I2| ≤ 2102l1−l2 |I1|.
(10.31)

From (10.25) and (10.28), one deduces the following behavior of the sets {Aj }j∈D:

21002−lj > |Aj | > 2−1002−lj , |Aj1 ∩Aj2 | ≤ 2100
|Aj1 | |Aj2 |. (10.32)
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To see this, we first notice that with notations (10.26) and (10.27) and from (10.25)
the first item in (10.32) trivially follows from

Aj ⊆ C
lj
j and |Aj | ≥ 1

1000 |C
lj
j |, (10.33)

2−55
≤ 2lj |C

lj
j | ≤ 210, (10.34)

where for the last relation we have used (10.20) and the last item in (10.28) with j2 = j ,
j1 = k, l2 = lj and l1 = 1.

For the second item of (10.32) we use (10.33) and first notice that

|Aj1 ∩Aj2 | ≤ |C
lj1
j1
∩ C

lj2
j2
|. (10.35)

Now, assuming without loss of generality that j1 ≥ j2 and making use of the last item in
(10.28) we have

|C
lj1
j1
∩ C

lj2
j2
| ≤ 2−lj2+10

|C
l1
j1
| ≤ 270

|C
lj1
j1
| |C

lj2
j2
| ≤ 2100

|Aj1 | |Aj2 |, (10.36)

where we have again used (10.33) and (10.34).
At this point, notice that

|G \G′| ≥

∣∣∣⋃
j∈D

Aj
∣∣∣− 100−1000. (10.37)

Using now (10.37), (10.32), (10.23), (10.20) and the inclusion-exclusion principle we
conclude that

|G \G′| ≥ 2−500, (10.38)

which contradicts the requirement that |G′| ≥ 1− 10−1000, thus proving our proposition.
This concludes the proof of Theorem 10.1 and of Main Theorem 1. ut

11. Proof of Main Theorem 2

In this section we will give the proof of Main Theorem 2. The main ingredients that we
will use are Theorem 1.3 and Main Theorem 1. To these, we will need to add: for (1)(i)
the simple observation that

L log logL log log log logL ⊂W, (11.1)

noticed in [9], and for (1)(iii) reasonings in the spirit of [7, proof of Theorem 2.3].

11.1. Proof of (1)(i)

In this case we just remark that

3ϕ ⊆ 3ϕ0 = L log logL log log log logL,

and from (11.1) and Theorem 1.3 we deduce that 3ϕ is a CL-space.
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11.2. Proof of (1)(ii)

Assume for contradiction that 3ϕ is a CL-space. Then there exists C > 0 such that

‖Tf ‖L1,∞ ≤ C‖f ‖3ϕ ∀f ∈ 3ϕ . (11.2)

Take now f = fk as designed in the proof of Main Theorem 1. Further, let

f ∗k =

k∑
j=k/2+1

2log k 22j

χF ∗j
(11.3)

be the decreasing rearrangement of fk .
Recall the definition of the 3ϕ-norm:

‖fk‖3ϕ =

∫ 1

0
f ∗(t) dϕ(t).

Using this and (11.3) we find that

‖fk‖3ϕ =

k∑
j=k/2+1

2log k 22j
∫
F ∗j

dϕ .
k∑

j=k/2+1

2log k 22j

ϕ(|Fj |).

Next, we notice that ϕ0(|Fj |) ≈ 2− log k 22j
(log k)/k. Thus,

‖fk‖3ϕ .
log k
k

k∑
j=k/2+1

ϕ(|Fj |)

ϕ0(|Fj |)
. (11.4)

At this point, from Main Theorem 1, we know that there exists C′ > 0 such that

‖Tfk‖L1,∞ ≥ C
′ log k. (11.5)

Combining (11.4) and (11.5) with assumption (11.2), we deduce that

C0 ≤
1
k

k∑
j=k/2+1

ϕ(|Fj |)

ϕ0(|Fj |)
, (11.6)

where is C0 > 0 is an absolute constant.
Letting now k →∞, we notice that the hypothesis lims→0+ ϕ(s)/ϕ0(s) = 0 contra-

dicts (11.5), thus proving that our assumption (11.2) cannot be true.
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11.3. Proof of (1)(iii)

Assume now that
lim
s→0+

ϕ(s)

ϕ0(s)
= 0 < lim

s→0+

ϕ(s)

ϕ0(s)
. (11.7)

We will first show that there exists ϕ obeying (11.7) such that

3ϕ0 = L log logL log log log logL ( 3ϕ ⊂W, (11.8)

and hence 3ϕ is a Lorentz CL-space strictly larger than 3ϕ0 .
Given the analogy between (11.8) and [7, Theorem 2.3], we will only outline the main

steps of the proof (just a simple adaptation of the corresponding steps in [7]):
• Define µ : [0, 1] → R+ by µ(0) = 0 and µ(t) := t log log(4/t) with t ∈ (0, 1].

Notice that

‖f ‖W = inf

 ∞∑
j=1

(1+ log j)‖fj‖∞µ
(
‖fj‖1

‖fj‖∞

) ∣∣∣∣∣∣
f =

∑
∞

j=1 fj ,∑
∞

j=1 |fj | <∞ a.e.,
fj ∈ L

∞(T)

 .
• Preserving the notation in [7], for s = {sn}n∈N with each sn in [0, 1], define 3(s) as the

space of all measurable functions f : T→ C such that there exists a sequence {fn}n∈N
with fn ∈ L∞(T) satisfying f =

∑
n∈N fn (with convergence in L1(T)) and

∞∑
n=1

max{‖fn‖1, sn‖fn‖∞}
µ(sn)

sn
(1+ log n) <∞.

We endow 3(s) with the norm

‖f ‖3(s) := inf
{ ∞∑
n=1

max{‖fn‖1, sn‖fn‖∞}
µ(sn)

sn
(1+ log n)

∣∣∣∣ f =∑
n∈N

fn

}
. (11.9)

• Using the simple observation µ(α) ≤ max{1, α/β}µ(β) for any α, β ∈ (0, 1) one
shows that for any sequence s = {sn}n∈N ∈ (0, 1]N, 3(s) is a r.i. Banach space such
that

3(s) ↪→W, (11.10)
with the inclusion norm ≤ 1.
• For s ∈ (0, 1]N as before, let ϕ(s) be the quasi-concave function on [0, 1] defined by
ϕ(s)(0) = 0 and

ϕ(s)(t) = inf
n∈N

max{t, sn}
µ(sn)

sn
(1+ log n), ∀t ∈ (0, 1].

Then, for ϕ̃(s) the least concave majorant of ϕ(s), we have

3ϕ̃(s) ↪→W, (11.11)

with inclusion norm smaller than or equal to 1. To prove (11.11) one uses (11.10),
(14.7) (the last observation in the Appendix) and the fact that the fundamental function
of 3(s) is precisely ϕ(s). This last fact is pretty straightforward and we leave its proof
to the reader.
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• If s = {sn}n∈N ∈ (0, 1]N is given by sn = 2−22n
, then

3ϕ̃(s) = L log logL log log log logL.

We can now end the proof of (11.8). Let s = {sn}n∈N ∈ (0, 1]N with sn = 2−222n

and
define

ϕ(t) = min{ϕ0(t), ϕ̃
(s)
}. (11.12)

Then clearly
3ϕ0 ⊆ 3ϕ ⊆ 3ϕ̃(s) +3ϕ0 ⊂W.

In order to prove that
3ϕ0 ( 3ϕ, (11.13)

we just notice that

ϕ0(sn) ≈ 2−222n

22nn,

while

ϕ(s)(sn) ≤ µ(sn)(1+ log n) ≈ 2−222n

22n log n.

We conclude that
lim
n→∞

ϕ(sn)

ϕ0(sn)
= 0,

thus showing (11.13) and ending the proof of (11.8).
We pass now to proving that there exists ϕ obeying (11.7) such that

3ϕ is not a CL-space. (11.14)

For this, appealing again to Main Theorem 1, we notice that it will be enough to show
that for a proper choice of ϕ,

lim
k→∞

1
log k

k∑
j=k/2+1

2log k 22j

ϕ(|Fj |) = 0. (11.15)

For each n ≥ 100, take kn = 22n in the counterexample provided by Main Theorem 1 and
define ln to be the line passing through the points Akn/2+1 = (|Fkn/2+1|, ϕ0(|Fkn/2+1|))

and Akn = (|Fkn |, ϕ0(|Fkn |)). Define now ϕ as follows:

ϕ(t) :=

{
ln(t) if t ∈ [|Fkn/2+1|, |Fkn |], n ∈ N, n ≥ 100,
ϕ0(t) otherwise.

(11.16)

One can now easily check that ϕ satisfies (11.7). Moreover, for k = kn = 22n ,

k∑
j=k/2+1

2log k 22j

ϕ(|Fj |) =

k∑
j=k/2+1

2log k 22j

ln(|Fj |) ≈ 2log k 22j

ln(|Fj |)|j=k/2+1 ≈
log k
k
,

and thus (11.15) holds.
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11.4. Proof of (2)(i)

Our goal here is to prove that ifX is a r.i. Banach space with fundamental function ϕX = ϕ
obeying (1.12) then X is a CL-space.

Now, by (14.7), it will be enough to show that (1.12) implies Mϕ∗ ⊂ 3ϕ0 . But this
last relation follows easily from the following:

• f ∈ Mϕ∗ implies that there exists C > 0 such that

f ∗∗(t) < C/ϕ(t) ∀t ∈ (0, 1]. (11.17)

• ‖f ‖3ϕ0
=
∫ 1

0 f
∗(t) dϕ0(t) ≈

∫ 1
0 f
∗∗(t)[−tϕ′′0 (t)] dt.

11.5. Proof of (2)(ii) and (iii)

With the notation of point (1) of Main Theorem 2, assume that

‖Tfk‖1,∞ & ‖fk‖V := inf
σ∈Sk

k∑
j=1

rj |Fj |2j log(σ (j)+ 1), (11.18)

where Sk designates the group of all permutations of {1, . . . , k} (the proof of this state-
ment will be outlined when proving Theorem 1.5 below).

Next, imposing the condition that {rj }1≤j≤k is an increasing sequence of positive
numbers and using the definition of the Marcinkiewicz space Mϕ∗ , we find that

‖fk‖Mϕ∗
≈ sup

1≤n≤k

ϕ(|Fn|)

|Fn|

k∑
j=n

rj |Fj |. (11.19)

Thus if we assume that (B) holds, takingX = Mϕ∗ , we deduce that there exists an absolute
constant C′ > 0 such that

inf
σ∈Sk

k∑
j=1

rj |Fj |2j log(σ (j)+ 1) ≤ C′ sup
1≤n≤k

ϕ(|Fn|)

|Fn|

k∑
j=n

rj |Fj | (11.20)

for any k ∈ N large enough.
If we choose rj := 1

|Fj |2j j
, relation (11.20) becomes

sup
n≤k

ϕ(|Fn|)

2n|Fn|n
≥ C′′(log k)2, (11.21)

which further implies

lim
s→0+

ϕ(s)

ϕ0(s)
= ∞, (11.22)

thus proving (2)(ii).
Notice that for the choice of rj := 1

|Fj |2j j (log j)2 one can improve (11.22) to

lim
s→0+

ϕ(s)

ϕ0(s) log log log 1
s

log log log log 1
s

= ∞. (11.23)
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Passing now to the proof of (2)(iii), assume without loss of generality that

s 7→ ϕ0(s)/ϕ(s) is increasing on (0, 1), (11.24)

i.e. ε = 1 (otherwise trivial modifications are necessary).
In this setting it is enough to show that (B) implies (A).
Making the choice rj = 1/ϕ(|Fj |) and using (11.24) we obtain

‖fk‖Mϕ∗
≈ sup

1≤n≤k

ϕ(|Fn|)

|Fn|

k∑
j=n

|Fj |

ϕ(|Fj |)
. 1, (11.25)

and

‖Tfk‖1,∞ &
k/2∑
j=1

ϕ0(|Fj |)

ϕ(|Fj |)
. (11.26)

Take now |Fj | such that

|Fj |

ϕ(|Fj |)
=

∫ yj

yj+1

s

ϕ(s)

(
−
ϕ′′0 (s)

ϕ′0(s)

)
ds. (11.27)

Then, from (11.25)–(11.27) and the requirement that Mϕ∗ is a CL-space we deduce that

lim
k→∞

∫ 1

yk/2

−sϕ′′0 (s)

ϕ(s)
ds . 1, (11.28)

finishing the proof of (2)(iii).

11.6. Some remarks on the proof of Theorem 1.5

Notice that our claim follows if we are able to show (11.18). For this, though, all that we
need is to notice that we can follow the reasonings in the proof of Main Theorem 1 and
construct Fj ⊆ T measurable such that:

• the size of Fj obeys |Fj | ∈ [yj+1, yj ].
• the location of {Fj }j comes from the CME structure following the steps of Sections 7

and 8.

In this new setting, defining fk as in (1.13) and proceeding as in Section 8, one obtains

‖Tfk‖1,∞ & inf∑k
j=1 yj≤1/2
yj≥0

k∑
j=1

rj |Fj | log log
1
|Fj |

log
1
yj
≈ ‖fk‖V . (11.29)

Thus in particular (11.18) holds.
It is worth mentioning that actually

C′‖fk‖W ≤ ‖fk‖V ≤ C
′′
‖fk‖W (11.30)

for some absolute C′′ ≥ C′ > 0.
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12. A discussion regarding the (Lacey–Thiele) discretized Carleson model and the
(discretized) Walsh model

This section explains in detail the comments in Observation 1.8. We will thus present a
detailed antithesis between the a.e. pointwise convergence properties of the (lacunary)
Carleson operator C

{nj }j
lac and those corresponding to the (lacunary) Walsh–Carleson oper-

ator C
{nj }j
W and (more briefly) to the (lacunary) Lacey–Thiele discretized Carleson model.

In fact, in most of our analysis we will insist on analyzing the Walsh–Carleson oper-
ator, as the corresponding analysis of the Lacey–Thiele discretized Carleson model will
then become immediately transparent.

We first list (a detailed explanation will follow) the key aspects that will make a dif-
ference in the behavior of C

{nj }j
W :

(I) the algebraic properties of the Walsh wave-packets;
(II) the discrete/dyadic character of the Walsh–Carleson operator. (12.1)

In order to better explain the above items, let us recall41 some of the definitions/properties
of the Walsh system/Walsh–Carleson operator.

We will only discuss the periodic setting, since this is the one of interest for us. Thus
we define the Walsh phase plane W = [0, 1) × [0,∞). We fix the canonical dyadic grid
(having origin at 0 and scales in powers of two) on both [0, 1) and [0,∞). As before, a
dyadic interval will be of the form [2−jn, 2−j (n+ 1)) with j ∈ N (or j ∈ Z for positive
real axis) and n ∈ N. Keeping the notation from the Introduction, we refer to P as a tile
if P = IP × ωP ⊂ W with IP , ωP dyadic intervals such that |IP | |ωP | = 1, and we let
P be the collection of all such tiles. Unlike the Fourier setting, here we will also need to
work with bitiles, dyadic rectangles R = IR × ωR ⊂ W of area two (that is, IR, ωR are
dyadic intervals such that |IR| |ωR| = 2). We denote the collection of all bitiles by R.

Next for R ∈ R with IR = [x0, x1) and ωR = [ξ0, ξ1) we define

Ru := [x0, x1)× [(ξ0 + ξ1)/2, ξ1) ∈ P, the upper son of R;
Rl := [x0, x1)× [ξ0, (ξ0 + ξ1)/2) ∈ P, the lower son of R;

lR := [x0, (x0 + x1)/2)× [ξ0, ξ1) ∈ P, the left son of R;

rR := [(x0 + x1)/2, x1)× [ξ0, ξ1) ∈ P, the right son of R.

(12.2)

Let us now recall the definition of the Walsh system.
Fix n ∈ N and let

n =

∞∑
i=0

εi2i with εi ∈ {0, 1} (12.3)

be its dyadic decomposition. Let {rj }j∈N be the Rademacher system, that is, rj :
[0, 1) → R with r0(x) = 1 and rj (x) = sgn(sin 2jπx) for j ≥ 1 and x ∈ [0, 1).
Then we define the Walsh system {wn}n∈N as:

41 For this we will closely follow [41].
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• if x ∈ R \ [0, 1) then wn(x) = 0 for any n ∈ N;
• if x ∈ [0, 1) and n = 0 then wn(x) = rn(x) = 1;
• if x ∈ [0, 1) and n ≥ 1 obeys (12.3) then42

wn(x) :=

∞∏
i=0

(ri+1(x))
εi =

∞∏
i=0

(sgn(sin 2i+1πx))εi .

(12.4)

Next, given P ∈ P with P = [2−j l, 2−j (l + 1)) × [2jn, 2j (n + 1)) and j, l, n ∈ N we
define the associated Walsh wave-packet as

wP (x) = wn,l,j (x) = 2j/2wn(2jx − l). (12.5)

Given R ∈ R and using now definitions (12.2), (12.4) and (12.5) we have the following
key algebraic properties of the Walsh wave-packets:

wRu =
1
√

2
(wlR − wrR ), (12.6)

wRl =
1
√

2
(wlR + wrR ). (12.7)

Now, as a consequence of (12.6) and (12.7), the following key identity holds:43

Wnf (x) :=

n∑
k=0

〈f,wk〉wk(x) =
∑
R∈R
〈f,wRl 〉wRl (x)χωRu (n) (12.8)

for all f ∈ L1(T) and n ∈ N.

Observation 12.1. We deduce from (12.8) that the (lacunary) Walsh–Carleson operator
obeys

C
{nj }j
W f (x) = sup

j∈N

∣∣∣∑
R∈R
〈f,wRl 〉wRl (x)χωRu (nj )

∣∣∣. (12.9)

The meaning of item (II) is precisely that the Walsh–Carleson operator is of discrete
nature, namely, it can be written as a superposition of projection operators associated
with a single dyadic grid.

We end this discussion of the basic properties of the Walsh system by mentioning another
relevant algebraic feature of it: as a consequence of (12.4),

2L−1∑
n=0

wn(x) =

L−1∏
i=0

(r0(x)+ ri+1(x)) (12.10)

for all L ∈ N. This implies that for any f ∈ L1(T),

W2L−1(f )(x) =
〈
f (·),

L−1∏
i=0

(r0(x)r0(·)+ ri+1(x)ri+1(·))
〉
. (12.11)

42 Notice that in (12.3) only finitely many εi ’s are non-zero.
43 For a proof see [41].
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One can reshape (12.11) for other subsequences of partial Fourier–Walsh sums or even
differences of partial sums. For example, choosing L� M with L,M ∈ N one has

W2L−1(f )(x)−W2L−2M−1(f )(x)

=

〈
f (·),

(L−1∏
i=M

ri+1(x)ri+1(·)
)(M−1∏

i=0

(r0(x)r0(·)+ ri+1(x)ri+1(·))
)〉
. (12.12)

Let us now switch our attention to the Carleson operator C (or its lacunary version
C
{nj }j
lac ). To make the analogy with the Walsh case more transparent, we will use a differ-

ent, cleaner decomposition than the one in [28].44

Following the Walsh case development, we first define the real Fourier phase plane as
Fr= R×R and the periodic Fourier phase plane45 as Fp = [−1, 2)×R. Unlike the Walsh
case, in order to connect C with its discretized model, we will need to use a continuum
of grids. Let λ,µ be parameters ranging in [0, 1). On two real axes we will use “dyadic”
grids defined by the following structure:

• in space: I−λ,y−m , the set of intervals 2−m−λ[n + y, n + y + 1) with
m, n ∈ Z, y ∈ [0, 1].
• in frequency: J λ,µ

m , the set of intervals 2m+λ[n+µ, n+µ+ 1) with
m, n ∈ Z.

(12.13)

Define now

– the (y, λ, µ)-collection of tiles (real case)

Py,λ,µ :=
⋃
m∈Z

Py,λ,µm :=

⋃
m∈Z

I−λ,y−m × J λ,µ
m ; (12.14)

– the (y, λ, µ,+)-collection of tiles (periodic case)

Py,λ,µ,+ :=
⋃
m∈N

Py,λ,µ,+m :=

⋃
m∈N

I−λ,y,+−m × J λ,µ
m , (12.15)

where I−λ,y,+−m = {I ∈ I−λ,y−m | I ⊂ [−1, 2)}.

We now define the Fourier wave-packets adapted to Py,λ,µ (with the obvious changes for
the periodic case).

Let φ ∈ S(R) with supp φ̂ ⊆ [−0.1, 0.1], φ̂ ≥ 0 and φ̂ ≡ 1 on [−0.07, 0.07].
Next, we introduce the classes of symmetries entering in the structure of the Carleson

operator:

• translations: Tzf (x) = f (x − z) with x, z ∈ R;
• modulations: Mξf (x) = e

2πixξf (x) with ξ ∈ R;
• dilations: Dpλ f (x) = λ

−1/pf (λ−1x) with λ > 0 and p ∈ (0,∞].

44 This simple, elegant decomposition of the real line Carleson operator appears in the junior
paper [18] written under the supervision of E. Stein and guidance of the author.
45 For technical reasons, in order to remove the boundary terms we enlarge the canonical interval
[0, 1) to [−1, 2).
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Let now P be a generic tile, that is, belonging to P̄ =
⋃
y,λ,µ∈[0,1) Py,λ,µ. If P = IP ×ωP

(recall that P has area one) then c(ωP ) is the center of IP , ωPl = (−∞, c(ωP )]∩ωP and
ωPu = ωP \ ωPl , and as before define

Pu = IP × ωPu , the upper son of P ;
Pl = IP × ωPl , the lower son of P .

We are now ready to define the wave-packet associated with Pl by

φPl (x) := Mc(ωPl )
Tc(IP )D

2
|IP |
φ(x), (12.16)

or equivalently φPl (x) = e
2πic(ωPl )x |IP |

−1/2φ
(
x−c(IP )
|IP |

)
.

We now define

• the (y, λ, µ, ξ)-discretized Carleson real model as

C̃(y,λ,µ)ξ f (x) :=
∑

P∈Py,λ,µ
〈f, φPl 〉φPl (x)χωPu (ξ) (12.17)

for x, ξ ∈ R and f ∈ L1(R);
• the (y, λ, µ, ξ)-discretized Carleson periodic model as

C̃
(y,λ,µ)
ξ f (x) :=

∑
P∈Py,λ,µ,+

〈f, φPl 〉φPl (x)χωPu (ξ) (12.18)

for x ∈ [0, 1), ξ ∈ R and f ∈ L1(R) with supp f ⊆ [0, 1).

We have the following key result:

Proposition 12.2. In what follows, c ∈ R is an absolute constant that is allowed to
change from line to line. The following are true:

• For any µ ∈ [0, 1/4] we have for the real case

χ(−∞,0](ξ) = c

∫ 1

0

∑
m∈Z

2m+λ
∑

P∈2−m−λ[0,1)×J λ,µ
m

|φ̂Pl (ξ)|
2χωPu (0) dλ, (12.19)

and for the periodic case

χ̃(−∞,0](ξ) = c

∫ 1

0

∑
m∈N

2m+λ
∑

P∈2−m−λ[0,1)×J λ,µ
m

|φ̂Pl (ξ)|
2χωPu (0) dλ, (12.20)

where χ̃(−∞,0] stands for a smooth version of χ(−∞,0], that is, χ̃(−∞,0] ∈ C∞(R) with
supp χ̃(−∞,0] ⊆ (−∞, 0] and χ̃(−∞,0](ξ) = 1 for ξ ≤ −1.
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• If N ∈ R is fixed then for the real case

χ(−∞,N ](ξ) = c

∫ 1

0

∫ 1

0

∑
m∈Z

2m+λ
∑

P∈2−m−λ[0,1)×J λ,µ
m

|φ̂Pl (ξ)|
2χωPu (N) dλ dµ,

(12.21)
while for the periodic case

χ̃(−∞,N ](ξ) = c

∫ 1

0

∫ 1

0

∑
m∈N

2m+λ
∑

P∈2−m−λ[0,1)×J λ,µ
m

|φ̂Pl (ξ)|
2χωPu (N) dλ dµ,

(12.22)
where as before χ̃(−∞,N ] stands for a smooth version of χ(−∞,N ].
• For f ∈ S(R), define the real axis Carleson operator

Cf (x) := sup
N∈Z
|CNf (x)| = sup

N∈Z

∣∣∣∣p.v. ∫
R
e2πiN(x−y) 1

x − y
f (y) dy

∣∣∣∣. (12.23)

Further, for N ∈ Z, set

C̃Nf (x) :=
∫ N

−∞

f̂ (ξ)e2πixξ dξ, (12.24)

and notice that there exist absolute constants c1, c2 ∈ R such that

CNf = c1C̃Nf + c2f. (12.25)

As a consequence, one can reduce studying C to the study of

C̃f (x) := sup
N∈Z
|C̃Nf (x)| := sup

N∈Z

∣∣∣∣∫ N

−∞

f̂ (ξ)e2πixξ dξ

∣∣∣∣. (12.26)

Now, for f, g ∈ S(R), one has

〈C̃Nf, g〉 = c
∫ 1

0

∫ 1

0

∫ 1

0

∑
P∈Py,λ,µ

〈f, φPl 〉〈φPl , g〉χωPu (N) dλ dµ dy. (12.27)

Thus, linearizing the supremum, we deduce

C̃f (x) = c
∫ 1

0

∫ 1

0

∫ 1

0

∑
P∈Py,λ,µ

〈f, φPl 〉φPl (x)χωPu (N(x)) dλ dµ dy, (12.28)

or equivalently

C̃f (x) = c
∫ 1

0

∫ 1

0

∫ 1

0
C̃(y,λ,µ)N(x) f (x) dλ dµ dy. (12.29)
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• In what follows, we consider f ∈ C∞0 (R) with supp f ⊆ [0, 1) and x ∈ [0, 1). Let us
recall the definition of the periodic Carleson operator:

Cf (x) := sup
N∈Z
|CNf (x)| = sup

N∈Z

∣∣∣∣p.v. ∫
T
e2πiN(x−y) cot(π(x − y))f (y) dy

∣∣∣∣. (12.30)

Following the real case reasonings, for N ∈ Z, one defines

C̃Nf (x) :=

∫ 1

0

∫ 1

0

∫ 1

0

∑
P∈Py,λ,µ,+

〈f, φPl 〉φPl (x)χωPu (N) dλ dµ dy. (12.31)

Then relation (12.25) is replaced by

CNf = cC̃Nf +ANf (12.32)

with
sup
N

|ANf | ≤ Mf, (12.33)

where M stands for the Hardy–Littlewood maximal operator. Thus, setting

C̃f (x) =

∫ 1

0

∫ 1

0

∫ 1

0

∑
P∈Py,λ,µ,+

〈f, φPl 〉φPl (x)χωPu (N(x)) dλ dµ dy, (12.34)

or equivalently

C̃f (x) =

∫ 1

0

∫ 1

0

∫ 1

0
C̃
(y,λ,µ)

N(x) f (x) dλ dµ dy, (12.35)

from (12.32) and (12.33) one finds that there exists c ∈ R such that

|Cf − cC̃f | ≤ Mf. (12.36)

Observation 12.3. From (12.35) and (12.36) we notice that46∣∣∣∣C{nj }j f (x)− c sup
j

∣∣∣∣∫ 1

0

∫ 1

0

∫ 1

0

∑
P∈Py,λ,µ,+

〈f, φPl 〉φPl (x)χωPu (nj ) dλ dµ dy

∣∣∣∣ ∣∣∣∣
≤ Mf (x) (12.37)

whenever f ∈ C∞0 (R) with supp f ⊆ [0, 1) and x ∈ [0, 1).
Comparing now (12.37) with (12.9), we deduce that unlike the Walsh–Carleson oper-

ator, the Carleson operator is obtained as a continuum average of discrete models of type
(12.18). This will play a key role in explaining the differences between the a.e. pointwise
behavior of the two operators.

This ends the prerequisites about the basic definitions, concepts and properties regarding
C
{nj }j
W and C{nj }j .

46 In what follows, for notational simplicity, we drop the subscript lac from C
{nj }j
lac .
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We pass now to a detailed motivation of the statements made in Observation 1.8.
From the proof of our Main Theorem 1, it should by now be obvious that there is no

fundamental distinction between the a.e. pointwise behavior of C{nj }j and that of C
{nj }j
AW .

Indeed, we immediately have the following

Corollary 12.4 (“averaged” Walsh–Carleson model47). Recall definition (1.5) of the
(lacunary Fourier) Carleson operator. Given N ∈ N one can replace the Fourier
mode e2πiNx with the corresponding Walsh mode wN (x) and so for a given sequence
{nj }j∈N ⊂ N one can define an averaged Walsh–Carleson model by

C
{nj }j
AW f (x) := sup

j∈N

∣∣∣∣∫
T
wnj (x)wnj (−y) cot(π(x − y))f (y) dy

∣∣∣∣. (12.38)

(Here {wnj }j are regarded as periodic functions on R.) Then the conclusions of Main

Theorem 1, Main Theorem 2, Corollary 1.6 and Corollary 1.7 remain true for C
{nj }j
AW .

Indeed, one notices that Corollary 12.4 requires only trivial modifications. In fact, the
entire CME structure of F and the construction of the sets {Fj }j are left untouched. The
only required modifications are expressed in the actual form of the (lacunary) averaged
Walsh–Carleson operator C

{nj }j
AW and part of the intermediate estimates provided in the last

two sections.
To complete our antithesis and thus fully address Observation 1.8, it remains to dis-

cuss why

• Theorem 1.4 holds for C{nj }j ;
• Theorem 1.4 does not hold for C

{nj }j
W (and for the corresponding

Lacey–Thiele discretized Carleson model).
(12.39)

We start our analysis with an easy but important observation on the behavior of C{nj }j
versus its discretized model(s):

Theorem 1.4 states that for any lacunary {nj }j ⊂ N we can find a sequence {fk}k ⊂
L1(T) such that (1.9) and (1.10) hold and for some absolute constant C > 0,

‖C{nj }j (fk)‖L1,∞ ≥ C‖fk‖L log logL log log log logL. (12.40)

(Notice that Theorem 1.4 is proved as a consequence of the proof of Main Theorem 1 and
of the first item in Section 13.)

Now in view of (12.37), we know that (12.40) can be rewritten as∥∥∥∥sup
j

∣∣∣∣∫ 1

0

∫ 1

0

∫ 1

0
C̃
(y,λ,µ)
nj (fk) dλ dµ dy

∣∣∣∣ ∥∥∥∥
1,∞
≥ C′‖fk‖L log logL log log log logL. (12.41)

We now present

47 In the initial version of this paper, the corollary addressing the Walsh–Carleson model (labeled
then as Corollary 3) was stated incorrectly. We thank Michael Lacey and the referee for point-
ing this out. The subtle difficulties arising from the discretization of the Walsh–Carleson operator
are now discussed in great detail in the present section with the corresponding implications being
summarized in Observation 1.8.
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Observation 12.5. While (12.41) holds, it is possible to find triples (y, λ, µ) for which
the corresponding un-averaged relation does not hold. In fact, there exist triples (y, λ, µ)
and c > 0 such that for any f ∈ L1(T) one has∥∥∥sup

j

|C̃
(y,λ,µ)
nj (f )|

∥∥∥
1,∞
≤ c‖f ‖L1(T). (12.42)

Indeed, pick {nj = 2j }j∈N and take a closer look at the discrete operators {C̃(y,0,0)2j }j∈N.
Given definitions (12.13) and (12.18) we deduce that

C̃
(y,0,0)
2j f (x) =

∑
P∈Py,0,0,+

j+1

〈f, φPl 〉φPl (x)χωPu (2
j ). (12.43)

This is a single scale operator, and we immediately deduce that for any f ∈ L1(T),

sup
j

|C̃
(y,0,0)
2j (f )| . Mf (x), (12.44)

and hence ∥∥∥sup
j

|C̃
(y,0,0)
2j (f )|

∥∥∥
1,∞

. ‖f ‖L1(T), (12.45)

explaining Observation 12.5.
Exactly the same argument can be carried out for the Walsh operator, giving∥∥sup

j

|C
{2j }j
W (f )|

∥∥∥
1,∞

. ‖Mf ‖1,∞ . ‖f ‖L1(T). (12.46)

Observation 12.6. Thus, we have identified a first reason of why Theorem 1.4 does not
hold for C

{nj }j
W : relying on (12.1)(I), we find that the discrete nature of the Walsh oper-

ator makes possible a “boundary effect” where a specific choice of {nj }j interacts with
the choice of the dyadic grid in the decomposition of the operator, allowing a single
scale behavior at the frequencies defined by the sequence. In this way, the key geometric
configurations of tiles defined by a CME cannot be present in the time-frequency decom-
position of C

{nj }j
W since this structure requires a superposition of multiple scales48 at each

frequency defined by—possibly a subsequence of—our lacunary sequence.

One can now ask the following natural

Question: Is it true that the only way in which the Walsh analogue of (12.40) can fail is
when the time-frequency decomposition of C

{nj }j
W lacks CME structures?

Answer: No!

48 The number of such scales must tend to infinity as the parameter k in (12.41) goes to infinity.
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Indeed, one can easily check that shifting the previous dyadic sequence, that is, defining
nj := 2j − 1 (j ∈ N), one has:

• the operator C
{2j−1}j
W maps L1 into L1,∞;

• the time-frequency decomposition of C
{2j−1}j
W does admit CME

structures.

(12.47)

To understand the general framework that allows the above answer (as well as the un-
derlying mechanism behind the example provided by (12.47)) we need to elaborate on a
subtle element that plays a key role in the proof of Main Theorem 1 and Theorem 1.4.

Preserving the usual notation and in particular identifying C{nj }j with the opera-
tor T used in the proof of Main Theorem 1, suppose we have constructed our CME
F =

⋃k
j=k/2+1 Fj with Fj =

⋃log k
l=1 F l

j . When next constructing the corresponding sets
{Fj }

k
j=k/2+1, there are two important properties that we want each set Fj to fulfill:

• for each P ∈ Fj the function Re(χFj T
∗

P (χ[0,1])) is positive;
• for each P ∈ F l

j one has |I ∗P ∩ Fj |/|IP | ≈ |IP ∩ Fj |/|IP | ≈ 2l |Fj |.
(12.48)

Decompose now F l
j =

⋃
m F l,m

j into maximal USGTF’s. Next, fix an F l,m
j and choose

a ∈ α(F l,m
j ); denote by F l,m

j (a) all the tiles P ∈ F l,m
j that live at frequency a. Recall that

F l,m
j [n] stands for those tiles P ∈ F l,m

j having A(P ) = A0(P ) = 2−n with n ∈ {2j−1
+

log log k, 2j }. Set now F l,m
j [n](a) := F l,m

j [n] ∩ F l,m
j (a). From our CME construction,

F l,m
j [n](a) has precisely one element; moreover, denoting by P l,mj (a) the unique element

in F l,m
j (a) with I

P
l,m
j (a)

∈ IBtm(F l
j ) one has

E(P ) = E(P
l,m
j (a)) ∀P ∈ F l,m

j (a). (12.49)

As a consequence of (12.48), if P ∈ F l,m
j [n](a) then

Re
(∫

χFj (x)T
∗

P (χ[0,1])(x) dx

)
≈

∫
χFj (x)|T

∗

P (χ[0,1])(x)| dx

≈ |I ∗P ∩ Fj |
|E(P )|

|IP |

(12.49)
≈ 2l |Fj | |E(P

l,m
j (a))|. (12.50)

It is now the moment to include the above relation into the following

Observation 12.7. The proof of our Theorem 1.4 involving the operator T ≈ C{nj }j

relies crucially on the fact that for each P ∈ F l,m
j (a) the quantity Re(

∫
χFj T

∗

P (χ[0,1])) has
the same sign and approximate size given by 2l |Fj | |E(P

l,m
j (a))|, a quantity independent

(at least for our construction of USGTF’s) of the scale and of the mass of the tile P .
Hence one immediately deduces that∣∣∣∣ ∑

P∈F l,m
j (a)

∫
χFj T

∗

P (χ[0,1])

∣∣∣∣ ≈ 2j2l |Fj | |E(P
l,m
j (a))|. (12.51)
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The analogue of (12.51) for the Walsh case would read∣∣∣ ∑
R∈R

Ru∈F l,m
j (a)

〈χFj , wRl 〉〈χ[0,1]wawRlχE(P l,mj (a))
〉χωRu (a)

∣∣∣
≈ 2j2l |Fj | |E(P

l,m
j (a))|. (12.52)

However, the above relation does not hold for arbitrary values of a ∈ N.
Indeed, taking {nr := 2r − 1}r∈N and a = a0 = 2r − 1 (for some large r ∈ N), we

appeal to (12.6)–(12.8) and (12.12) to deduce that∣∣∣ ∑
R∈R

Ru∈F l,m
j (a0)

〈χFj , wRl 〉〈χ[0,1]wa0wRl , χE(P l,mj (a0))
〉χωRu (a0)

∣∣∣
= |〈Wa0(χFj )−Wa0−22j−1+log log k (χFj ), χ[0,1]wa0χE(P l,mj (a0))

〉|

. sup
P∈F l,m

j

∫
IP
χFj

|IP |
|E(P

l,m
j (a0))| . 2l |Fj | |E(P

l,m
j (a0))|. (12.53)

This contradicts (12.51) for large enough j ∈ N.
By simple modifications of (12.12), one can see that (12.53) continues to hold for

many other choices of (frequencies within) lacunary sequences {nr}r that have some suit-
able dyadic structure. Some examples are given by {nr = 2r + m}r∈N (with m ∈ N
fixed) or more generally any lacunary sequence {nr}r∈N having the property that there
exists p ∈ N such that for any r ∈ N the dyadic expansion of nr has at most p non-zero
terms.49 All these examples have the property that

C
{nr }r
W maps L1 into L1,∞, (12.54)

which has been known for some time (see e.g. [20]). Indeed, based on an interesting
observation of Konyagin [20], one can find many other (classes of) sequences {nj }j for

which C
{nj }j
W maps L1 to L1,∞ boundedly. Exactly because of this peculiar behavior, in

his ICM address, Konyagin posed the following

Open Problem (OP I) ([22]). Find a necessary and sufficient condition on a sequence
{nj }j ⊆ N for which the associated Walsh–Carleson operator

C
{nj }j
W maps L1 to L1,∞. (12.55)

In view of the second item in (12.39) and of the discussion following it, it is natural to ask
if (12.55) can only hold for rather “exceptional” (lacunary) sequences as a manifestation
of a “boundary effect” due to the special algebraic and dyadic/discrete structures of the
Walsh system. In this context, we raise the following

49 Of course, in this latter case the constant appearing in the second to last inequality of (12.53)
depends on p.
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Open Problem (OP II). Decide if the Walsh analogue of Main Theorem 1 holds, that is,
if it is true that in (1.11), C

{nj }j
lac can be replaced by C

{nj }j
W .

However, due to the dichotomy (12.52)–(12.53), we now better understand what type
of obstacles we encounter when dealing with Open Problems I and II. For example, a
reasonable strategy in approaching OP II relies on the following

Observation 12.8. In order for Main Theorem 1 to hold in the Walsh case (or equiv-
alently, for our Open Problem II to be affirmatively decided) one needs to search for
lacunary sequences {nr}r for which

• there is a CME structure compatible with the time-frequency discretization of C{nr }rW ;
• once we identify a CME, relation (12.52) must be satisfied.

Turning to the Fourier case, we continue with the following

Observation 12.9. Notice the following antithesis:

• It is possible to use a single (time-frequency) dyadic grid to decompose the Carleson
operator. Indeed, (proceeding as in Section 3) one can write, for a generic operator
C
{nr }r
lac , the following equality:

C
{nr }r
lac =

∑
P∈P

CP . (12.56)

The key fact is that in this case CP are not projection operators of rank one, but convo-
lution operators of the form imposed by (3.3). Due to this specific form, once we fix a
certain frequency N(x) = a, all the adjoint operators C∗P with a ∈ ωP will oscillate at
the same frequency.
• In contrast, one can use a decomposition of the Carleson operator involving infinitely

many time-frequency “dyadic” grids. In the latter case, in the sense described in
(12.34)–(12.37) one has

Cf (x) ≈

∫ 1

0

∫ 1

0

∫ 1

0
C̃
(y,λ,µ)

N(x) f (x) dλ dµ dy (12.57)

with
C̃
(y,λ,µ)
ξ =

∑
P∈Py,λ,µ,+

CP,ξ , (12.58)

where the CP,ξ are rank one projection operators defined by

CP,ξf = 〈f, φPl 〉φPl (x)χωPu (ξ). (12.59)

Notice that unlike the previous case, if we now fix the frequency N(x) = a, the adjoint
operators {C∗P,a}P∈Py,λ,µ,+ will oscillate at pairwise distinct frequencies.



Pointwise convergence of Fourier series (I). On a conjecture of Konyagin 1721

Now the entire proof of our Main Theorem 1, including the construction of a CME, is
realised using a single dyadic time-frequency grid corresponding to the family of tiles P ≈
P0,0,0,+ and involving decomposition (12.56) as described in the first item above. Taking
now such a CME F and using the standard notation as before, assume that max{|IP | |
P ∈ F l,m

j (a)} = 2−m0 and min{|IP | | P ∈ F l,m
j (a)} = 2−m1 . Then, following the same

approach and in the same spirit as in (12.34)–(12.37) we obtain

∑
P∈F l,m

j (a)

CP (χFj )(x) ≈

∫ 1

0

∫ 1

0

∫ 1

0

m1∑
m̄=m0

∑
P∈Py,λ,µ,+m̄

〈χFj , φPl 〉

× φPl (x)χE(P l,mj (a))
(x)e−2πiaxχωPu (a) dλ dµ dy. (12.60)

Notice that while the RHS of (12.52) corresponds in the Fourier setting to∑
P∈P0,0,0,+

P∈F l,m
j (a)

〈χFj , φPl 〉〈φPl (·)e
−2πia·, χ

E(P
l,m
j (a))

(·)χ[0,1](·)〉χωPu (a), (12.61)

after the averaging process we get, using (12.60) and (12.51),

∑
P∈F l,m

j (a)

∫
CP (χFj )χ[0,1] ≈

∫ 1

0

∫ 1

0

∫ 1

0

m1∑
m̄=m0

∑
P∈Py,λ,µ,+m̄

〈χFj , φPl 〉

× 〈φPl (·)e
−2πia·, χ

E(P
l,m
j (a))

(·)χ[0,1](·)〉χωPu (a) dλ dµ dy

≈ 2j2l |Fj | |E(P
l,m
j (a))|. (12.62)

Thus we can now conclude with the following

Observation 12.10. We now understand the second reason why Theorem 1.4 does not
hold for C

{nj }j
W : while necessary, the existence50 of CME structures is not sufficient for

the Walsh analogue of (12.40). This is due to the combined effect of two facts:

• The CME structure has different frequency implications in the Fourier (“continu-
ous”) case and in the Walsh (“discrete”) case. Indeed, as hinted at in Observation
12.9, in the first case, all the operators {C∗P }P∈F l,m

j (a)
oscillate at the same fre-

quency a. In the second case, the operators {W ∗R}Ru∈F l,m
j (a)

defined by WRf (x) :=

〈f,wRl 〉wRl (x)χωRu |N(x)=a will oscillate at pairwise distinct frequencies. The latter
property is not due to the particular (algebraic) structure of the Walsh wave-packets,
but is due to the geometry of the tile discretization: if R̃ is any family of bitiles with
the property that there exists a ∈ R such that R ∈ R̃ implies a ∈ ωRu , then any two
tiles within the family {Rl}R∈R̃ are pairwise disjoint.

50 Relative to the time-frequency decomposition of C
{nj }j
W

.
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• Based on the algebraic properties of the Walsh wave packets (such as (12.7)–(12.12))
one can find counterexamples to the Walsh analogue of (12.51). However, as described
in Observation 12.7, relation (12.51) is of key importance in the proof of Theorem 1.4.

Finally, we notice that taking averages over discrete models makes the pointwise behavior
of the lacunary Carleson operator C{nj }j independent of the structure of the lacunary
sequence {nj }j .

13. Final remarks

1) We start with a discussion of Theorem 1.4. We will briefly present the relevant modi-
fications in the proof of Main Theorem 1 that are required in order to deal with a general
lacunary sequence. The key observation is that the mechanism involved in constructing
the CME F is independent of the specific choice of the lacunary sequence, and the only
thing that depends on {nj }j , and hence needs special care, is the construction of the sets
{Fj }

k
j=k/2+1.51 Indeed, it is natural to expect that the structure of the frequencies plays

a role in the corresponding structure of the sets. In the case of a perfectly dyadic se-
quence, once we constructed the multi-tower F =

⋃k
j=k/2+1 Fj and decomposed each

Fj =
⋃log k
l=1 F l

j and then each tower F l
j into maximal USGTF’s

⋃
m F l,m

j , taking for

simplicity j = k, we could arrange for (8.12) to hold for each I ∈ IBtm(F log k
k ) and thus

in turn we were able to construct Fk to obey (8.18). This further implied that

for any I ∈ IBtm(F log k
k ) the set I ∩ Fk

has a fractal structure (Cantor set) of the same size.
(13.1)

For an arbitrary lacunary sequence {nj }j we no longer aim at preserving the exact
form of (13.1). Instead, we seek for a good approximation of (13.1), meaning that we
want the sets I ∩ Fk to have fractal structure with “almost” the same (relative) size as I
ranges through IBtm(F log k

k ). The precise meaning of the above heuristic is explained in
what follows:

Let {nj }j be our favorite choice for a lacunary sequence. Fix as before k = 22K for
some large K ∈ N. We want to construct the sets {Fj }kj=k/2+1 such that the function

fk :=
1
k

k∑
j=k/2+1

1

|Fj | log log 1
|Fj |

χFj

obeys (1.11).
Now since C

{nj }j
lac is a maximal operator and we are interested in a lower bound for

its L1,∞ norm, we can always restrict our attention to any subsequence of the initial {nj }j .

Taking K̄ := 222k
and possibly passing to a subsequence, we can assume that n1 > 1 and

nj+1/nj > 2K̄ ∀j ∈ N. (13.2)

51 This should be integrated in the line of thought supporting Observation 7.3.
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We now adapt (4.4) to our new context by requiring

Image(N) ⊆ {nK̄+m}m∈{0,log k 22k−1}
. (13.3)

With this done, we follow line by line the construction of our CME F :=
⋃k
l=k/2+1 Fl

in Section 7 with the only trivial change regarding the frequency locations of our tiles in

each USGTF: whenever we see a frequency α(P ) = 2222k

+ 100m, we replace it with the
corresponding analogue α(P ) = nK̄+m.

Having constructed our CME we now adapt the construction of the sets {Fj }kj=k/2+1
in Section 8.1 to the new setting. For simplicity and space constraints we only focus on
the case j = k. As in Section 8.1, we fix I ∈ IBtm(F log k

k ) and define S[I,F1
k ] and

UF1
k
[I ](a) exactly as in (8.8)–(8.11).
Note that (8.12) ceases to remain true; however, based on the fact that for any P ∈ F

(in particular A0(P ) ≤ 1/2) one has |IP | > 2−22k
and hence 1/nj � |I | for any j ≥ K̄ ,

we deduce that

• for all a ∈ α(Fk),(
1
2
−

1

2K̄/2

)
|I | ≤ |UF1

k
[I ](a)| ≤

(
1
2
+

1

2K̄/2

)
|I |; (13.4)

• for all a, b ∈ α(F1
k ) with a < b,(

1
2
−

1

2K̄/2

)
|UF1

k
[I ](a)| ≤ |UF1

k
[I ](a) ∩ UF1

k
[I ](b)| ≤

(
1
2
+

1

2K̄/2

)
|UF1

k
[I ](a)|.

(13.5)

Notice now that (13.5) becomes a very good approximation of (8.12).
Following Section 8.1, we require that the set Fk obeys in a first instance (8.13) and

then the more general (8.14). In fact, we can now slightly simplify the initial dyadic
scenario and directly define Fk as the set obeying:

• Fk =
⋃
I∈IBtm(F log k

k )
I ∩ Fk;

• I ∩ Fk :=
⋂log k
l=1

⋂
a∈α(F l

k)
UF l

k
[I ](a).

Making essential use of (13.4) and (13.5) we then get the analogue of (8.20):(
1
2
−

1

2K̄/2

)#α(Fk)
≤
|I ∩ Fk|

|I |
≤

(
1
2
+

1

2K̄/2

)#α(Fk)
, (13.6)

which from the choice of K̄ further implies that

1
e

1

2log k 22k−1
≤
|I ∩ Fk|

|I |
≤ e

1

2log k 22k−1
. (13.7)

In particular, since |ĨBtm(F log k
k )| ≈ 2− log k

= 1/k, we get

|Fk| ≈
1
k

2− log k 22k−1
. (13.8)
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Notice now that from the above construction one gets another key property that our
set Fk must satisfy:

|IP ∩ Fk|/|IP | ≈ 2l |Fk| ∀l ∈ {1, . . . , log k} and ∀P ∈ F l
k. (13.9)

The above process can be repeated with the obvious changes for a general j ∈ {k/2+1, k}
and in this situation (13.7)–(13.9) become respectively

1
e

1

2log k 22j−1
≤
|I ∩ Fj |

|I |
≤ e

1

2log k 22j−1
, (13.10)

|Fj | ≈
1
k

2− log k 22j−1
, (13.11)

|IP ∩ Fj |/|IP | ≈ 2l |Fj | ∀l ∈ {1, . . . , log k} and ∀P ∈ F l
j . (13.12)

Thus at the end of this process one is able to construct the desired sequence of
sets {Fj }kj=k/2+1.

Finally, based again on the properties (13.2), (13.4) and (13.5) one can easily check
that the fundamental Claim in Section 8.3, more precisely (8.24), holds.

With this done, the reasonings in Sections 9 and 10 can be repeated, concluding the
proof of Theorem 1.4.

2) Recalling the description of the CME F =
⋃k
j=k/2+1 Fj (see Section 7), this remark

seeks to explain why we chose the height of each tower Fj to be of the order log k. As
one can notice, writing Fj =

⋃m
l=1 F l

j , a first impulse would be to aim for a height m
as large as possible (e.g. m = (log k)2), hoping that this would increase the lower bound
of the L1,∞ norm of Clacfk . However, in the view of the discussion in Section 6, we
immediately notice that this is not the case. Indeed, based on (6.10), (6.11) and (6.14) and
on the fact that

{Nj ≥ m} ⊂ Basis(Fm
j ) ⊂ {Nj > m/2}, (13.13)

we notice that there exists an absolute constant c > 0 such that ifm > C log k with C > 0
an absolute constant large enough then

k∑
j=k/2+1

|Basis(Fm
j )| ≤ ke

−cm
= o(k), (13.14)

and thus
⋃k
j=k/2+1 Basis(Fm

j ) becomes an “exceptional” (removable) set that conse-
quently has a negligible impact on the size of ‖Clacfk‖1,∞. From this, one further no-
tices the strong connection between the tile structure maximizing ‖Clacfk‖1,∞ and the
one corresponding to the maximal size of ‖N [k]‖1,∞.

3) Corollaries 1.6, 1.7, 1.10 and 1.11 are straightforward applications of the first part of
Main Theorem 2.

4) For Corollary 1.13, preserving the notation in Section 7, one simply takes Pα := F1
k

and f = χFk . We leave further details to the interested reader.
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5) Our entire paper relies on a completely new idea revealing the deep relationship be-
tween the behavior of the grand maximal counting function and the pointwise conver-
gence of Fourier series near L1. This is the first result in the literature regarding this topic
that provides a counterexample using multiscale analysis of wave-packets. All the pre-
vious counterexamples focused on identifying and working directly with input functions
and on involved computations with local pointwise estimates of (sub)sequences of par-
tial Fourier sums applied to such input functions. In our case, we change the point of
view, by first designing a geometric construction of tiles that encode both the nature of
the lacunary sequence (reflected in their frequencies) and the extremizer property relative
to the L1,∞ norm of the grand maximal counting function. The input functions are now
naturally obtained as a direct byproduct of this construction, relying on the alignment of
the oscillations requirement.

Thus, the entire paper is not about a technical log log log logL factor addition but is
about a conceptual advancement that identifies a structural mechanism in approaching
the problem of pointwise convergence of Fourier series near L1.

14. Appendix

In this section we review some of the basic facts concerning rearrangement invariant
(quasi-)Banach spaces. We follow closely the description in [7] which further relies
on [4].

Denote by L0(T) the topological linear space of all periodic Lebesgue-measurable
functions equipped with the topology of convergence in measure. Given f ∈ L0(T), we
define its distribution function as

mf (λ) := m({x ∈ T | |f (x)| > λ}), (14.1)

where m stands for the Lebesgue measure on T.
The decreasing rearrangement of f is defined as

f ∗(t) := inf {λ ≥ 0 | mf (λ) ≤ t}, t ≥ 0. (14.2)

All the quasi-Banach spaces X mentioned in our paper are considered as subspaces
of L0(T).

We say that X is a (quasi-)Banach lattice if the following properties are satisfied:

– there exists h ∈ X with h > 0 a.e.;
– if |f | ≤ |g| a.e. with g ∈ X and f ∈ L0(T) then ‖f ‖X ≤ ‖g‖X.

A (quasi-)Banach lattice (X, ‖ · ‖X) is called a rearrangement invariant (quasi-)Banach
space if given f ∈ X and g ∈ L0(T) with mf = mg one has g ∈ X and ‖f ‖X = ‖g‖X.

If X is a r.i. (quasi-)Banach space and χA stands for the characteristic functions of a
measurable set A ⊆ T, then the function

ϕX(t) = ‖χA‖X with m(A) = t ∈ [0, 1] (14.3)

is called the fundamental function of X.
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In what follows we introduce two classes of r.i. Banach spaces: the Marcinkiewicz
and the Lorentz spaces.

We say that ϕ : T→ R+ is a quasi-concave function if:

– ϕ(0) = 0 and ϕ(t) > 0 for all t ∈ (0, 1);
– the functions ϕ(t) and ϕ∗(t) = t/ϕ(t) are non-decreasing on T.

It is worth noticing that, for our purposes here, we can always replace a quasi-concave
function ϕ with its least concave majorant ϕ̃, since ϕ̃(t) ≤ 2ϕ(t) ≤ 2ϕ̃(t) for all t ∈ T.

The Marcinkiewicz space Mϕ is the r.i. Banach space of all f ∈ L0(T) such that

‖f ‖Mϕ := sup
t∈(0,1]

1
ϕ(t)

∫ t

0
f ∗(s) ds <∞. (14.4)

Defining a Lorentz space always requires first defining a function ϕ : T → [0,∞)
with the following properties:

• ϕ(0) = 0;
• ϕ is non-decreasing;
• ϕ is concave.

(14.5)

With ϕ as above, we define the Lorentz space 3ϕ as the r.i. Banach space of all the
functions f ∈ L0(T) such that

‖f ‖3ϕ :=

∫ 1

0
f ∗(s) dϕ(s) <∞. (14.6)

Finally, we close with the following observation: if X is a r.i. Banach space with funda-
mental function ϕ, then

• ϕ is quasi-concave;
• the following continuous inclusion holds:

3ϕ̃ ↪→ X ↪→ Mϕ∗ . (14.7)
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