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Abstract. In this article we further the study of noncommutative numerical motives, initiated in
[30, 31]. By exploring the change-of-coefficients mechanism, we start by improving some of the
main results of [30]. Then, making use of the notion of Schur-finiteness, we prove that the category
NNum(k)F of noncommutative numerical motives is (neutral) super-Tannakian. As in the com-
mutative world, NNum(k)F is not Tannakian. In order to solve this problem we promote periodic
cyclic homology to a well-defined symmetric monoidal functor HP∗ on the category of noncommu-
tative Chow motives. This allows us to introduce the correct noncommutative analogues CNC and
DNC of Grothendieck’s standard conjectures C andD. Assuming CNC , we prove that NNum(k)F
can be made into a Tannakian category NNum†(k)F by modifying its symmetry isomorphism con-
straints. By further assuming DNC , we neutralize the Tannakian category Num†(k)F using HP∗.
Via the (super-)Tannakian formalism, we then obtain well-defined noncommutative motivic Galois
(super-)groups. Finally, making use of Deligne–Milne’s theory of Tate triples, we construct explicit
morphisms relating these noncommutative motivic Galois (super-)groups to the classical ones as
suggested by Kontsevich.
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1. Introduction

Noncommutative motives

Over the past two decades Bondal, Drinfeld, Kaledin, Kapranov, Kontsevich, Orlov, Van
den Bergh, and others, have been promoting a broad noncommutative (algebraic) geome-
try program where “geometry” is performed directly on dg categories: consult [6, 7, 8, 16,
17, 20, 24, 25, 26, 27]. In this vein, Kontsevich introduced the category NChow(k)F of
noncommutative Chow motives (over a base commutative ring k and with coefficients in a
field F ; see §3.1). Recently, making use of Hochschild homology, the authors introduced
the category NNum(k)F of noncommutative numerical motives (see §3.2). Under mild as-
sumptions on k and F (see Theorem 5.6) the category NNum(k)F is abelian semisimple.
The precise relation between NChow(k)Q, NNum(k)Q, and the classical categories of
Chow and numerical motives can be depicted as follows

Chow(k)Q
τ
��uu

Num(k)Q
τ
��

Chow(k)Q/−⊗Q(1)

uu

R // NChow(k)Q

ww
Num(k)Q/−⊗Q(1)

RN // NNum(k)Q

(1.1)

Here, Q(1) is the Tate motive, NChow(k)Q/−⊗Q(1) and Num(k)Q/−⊗Q(1) the orbit cate-
gories (see §4) associated to the auto-equivalence−⊗Q(1), and R and RN fully-faithful
functors; consult [30] (or the survey [36]) for further details.

Motivating questions

In the commutative world, the category Num(k)F of numerical motives is known to be
not only abelian semisimple but also (neutral) super-Tannakian. Moreover, assuming the
standard conjecture C (or even the sign conjecture C+), Num(k)F can be made into a
Tannakian category Num†(k)F by modifying its symmetry isomorphism constraints (see
Jannsen [19]). By further assuming the standard conjecture D, the classical Weil coho-
mologies can be used to neutralize the Tannakian category Num†(k)F (see [2, §6]). As
explained in §7, the (super-)Tannakian formalism provides us then with well-defined mo-
tivic affine (super-)group schemes sGal(Num(k)F ) and Gal(Num†(k)F ) encoding deep
arithmetic/geometric properties of smooth projective k-schemes. This circle of results
and conjectures in the commutative world leads us naturally to the following questions in
the noncommutative world:

Question I. Is the category NNum(k)F (neutral) super-Tannakian?
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Question II. Does the standard conjecture C (or the sign conjecture C+) admit a non-
commutative analogue CNC? Does CNC allow us to make NNum(k)F into a Tannakian
category NNum†(k)F ?

Question III. Does the standard conjectureD admit a noncommutative analogueDNC?
Does DNC allow us to neutralize NNum†(k)F ?

Question IV. Assuming that Questions I, II and III have affirmative answers, how
do the noncommutative motivic affine (super-)group schemes hence obtained relate to
sGal(Num(k)F ) and Gal(Num†(k)F )?

Statement of results

By exploring the change-of-coefficients mechanism we start by improving the main re-
sults of [30] concerning the semisimplicity of the category NNum(k)F and the relation
between the commutative and the noncommutative world (see Proposition 5.4 and Theo-
rem 5.6). Then, making use of the notion of Schur-finiteness (see §6), we answer Ques-
tion I affirmatively.

Theorem 1.2. Assume that F is a field of characteristic zero and that k and F are as in
Theorem 5.6. Then the category NNum(k)F is super-Tannakian. If F is moreover alge-
braically closed, then NNum(k)F is neutral super-Tannakian.

Theorem 1.2 (with F algebraically closed) combined with the super-Tannakian formal-
ism gives rise to an affine super-group scheme sGal(NNum(k)F ), which we will call the
noncommutative motivic Galois super-group. Among other consequences, NNum(k)F
is ⊗-equivalent to the category of finite-dimensional F -valued super-representations of
sGal(NNum(k)F ).

The category NNum(k)F is not Tannakian since the rank of each one of its objects is
not necessarily a nonnegative integer. In order to solve this problem, we start by promot-
ing periodic cyclic homology to a well-defined symmetric monoidal functor HP∗ on the
category of noncommutative Chow motives (see Theorem 9.2). Then, given a smooth and
proper dg category A in the sense of Kontsevich (see §2.1), we formulate the following
conjecture:

Noncommutative standard conjecture CNC(A). The Künneth projectors

π±A : HP∗(A)� HP∗
±
(A) ↪→ HP∗(A)

are algebraic, i.e. π±A = HP∗(π±A), with π±A noncommutative correspondences.

As in the commutative world, the noncommutative standard conjecture CNC is stable
under tensor products, i.e. CNC(A)+ CNC(B)⇒ CNC(A⊗k B) (see Proposition 10.2).
Its relation to the sign conjecture C+ (see §10) is the following: given a quasi-compact
and quasi-separated k-scheme Z, it is well-known that the derived category Dperf(Z) of

perfect complexes of OZ-modules admits a natural dg enhancement Ddg
perf(Z) (consult

Lunts–Orlov [29] or [12, Example 4.5]). When Z is moreover smooth and proper, the dg
category Ddg

perf(Z) is smooth and proper in the sense of Kontsevich.
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Theorem 1.3. Let k and F be fields of characteristic zero with k a field extension of F .
Then C+(Z)⇒ CNC(Ddg

perf(Z)).

Intuitively speaking, Theorem 1.3 shows us that when restricted to the commutative
world, the noncommutative standard conjecture CNC is more likely to hold than the sign
conjecture C+ (and therefore than the standard conjecture C). Hence, it answers the first
part of Question II affirmatively. Our answer to the second part is the following:

Theorem 1.4. Assume that k is a field of characteristic zero, and that F is a field exten-
sion of k or vice versa. Then, if the noncommutative standard conjecture CNC holds, the
category NNum(k)F can be made into a Tannakian category NNum†(k)F by modifying
its symmetry isomorphism constraints.

In order to answer Question III, we start by observing that the F -linearized Grothendieck
group K0(A)F of every smooth and proper dg category A is endowed with two well-
defined equivalence relations: one associated to periodic cyclic homology (∼hom) and
another one associated to numerical equivalence (∼num) (consult §12 for details). This
motivates the following conjecture:

Noncommutative standard conjecture DNC(A). The following equality holds:

K0(A)F /∼hom = K0(A)F /∼num.

Its relation to the standard conjecture D (see §12) is the following.

Theorem 1.5. Let k and F be fields of characteristic zero with k a field extension of F .
Then D(Z)⇒ DNC(Ddg

perf(Z)).

Similarly to Theorem 1.3, Theorem 1.5 shows us that when restricted to the commuta-
tive world, the noncommutative standard conjecture DNC is more likely to hold than the
standard conjecture D. Hence, it answers the first part of Question III affirmatively. Our
answer to the second part is the following:

Theorem 1.6. Let k be a field of characteristic zero and F a field extension of k. If the
noncommutative standard conjectures CNC andDNC hold, then NNum†(k)F is a neutral
Tannakian category. Moreover, an explicit fiber functor neutralizing NNum†(k)F is given
by periodic cyclic homology.

Theorem 1.6 combined with the Tannakian formalism gives rise to an affine group
scheme Gal(NNum†(k)F ), which we will call the noncommutative motivic Galois group.
Since by Theorem 5.6 the category NNum†(k) is not only abelian but moreover semi-
simple, the affine group scheme Gal(NNum†(k)F ) is pro-reductive, i.e. its unipotent
radical is trivial (see [2, §2.3.2]). Similarly to the super-Tannakian case, the category
NNum†(k)F is ⊗-equivalent to the category of finite-dimensional F -valued representa-
tions of Gal(NNum†(k)F ).

Finally, making use of all the above results as well as of Deligne–Milne’s theory of
Tate triples, we answer Question IV as follows:
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Theorem 1.7. Let k be a field of characteristic zero. If the standard conjectures C andD
as well as the noncommutative standard conjectures CNC andDNC hold, then there exist
well-defined faithfully flat morphisms (see [39, §15.5])

sGal(NNum(k)k)� Ker(t : sGal(Num(k)k)� Gm), (1.8)

Gal(NNum†(k)k)� Ker(t : Gal(Num†(k)k)� Gm). (1.9)

Here, Gm denotes the multiplicative group scheme, t is induced by the fully-faithful inclu-
sion of the category of Tate motives, and the affine (super-)group schemes are computed
with respect to periodic cyclic homology and de Rham cohomology.

Theorem 1.7 was suggested by Kontsevich [24]. Intuitively speaking, it shows us that the
⊗-symmetries of the commutative world which can be lifted to the noncommutative world
are precisely those that become trivial when restricted to Tate motives. The difficulty of
replacing k by a more general field of coefficients F lies in the lack of an appropriate
“noncommutative étale/Betti cohomology”.

Conventions. Throughout the article, we will reserve the letter k for the base commuta-
tive ring and the letter F for the field of coefficients. The pseudo-abelian envelope con-
struction will be denoted by (−)\.

2. Dg categories

In this section we collect the notions and results concerning dg categories which are used
throughout the article. For further details we invite the reader to consult Keller’s ICM
address [22]. Let C(k) the category of (unbounded) cochain complexes of k-modules.
A differential graded (= dg) category A is a category enriched over C(k). Concretely,
the morphisms sets A(x, y) are complexes of k-modules and the composition operation
fulfills the Leibniz rule: d(f ◦g) = d(f )◦g+(−1)deg(f )f ◦d(g). A dg functor is a functor
which preserves the differential graded structure. The category of small dg categories will
be denoted by dgcat(k).

Let A be a dg category. Its opposite dg category Aop has the same objects and com-
plexes of morphisms given by Aop(x, y) := A(y, x). A right dg A-module (or simply
an A-module) is a dg functor Aop

→ Cdg(k) with values in the dg category of com-
plexes of k-modules. We will denote by C(A) the category of A-modules and by D(A)
the derived category of A, i.e. the localization of C(A) with respect to the class of quasi-
isomorphisms (consult [22, §3] for details). The full triangulated subcategory of D(A) of
compact objects [34, Def. 4.2.7] will be denoted by Dc(A).

As proved in [38, Thm. 5.3], the category dgcat(k) carries a Quillen model struc-
ture whose weak equivalences are the derived Morita equivalences, i.e. the dg functors
A → B which induce an equivalence D(A) ∼−→ D(B) on the associated derived cate-
gories. The homotopy category hence obtained will be denoted by Hmo(k).

The tensor product of k-algebras extends naturally to dg categories, giving rise to a
symmetric monoidal structure −⊗k − on dgcat(k). The ⊗-unit is the dg category k with
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one object and with k as the dg algebra of endomorphisms (concentrated in degree zero).
As explained in [22, §4.3], the tensor product of dg categories can be derived − ⊗L

−

thus giving rise to a symmetric monoidal structure on Hmo(k).
Let A and B be two dg categories. A A-B-bimodule is a dg functor A ⊗L

k Bop
→

Cdg(k), or in other words an (Aop
⊗

L
k B)-module. Let rep(A,B) be the full triangulated

subcategory of D(Aop
⊗

L
k B) spanned by the (cofibrant) A-B-bimodules X such that for

every object x ∈ A the associated B-module X(x,−) belongs to Dc(B).

2.1. Smooth and proper dg categories

Following Kontsevich [24, 25], a dg category A is called smooth if the A-A-bimodule

A(−,−) : A⊗L
k Aop

→ Cdg(k), (x, y) 7→ A(x, y),

belongs to Dc(Aop
⊗

L
k A). It is called proper if for each ordered pair (x, y) of objects,

the complex A(x, y) of k-modules belongs to Dc(k). As proved in [12, Thm. 4.8], the
smooth and proper dg categories can be conceptually characterized as being precisely the
dualizable (or rigid) objects of the symmetric monoidal category Hmo(k).

3. Noncommutative motives

In this section we recall the construction of the categories of noncommutative Chow and
numerical motives. For the mixed case consult [11, 12, 35].

3.1. Noncommutative Chow motives

The rigid symmetric monoidal category NChow(k)F of noncommutative Chow motives
(over a base commutative ring k and with coefficients in a field F ) was proposed by
Kontsevich [24] and developed in full detail in [37, 38]. It is defined as the pseudo-abelian
envelope of the category:

(i) whose objects are the smooth and proper dg categories;
(ii) whose morphisms from A to B are given by the F -linearized Grothendieck group

K0(Aop
⊗

L
k B)F ;

(iii) whose composition law is induced by the (derived) tensor product of bimodules.

Its symmetric monoidal structure is induced by the (derived) tensor product of dg cate-
gories. In analogy with the commutative world, the morphisms of NChow(k)F will be
called noncommutative correspondences. By definition a noncommutative Chow motive
is then a pair (A, e), where A a smooth and proper dg category and e an idempotent of
the F -algebraK0(Aop

⊗
L
k A)F . When e = [A(−,−)], we will simply write A instead of

(A, [A(−,−)]).
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3.2. Noncommutative numerical motives

The rigid symmetric monoidal category NNum(k)F of noncommutative numerical mo-
tives (over a base commutative ring k and with coefficients in a field F ) was constructed1

by the authors [30]. Let (A, e) and (B, e′) be two noncommutative Chow motives and

X =
(
e ◦

[∑
i

aiXi

]
◦ e′

)
∈ HomNChow(k)F ((A, e), (B, e

′)),

Y =
(
e′◦
[∑

j

bjYj

]
◦ e
)
∈ HomNChow(k)F ((B, e

′), (A, e))

two noncommutative correspondences. Recall from the above thatXi is anA-B-bimodule,
that Yj is a B-A-bimodule, and that the sums are indexed by a finite set. The intersection
number 〈X · Y 〉 of X with Y is given by the formula∑

i,j

ai · bj · [HH(A;Xi ⊗L
B Yj )] ∈ K0(k)F ,

where [HH(A;Xi ⊗L
B Yj )] denotes the class in K0(k)F of the Hochschild homology

complex of A with coefficients in the A-A-bimodule Xi ⊗L
B Yj . A noncommutative cor-

respondence X is called numerically equivalent to zero if for every noncommutative cor-
respondence Y the intersection number 〈X · Y 〉 is zero. As proved in [30, Thm. 1.5], the
noncommutative correspondences which are numerically equivalent to zero form a ⊗-
ideal N of the category NChow(k)F . Moreover, N is the largest ⊗-ideal of NChow(k)F
(distinct from the entire category). The category of noncommutative numerical motives
NNum(k)F is then by definition the pseudo-abelian envelope of the quotient category
NChow(k)F /N .

4. Orbit categories

In this section (which is of independent interest) we recall the notion of an orbit category
and describe its behavior with respect to four distinct operations. In what follows, F will
be a field, (C,⊗, 1) an F -linear, additive, rigid symmetric monoidal category, and O ∈ C
a ⊗-invertible object.

As explained in [37, §7], we can then consider the orbit category C/−⊗O. It has the
same objects as C and morphisms given by

HomC/−⊗O (X, Y ) :=
⊕
j∈Z

HomC(X, Y ⊗O⊗j ). (4.1)

The composition law is induced by the one on C. By construction, C/−⊗O is F -linear,
additive, rigid symmetric monoidal (see [37, Lemma 7.3]), and comes equipped with a
canonical projection ⊗-functor τ : C → C/−⊗O. Moreover, τ is endowed with a natural
2-isomorphism τ ◦ (−⊗O) ∼−→ τ and is 2-universal among all such functors.

1 Kontsevich [24] had previously introduced a category NCnum(k)F of noncommutative numer-
ical motives. However, the authors have recently proved that NCnum(k)F and NNum(k)F are in
fact ⊗-equivalent (see [31]).
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Change of coefficients

Recall the change-of-coefficients mechanism (see §5).

Lemma 4.2. Let K be a field extension of F . Then the canonical functor

(C/−⊗O)⊗F K
∼
−→ (C ⊗F K)/−⊗O

is a ⊗-equivalence.

Proof. The proof follows from description (4.1) and from the fact that the functor
−⊗F K , from F -vector spaces to K-vector spaces, commutes with arbitrary sums. ut

Pseudo-abelian envelope

The pseudo-abelian envelope C\ of C is defined as follows: the objects are the pairs (X, e)
where X ∈ C and e is an idempotent of the F -algebra EndC(X), and the morphisms are
given by

HomC\((X, e), (Y, e
′)) := e ◦ HomC(X, Y ) ◦ e

′.

Composition is naturally induced by C. The symmetric monoidal structure on C extends
naturally to C\ by the formula (X, e)⊗ (Y, e′) := (X ⊗ Y, e ⊗ e′).

Lemma 4.3. We have a fully-faithful, F -linear, additive, ⊗-functor

C\/−⊗O → (C/−⊗O)\, (X, e) 7→ (X, τ(e)). (4.4)

Moreover, the induced functor τ \ : C\→ (C/−⊗O)\ factors through (4.4).

Proof. The fact that (4.4) is F -linear, additive, and symmetric monoidal is clear. Let us
show that it is moreover fully-faithful. Given objects (X, e) and (Y, e′) in C\, we have

HomC\/−⊗O ((X, e), (Y, e
′)) =

⊕
j∈Z

e ◦ HomC(X, Y ⊗O⊗j ) ◦ (e′ ⊗ idO⊗j ), (4.5)

where e ⊗ idO⊗j is an idempotent of Y ⊗O⊗j . On the other hand,

Hom(C/−⊗O)\((X, τ(e)), (Y, τ (e
′))) = τ(e) ◦

⊕
j∈Z

HomC(X, Y ⊗O⊗j ) ◦ τ(e′). (4.6)

The composition operation of the orbit category C/−⊗O allows us to conclude that (4.5) =
(4.6), which implies that (4.4) is fully-faithful. The fact that τ \ factors through (4.4) is now
clear. ut
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Quotient categories

Lemma 4.7. Let H : C/−⊗O → D be an F -linear, additive ⊗-functor. Then we obtain a
full, F -linear, additive ⊗-functor

(C/Ker)/−⊗O → (C/−⊗O)/Ker(H), X 7→ X, (4.8)

where Ker denotes the kernel of the composed functor C τ
−→ C/−⊗O

H
−→ D. Moreover, the

induced functor C/Ker→ (C/−⊗O)/Ker(H) factors through (4.8).

Proof. The fact that the functor (4.8) is F -linear, additive, and symmetric monoidal
is clear. In order to show that it is moreover full, note that every morphism [f ] =
[{fj }j∈Z] ∈ Hom(C/−⊗O)/Ker(H)(X, Y ), with {fj }j∈Z ∈

⊕
j∈Z HomC(X, Y ⊗ O⊗j ) ad-

mits a canonical lift given by f̃ = {[fj ]}j∈Z ∈ Hom(C/Ker)/−⊗O (X, Y ), with {[fj ]}j∈Z ∈⊕
j∈Z HomC/Ker(X, Y ⊗ O⊗j ). That the induced functor C/Ker → (C/−⊗O)/Ker(H)

factors through (4.8) is now clear. ut

Change of symmetry

Recall the general procedure (−)† of changing the symmetry isomorphism constraints of
a symmetric monoidal category (see Proposition 11.7).

Lemma 4.9. Let H : C → sVect(F ) be an F -linear ⊗-functor with values in the cate-
gory of finite-dimensional super F -vector spaces. If for every object X ∈ C, the Künneth
projectors π±X : H(X) � H±(X) ↪→ H(X) can be written as π±X = H(π±X) with
π±X ∈ EndC(X), then the identity functor is a ⊗-equivalence

C†/−⊗O
∼
−→ (C/−⊗O)†.

Proof. Recall from [37, Lemma 7.3] that the symmetry isomorphism constraints cX,Y
of the category C/−⊗O are the image of those of C under the projection functor τ :
C → C/−⊗O. Similarly, the endomorphisms π+X of C/−⊗O are the image of those of C
under τ . The conclusion now follows from the fact that the new symmetry isomorphism
constraints are c†

X,Y := cX,Y ◦ (eX ⊗ eY ) with eX = 2 · π+X − idX, and from the fact that
the projection functor τ is symmetric monoidal. ut

5. Change of coefficients

In this section, we explore the change-of-coefficients mechanism. This will allow us
to improve the main results of [30] concerning the semisimplicity of the category
NNum(k)F and the relation between the commutative and the noncommutative world
(see Proposition 5.4 and Theorem 5.6). In what follows, F will be a field,K a field exten-
sion of F , and (C,⊗, 1) an F -linear, additive, rigid symmetric monoidal category such
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that EndC(1) ' F . These data allow us to consider a new category C ⊗F K . It has the
same objects as C and morphisms given by

HomC⊗FK(X, Y ) := HomC(X, Y )⊗F K.

By construction, it is K-linear, additive, rigid symmetric monoidal, and such that
EndC⊗FK(1) ' F ⊗F K ' K . Moreover, it comes equipped with a canonical F -linear
symmetric monoidal functor C → C ⊗F K .

Quotient categories

Recall from [3, Lemma 7.1.1] that the formula

NC(X, Y ) := {f ∈ HomC(X, Y ) | ∀g ∈ HomC(Y,X), tr(g ◦ f ) = 0}

defines a ⊗-ideal NC of C, where tr stands for the categorical trace. Moreover, NC can
be characterized as the largest ⊗-ideal of C (distinct from the entire category; see [3,
Prop. 7.1.4]). As proved in [10, Prop. 1.4.1], the change-of-coefficients mechanism is
well-behaved with respect to this ⊗-ideal, i.e. the canonical functor

(C/NC)⊗F K
∼
−→ (C ⊗F K)/NC⊗FK (5.1)

is an additive ⊗-equivalence of categories.

Motives versus noncommutative motives

As explained in §3.1, the category NChow(k)F of noncommutative Chow motives is
F -linear, additive, and rigid symmetric monoidal. When k is furthermore local (or more
generally when K0(k) = Z), we have

EndNChow(k)F (k) ' K0(k
op
⊗

L
k k)F ' K0(k)F ' F.

By construction we then observe that the canonical functor

(NChow(k)F ⊗F K)\
∼
−→ NChow(k)K (5.2)

is an additive ⊗-equivalence of categories. By combining (5.1) with (5.2), we obtain the
additive ⊗-equivalence of categories

(NNum(k)F ⊗F K)\
∼
−→ NNum(k)K . (5.3)
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Proposition 5.4. Let k and F be fields with F of characteristic zero. Then by applying
the change-of-coefficients construction −⊗Q F to (1.1) we obtain the following diagram
of F -linear, additive, symmetric monoidal functors:

Chow(k)F
τ
��uu

Num(k)F
τ
��

Chow(k)F /−⊗Q(1)

uu

R // NChow(k)F

ww
Num(k)F /−⊗Q(1)

RN // NNum(k)F

(5.5)

where the functors τ are faithful and the functors R and RN are fully-faithful.

Proof. As explained in [2, §4.2.2] we have ⊗-equivalences

(Chow(k)Q ⊗Q F)
\ ∼
−→ Chow(k)F , (Num(k)Q ⊗Q F)

\ ∼
−→ Num(k)F .

By combining Lemmas 4.2 and 4.3 we obtain induced fully-faithful functors

(Chow(k)Q ⊗Q F)
\
→ (Chow(k)Q ⊗Q F)

\/−⊗Q(1)→ ((Chow(k)Q/−⊗Q(1))⊗Q F)
\,

(Num(k)Q ⊗Q F)
\
→ (Num(k)Q ⊗Q F)

\/−⊗Q(1)→ ((Num(k)Q/−⊗Q(1))⊗Q F)
\.

Hence, the conclusion follows from the above ⊗-equivalences (5.2) and (5.3). ut

Semisimplicity

In this subsection we switch the roles of F and K , i.e. we assume that F is a field exten-
sion of K .

Theorem 5.6. Assume one of the following two conditions holds:

(i) The base ring k is local (or more generallyK0(k) = Z) and F is a k-algebra; a large
class of examples is given by taking k = Z and F an arbitrary field.

(ii) The base ring k and the field F are two field extensions of a (nontrivial) field K;
a large classe of examples is given by taking K = F = Q and k a field of character-
istic zero, or K = Q, F = Q, and k a field of characteristic zero.

Then the category NNum(k)F is abelian semisimple. Moreover, if J is a ⊗-ideal
in NChow(k)F for which the pseudo-abelian envelope of the quotient category
NChow(k)F /J is abelian semisimple, then J agrees with N .

Remark 5.7. Theorem 5.6 extends the original semisimplicity result [30, Thm. 1.9]. The
latter is obtained from the former by taking K = F .

Proof. Condition (i) is the same as the one of [30, Thm. 1.9]. Hence, let us assume (ii)
holds. Since k is a field extension of K we conclude by [30, Thm. 1.9] that the category
NNum(k)K is abelian semisimple. By hypothesis, F is also a field extension of K and so
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by (5.3) (with F and K switched) we obtain an equivalence of categories

(NNum(k)K ⊗K F)\
∼
−→ NNum(k)F .

In order to prove that NNum(k)F is abelian semisimple it suffices then to show that for
every object N ∈ NNum(k)K ⊗K F , the F -algebra EndNNum(k)K⊗KF (N) of endomor-
phisms is finite-dimensional and semisimple (see [19, Lemma 2]). Note that we have a
natural isomorphism

EndNNum(k)K⊗KF (N) ' EndNNum(k)K (N)⊗K F. (5.8)

The category NNum(k)K is abelian semisimple and so the K-algebra EndNNum(k)K (N)

is finite-dimensional and its Jacobson radical is trivial. By (5.8), the F -algebra
EndNNum(k)K⊗KF (N) is also finite-dimensional. Moreover, since the Jacobson radical of
EndNNum(k)K⊗KF (N) is obtained from the one of EndNNum(k)K (N) by base change, it is
also trivial (see [3, Prop. 4.1.1]). This implies that the F -algebra EndNNum(k)K⊗KF (N) is
semisimple and so the category NNum(k)F is abelian semisimple. The “moreover” claim
follows from [3, Prop. 7.1.4 c)]. ut

6. Schur-finiteness

In what follows, F will be a field of characteristic zero. Let (C,⊗, 1) be an F -linear,
idempotent complete, symmetric monoidal category. As explained in [1, §3.1], given an
object X ∈ C and an integer n ≥ 1, the symmetric group Sn acts on X⊗n by permutation
of its factors. The isomorphism classes Vλ of the irreducible Q-linear representations
of Sn are in canonical bijection with the partitions λ of n. As a consequence, the group
ring Q[Sn] can be written as

∏
λ,|λ|=n EndQVλ. Let cλ be the idempotent of Q[Sn] defining

the representation Vλ. The Schur functor Sλ is then defined by the

Sλ : C → C, X 7→ Sλ(X) := cλ(X
⊗n).

Note that for λ = (n) the Schur functor S(n) is the symmetric power functor, while for
λ = (1, . . . , 1) the Schur functor S(1,...,1) is the exterior power functor. An object X ∈ C
is called Schur-finite if there exists an integer n ≥ 1 and a partition λ of n such that
Sλ(X) = 0. The category C is called Schur-finite if all its objects are Schur-finite.

Lemma 6.1. Let L : C1 → C2 be an F -linear symmetric monoidal functor.

(i) If X ∈ C1 is Schur-finite, then L(X) is Schur-finite.
(ii) When L is moreover faithful, then the converse holds: if L(X) is Schur-finite, then X

is Schur-finite.

Proof. An easy exercise left for the reader. ut
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7. Tannakian formalism

In this section we collect some standard notions and results of the (super-)Tannakian
formalism. In what follows, F will be a field and (C,⊗, 1) an F -linear, abelian, rigid
symmetric monoidal category such that EndC(1) ' F .

Recall from Deligne [13] that a K-valued fiber functor on C (with K a field extension
of F ) is an exact faithful⊗-functor ω : C → Vect(K)with values in the category of finite-
dimensional K-vector spaces. The category C is called Tannakian if it admits a K-valued
fiber functor. It is called neutral Tannakian if it admits an F -valued fiber functor. In this
latter case, the fiber functorω : C → Vect(F ) gives rise to a⊗-equivalence between C and
the category RepF (Gal(C)) of finite-dimensional F -valued representations of the affine
group scheme Gal(C) := Aut⊗(ω).

Theorem 7.1 (Deligne’s intrinsic characterization [13]). Let F be a field of characteris-
tic zero. Then C is Tannakian if and only if the rank rk(N) := tr(idN ) of each one of its
objects N is a nonnegative integer.

Following Deligne [14], a K-valued super-fiber functor on C (with K a field extension
of F ) is an exact faithful ⊗-functor ω : C → sVect(K) with values in the category of
finite-dimensional super K-vector spaces. The category C is called super-Tannakian if it
admits a K-valued super-fiber functor. It is called neutral super-Tannakian if it admits an
F -valued super-fiber functor. In this latter case, the super-fiber functor ω : C → sVect(F )
gives rise to a ⊗-equivalence between C and the category RepF (sGal(C), ε) of finite-
dimensional F -valued super-representations of the affine super-group scheme sGal(C) :=
Aut⊗(ω), where ε is the parity automorphism implementing the super-symmetry of ω.

Theorem 7.2 (Deligne’s intrinsic characterization [14]). Let F be a field of characteris-
tic zero. Then C is super-Tannakian if and only if is Schur-finite (see §6). If F is moreover
algebraically closed, then C is neutral super-Tannakian if and only if it is Schur-finite.

8. Super-Tannakian structure

In this section we prove Theorem 1.2.

Proposition 8.1. Let k and F be as in Theorem 5.6 with F of characteristic zero. Then
the category NNum(k)F is Schur-finite.

Proof. Note first that by construction the category NNum(k)F is F -linear, idempotent
complete, and symmetric monoidal. Let us assume first that k and F satisfy condition (i)
of Theorem 5.6. Then, as explained in the proof of [30, Thm. 1.9], Hochschild homology
(HH) gives rise to an F -linear symmetric monoidal functor

HH : NChow(k)F → Dc(F ). (8.2)

Let us denote by Ker(HH) the associated kernel. Since this is a ⊗-ideal of NChow(k)F ,
the induced functor

(NChow(k)F /Ker(HH))\→ Dc(F )
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is not only F -linear and faithful but moreover symmetric monoidal. Note that the category
Dc(F ) can be naturally identified with the category of Z-graded F -vector spaces {Vn}n∈Z
such that dim(

⊕
n Vn) <∞. As a consequence, Dc(F ) is Schur-finite. By Lemma 6.1(ii)

we then conclude that (NChow(k)F /Ker(HH))\ is Schur-finite. Now, recall from §3.2
that the ideal N is the largest ⊗-ideal of NChow(k)F (distinct from the entire category).
The inclusion Ker(HH) ⊂ N of ⊗-ideals gives rise to an F -linear symmetric monoidal
functor

(NChow(k)F /Ker(HH))\→ (NChow(k)F /N )\ =: NNum(k)F . (8.3)

By combining Lemma 6.1(i) with the fact that the category (NChow(k)F /Ker(HH))\ is
Schur-finite, we conclude that all noncommutative numerical motives in the image of the
functor (8.3) are Schur-finite. Finally, since every noncommutative numerical motive is a
direct factor of one of these and Schur-finiteness is clearly stable under direct factors, we
conclude that the category NNum(k)F is Schur-finite.

Let us now assume that k and F satisfy condition (ii) of Theorem 5.6. IfK = F , then k
is a field extension of F and so the proof is similar to the one above: the functor (8.2) takes
values not in Dc(F ) but in Dc(k), but since Dc(k) is also Schur-finite the same reasoning
applies. Now, let us assume that k and F are two field extensions of a (nontrivial) fieldK .
Since F is of characteristic zero, so is K . In this case, k is a field extension of K , and
so the preceding argument shows that NNum(k)K is Schur-finite. As explained in §5, we
have a canonicalK-linear symmetric monoidal functor NNum(k)K → NNum(k)K⊗KF .
By construction the categories NNum(k)K and NNum(k)K ⊗K F have the same objects
and so Lemma 6.1(i), combined with the fact that Schur-finiteness is stable under direct
factors, implies that (Num(k)K ⊗K F)\ is also Schur-finite. Finally, the ⊗-equivalence
(5.3) (with F and K switched) shows that NNum(k)F is Schur-finite. ut

Proposition 8.1 implies a similar result in the commutative world.

Corollary 8.4. Let k and F be fields of characteristic zero. Then the category Num(k)F
is Schur-finite.

Proof. Recall from diagram (5.5) the following composition of faithful, F -linear, addi-
tive, symmetric monoidal functors:

Num(k)F → Num(k)F /−⊗Q(1)
RN
−−→ NNum(k)F .

Since k and F are of characteristic zero, they satisfy condition (ii) of Theorem 5.6 (with
K = Q). Then Proposition 8.1 combined with Lemma 6.1(ii) shows that Num(k)F is
Schur-finite. ut

Proof of Theorem 1.2. Note first that by construction the category NNum(k)F is F -linear,
additive, and rigid symmetric monoidal. Its⊗-unit is the noncommutative Chow motive k.
Since k and F are as in Theorem 5.6, we have

EndNNum(k)F (k) ' K0(k)F ' F.

Moreover, due to Theorem 5.6 the category NNum(k)F is also abelian (semisimple). By
Deligne’s intrinsic characterization (Theorem 7.2) it then suffices to show that NNum(k)F
is Schur-finite. This is the content of Proposition 8.1. ut
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9. Periodic cyclic homology

In this section we prove that periodic cyclic homology (HP) gives rise to a well-defined
symmetric monoidal functor on the category of noncommutative Chow motives (see The-
orem 9.2). In what follows, k will be a field.

Following Kassel [21, §1], a mixed complex (M, b, B) is a Z-graded k-vector space
{Mn}n∈Z endowed with a degree +1 endomorphism b and a degree −1 endomorphism B

satisfying the relations b2
= B2

= Bb + bB = 0. Equivalently, a mixed complex
is a right dg module over the dg algebra 3 := k[ε]/ε2, where ε is of degree −1 and
d(ε) = 0. Recall from [12, Example 7.10] the construction of the mixed complex functor
C : dgcat(k)→ D(3) with values in the derived category of 3. As explained by Kassel
[21, p. 210], there is a well-defined 2-periodization functor sending a mixed complex
(M, b, B) to the Z/2-graded complex of k-vector spaces∏

n even
Mn

b+B //

b+B
oo

∏
n odd

Mn.

This functor preserves weak equivalences and when combined with C gives rise to peri-
odic cyclic homology

HP : dgcat(k)
C
−→ D(3)→ DZ/2(k). (9.1)

Here, DZ/2(k) stands for the derived category of Z/2-graded complexes.

Theorem 9.2. When F is a field extension of k, the functor (9.1) gives rise to an F -linear
symmetric monoidal functor

HP∗ : NChow(k)F → sVect(F ) (9.3)

with values in the category of finite-dimensional super F -vector spaces. On the other
hand, when k is a field extension of F , the functor (9.1) gives rise to an F -linear symmet-
ric monoidal functor

HP∗ : NChow(k)F → sVect(k) (9.4)
with values in the category of finite-dimensional super k-vector spaces.
Proof. As explained in [12, Example 7.10], the mixed complex functor C is symmetric
monoidal. On the other hand, the 2-periodization functor is not symmetric monoidal.
This is due to the fact that it uses infinite products and these do not commute with the
tensor product. Nevertheless, as explained in [21, p. 210], the 2-periodization functor is
lax symmetric monoidal. Note that since by hypothesis k is a field, the category DZ/2(k)
is ⊗-equivalent to the category SVect(k) of super k-vector spaces. Hence, the functor
(9.1) gives rise to a well-defined lax symmetric monoidal functor

HP∗ : dgcat(k)
C
−→ D(3)→ DZ/2(k) ' SVect(k). (9.5)

Now, recall from [38, §5] the construction of the additive category Hmo0(k). Its objects
are the small dg categories, its morphisms from A to B are given by the Grothendieck
group K0rep(A,B) of the triangulated category rep(A,B) (see §2), and its composition
law is induced by the (derived) tensor product of bimodules. The (derived) tensor product
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of dg categories endows Hmo0(k) with a symmetric monoidal structure. Moreover, there
is a natural symmetric monoidal functor U : dgcat(k) → Hmo0(k) which can be char-
acterized as the universal additive invariant (consult [36, 38], [22, §5.1] for details). The
above functor (9.5) is an example of an additive invariant, i.e. it inverts derived Morita
equivalences (see §2) and maps semiorthogonal decompositions in the sense of Bondal-
Orlov [9] into direct sums. Hence, by the universal property of U , the additive invariant
(9.5) gives rise to a well-defined lax symmetric monoidal functor

HP∗ : Hmo0(k)→ SVect(k) (9.6)

such that HP∗ ◦ U = HP∗. Now, let us denote by Hmo0(k)
sp
⊂ Hmo0(k) the full sub-

category of smooth and proper dg categories in the sense of Kontsevich (see §2.1). Given
smooth and proper dg categories A and B, there is a natural equivalence of categories
rep(A,B) ' Dc(Aop

⊗k B). As a consequence,

HomHmo0(k)sp(A,B) := K0rep(A,B) ' K0(Aop
⊗k B).

This shows that the category NChow(k)F can be obtained from Hmo0(k)
sp by first tensor-

ing each abelian group of morphisms with the field F and then passing to the associated
pseudo-abelian envelope. Schematically, we have the composition

Hmo0(k)
sp (−)F
−−−→ Hmo0(k)

sp
F

(−)\

−−→ NChow(k)F . (9.7)

By Proposition 9.9(ii), the restriction of (9.6) to Hmo0(k)
sp gives rise to a lax symmetric

monoidal functor
HP∗ : Hmo0(k)

sp
→ sVect(k). (9.8)

Moreover, conditions (i) and (ii) of Proposition 9.9 are precisely what Emmanouil named
“property (II)” in [18, p. 211]. As a consequence, [18, Thm. 4.2] implies that the functor
(9.8) is in fact symmetric monoidal.

We now have all the ingredients needed for the description of the functors (9.3) and
(9.4). Let us assume first that F is a field extension of k. Then we have an induced exten-
sion of scalars functor sVect(k)→ sVect(F ). This functor is symmetric monoidal and the
category sVect(F ) is clearly idempotent complete. Using the description of NChow(k)F
given by (9.7), we conclude that (9.8) extends to NChow(k)F , thus giving rise to the F -
linear symmetric monoidal functor (9.3). Now, let us assume that k is a field extension
of F . In this case the category sVect(k) is already F -linear. Hence, using the description
of NChow(k)F in (9.7), we conclude that (9.8) gives rise to the induced F -linear sym-
metric monoidal functor (9.4). ut

Proposition 9.9. Let A be a smooth and proper dg category. Then:

(i) The inverse system (HC(A)[−2m], S)m of cyclic homology k-vector spaces (see [28,
§2.2]) satisfies the Mittag-Leffler condition.

(ii) The periodic cyclic homology k-vector spaces HPn(A) are finite-dimensional.

Proof. An easy exercise left for the reader. ut



Noncommutative motives, Tannakian structures, and Galois groups 639

10. Noncommutative standard conjecture CNC

In this section we start by recalling the standard conjecture C and the sign conjecture C+.
Then, we prove that the noncommutative standard conjecture CNC is stable under tensor
products (Proposition 10.2), and finally we prove Theorem 1.3. In what follows, Z will
be a smooth projective k-scheme over a field k of characteristic zero.

Recall from [2, §3.4] that with respect to de Rham cohomology, we have the Künneth
projectors

πnZ : H
∗

dR(Z)� H n
dR(Z) ↪→ H ∗dR(Z), 0 ≤ n ≤ 2 dim(Z).

Standard conjecture C(Z) (see [2, §5.1.1.1]). The Künneth projectors πnZ are alge-
braic, i.e. they can be written as πnZ = H

∗

dR(π
n
Z), with πnZ algebraic correspondences.

Sign conjecture C+(Z) (see [2, §5.1.3]). The Künneth projectors π+Z :=
∑dim(Z)
n=0 π2n

Z

(and hence π−Z :=
∑dim(Z)
n=1 π2n−1

Z ) are algebraic, i.e. they can be written as π+Z =
H ∗dR(π

+

Z ), with π+Z algebraic correspondences.

Remark 10.1. Clearly C(Z) ⇒ C+(Z). Recall also from [2, §5.1.1.2] that C(Z) and
C+(Z) could equivalently be formulated using any other classical Weil cohomology
theory.

Proposition 10.2. Let A and B be two smooth and proper dg categories (see §2.1). Then

CNC(A)+ CNC(B) ⇒ CNC(A⊗k B). (10.3)

Proof. Recall from Theorem 9.2 that we have a well-defined F -linear symmetric mono-
idal functor

HP∗ : NChow(k)F → sVect(K). (10.4)

The field K is equal to F when F is a field extension of k and is equal to k when k
is a field extension of F . Let us denote by −⊗̂− the symmetric monoidal structure on
sVect(K). Then we have the following equalities between the Künneth projectors:

π+A⊗kB = π
+

A⊗̂π
+

B + π
+

A⊗̂π
−

B , π−A⊗kB = π
+

A⊗̂π
−

B + π
−

A⊗̂π
−

B .

Since (10.4) is symmetric monoidal and by hypothesis we have noncommutative corre-
spondences π±A and π±B such that π±A = HP∗(π±A) and π±B = HP∗(π±B), the noncommu-
tative standard conjecture CNC(A⊗k B) also holds. As a consequence, (10.3) holds. ut

Proof of Theorem 1.3. As explained in [2, §4.2.5], de Rham cohomologyH ∗dR (considered
as a Weil cohomology theory) gives rise to a symmetric monoidal functor

H ∗dR : Chow(k)F → GrVect(k) (10.5)

with values in the category of finite-dimensional Z-graded k-vector spaces. On the other
hand, as explained in Theorem 9.2, periodic cyclic homology gives rise to a well-defined
symmetric monoidal functor

HP∗ : Chow(k)F → sVect(k). (10.6)
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Recall from diagram (5.5) the sequence of functors

Chow(k)F
τ
−→ Chow(k)F /−⊗Q(1)

R
−→ NChow(k)F . (10.7)

By combining [37, Thm. 1.1] with the change-of-coefficients mechanism we conclude
that the image of Z under the above composition (10.7) identifies naturally with the non-
commutative Chow motive Ddg

perf(Z). Now, recall from Keller [23] that HP∗(Ddg
perf(Z)) '

HP∗(Ddg
perf(Z)) agrees with the periodic cyclic homology HP∗(Z) of the k-scheme Z in

the sense of Weibel [40]. Since k is a field of characteristic zero and Z is smooth, the
Hochschild–Kostant–Rosenberg theorem [41] furnishes us with the isomorphisms

HP+∗ (Z) '
⊕
n even

H n
dR(Z)HP−∗ (Z) '

⊕
n odd

H n
dR(Z).

These facts show that the composition of (10.6) with (10.7) is the functor

sH ∗dR : Chow(k)F → sVect(k), Z 7→
(⊕
n even

H n
dR(Z),

⊕
n odd

H n
dR(Z)

)
, (10.8)

naturally associated to (10.5). As a consequence, the Künneth projectors π±Z of the sign
conjecture C+(Z) agree with the Künneth projectors π±

Ddg
perf (Z)

of the noncommutative

standard conjecture CNC(Ddg
perf(Z)). Now, if by hypothesis the sign conjecture C+(Z)

holds, there exist algebraic correspondences π±Z realizing the Künneth projectors π±Z .
Hence, by taking for noncommutative correspondences π±

Ddg
perf (Z)

the image of π±Z un-

der the above functor (10.7) we conclude that the noncommutative standard conjecture
CNC(Ddg

perf(Z)) also holds. ut

11. Tannakian structure

In this section we prove Theorem 1.4. In what follows, k will be a field of characteristic
zero.

Proposition 11.1. Assume that F is a field extension of k or vice versa and that the non-
commutative standard conjecture CNC(A) holds for a smooth and proper dg category A.
Then, given any noncommutative Chow motive of shape (A, e) (see §3.1), the kernel of
the induced surjective ring homomorphism

EndNChow(k)F /Ker(HP∗)((A, e))� EndNChow(k)F /N ((A, e))

is a nilpotent ideal.

Proof. Let us consider first the case where F is a field extension of k. By Theorem 9.2,
we have an F -linear symmetric monoidal functor

HP∗ : NChow(k)F → sVect(F ). (11.2)
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The associated kernel Ker(HP∗) is a⊗-ideal of NChow(k)F and so we obtain an induced
functor

NChow(k)F /Ker(HP∗)→ sVect(F ), (11.3)

which is not only F -linear and faithful but moreover symmetric monoidal. Recall from
§3.2 that the ideal N is the largest ⊗-ideal of NChow(k)F (distinct from the entire cate-
gory). Hence, the induced functor

NChow(k)F /Ker(HP∗)→ NChow(k)F /N

is not only F -linear and symmetric monoidal but moreover full and (essentially) surjec-
tive. Now, observe that if by hypothesis the noncommutative standard conjectureCNC(A)
holds for a smooth and proper dg category A, then the Künneth projectors

π±
(A,e) : HP∗((A, e))� HP∗

±
((A, e)) ↪→ HP∗((A, e)) (11.4)

associated to a noncommutative Chow motive (A, e) are also algebraic. Simply take for
π±
(A,e) the noncommutative correspondence e ◦ π±A ◦ e. Let X ∈ EndNChow(k)F ((A, e))

be a noncommutative correspondence. We need to show that if X becomes trivial in
NChow(k)F /N , then it is nilpotent in NChow(k)F /Ker(HP∗). As explained above, the
Künneth projectors (11.4) can be written as π±

(A,e) = HP∗(π±(A,e)), with π±
(A,e) ∈

EndNChow(k)F ((A, e)). If by hypothesis X becomes trivial in NChow(k)F /N , then by
definition of N the intersection numbers 〈X · π±

(A,e)〉 ∈ K0(k)F ' F vanish. Moreover,
since N is a ⊗-ideal, the intersection numbers 〈Xn · π±

(A,e)〉 vanish also for any integer
n ≥ 1, whereXn stands for the n-fold composition ofX. As proved in [30, Corollary 4.4],
the intersection numbers 〈Xn ·π±

(A,e)〉 agree with the categorical trace of the noncommu-
tative correspondences Xn ◦ π±

(A,e). Since (11.2) is symmetric monoidal, we conclude
that the traces

tr(HP∗(Xn ◦ π±(A,e))) = tr(HP∗(X)n ◦ π±(A,e)) = tr(HP∗
±
(X)n), n ≥ 1,

vanish. Recall that over a field of characteristic zero, a nilpotent linear map can be charac-
terized by the fact that the trace of all its n-fold compositions vanish. As a consequence,
the F -linear transformations

HP∗
±
(X) : HP∗((A, e))� HP∗

±
((A, e))

HP∗(X)
−−−−→ HP∗

±
((A, e)) ↪→ HP∗((A, e))

are nilpotent and so HP∗(X) is also nilpotent, Finally, since the functor (11.3) is faith-
ful, the noncommutative correspondenceX becomes nilpotent in NChow(k)F /Ker(HP∗).
This completes the proof.

The case where k is a field extension of F is similar. The only difference is that
(11.3) takes values in sVect(k) instead of sVect(F ). Since by hypothesis k is a field of
characteristic zero, the same reasoning applies. ut
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Proposition 11.5. Assume that F is a field extension of k or vice versa, and that the
noncommutative standard conjecture CNC(A) holds for every smooth and proper dg cat-
egory A. Then the induced functor

(NChow(k)F /Ker(HP∗))\→ NNum(k)F (11.6)

is full, conservative, and (essentially) surjective.

Proof. Since we have an inclusion Ker(HP∗) ⊂ N of ⊗-ideals, the induced functor

NChow(k)F /Ker(HP∗)� NChow(k)F /N

is clearly full. As explained by Bass [5, §III Prop. 2.10], idempotent elements can always
be lifted along surjective homomorphisms with a nilpotent kernel. Hence, by Proposi-
tion 11.1, the functor (11.6) is also (essentially) surjective and conservative. ut

To simplify the proof of Theorem 1.4, we now introduce the following general result.

Proposition 11.7. Let F be a field of characteristic zero and K a field extension of F ,
and consider two F -linear symmetric monoidal functors

H : C → sVect(K), P : C → D,

where sVect(K) denotes the category of finite-dimensional super K-vector spaces. As-
sume that H is faithful, P is (essentially) surjective, and for every object N ∈ C, the
Künneth projectors π±N : H(N) � H±(N) ↪→ H(N) can be written as π±N = H(π

±

N )

with π±N ∈ EndC(N). Then, by modifying the symmetry isomorphism constraints of C
and D, we obtain new symmetric monoidal categories C† and D† and (composed) F -
linear symmetric monoidal functors

C† H
−→ sVect(K)→ Vect(K), P : C†

→ D†,

where sVect(K)→ Vect(K) is the forgetful functor.

Proof. By applying [3, Prop. 8.3.1] to the functor H we obtain the symmetric monoidal

category C† and the F -linear symmetric monoidal (composed) functor C† H
−→ sVect(K)

→ Vect(K). As explained in loc. cit., the new symmetry isomorphism constraints are

c
†
N1,N2

:= cN1,N2 ◦ (eN1 ⊗ eN2), (11.8)

where eN is the endomorphism 2 · π+N − idN of N . Since by hypothesis the functor P is
(essentially) surjective, we can use the image of eN to modify the symmetry isomorphism
constraints of D as in (11.8). In this way we obtain the symmetric monoidal category D†

and the F -linear symmetric monoidal functor P : C†
→ D†. ut

Proof of Theorem 1.4. Note first that since by hypothesis k is of characteristic zero, the
(nontrivial) field F is also of characteristic zero. As explained in (the proofs of) Proposi-
tions 11.1 and 11.5, we have F -linear symmetric monoidal functors

HP∗ : (NChow(k)F /Ker(HP∗))\→ sVect(K), (11.9)

(NChow(k)F /Ker(HP∗))\→ NNum(k)F , (11.10)
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with (11.9) faithful and (11.10) (essentially) surjective. The fieldK is equal to F when F
is a field extension of k, and equal to k when k is a field extension of F . In both cases, K
is a field extension of F . By hypothesis the noncommutative standard conjecture CNC(A)
holds for every smooth and proper dg category A, and so we can apply the above general
Proposition 11.7 to the functors (11.9) and (11.10). We then obtain the diagram

(NChow(k)F /Ker(HP∗))\,†
HP∗ //

��

sVect(K) // Vect(K)

NNum†(k)F

(11.11)

Now, recall that by construction the category NNum†(k)F is F -linear, additive, rigid sym-
metric monoidal, and such that the endomorphisms of its ⊗-unit is the field F . By Theo-
rem 5.6 it is moreover abelian (semisimple). Hence, to prove that it is Tannakian, we can
make use of Deligne’s intrinsic characterization (Theorem 7.1). Concretely, we need to
show that the rank rk(N) of every noncommutative numerical motive N ∈ NNum†(k)F
is a nonnegative integer. Since the vertical functor of diagram (11.11) is (essentially) sur-
jective and restricts to an isomorphism between the endomorphisms of the corresponding
⊗-units, we conclude that rk(N) = rk(Ñ) for any lift Ñ ∈ (NChow(k)F /Ker(HP∗))\,†

of N . Moreover, since the (composed) horizontal functor of diagram (11.11) is faith-
ful, we have rk(Ñ) = rk(HP∗(Ñ)). Finally, since in the symmetric monoidal category
Vect(K) the rank rk(HP∗(Ñ)) can be written as dim(HP∗

+
(Ñ)) + dim(HP∗

−
(Ñ)), we

conclude that rk(N) is a nonnegative integer. ut

12. Noncommutative homological motives

In this section we start by recalling the standard conjecture D. Then we prove Theorems
1.5 and 1.6 and along the way introduce the category of noncommutative homological
motives. In what follows, Z will be a smooth projective k-scheme over a field of charac-
teristic zero.

Recall from [2, §3.2] the definition of the F -vector spaces Z∗hom(Z)F and Z∗num(Z)F
of algebraic cycles (of arbitrary codimension), where the homological equivalence rela-
tion is taken with respect to de Rham cohomology.

Standard conjecture D(Z) (see [2, §5.4.1.1]). The following equality holds:

Z∗hom(Z)F = Z∗num(Z)F .

Now, recall from Theorem 9.2 that periodic cyclic homology gives rise to a well-defined
F -linear symmetric monoidal functor

HP∗ : NChow(k)F → sVect(K). (12.1)

The field K is equal to F when F is a field extension of k, and equal to k when k is a
field extension of F . Given a smooth and proper dg category A, we then have an induced
F -linear homomorphism

K0(A)F = HomNChow(k)F (k,A)
HP∗
−−→ HomsVect(K)(HP∗(k),HP∗(A)).
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The associated kernel gives rise to a well-defined equivalence relation onK0(A)F that we
denote by ∼hom. On the other hand, as explained in §3.2, the noncommutative correspon-
dences which are numerically equivalent to zero form an F -linear subspace ofK0(A)F =
HomNChow(k)F (k,A) and hence give rise to an equivalence relation on K0(A)F that we
denote by ∼num.

Proof of Theorem 1.5. As explained in the proof of Theorem 1.3, the composition

Chow(k)F
τ
−→ Chow(k)F /−⊗Q(1)

R
−→ NChow(k)F

HP∗
−−→ sVect(k) (12.2)

agrees with the functor sH ∗dR (see (10.8)) associated to de Rham cohomology. Hence, its
kernel Ker agrees with the kernel of the symmetric monoidal functor

H ∗dR : Chow(k)F → GrVect(k).

From (5.5) we then obtain the commutative diagram

Chow(k)F /Ker

��

9 // (Chow(k)F /−⊗Q(1))/Ker(HP∗ ◦ R)

��

8 // NChow(k)F /Ker(HP∗)

��
Num(k)F

τ // Num(k)F /−⊗Q(1)
RN // NNum(k)F

where Ker denotes the kernel of the composed functor (12.2). Now, by Lemma 4.7 (with
C = Chow(k)F , O = Q(1), and H = HP∗ ◦ R), the functor 9 admits the factorization

Chow(k)F /Ker
τ
−→ (Chow(k)F /Ker)/−⊗Q(1)

�
−→ (Chow(k)F /−⊗Q(1))/Ker(HP∗ ◦ R).

As explained in the proof of Theorem 1.3, the image of Z under the composed functor
8 ◦ 9 is naturally isomorphic to the dg category Ddg

perf(Z). Similarly, the image of the

affine k-scheme spec(k) is naturally isomorphic to Ddg
perf(spec(k)) ' k. We can then

consider the induced commutative square

(Chow(k)F /Ker)/−⊗Q(1) //

��

8◦� // NChow(k)F /Ker(HP∗)

��
Num(k)F /−⊗Q(1)

RN // NNum(k)F

and the associated commutative diagram

Hom(Chow(k)F /Ker)/−⊗Q(1)(spec(k), Z)

��

// HomNChow(k)F /Ker(HP∗)(k,D
dg
perf(Z))

��

HomNum(k)F /−⊗Q(1)(spec(k), Z) // HomNNum(k)F (k,D
dg
perf(Z))
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By combining the above arguments with the constructions of the categories Chow(k)F ,
Num(k)F , NChow(k)F and NNum(k)F , we observe that the preceding commutative
square identifies with

Z∗hom(Z)F

����

// // K0(Ddg
perf(Z))F /∼hom

��

Z∗num(Z)F ∼
// K0(Ddg

perf(Z))F /∼num

(12.3)

Since the functorRN is fully-faithful, the lower horizontal map is an isomorphism. Recall
from Lemma 4.7 that the functor � is full. Hence, since the induced functor 8 is fully-
faithful, the upper horizontal map in (12.3) is surjective. Now, suppose that the standard
conjecture D(Z) holds, i.e. the left vertical map of diagram (12.3) is an isomorphism.
The commutativity of the diagram combined with all the above facts implies that the
right vertical map in (12.3) is injective. Since by construction it is already surjective, we
conclude that it is an isomorphism. This is precisely the statement of the noncommutative
standard conjecture DNC(Ddg

perf(Z)). ut

In analogy with the commutative world we introduce the category of noncommutative
homological motives.

Definition 12.4. Let k and F be fields with F a field extension of k or vice versa. The
category NHom(k)F of noncommutative homological motives is the pseudo-abelian en-
velope of NChow(k)F /Ker(HP∗), where Ker(HP∗) is the kernel of (12.1).

As mentioned in §3.2, N is the largest ⊗-ideal of NChow(k)F (distinct from the entire
category). Hence, the inclusion of ⊗-ideals Ker(HP∗) ⊂ N gives rise to an induced
functor

NHom(k)F → NNum(k)F . (12.5)

Proposition 12.6. Let k be a field of characteristic zero. If the noncommutative standard
conjectures CNC(A) andDNC(A) hold for every smooth and proper dg category A, then
the induced functor (12.5) is an equivalence of categories.

Proof. By Proposition 11.5 the functor (12.5) is full and (essentially) surjective. It re-
mains to show that it is faithful. Given noncommutative Chow motives (A, e) and (B, e′)
(see §3.1) we need to show that the induced F -linear homomorphism

HomNChow(k)F /Ker(HP∗)((A, e), (B, e
′))→ HomNNum(k)F ((A, e), (B, e

′))

is faithful. For this, it suffices to show that the induced F -linear homomorphism

HomNChow(k)F /Ker(HP∗)(A,B)→ HomNNum(k)F (A,B) (12.7)

is faithful. The categorical dual of A is its opposite dg category Aop, and so by adjunction,
(12.7) identifies with the homomorphism

HomNChow(k)F /Ker(HP∗)(k,A
op
⊗k B)→ HomNNum(k)F (k,A

op
⊗k B).
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By the definition of NChow(k)F and NNum(k)F , the above homomorphism identifies
with the canonical homomorphism

K0(Aop
⊗k B)F /∼hom → K0(Aop

⊗k B)F /∼num. (12.8)

Finally, since by hypothesis the noncommutative standard conjecture DNC(Aop
⊗ B)

holds, i.e. (12.8) is an isomorphism, the homomorphism (12.7) is faithful. ut

Proof of Theorem 1.6. Recall from the proof of Theorem 1.4 the construction of the
following diagram

NHom†(k)F
HP∗ //

��

sVect(F ) // Vect(F )

NNum†(k)F

Proposition 12.6 implies that the vertical functor in the above diagram is an equivalence
of categories. As a consequence, we obtain an exact faithful ⊗-functor

HP∗ : NNum†(k)F → Vect(F ). (12.9)

Recall from Theorem 1.4 that the category NNum†(k)F is Tannakian. The functor (12.9)
shows that NNum†(k)F is moreover neutral and so the proof is finished. ut

13. Tate triples and quotient categories

In this section we recall the notion of Tate triples from Deligne–Milne [15, §5] and the
notion of a quotient category from Milne [32]. In what follows, F will be a field of
characteristic zero and (C,⊗, 1) an F -linear, abelian, rigid symmetric monoidal category
such that EndC(1) ' F .

Let µn be the affine group scheme of the nth roots of unity, i.e. the kernel of the nth-
power morphism Gm → Gm. In particular, µ2 is the affine group scheme dual to the Hopf
algebra F [t]/(t2 − 1).

Definition 13.1. LetA = Z (resp. Z/2) and let B be the multiplicative group scheme Gm
(resp. µ2). An A-grading on a Tannakian category C can be variously described as:

(i) a functorial A-grading on objects X =
⊕
Xa compatible with tensor products

(X ⊗ Y )a =
⊕

a=b+c X
b
⊗ Y c;

(ii) an A-grading of the identity functor idC compatible with tensor products;
(iii) a morphism B → Aut⊗(idC);
(iv) a central morphism B → Aut⊗(ω) for every fiber functor ω.

Definition 13.2. A Tate triple T = (C, w, T ) consists of a Tannakian category C, a
Z-grading w : Gm → Aut⊗(idC) (called the weight grading), and an invertible object T
(called the Tate object) of weight −2. Given an object X ∈ C and an integer n, we will
write X(n) for X ⊗ T ⊗n. A K-valued fiber functor on T (with K a field extension of F )
is a K-valued fiber functor ω on C endowed with an isomorphism ω(T ) ' ω(T (1)). If T
admits an F -valued fiber functor, then T is called a neutral Tate triple.
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Example 13.3. (i) Let G be an affine group scheme endowed with a central morphism
w : Gm → G and with a morphism t : G → Gm such that t ◦ w = −2. Let T be
the representation of G on F such that g ∈ G acts as multiplication by t (g). Then, as
explained in [15, Example 5.4], T = (RepF (G),w, T ) is a neutral Tate triple.

(ii) Let k be a field of characteristic zero. If we assume that the standard con-
jecture C(Z) holds for every smooth projective k-scheme Z (see §10), then T =

(Num†(k)Q, w,Q(1)) is a Tate triple (see [15, Thm. 6.7]). The Z-grading w is given by
(Z, p,m)i := (Z, (p◦π

2m+i
Z )(Z),m), where πnZ are algebraic correspondences such that

H ∗dR(π
n
Z) = π

n
Z . The Tannakian category Num†(k)Q is obtained from Num(k)Q by mod-

ifying its symmetry isomorphism constraints using the algebraic correspondences πnZ .
Moreover, if we assume that the standard conjecture D(Z) holds for every smooth pro-
jective k-scheme Z (see §12), then de Rham cohomologyH ∗dR give rise to a k-valued fiber
functor on T .

As explained in [15, Prop. 5.5], every Tate triple T = (C, w, T ) gives use to a central
morphism w : Gm → Gal(C) and to a morphism t : Gal(C)→ Gm such that t ◦w = −2.

Lemma 13.4 (see [15, §5]). Let G be an affine group scheme endowed with a central
morphism w : Gm → G and with a homomorphism t : G→ Gm such that t ◦ w = −2.
Consider the kernel G0 := Ker(t : G → Gm) and the associated Tannakian category
RepF (G0). Then:

(i) The Z-grading on RepF (G) induces a Z/2-grading ε : µ2 → G0 on RepF (G0),
making it into a Z/2-graded Tannakian category.

(ii) The inclusion G0 ↪→ G gives rise to an (essentially) surjective ⊗-functor Q :
RepF (G) → RepF (G0), which maps homogeneous objects of weight n to homo-
geneous objects of weight n (mod 2) and the Tate object T to the ⊗-unit 1.

(iii) The Tate object T becomes an identity object in RepF (G0), i.e. T ' T ⊗ T . More-
over, the functor τ : RepF (G0) → RepF (G0) given by X 7→ X ⊗ T is an equiva-
lence of categories.

(iv) Two homogeneous objects X, Y ∈ RepF (G) of respective weights n and m become
isomorphic in RepF (G0) if and only if m− n = 2` for some ` ∈ Z and X(`) ' Y .

Quotient categories

Let F be an arbitrary field.

Theorem 13.5 (see Milne [33]). Let S ⊂ C be a fully-faithful inclusion of neutral Tan-
nakian categories with associated affine group schemes Gal(S) and Gal(C). Then:

(i) There is a quotient neutral Tannakian category Q and an exact ⊗-functor Q : C →
Q such that all objects of Q are subquotients of objects in the image of Q. Moreover,
the objects of S are precisely those objects of C which become trivial in Q.

(ii) The fully-faithful inclusion S ⊂ C gives rise to a faithfully flat morphism Gal(C) �
Gal(S) of affine group schemes.
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(iii) LetH be the kernel of the morphism Gal(C)� Gal(S). Then there is an equivalence
of categories RepF (H) ' Q.

(iv) Given an object X ∈ C, one denotes by XH the largest subobject of X on which
H acts trivially. Under this notation, the subcategory S ⊂ C coincides with the
Tannakian subcategory CH ⊂ C of objects X such that XH = X.

Definition 13.6. Let C be a neutral Tannakian category and ω0 : S → Vect(F ) an F -
valued fiber functor on a Tannakian subcategory S ⊂ T . Then the quotient category
C/ω0 is the pseudo-abelian envelope of the category C′ which has the same objects as C
and morphisms

HomC′(X, Y ) := ω0(HomC(X, Y )
H ).

Here, HomC(X, Y ) stands for the internal Hom-object of the symmetric monoidal cate-
gory C, and H ⊂ Gal(C) for the group subscheme described in Theorem 13.5(iii).

14. Motivic Galois groups

In this section we prove Theorem 1.7.

Proposition 14.1. Let F be a field of characteristic zero and T = (C, w, T ) a neutral
Tate triple. Denote by S the full neutral Tannakian subcategory of C generated by the
Tate object T . Then the pseudo-abelian envelope of the orbit category C/−⊗T (see §4) is
a neutral Tannakian category and the sequence of exact ⊗-functors S ⊂ C → (C/−⊗T )\
induces a group scheme isomorphism

Gal((C/−⊗T )\)
∼
−→ Ker(t : Gal(C)� Gm).

Proof. By Theorem 13.5(ii) the fully-faithful inclusion S ⊂ C gives rise to a faithfully flat
morphism t : Gal(C) � Gal(S) of affine group schemes. Let us denote by H its kernel.
Thanks to items (i) and (iii) of Theorem 13.5, we have a sequence of exact ⊗-functors
S ⊂ C → RepF (H) inducing a group scheme isomorphism

Gal(RepF (H))
∼
−→ Ker(t : Gal(C)� Gal(S)).

The proof will consist in showing that the categories RepF (H) and (C/−⊗T )\ are ⊗-
equivalent and that the affine group scheme Gal(S) is isomorphic to Gm.

Let us start with the latter claim. The Z-grading w of the Tate triple structure implies
that the fiber functor ω : C → Vect(F ) factors as follows:

C ω //

ω
$$

GrVect(F )

U

��
Vect(F )

where GrVect(F ) denotes the category of finite-dimensional Z-graded F -vector spaces
and U the forgetful functor {Vn}n∈Z 7→

⊕
n∈Z Vn. Since the Tate object T is invertible

and the functor ω is symmetric monoidal, the object ω(T ) is also invertible. Moreover,
since T is of degree two and the invertible objects in GrVect(F ) are one-dimensional, the
Z-graded F -vector space ω(T ) is also of degree two and one-dimensional. In particular,
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EndGrVect(F )(ω(T )) ' F . This implies that ω establishes a⊗-equivalence between S and
the Tannakian category generated by ω(T ). The latter category identifies with the sub-
category GrVect+(F ) ⊂ GrVect(F ) of evenly supported Z-graded F -vector spaces. Via
renumbering the indices, this category is ⊗-equivalent to GrVect(F ). As a consequence,
the affine group scheme Gal(S) (with respect to ω) agrees with the affine group scheme
of the Tannakian category GrVect(F ) (with respect to U ). It is well-known that the latter
affine group scheme is isomorphic to Gm and so the proof of the above claim is finished.

Let us now show that the categories RepF (H) and (C/−⊗T )\ are ⊗-equivalent. Since
by hypothesis T = (C, w, T ) is a Tate triple, Lemma 13.4(ii) (with G = Gal(C) and
G0 = H ) implies that the quotient functor Q : C → RepF (H) maps the Tate object T to
the⊗-unit of RepF (H). As a consequence, we have a natural 2-isomorphismQ◦(−⊗T )
∼
−→ Q. By the 2-universality property of the orbit category C/−⊗T and the fact that the
category RepF (H) is idempotent complete, we obtain an induced symmetric monoidal
functor

(C/−⊗T )\→ RepF (H). (14.2)
Now, recall from [32, Example 2.6] that since (C, w, T ) is a Tate triple, the category
RepF (H) can be identified with the quotient category C/ω0 with respect to the F -valued
fiber functor

ω0 : S → Vect(F ), X 7→ colimnHomC
( n⊕
r=−n

1(r),X
)
.

As explained in Definition 13.6, C/ω0 is the pseudo-abelian envelope of a certain cate-
gory C′. Hence, it suffices to show that C/−⊗T and C′ are ⊗-equivalent. By construction,
they have the same objects. As for their morphisms, by arguing as in [32, Prop. 2.3], we
conclude that

HomC′(X, Y ) = colimn

n⊕
r=−n

HomC(1,Hom(X ⊗ T ⊗r , Y ))

= colimn

n⊕
r=−n

HomC(X ⊗ T
⊗r , Y ) =

⊕
j∈Z

HomC(X, Y ⊗ T
⊗j ).

The latter description agrees with the one of the orbit category C/−⊗T (see (4.1) with
O = T ). As a consequence, (14.2) is a ⊗-equivalence. ut

The notion of Tate triple does not admit an immediate generalization to the super-
Tannakian setting. Motivated by the standard theory of motives, we nevertheless introduce
the following notion.

Definition 14.3. A super-Tate triple ST = (C, ω, π±X, T
†) consists of:

(i) a neutral super-Tannakian category C;
(ii) a super-fiber functor ω : C → sVect(F );

(iii) idempotent endomorphisms π±X ∈ EndC(X),X ∈ C, such that ω(π±X) = π
±

X , where
π±X are the Künneth projectors;

(iv) a neutral Tate triple T †
= (C†, w, T ) on the category C†. Recall from Proposi-

tion 11.7 that C† is obtained from C by modifying the symmetry isomorphism con-
straints through the use of the endomorphisms π±X.
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Example 14.4. Let k be a field of characteristic zero. If we assume that the standard
conjectures C(Z),D(Z) hold for every smooth projective k-scheme Z, then the data

(Num(k)k, sH ∗dR, π
±

X, (Num†(k)k, w,Q(1)))

is a super-Tate triple. The super-fiber functor sH ∗dR : Num(k)k → sVect(k) is the one as-
sociated to de Rham cohomology and (Num†(k)k, w,Q(1)) is the neutral Tate triple ob-
tained from the one of Example 13.3(ii) by extension of scalars along the functor −⊗Q k
(see [32, §1]).

Proposition 14.5. Let F be a field of characteristic zero and ST = (C, ω, π±X, T
†) a

super-Tate triple. Let S denote the full neutral super-Tannakian subcategory of C gener-
ated by the Tate object T . Assume the following conditions hold:

(i) The Tate object T is such that π−T (T ) = 0.
(ii) Let ε : µ2 → H be the Z/2-grading induced by the Z-grading on the neutral Tate

triple T † as in Lemma 13.4 (with G = Gal(C†) and G0 = H). Then the affine
super-group scheme (H, ε) is isomorphic to the kernel of the induced faithfully flat
morphism sGal(C)� sGal(S).

(iii) The super-Tannakian category RepF ((H, ε)) of finite-dimensional F -valued super
representations is such that Rep†

F ((H, ε)) ' Q, where Q ' RepF (H) is the quo-
tient Tannakian category associated to the fully-faithful inclusion S†

⊂ C† (see
Theorem 13.5(ii)–(iii).

Then the pseudo-abelian envelope of the orbit category C/−⊗T is a neutral super-
Tannakian category and the sequence of exact ⊗-functors S ⊂ C → (C/−⊗T )\ induces a
super-group scheme isomorphism

sGal((C/−⊗T )\)
∼
−→ Ker(t : sGal(C)� Gm).

Proof. By condition (ii), the sequence of exact of ⊗-functors S ⊂ C → RepF ((H, ε))
induces a super-group scheme isomorphism

sGal(RepF ((H, ε))
∼
−→ Ker(t : sGal(C)� sGal(S)).

Hence, the proof will consist in showing that the categories RepF ((H, ε)) and C/−⊗T are
⊗-equivalent and that the affine super-group scheme sGal(S) is isomorphic to Gm.

Let us start with the latter claim. Recall from the proof of Proposition 11.7 that the cat-
egory S† is obtained from S by modifying its symmetry isomorphism constraints cN1,N2 .
The new constraints are given by

c
†
N1,N2

:= cN1,N2 ◦ (eN1 ⊗ eN2)

where eN = 2 ·π+N − idN . Since by hypothesis π−T (T ) = 0 we conclude that π−N (N) = 0
for every object N ∈ S. As a consequence, π+N = idN and so eN = idN . The symmetric
monoidal category S† is thus equal to S. This implies that sGal(S) ' Gal(S†) since
the super-fiber functor ω : S → sVect(F ) takes values in the subcategory sVect+(F ) ⊂
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sVect(F ) of evenly supported super F -vector spaces, which via the forgetful functor is
⊗-equivalent to Vect(F ). As explained in the proof of Proposition 14.1, Gal(S†) ' Gm
and so sGal(S) ' Gm.

Let us now show that RepF ((H, ε)) and C/−⊗T are⊗-equivalent. As in the Tannakian
case, we have a sequence of exact ⊗-functors S ⊂ C → RepF ((H, ε)) such that T is
mapped to the⊗-unit of RepF ((H, ε)). By the 2-universality property of category C/−⊗T
and the fact that RepF ((H, ε)) is idempotent complete, we obtain an induced symmetric
monoidal functor

(C/−⊗T )\→ RepF ((H, ε)). (14.6)

By combining Lemma 4.9 (with O = T ) with condition (iii), we obtain an induced
functor

(C†/−⊗T )
\ ∼
−→ (C/−⊗T )\,† → Rep†

F ((H, ε))
∼
−→ RepF (H). (14.7)

Now, since by hypothesis T † is a neutral Tate triple, the proof of Proposition 14.1 shows
us that (14.7) is a ⊗-equivalence, hence so is (14.6). ut

Proof of Theorem 1.7. Let us start by constructing the faithfully flat morphism (1.8).
Since k is a field of characteristic zero, Theorem 1.2 implies that NNum(k)k is super-
Tannakian. Moreover, since the noncommutative standard conjectures CNC(A) and
DNC(A) hold for every smooth and proper dg category A, Proposition 12.6 implies that
periodic cyclic homology gives rise to a super-fiber functor

HP∗ : NNum(k)k → sVect(k). (14.8)

Now, recall from (5.5) the composition

Num(k)k
τ
−→ Num(k)k/−⊗Q(1)

RN
−−→ NNum(k)k. (14.9)

By composing (14.8) with (14.9) we obtain a well-defined super-fiber functor on Num(k)k
which, as explained in the proof of Theorem 1.3, is given by

sH ∗dR : Num(k)k → sVect(k), Z 7→
(⊕
n even

H n
dR(Z),

⊕
n odd

H n
dR(Z)

)
.

Now, recall from Example 14.4 that since by hypothesis the standard conjectures C(Z)
and D(Z) hold for every smooth projective k-scheme Z, we have a super-Tate triple

(Num(k)k, sH ∗dR, π
±

X, (Num†(k)k, w,Q(1))).

Let us now show that this triple satisfies conditions (i)–(iii) of Proposition 14.5. As
for (i), the Z-graded k-vector space H ∗dR(Q(1)) is of degree two and one-dimensional.
This implies that π+Q(1) = idQ(1) and so π−Q(1)(Q(1)) = 0. Item (ii) follows from [14,
Example 0.4] and [15, Example 5.4] since the Tate triple (Num†(k)k, w,Q(1)) can be
written as (Rep(G),w,Q(1)) with G = Gal(Num†(k)k). For (iii), recall from Exam-
ple 13.3(ii) that the Z-grading w on Num†(k)k is induced by the algebraic correspon-
dences πnZ such that H ∗dR(π

n
Z) = π

n
Z . This implies that the Z/2-grading ε agrees with the
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Z/2-grading induced by the algebraic correspondences π±Z such that sH ∗dR(π
±

Z ) = π±Z .
As a consequence, the category Rep((H, ε)) is obtained from Rep(H) by modifying its
symmetry isomorphism constraints with respect to the Z/2-grading induced by the alge-
braic correspondences π±Z . Now, by Proposition 14.5 we obtain an induced super-group
scheme isomorphism

sGal((Num(k)k/−⊗Q(1))\)
∼
−→ Ker(t : sGal(Num(k)k)� Gm). (14.10)

On the other hand, since NNum(k)k is idempotent complete and semisimple (see Theo-
rem 5.6), the functor RN in diagram (14.9) gives rise to a faithfully flat morphism

sGal(NNum(k)k)� sGal((Num(k)k/−⊗Q(1))\).

By combining it with (14.10) we finally obtain the morphism (1.8) of Theorem 1.7.
Let us now construct the faithfully flat morphism (1.9). We start by showing that

through the modification of the symmetry isomorphism constraints of NNum(k)k (as in
Theorem 1.4), the sequence of functors

Num(k)k
τ
−→ Num(k)k/−⊗Q(1)

RN
−−→ NNum(k)k

described in diagram (5.5) gives rise to a sequence

Num†(k)k
τ
−→ Num†(k)k/−⊗Q(1)

RN
−−→ NNum†(k)k. (14.11)

In order to show this, consider the diagram

Chow(k)k //

��

Chow(k)k/−⊗Q(1)

��

// NChow(k)k

��

HP∗ // sVect(k)

Chow(k)Q/Ker

��

// (Chow(k)k/−⊗Q(1))/Ker //

��

NHom(k)F
HP∗

//

��

sVect(k)

Num(k)k // Num(k)k/−⊗Q(1) // NNum(k)k

where Ker stands for the kernel of the relevant composed horizontal functor. As explained
in the proof of Theorem 1.3, the upper horizontal composition corresponds to the functor
sH ∗dR (see (10.8)). Since by hypothesis the standard conjecture C(Z) (and hence the sign
conjecture C+(Z)) holds for all smooth projective k-schemes Z, the functors

Chow(k)k/Ker→ sVect(k), Chow(k)k/Ker→ Num(k)k

satisfy the conditions of the general Proposition 11.7. Proposition 11.7 is clearly functo-
rial on C and so when applied to the two lower rows of the above commutative diagram,
gives rise to sequence

Num†(k)k → (Num(k)k/−⊗Q(1))† → NNum†(k)k. (14.12)
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By Lemma 4.9 (with C = Num(k)k and O = Q(1)), we have a canonical ⊗-equivalence

Num†(k)k/−⊗Q(1)
∼
−→ (Num(k)k/−⊗Q(1))†

and so the sequence (14.12) reduces to (14.11). Now, recall from Example 13.3(ii) that
(Num†(k)k, w,Q(1)) is a neutral Tate triple whose fiber functor is induced from the func-
tor H ∗dR associated to de Rham cohomology. By Proposition 14.1 we then obtain an in-
duced super-group scheme isomorphism

sGal((Num†(k)k/−⊗Q(1))
\)
∼
−→ Ker(t : sGal(Num†(k)k)� Gm). (14.13)

On the other hand, since NNum†(k)k is idempotent complete and semisimple (see Theo-
rem 5.6), the functor RN in diagram (14.11) gives rise to a faithfully flat morphism

sGal(NNum†(k)k)� sGal((Num†(k)k/−⊗Q(1))
\).

By combining it with (14.13) we finally obtain the morphism (1.9) of Theorem 1.7. ut
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