
DOI 10.4171/JEMS/642

J. Eur. Math. Soc. 18, 2315–2403 c© European Mathematical Society 2016
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Abstract. We study the dynamics of the restricted planar three-body problem near mean motion
resonances, i.e. a resonance involving the Keplerian periods of the two lighter bodies revolving
around the most massive one. This problem is often used to model Sun-Jupiter-asteroid systems.

For the primaries (Sun and Jupiter), we pick a realistic mass ratioµ = 10−3 and a small eccentricity
e0 > 0. The main result is a construction of a variety of non-local diffusing orbits which show a
drastic change of the osculating (instant) eccentricity of the asteroid, while the osculating semi-
major axis is kept almost constant. The proof relies on the careful analysis of the circular problem,
which has a hyperbolic structure, but for which diffusion is prevented by KAM tori. In the proof we
verify certain non-degeneracy conditions numerically.

Based on the work of Treschev, it is natural to conjecture that the time of diffusion for this

problem is ∼ − ln(µe0)/(µ
3/2e0). We expect our instability mechanism to apply to realistic values

of e0 and we give heuristic arguments in its favor. If so, the applicability of Nekhoroshev theory to
the three-body problem as well as the long time stability become questionable.

It is well known that, in the Asteroid Belt, located between the orbits of Mars and Jupiter, the
distribution of asteroids has the so-called Kirkwood gaps exactly at mean motion resonances of
low order. Our mechanism gives a possible explanation of their existence. To relate the existence
of Kirkwood gaps to Arnol’d diffusion, we also state a conjecture on its existence for a typical
ε-perturbation of the product of the pendulum and the rotator. Namely, we predict that a positive
conditional measure of initial conditions concentrated in the main resonance exhibits Arnol’d dif-
fusion on time scales −(ln ε)/ε2.
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1. Introduction and main results

1.1. The problem of the stability of gravitating bodies

The stability of the Solar System is a longstanding problem. Over the centuries, mathe-

maticians and astronomers have spent an inordinate amount of energy proving stronger

and stronger stability theorems for dynamical systems closely related to the Solar System,

generally within the framework of the Newtonian N-body problem:

q̈i =
∑

j 6=i
mj

qj − qi

‖qj − qi‖3
, qi ∈ R

2, i = 0, 1, . . . , N − 1, (1)

and its planetary subproblem, where the massm0 (modelling the Sun) is much larger than

the other masses mi [FéjS13].

A famous theorem of Lagrange entails that the observed variations in the motion of

Jupiter and Saturn come from resonant terms of large amplitude and long period, but with

zero average (see [Las06] and references therein, or [AKN88, Example 6.16]). Yet it is a

mistake, which Laplace made, to infer the topological stability of the planetary system,

since the theorem deals only with an approximation of the first order with respect to the

masses, eccentricities and inclinations of the planets, outside mean motion resonances

[Lap89, p. 296]. Another key result is Arnol’d’s theorem, which proves the existence of

a set of positive Lebesgue measure filled by invariant tori in planetary systems, provided

that the masses of the planets are small [Arn63, Féj04]. However, in the phase space the

gaps left by the invariant tori leave room for instability.

It was a big surprise when the numerical computations of Sussman, Wisdom and

Laskar showed that over the life span of the Sun, or even over a few million years, col-

lisions and ejections of inner planets are probable (due to the exponential divergence of

solutions, only a probabilistic result seems within the reach of numerical experiments);

see for example [SW92, Las94], or [Las10] for a recent account. Our Solar System, as

well as newly discovered extra-solar systems, are now widely believed to be unstable,

and the general conjecture about theN-body problem is quite the opposite of what it used

to be:

Conjecture 1.1 (Global instability of the N-body problem). On restriction to any en-

ergy level of the N-body problem, the non-wandering set is nowhere dense. (One can

reparameterize orbits to have a complete flow, despite collisions.)

According to Herman [Her98], this is the oldest open problem in dynamical systems (see

also [Kol57]). This conjecture would imply that bounded orbits form a nowhere dense

set and that no topological stability whatsoever holds, in a very strong sense. It is largely

confirmed by numerical experiments. In our Solar System, Laskar for instance has shown

that collisions between Mars and Venus could occur within a few billion years. The co-

existence of a nowhere dense set of positive measure of bounded quasi-periodic motions

with an open and dense set of initial conditions with unbounded orbits is a remarkable

conjecture.

Currently the above conjecture is largely out of reach. A more modest but still very

challenging goal, also stated in [Her98], is a local version of the conjecture:
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Conjecture 1.2 (Instability of the planetary problem). If the masses of the planets are

small enough, the wandering set accumulates on the set of circular, coplanar, Keplerian

motions.

There have been some prior attempts to prove such a conjecture. For instance, Moeckel

discovered an instability mechanism in a special configuration of the 5-body prob-

lem [Moe96]. His proof of diffusion was limited by the so-called big gaps problem

between hyperbolic invariant tori; this problem was later solved in this setting by

Zheng [Zhe10]. A somewhat opposite strategy was developed by Bolotin and McKay, us-

ing the Poincaré orbits of the second species to show the existence of symbolic dynamics

in the three-body problem, hence of chaotic orbits, but considering far from integrable,

non-planetary conditions; see for example [Bol06]. Also, Delshams, Gidea and Roldán

have shown an instability mechanism in the spatial restricted three-body problem, but

only locally around the equilibrium point L1 (see [DGR11]).

In this paper we prove the existence of large instabilities in a realistic planetary system

and describe the associated instability mechanism. We thus provide a step towards the

proof of Conjecture 1.2.

In his famous paper [Arn64], Arnol’d says: “In contradistinction with stability, insta-

bility1 is itself stable. I believe that the mechanism of “transition chain” which guarantees

that instability in our example is also applicable to the general case (for example, to the

problem of three bodies)”. In this paper we exhibit a regime of realistic motions of a

three-body problem where “transition chains” do occur and lead to Arnol’d’s mechanism

of instability. Such instabilities occur near mean motion resonances, defined below. To the

best of our knowledge, this is the first regime of motions of the problem of three bodies

naturally modelling a region in the Solar System where non-local transition chains are

established.2 Our instability results complement the KAM stability results in the heuristic

picture of asteroid dynamics described by J. Moser [Mos79]. Previous results showing

transition chains of tori in the problem of three bodies naturally modelling a region in the

Solar System are confined to small neighborhoods of the Lagrangian equilibrium points

[CZ11, DGR11], and therefore are local in the configuration and phase space.

The instability mechanism shown in this paper is related to a generalized version

of Mather’s acceleration problem [Mat96, BT99, DdlLS00, GT08, Kal03, Pif06]. Some

parts of the proof rely on numerical computations, but our strategy allows us to keep these

computations simple and convincing.

We consider the planetary problem (1) with one planet mass (say, m1) larger than

the others: m0 ≫ m1 ≫ m2, . . . ,mN−1. The equations of motion of the lighter objects

(i = 2, . . . , N − 1) can advantageously be written as

q̈i = m0
q0 − qi

‖q0 − qi‖3
+m1

q1 − qi

‖q1 − qi‖3
+

∑

j 6=i, j>1

mj
qj − qi

‖qj − qi‖3
. (2)

1 In the translation the word “nonstability” is used, which seems to refer to instability.
2 “Non-local” means that motions on the boundary tori in this chain differ significantly, uniformly

with respect to the small parameter. In our case, the eccentricity of orbits of the massless planet
(asteroid) varies by O(1), uniformly with respect to small values of the eccentricity of the primaries,
while the semi-major axis stays nearly constant. See Section 1.3 for more details.
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Letting the masses mj tend to 0 for j = 2, . . . , N − 1, we obtain a collection of N − 2

independent restricted problems:

q̈i = m0
q0 − qi

‖q0 − qi‖3
+m1

q1 − qi

‖q1 − qi‖3
, (3)

where the massless bodies are influenced by, without themselves influencing, the pri-

maries of masses m0 and m1.

For N = 3, this model is often used to approximate the dynamics of Sun-Jupiter-

asteroid or other Sun-planet-object problems, and it is the simplest one conjectured to

have a wide range of instabilities.

1.2. An example of relevance in astronomy

1.2.1. The Asteroid Belt. One place in the Solar System where the dynamics is well

approximated by the restricted three-body problem is the Asteroid Belt. The Asteroid

Belt is located between the orbits of Mars and Jupiter and consists of 1.7 million objects

ranging from asteroids of 950 kilometers across to dust particles. Since the mass of Jupiter

is approximately 2960 masses of Mars, away from close encounters with Mars, one can

neglect the influence of Mars on the asteroids and focus on the influence of Jupiter. We

also omit interactions with the second biggest planet in the Solar System, namely Saturn,

which actually is not so small. Indeed, its mass is about a third of the mass of Jupiter and

its semi-major axis is about 1.83 times the semi-major axis of Jupiter. This implies that

the strength of interaction with Saturn is around 10% of the strength of interaction with

Jupiter. However, instabilities discussed in this paper are fairly robust and we believe that

they are not destroyed by the interaction with Saturn (or other celestial bodies), which to

some degree averages out.

With these assumptions one can model the motion of the objects in the Asteroid Belt

by the restricted problem. Denote by µ = m1/(m0 +m1) the mass ratio, wherem0 is the

mass of the Sun andm1 is the mass of Jupiter. For µ = 0 (that is, neglecting the influence

of Jupiter), bounded orbits of the asteroid are ellipses. Up to orientation, the ellipses are

characterized by their semi-major axis a and eccentricity e.

The aforementioned theorem of Lagrange asserts that, for small µ > 0, the semi-

major axis a(t) of an asteroid satisfies |a(t)− a(0)| . µ for all |t| . 1/µ. For very small

µ the time of stability was greatly improved by Niederman [Nie96] using Nekhoroshev

theory; see the discussion in the next section. Nevertheless, if one looks at the asteroid

distribution in terms of their semi-major axis, one encounters several gaps, the so-called

Kirkwood gaps. It is believed that the existence of these gaps is due to instability mecha-

nisms.

1.2.2. Kirkwood gaps and Wisdom’s ejection mechanism. Mean motion resonances oc-

cur when the ratio between the period of Jupiter and the period of the asteroid is rational.

In particular, the Kirkwood gaps correspond to the ratios 3 : 1, 5 : 2 and 7 : 3.

In this section we present a heuristic explanation of the reason why these gaps exist.
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Fig. 1. Kirkwood gaps

It is conjectured and confirmed by numerical data [Wis82] that the eccentricities of

asteroids appropriately placed in the Kirkwood gaps change by a magnitude of order one.

Notice that in the real data, the eccentricities of most asteroids in the Asteroid Belt are

between 0 and 0.25; see for example http://en.wikipedia.org/wiki/File:Mainbeltevsa.png.

As the eccentricity of the asteroid grows while its semi-major axis is nearly constant,

its perihelion gets closer and closer to the origin, namely at the distance a(t)[1 − e(t)],
where a(t) and e(t) are the semi-major axis and eccentricity of the asteroid respectively

(see Figure 2, where the inner circle is the orbit of Mars). In particular, a close encounter

with Mars becomes increasingly probable. Eventually Mars and the asteroid come close

to each other, and the asteroid most probably gets ejected from the Asteroid Belt.

A surprising fact is that the change of eccentricity of the asteroid is only possible

due to the ellipticity of the motion of Jupiter, due to the following dimension count. For

circular motions of Jupiter the problem reduces to two degrees of freedom (see Section

1.8) and plausibly there are invariant 2-dimensional tori separating the 3-dimensional

energy surfaces; see for example [GDF+89, Féj02b, CC07]. If the eccentricity of Jupiter

is not zero, the system has two and a half degrees of freedom and then KAM tori do not

prevent drastic changes in the eccentricity.

Heuristically, the conclusion is that, if the eccentricity of the asteroid changes by a

magnitude of order one in the Sun-Jupiter-asteroid restricted problem, then the asteroid

might come into zones where the restricted problem does not describe the dynamics ap-

propriately, due to the influence of Mars.

The main result of this paper is that for certain mean motion resonances there are

unstable motions which lead to significant changes in the eccentricity. We only present

results for two particular resonances (1 : 7 and 3 : 1), because the proof relies on numerical

computations. The resonance 3 : 1 corresponds to one of most noticeable Kirkwood gaps.

We are confident that our mechanism of instability applies to other resonances, and thus

to the other Kirkwood gaps, as long as the orbits of the unperturbed problem stay away

http://en.wikipedia.org/wiki/File:Mainbeltevsa.png
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from collisions. Thus, the instability mechanism showed in this paper gives insight into

the existence of the Kirkwood gaps.

Another instability mechanism, using the adiabatic invariant theory, can be seen in

[NS04] where a heuristic explanation is given. Let εJ = µ
1/2
J /eJ , where µJ is the

mass ratio and eJ is the eccentricity of Jupiter. They study the case when εJ is rela-

tively small: 0.025, 0.05, 0.1, 0.2. In reality it is close to 0.6. In contrast, we study the

case of large εJ .

1.2.3. Capture in resonance of other objects. Many known light objects in the Solar

System display a mean motion resonance of low order with Jupiter or some other planet.

Some of them are: Trojan satellites, which librate around one of the two Lagrangian points

of a planet, hence in 1 : 1 resonance with the planet; Uranus, which is close to the 1 : 7

resonance with Jupiter, thus giving an example of an “outer” restricted problem that is

close in phase space to the solutions we are studying; or the Kuiper Belt beyond Neptune,

whose objects, behaving in the exact opposite manner to those of the Asteroid Belt, seem

to concentrate close to mean motion resonances (in particular, the Keplerian ellipse of

the dwarf planet Pluto notoriously meets the ellipse of Neptune). The current existence

of these resonant objects, and thus their relative stability, seemingly contradicts the above

mechanism. This calls at least for a short explanation, although there are many effects at

work.

The main point is that an elliptic stability zone lies in the eye of a resonance, where

some kind of long term stability prevails. Besides, the geometry of the system often pre-

vents the ejection mechanism described in Section 1.2.2, because there is no such body

as Mars to propel the asteroid through a close encounter. In many cases, the mean mo-

tion resonance itself precludes collisions with the main planet, for example the Trojan

asteroids with respect to Jupiter, or Pluto with respect to Neptune; for a discussion of this

effect in the Asteroid Belt, see [Rob05].

The complete picture certainly includes secular resonances, close encounters between

asteroids, as well as more complicated kinds of resonance involving more bodies (for

example the second Kirkwood gap, where a four-body problem resonance seems to play

a crucial role). We refer to [Mor02, Rob05] for further astronomical details.

1.3. Main results

Let us consider the three-body problem and assume that the massless body moves in the

same plane as the two primaries. We normalize the total mass to one, and we call the three

bodies the Sun (mass 1 − µ), Jupiter (mass µ with 0 < µ ≪ 1) and the asteroid (zero

mass). If the energy of the primaries is negative, their orbits describe two ellipses with

the same eccentricity, say e0 ≥ 0. For convenience, we denote by q0(t) the normalized

position of the primaries (or “fictitious body”), so that the Sun and Jupiter have respective

positions −µq0(t) and (1 − µ)q0(t). The Hamiltonian of the asteroid is

K(q, p, t) = ‖p‖2

2
− 1 − µ

‖q + µq0(t)‖
− µ

‖q − (1 − µ)q0(t)‖
(4)
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where q, p ∈ R
2. Without loss of generality one can assume that q0(t) has semi-major

axis 1 and period 2π . For e0 ≥ 0 this system has two and a half degrees of freedom.

When e0 = 0, the primaries describe uniform circular motions around their center

of mass. (This system is called the restricted planar circular three-body problem.) Thus,

in a frame rotating with the primaries, the system becomes autonomous and hence has

only two degrees of freedom. Its energy in the rotating frame is a first integral, called the

Jacobi integral.3 It is defined by

J = ‖p‖2

2
− 1 − µ

‖q + µq0(t)‖
− µ

‖q − (1 − µ)q0(t)‖
− (q1p2 − q2p1). (5)

The aforementioned KAM theory applies to both the circular and the elliptic problem

[Arn63, SM95] and asserts that if the mass of Jupiter is small enough, there is a set of

initial conditions of positive Lebesgue measure leading to quasiperiodic motions, in the

neighborhood of circular motions of the asteroid.

If Jupiter has a circular motion, since the system has only two degrees of freedom,

KAM invariant tori are 2-dimensional and separate the 3-dimensional energy surfaces.

But in the elliptic problem, 3-dimensional KAM tori do not prevent orbits from wandering

on a 5-dimensional phase space. In this paper we prove the existence of a wide enough

set of wandering orbits in the elliptic planar restricted three-body problem.

Let us write the Hamiltonian (4) as

K(q, p, t) = K0(q, p)+K1(q, p, t, µ),

with

K0(q, p) = ‖p‖2

2
− 1

‖q‖ ,

K1(q, p, t, µ) = 1

‖q‖ − 1 − µ

‖q + µq0(t)‖
− µ

‖q − (1 − µ)q0(t)‖
.

The Keplerian part K0 allows us to associate elliptical elements to every point (q, p) of

the phase space of negative energyK0. We are interested in the drift of the eccentricity e

under the flow ofK . (The reader will easily distinguish this notation from other meanings

of e.)

We will see later that K1 = O(µ) uniformly, away from collisions. Notice that there

is a competition between the integrability ofK0 and the non-integrability ofK1, which al-

lows for wandering. In this work we consider a realistic value of the mass ratio,µ = 10−3.

Notation 1.3. In what follows, we abbreviate the restricted planar circular three-body

problem to the circular problem, and the restricted planar elliptic three-body problem to

the elliptic problem.

3 Celestial mechanics’s works often prefer to use the Jacobi constant C, given by J =
((1 − µ)µ− C)/2.
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Here is the main result of this paper.

Main Result (resonance 1 : 7). Consider the elliptic problem with mass ratio µ = 10−3

and eccentricity of Jupiter e0 > 0. Assume it is in general position.4 Then, for e0 small

enough, there exists a time T > 0 and a trajectory whose eccentricity e(t) satisfies

e(0) < 0.48 and e(T ) > 0.67,

while

|a(t)− 72/3| ≤ 0.027 for t ∈ [0, T ].

Fig. 2. Transition from the instant ellipse of eccentricity e = 0.48 to the instant ellipse of eccen-
tricity e = 0.67. The dashed line represents the transition; however, the actual diffusing orbit is
very complicated and the diffusion is very slow.

We will make this result more precise in Section 1.8, Theorem 1, after providing some

appropriate definitions. We stress that the instabilities discussed in the Main Result are

non-local both in the action space and in the configuration space. This is the first result

showing non-local instabilities in the planetary three-body problem.

In [GK10b, GK10a, GK11] it is shown that in the circular problem with realistic mass

ratio µ = 10−3 there exists an unbounded Birkhoff region of instability for eccentricities

larger than 0.66 and Jacobi integral J = 1.8. This allows them to prove a variety of

unstable motions, including oscillatory motions and all types of final motions of Chazy.

The analogous result for the 3 : 1 resonance is as follows.

Main Result (resonance 3 : 1). Consider the elliptic problem with mass ratio µ = 10−3

and eccentricity of Jupiter e0 > 0. Assume it is in general position. Then, for e0 small

enough, there exists a time T > 0 and a trajectory whose eccentricity e(t) satisfies

e(0) < 0.59 and e(T ) > 0.91,

while

|a(t)− 3−2/3| ≤ 0.149 for t ∈ [0, T ].
Thus we claim the existence of orbits of the asteroid whose change in eccentricity is

above 0.3. In Appendix D, we state two conjectures about the stochastic behavior of or-

bits near a resonance: one is for Arnol’d’s example and another one is for our elliptic

4 Later we state three Ansätze that formalize the non-degeneracy conditions we need.
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problem. These conjectures are based on numerical experiments; see for example [Chi79,

SUZ88, Wis82]. We also provide some heuristic arguments using the dynamical struc-

tures explored in this paper. Loosely speaking, we claim that near a resonance there is

polynomial instability for a positive measure set of initial conditions on the time scale

−ln(µe0)/(µ
3/2e0).

Most of the paper is devoted to the resonance 1 : 7. But the proof seems robust with

respect to the precise resonance considered. In Appendix C, we show how to modify the

proof of the main result to deal with the resonance 3 : 1, whose importance in explaining

the Kirkwood gaps is emphasized in the introduction.

We believe that our mechanism applies to a substantially larger interval of eccentrici-

ties, but proving this requires more sophisticated numerics (see Remark A.4).

1.4. Refinements and comments

1.4.1. Smallness of the eccentricity of Jupiter. When Jupiter describes a circular motion,

the Jacobi integral is an integral of motion and then KAM theory prevents global insta-

bilities. We consider the eccentricity e0 as a small parameter so that we can compare the

dynamics of the elliptic problem with the dynamics of the circular one.

The difference between the elliptic and circular Hamiltonians is O(µe0). The analysis

of the difference, performed in Section 3.2, shows that this difference can be reduced to

O(µe5
0) (or even smaller) using averaging. This makes us believe that e0 does not need to

be infinitesimally small for our mechanism to work. Even the realistic value e0 ≈ 0.048 is

not out of the question. However, having a realistic e0 becomes mostly a matter of numer-

ical experiment, not of mathematical proof —the limit and the interest of perturbation the-

ory is to describe dynamical behavior in terms of asymptotic models. See Appendix D.2

for more details.

1.4.2. On infinitesimally small masses µ. In the Main Result, we do not know what hap-

pens asymptotically if we let µ → 0, since our estimates worsen. Indeed, one of the

crucial steps of the proof is to study the transversality of certain invariant manifolds (see

Section 1.6) and this transversality becomes exponentially small with respect to µ as

µ → 0. On the other hand, the Main Result holds for realistic values of µ, which is out

of reach of many qualitative results of perturbation theory where parameters are conve-

niently assumed to be as small as needed. See Appendix D for more details.

1.4.3. Speed of diffusion. In Appendix D we discuss the relation of our problem to

a priori unstable systems and Mather’s accelerating problem. We conjecture that, for the

orbits constructed in this paper, the diffusion time T can be chosen to be

T ∼ − ln(µe0)

µ3/2e0

. (6)

Time estimates in the a priori unstable setting can be found in [BB02, BBB03, Tre04,

GdlL06].



Restricted planar three-body problem 2325

De la Llave [dlL04], Gelfreich–Turaev [GT08], and Piftankin [Pif06], using

Treschev’s techniques of separatrix maps (see for instance [PT07]), proved linear dif-

fusion for Mather’s acceleration problem. With these techniques, a smart choice of dif-

fusing orbits might lead to even faster diffusion in our problem, in times of the order

T ∼ −(lnµ)(µ3/2e0)
−1; see Appendix D for more details.5

An analytic proof of this conjecture might require restrictive conditions between µ

and e0. However, for realistic values of µ and e0 or smaller, that is, 0 < µ ≤ 10−3 and

0 < e0 < 0.048, we expect that the speed of our mechanism of diffusion also obeys the

above heuristic formula.

On the other hand, the above formula probably does not hold in the neighborhood of

circular motions of the masless body, which might be much more stable than more eccen-

tric motions. This could explain the fact that Uranus, whose eccentricity of 0.04 is signif-

icantly smaller than those of most asteroids from the Asteriod Belt, and which is roughly

in 1 : 7 resonance with Jupiter (its period is 7.11 times larger than that of Jupiter), has

not been expelled yet (see also Section 1.2.3). However, a deeper analysis would require

comparing the distances of the various celestial bodies to the mean motion resonance, as

well as the splitting of their invariant manifolds.

1.4.4. On Nekhoroshev’s stability. Consider an analytic nearly integrable system of the

form Hε(θ, I ) = H0(I) + εH1(θ, I ) with θ ∈ T
n and I in the unit ball Bn. Suppose H0

is convex (or even suppose the weaker condition that H0 is steep).6 Then a famous result

of Nekhoroshev states that for some c > 0 independent of ε we have

|I (t)− I (0)| . ε1/(2n) for |t| . exp(cε−1/(2n)).

See for instance [Nie96] for the history and precise references and [Xue10] for the esti-

mate on the constant c.

Niederman [Nie96] applied Nekhoroshev theory to the planetaryN-body problem. He

showed that the semi-major axis obeys the above estimate for exponentially long time,

exp(cε−1/(2n)), with ε being the smallness of the planetary masses. However, the con-

stant c along with other constants involved in the proof are not optimal. Specifically, ε

has to be as small as 3 · 10−24 to have stability time comparable to the age of the Solar

System. Moreover, the stability of semi-major axis does not imply the stability of eccen-

tricity, which we conjecture has substantial deviations in polynomially long time.

Notice that our results along the predictions of Treschev’s (see Appendix D) state the

possibility of polynomial instability for eccentricities for the elliptic problem.

With ε ∼ µ, there was a hope to apply this result to the long time stability of e.g. the

Sun-Jupiter-Saturn system (see [GG85]). However, (6) indicates lack of even O(ε−2)-

stability. Indeed, the unperturbed Hamiltonian of the three-body problem is neither con-

vex, nor steep. This turns out to be not just a technical problem but a true obstruction to

exponentially long time stability, since Nekhoroshev’s theory does not apply to this kind

of systems. See Appendix D for more details.

5 This does not seem crucial, since the real value e0 is not smaller than µ.
6 Recall that H0 is called steep if for any affine subspace L of Rn the restriction H0|L has only

isolated critical points.
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1.5. Mechanism of instability

The Main Result gives an example of large instability for this mechanical system. It can

be interpreted as an example of Arnol’d diffusion; see [Arn64]. Nevertheless, Arnol’d

diffusion usually refers to nearly integrable systems, whereas Hamiltonian (4) cannot be

considered so close to integrable sinceµ = 10−3. The mechanism of diffusion used in this

paper is similar to the so-called Mather accelerating problem [Mat96, BT99, DdlLS00,

GT08, Kal03, Pif06]. This analogy is explained in Section 2.3.

Arguably, the main source of instabilities are resonances. One of the most natural kind

of resonances in the three-body problem is mean motion orbital resonances.7 Along such

a resonance, Jupiter and the asteroid will regularly be in the same relative position. Over

a long time interval, Jupiter’s perturbative effect could thus pile up and (despite its small

amplitude due to the small mass of Jupiter) could modify the eccentricity of the asteroid,

instead of averaging out.

According to Kepler’s Third Law, this resonance takes place when a3/2 is close to

a rational, where a is the semi-major axis of the instant ellipse of the asteroid. In our

case we consider a3/2 close to 7 in Section 1.8 and a3/2 close to 1/3 in Appendix C.

Nevertheless, we expect that the same mechanism takes place for a large number of mean

motion orbital resonances.

The semi-major axis a and the eccentricity e describe completely an instant ellipse of

the asteroid (up to orientation). Thus, geometrically the Main Results say that the asteroid

evolves from a Keplerian ellipse of eccentricity e = 0.48 to one of eccentricity e = 0.67

(for the resonance 1 : 7) and from e = 0.59 to e = 0.91 (for the resonance 3 : 1), while

keeping its semi-major axis almost constant (see Figure 2). In Figure 3 we consider the

plane (a, e), which describes the ellipse of the asteroid. The diffusing orbits given by the

Main Results correspond to nearly horizontal lines.

Fig. 3. The diffusion path that we study in the (a, e) plane. The horizontal lines represent the
resonances along which we drift. The thick segments are the diffusion paths whose existence we
prove in this paper.

A qualitative description of such a diffusing orbit is given at the end of Section 4.

7 The mean motions are the frequencies of the Keplerian revolution of Jupiter and the asteroid
around the Sun; in our case the asteroid makes one full revolution, while Jupiter makes seven
revolutions.
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1.6. Sketch of the proof

Our overall strategy is to:

(A) Carefully study the structure of the restricted three-body problem along a chosen

resonance.

(B) Show that, generically within the class of problems sharing the same structure, global

instabilities exist. One could say that this step is similar, in spirit, to “abstract” proofs

of existence of instabilities for generic perturbations of a priori chaotic systems such

as in Mather’s accelerating problem.

(C) Check numerically that the generic conditions (which we call Ansätze) are satisfied

in our case.

Step (B) is the core of the paper and we now give more details about it.

For the elliptic problem, the diffusing orbit that we are looking for lies in a neighbor-

hood of a (3-dimensional) normally hyperbolic invariant cylinder3 and its local invariant

manifolds, which exist near our mean motion resonance. The vertical component of the

cylinder can be parameterized by the eccentricity of the asteroid, and the horizontal com-

ponents by its mean longitude and time.

If the stable and unstable invariant manifolds of 3 intersect transversally, the elliptic

problem induces two different dynamics on the cylinder (see Sections 3.4 and 3.5): the

inner and the outer dynamics. The inner dynamics is simply the restriction of the New-

tonian flow to 3. The outer dynamics is obtained by a limiting process: it is observed

asymptotically by starting very close to the cylinder and its unstable manifold, traveling

all the way to a homoclinic intersection, and coming back close to the cylinder along its

stable manifold (see Definition 2.3).

Since the system has different homoclinic orbits to the cylinder, one can define dif-

ferent outer dynamics. In our diffusing mechanism we use two different outer maps. The

reason is that each of the outer maps fails to be defined in the whole cylinder, and so we

need to combine the two of them to achieve diffusion (see Section 2).

The proof consists in the following five steps:

1. Construct a smooth family of hyperbolic periodic orbits for the circular problem with

varying Jacobi integral (Ansatz 1).

2. Prove the existence of the normally hyperbolic invariant cylinder 3, whose vertical

size is lower bounded uniformly with respect to small values of e0 (Corollary 2.1 and

Theorem 2).

3. Establish the transversality of the stable and unstable invariant manifolds of this cylin-

der (Ansatz 1 and Theorem 2), a key feature to define a limiting “outer dynamics”, in

addition to the inner dynamics, over3 (Section 2.3).

4. Compare the inner and outer dynamics on 3 and, in particular, check that they do not

share any common invariant circles (Theorems 3 and 4). Then one can drift along 3

by alternating the inner and outer maps in a carefully chosen order [Moe02].

5. Construct diffusing orbits by shadowing such a polyorbit (Lemma 4.4).

This program faces difficulties at each step, as explained next.
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1.6.1. Existence of a family of hyperbolic periodic orbits of the circular problem. This

part is mainly numerical. Using averaging and the symmetry of the problem we guess

a location of periodic orbits of a certain properly chosen Poincaré map of the circular

problem. Then for an interval of Jacobi integrals [J−, J+] and each J ∈ [J−, J+] we

compute them numerically and verify that they are hyperbolic. For infinitesimally smallµ

hyperbolicity follows from averaging.

1.6.2. Existence of a normally hyperbolic invariant cylinder3. The first difficulty comes

from the proper degeneracy of the Newtonian potential: at the limit µ = 0 (no Jupiter),

the asteroid has a one-frequency, Keplerian motion, whereas symplectic geometry allows

for a three-frequency motion (as with any potential other than the Newtonian potential

1/r and the elastic potential r2). Due to this degeneracy, switching to µ > 0 (even with

e0 = 0) is a singular perturbation.

1.6.3. Transversality of the stable and unstable invariant manifolds. Establishing the

transversality of the invariant manifolds of 3 is a delicate problem, even for e0 = 0.

Asymptotically when µ → 0, the difference (splitting angle) between the invariant man-

ifolds becomes exponentially small with respect to µ, that is, of order exp(−c/√µ) for

some constant c > 0. Despite inordinate efforts of specialists, all known techniques fail to

estimate this splitting, because the relevant Poincaré–Melnikov integral is not algebraic.

Note that this step is significantly simpler when one studies generic systems.

At the expense of creating other difficulties, setting µ = 10−3 avoids this splitting

problem, since for this value of the parameter we see that the splitting of separatrices

is not extremely small and can be detected by means of a computer. Besides, 10−3 is

a realistic value of the mass ratio for the Sun-Jupiter model. Since the splitting of the

separatrices varies smoothly with respect to the eccentricity e0 of the primaries, it suffices

to estimate the splitting for e0 = 0, that is, in the circular problem. This is a key point for

the numerical computation, which thus remains relatively simple. On the other hand, in

the next two steps it is crucial to have e0 > 0, otherwise the KAM tori separate the Jacobi

integral energy levels.

Moreover, recall that the cylinder 3 has two branches of both stable and unstable

invariant manifolds (both originated by a family of periodic orbits of the circular problem,

see Figures 17, 18 for 1 : 7 and Figures 26, 28 for 3 : 1). In certain regions, the intersection

between one of the branches of the stable and unstable invariant manifolds is tangential,

which prevents us from defining the outer map. Nevertheless, we then check that the

other two branches intersect transversally and we define a different outer map. Thus, we

combine the two outer maps depending on which branches of the invariant manifolds

intersect transversally.

1.6.4. Asymptotic formulas for the outer and inner maps. Using classical perturbation

theory and the specific properties of the underlying system, we reduce the inner and (the

two different) outer dynamics to three 2-dimensional symplectic smooth maps of the form

F in
e0

:
(
I

t

)
7→

(
I + e0(A

+(I, µ)eit + A−(I, µ)e−it )+ O(µe2
0)

t + µT0(I, µ)+ O(µe0)

)
(7)
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and

Fout,∗
e0

:
(
I

t

)
7→

(
I + e0(B

∗,+(I, µ)eit + B∗,−(I, µ)e−it )+ O(µe2
0)

t + µω∗(I, µ)+ O(µe0)

)
, ∗ = f, b,

(8)

where (I, t) are conjugate variables which parameterize a connected component of the

3-dimensional normally hyperbolic invariant cylinder 3 intersected with a transversal

Poincaré section, and A±,T0, B
∗,±, ω∗ are smooth functions. The superscripts f and b

stand for the forward and backward heteroclinic orbits that are used to define the outer

maps. The choice of this notation will be clear in Section 2. Note that these maps are real

and thus A− and B∗,− are complex conjugate to A+ and B∗,+ respectively.

1.6.5. Non-degeneracy implies the existence of diffusing orbits. As shown in Section 4,

the existence of diffusing orbits is established provided that the smooth functions

K∗,+(I, µ) = B∗,+(I, µ)− eiµω
∗(I,µ) − 1

eiµT0(I,µ) − 1
A+(I, µ), ∗ = f, b, (9)

do not vanish on the set of I ∈ [I−, I+] where the corresponding outer map is defined.

Since A+ and A− are complex conjugate, as are B∗,+ and B∗,−, we need not consider

the complex conjugate K∗,−(I, µ). We check numerically that K∗,+(I, µ) 6= 0 in their

domain of definition. The conditions K∗,+(I, µ) 6= 0 imply the absence of common

invariant curves for the inner and outer maps. This reduces the proof of the Main Result

to shadowing, which therefore leads to the existence of diffusing orbits.

It turns out that, in this problem, no large gaps appear. This fact is not surprising since

the elliptic problem has three time scales.

Finally, notice that the complex functions K∗,+(I, µ) can be regarded as a 2-dimen-

sional real-valued function depending smoothly on (I, µ). If the dependence on µ is non-

trivial, a complex-valued function K∗,+(I, µ) does not vanish at any point of its domain

of definition except for a finite number of values µ.

1.7. Nature of numerics

In this section we outline which parts of the mechanism are based on numerics.

• On each 3-dimensional energy surface the circular problem has a well-defined Poincaré

map FJ : 6J → 6J of a 2-dimensional cylinder 6J for a range of energies J . For

each J in some interval [J−, J+] we establish the existence of a saddle periodic orbit

pJ such that F 7
J (pJ ) = pJ .

• We show that for all J ∈ [J−, J+] there are two intersections of W s(pJ ) andWu(pJ ).

Each intersection is transversal for almost all values of J , but it becomes tangent at an

exceptional (discrete) set of values of J . Nevertheless, we check that at least one of the

two intersections is transversal for each J ∈ [J−, J+] (see Figure 15).

• Each transversal intersection qJ gives rise to a homoclinic orbit, denoted γJ . For each

J ∈ [J−, J+] we compute several Melnikov integrals of certain quantities related to

1Hell along γJ and pJ . Out of these integrals we compute the leading terms of the

dynamics of the elliptic problem and verify a necessary condition for diffusion.
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The precise hypotheses which are based on numerics are Ansätze 1, 2 (Section 2) and 3

(Section 4).

As seen in Appendices A–B, the numerical values that we deal with are several orders

of magnitude larger than the estimated error of our computations, and therefore these

computations are reliable. Moreover, all the computations that we perform are standard

and low-dimensional.

1.8. Main theorem for the 1 : 7 resonance

The model of the Sun, Jupiter and a massless asteroid in Cartesian coordinates is given by

the Hamiltonian (4). First, let us consider the case µ = 0, that is, we consider Jupiter with

zero mass. In this case, Jupiter and the asteroid do not influence each other and thus the

system reduces to two uncoupled 2-body problems (Sun-Jupiter and Sun-asteroid) which

are integrable.

Let us introduce the so-called Delaunay variables, denoted by (ℓ, L, ĝ,G), which are

angle-action coordinates of the Sun-asteroid system. The variable ℓ is the mean anomaly,

L is the square root of the semi-major axis, ĝ is the argument of the perihelion and G

is the angular momentum. Delaunay variables are obtained from Cartesian variables via

the following symplectic transformation (see [AKN88] for more details and background,

or [Féj13, Appendix] for a straightforward definition). First define polar coordinates for

the position:

q = (r cosφ, r sinφ).

Then, the actions of the Delaunay coordinates are defined by

− 1

2L2
= ‖p‖2

2
− 1

‖q‖ and G = −J − 1

2L2
(10)

(recall thatµ = 0 for these definitions). With these actions, the eccentricity of the asteroid

is expressed as

e =
√

1 −G2/L2. (11)

To define the angles ℓ and ĝ, let v be the true anomaly, so that

φ = v + ĝ. (12)

Then from v one can obtain the eccentric anomaly u using

tan
v

2
=

√
1 + e

1 − e
tan

u

2
. (13)

From the eccentric anomaly, the mean anomaly is given by Kepler’s equation

u− e sin u = ℓ. (14)

We apply the Delaunay change of coordinates given above to the elliptic problem

(see Appendix B.1). In Delaunay coordinates, the Hamiltonian (4) can be split into the
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Keplerian part −1/(2L2), the circular part of the perturbing function µ1Hcirc, and the

remainder which vanishes when e0 = 0:

Ĥ (L, ℓ,G, ĝ − t, t) = − 1

2L2
+ µ1Hcirc(L, ℓ,G, ĝ − t, µ)

+ µe01Hell(L, ℓ,G, ĝ − t, t, µ, e0). (15)

For e0 = 0, the circular problem only depends on ĝ − t . To simplify the comparison

with the circular problem, we consider rotating Delaunay coordinates, in which1Hcirc is

autonomous. Define the new angle g = ĝ − t (the argument of the pericenter, measured

in the rotating frame) and a new variable I conjugate to time t . Then we have

H(L, ℓ,G, g, I, t) = − 1

2L2
−G+ µ1Hcirc(L, ℓ,G, g,µ)

+ µe01Hell(L, ℓ,G, g, t, µ, e0)+ I. (16)

In these new variables, the difference in the number of degrees of freedom of the elliptic

and circular problems becomes more apparent. When e0 = 0, the system is autonomous

and then I is constant, which corresponds to the conservation of the Jacobi integral (5).

Therefore, the circular problem reduces to two degrees of freedom. Moreover, it will later

be crucial to view the circular problem as an approximation of the elliptic one, in order to

reduce the (possibly impracticable) numerical computations needed by a direct approach

to the corresponding lower dimensional, and thus simpler, computations of the circular

problem.

Recall that, in this section, we consider the 1 : 7 mean motion orbital resonance be-

tween Jupiter and the asteroid, that is, the period of the asteroid is approximately seven

times the period of Jupiter. In rotating Delaunay variables, this corresponds to

ℓ̇ ∼ 1/7 and ġ ∼ −1. (17)

A nearby resonance is ℓ̇ ∼ 1/7 and ṫ ∼ 1, but we stick to the previous one.

The resonance takes place when L ∼ 71/3. We study the dynamics in a large neigh-

borhood of this resonance and we show that one can drift along it. Namely, we find trajec-

tories that keep L close to 71/3 while the G-component changes noticeably. Using (11),

we see that e also changes by order one. In this setting, the Main Result can be rephrased

as follows.

Theorem 1. Assume Ansätze 1–3. Then there exists e∗0 > 0 such that for every e0 with

0 < e0 < e∗0 , there exist T > 0 and an orbit of the Hamiltonian (16) which satisfy

G(0) > 1.67 and G(T ) < 1.42,

whereas

|L(t)− 71/3| ≤ 0.007 for t ∈ [0, T ].

Ansätze 1 (Section 2), 2 (Section 2) and 3 (Section 4) are hypotheses which, broadly

speaking, assert that the Hamiltonian (16) is in general position in some domain of the

phase space; see also Section 1.7. They are backed up by the numerics in the appendices.
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By definition the Hamiltonian (16) is autonomous and thus preserved. Hence, we will

restrict ourselves to a level of energy which, without loss of generality, can be taken as

H = 0. Therefore, since |I −G| = O(µ), the drift in G is equivalent to the drift in I for

orbits satisfying |L(t)− 71/3| ≤ 7µ.

The proof of Theorem 1 is structured as follows.

In Section 2, we study the dynamics of the circular problem (e0 = 0). The Hamilto-

nian (16) becomes

Hcirc(L, ℓ,G, g) = − 1

2L2
−G+ µ1Hcirc(L, ℓ,G, g,µ). (18)

1. Ansatz 1 says that for an interval [J−, J+] of Jacobi energies the circular problem has

a smooth family of hyperbolic periodic orbits λJ , whose stable and unstable manifolds

intersect transversally for each J ∈ [J−, J+].
2. Ansatz 2 asserts that the period of these periodic orbits changes monotonically with

respect to the Jacobi integral.

3. Ansatz 3 asserts that Melnikov functions associated with symmetric homolinic orbits

created by the above periodic orbits are in general position.

Ansatz 1 implies the existence of a normally hyperbolic invariant cylinder (Corollary 2.1).

Later in the section (Subsections 2.2 and 2.3) we calculate the aforementioned outer and

inner maps for the circular problem (see (7) and (8)).

Then in Section 3 we consider the elliptic case (0 < e0 ≪ 1) as a perturbation

of the circular case. Theorem 2 asserts that the normally hyperbolic invariant cylinder

obtained for the circular problem persists, and its stable and unstable manifolds intersect

transversally for each J ∈ [J− + δ, J+ − δ] with small δ > 0. These objects give rise to

the inner and outer maps for the elliptic problem. Theorem 3 provides expansions for the

inner and outer maps; see formulas (45) and (48) respectively.

Finally, in Section 4, Theorem 4 completes the proof of Theorem 1. This is done by

comparing the inner and the two outer maps in Lemma 4.2 and constructing a transition

chain of tori. Ansatz 3 ensures that the first order of the inner and outer maps of the elliptic

problem are in general position. It turns out that in this problem there are no large gaps,

due to the specific structure of times scales and the Fourier series involved. This contrasts

with the typical situation near a resonance; see for instance [DdlLS06].

Notation 1.4. From now on, we omit the dependence on the mass ratio µ (keeping in

mind the question of what would happen if we let µ vary). Recall that in this work we

consider a realistic value µ = 10−3.

2. The circular problem

2.1. Normally hyperbolic invariant cylinders

The circular problem is given by the Hamiltonian (16) with e0 = 0. Since it does not

depend on t , I is an integral of motion. We study the dynamics close to the resonance

7ℓ̇ + ġ ∼ 0. Since t is a cyclic variable, we consider the two degrees of freedom
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Hamiltonian of the circular problem Hcirc, for which conservation of energy corresponds

to conservation of the Jacobi constant (5).

Note that the circular problem is reversible with respect to the involution

9(L, ℓ,G, g, I, t) = (L,−ℓ,G,−g, I,−t). (19)

This symmetry facilitates several numerical computations.

Ansatz 1. Consider the Hamiltonian (18) with µ = 10−3. At every energy level

J ∈ [J−, J+] = [−1.81,−1.56], there exists a hyperbolic periodic orbit λJ =
(LJ (t), ℓJ (t),GJ (t), gJ (t)) of period TJ with

|TJ − 14π | < 60µ

such that

|LJ (t)− 71/3| < 7µ

for all t ∈ R. The periodic orbit and its period depend smoothly on J .

Every λJ has two branches of stable and unstable invariant manifoldsW s,j (λJ ) and

Wu,j (λJ ) for j = 1, 2. For every J ∈ [J−, J+] either W s,1(λJ ) and Wu,1(λJ ) intersect

transversally, or W s,2(λJ ) and Wu,2(λJ ) intersect transversally.

This Ansatz is backed up by the numerics of Appendix A.

We study the elliptic problem as a perturbation of the circular one. In contrast with

Ansatz 1, in the perturbative setting we do not reduce the dimension of the phase space

to study the inner and outer dynamics of the circular problem. Namely, we consider the

Extended Circular Problem given by the Hamiltonian (16) with e0 = 0. In other words,

we keep the conjugate variables (I, t) even if t is a cyclic variable. Consider the energy

level H = 0, so that I = −Hcirc(ℓ, L, g,G). Therefore, the periodic orbits obtained in

Ansatz 1 become invariant 2-dimensional tori which lie on constant hyperplanes I = I0
for every

I0 ∈ [I−, I+] = [−J+,−J−] = [1.56, 1.81]. (20)

The union of these 2-dimensional invariant tori forms a normally hyperbolic invariant 3-

dimensional manifold30, diffeomorphic to a cylinder. Applying the implicit function the-

orem with the energy as a parameter, we see that the cylinder30 is analytic (by Ansatz 1,

the periodic orbits are hyperbolic, thus non-degenerate).

Corollary 2.1. Assume Ansatz 1. The Hamiltonian (16) with µ = 10−3 and e0 = 0 has

an analytic normally hyperbolic invariant 3-dimensional cylinder 30, which is foliated

by 2-dimensional invariant tori.

The cylinder 30 has two branches of stable and unstable invariant manifolds, which

we callW s,j (30) andWu,j (30) for j = 1, 2. In the constant invariant planes I = I0, for

every I0 ∈ [I−, I+] either W s,1(30) and Wu,1(30) intersect transversally or W s,2(30)

andWu,2(30) intersect transversally.
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We define a global Poincaré section and work with maps to reduce the dimension by one.

Two choices are natural: {t = 0} and {g = 0}, since both variables t and g satisfy ṫ 6= 0

and ġ 6= 0. We choose the section {g = 0}, with associated Poincaré map

P0 : {g = 0} → {g = 0}. (21)

Since we are studying the resonance (17), the intersection of the cylinder30 with the

section {g = 0} is formed by seven cylinders (see Figure 4), denoted 3̃
j

0 , j = 0, . . . , 6:

30 ∩ {g = 0} = 3̃0 =
6⋃

j=0

3̃
j

0. (22)

As a whole, 3̃0 is a normally hyperbolic invariant manifold for the Poincaré map P0. One

can also consider the Poincaré map P7
0 —the seventh iterate of P0. For this map, each 3̃

j

0

is a normally hyperbolic invariant manifold (of course, so is their union). We focus on the

connected components 3̃
j

0 since they have a natural system of coordinates. This system of

coordinates is used later to study the inner and outer dynamics on them. We particularly

work with 3̃3
0 and 3̃4

0 for, in every invariant plane I = I0, they are connected by at least

one heteroclinic connection (of P7
0 ) that is symmetric with respect to the involution (19).

We call it a forward heteroclinic orbit if it is asymptotic to 3̃3
0 in the past and 3̃4

0 in the

future, and a backward heteroclinic orbit if it is asymptotic to 3̃4
0 in the past and 3̃3

0 in

the future.

γJ(t) Λ̃0

0
∩ {J = cst}

Λ̃

6

0
∩ {J = cst}

...

{g = 0}

cst

cst

6

Fig. 4. The periodic orbit obtained for every energy level intersects the Poincaré section {g = 0}
seven times, as shown schematically in the picture. Thus, for the Poincaré map P0, the normally

hyperbolic invariant manifold 3̃0 has seven connected components 3̃0
0
, . . . , 3̃6

0
.

Let Df (where f stands for forward) denote the subset of [I−, I+] where Wu(3̃3
0)

and W s(3̃4
0) intersect transversally, and let Db (where b stands for backward) denote the

subset of [I−, I+] where W s(3̃3
0) and Wu(3̃4

0) intersect transversally. By Corollary 2.1

we have Df ∪ Db = [I−, I+].
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Corollary 2.2. Assume Ansatz 1. The Poincaré map P7
0 defined in (21), which is induced

by the Hamiltonian (16) with µ = 10−3 and e0 = 0, has seven analytic normally hyper-

bolic invariant manifolds 3̃
j

0 for j = 0, . . . , 6. They are foliated by 1-dimensional invari-

ant curves. For each j , there exists an analytic function G
j

0 : [I−, I+] × T → (R × T)3,

G
j

0 (I, t) = (G̃
j

0 (I), 0, I, t) =
(
G
j,L

0 (I),G
j,ℓ

0 (I),G
j,G

0 (I), 0, I, t
)
, (23)

that parameterizes 3̃
j

0:

3̃
j

0 = {Gj0 (I, t) : (I, t) ∈ [I−, I+] × T}.

Moreover, the associated invariant manifolds Wu(3̃3
0) and W s (3̃4

0) intersect transver-

sally within the hypersurface I = I0 provided I0 ∈ Df. The manifolds W s(3̃3
0) and

Wu(3̃4
0) intersect transversally within the hypersurface I = I0 provided I0 ∈ Db. Within

the hypersurface I = I0, each of these intersections has one point on the symmetry axis

of the involution (19). Let Ŵ∗
0 , where ∗ = f, b, denote the set of transversal intersections

on the symmetry axis. For both the forward and backward case, there exists an analytic

function

C∗
0 : D∗ × R → (R × T)3, (I, t) 7→ C∗

0 (I, t), ∗ = f, b,

that parameterizes Ŵ∗
0 :

Ŵ∗
0 =

{
C∗

0 (I, t) =
(
C∗,L

0 (I), C∗,ℓ
0 (I), C∗,G

0 (I), 0, I, t
)

: (I, t) ∈ D∗ × T
}
, ∗ = f, b.

The subscript 0 in the parameterizations G and C indicates the g-coordinate. We keep it

although it is redundant in the Poincaré section because later we use these parameteriza-

tions in the full phase space.

Again, the implicit function theorem implies that W s (3̃3
0) and Wu(3̃4

0) are analytic

(taking the distance from the cylinder 3̃3
0 or 3̃4

0 as a small parameter, as in [Mey75] with

the cylinder as factor variable).

Corollary 2.1 gives global coordinates (I, t) for each cylinder 3̃
j

0 . These coordinates

are symplectic with respect to the canonical symplectic form

�0 = dI ∧ dt. (24)

Indeed, consider the pullback of the canonical form dL ∧ dℓ + dG ∧ dg + dI ∧ dt to

the cylinders 3̃
j

0 . By Corollary 2.2 in the cylinders we have g = 0, ℓ = G
j,ℓ

0 (I) and

L = G
j,L

0 (I), and it is easy to see that the pullback of dL ∧ dℓ+ dG ∧ dg + dI ∧ dt is

just �0.

Next we consider the inner and the two outer maps in one of these cylinders. We

choose 3̃3
0. As explained before, the reason is that the heteroclinic connections with the

next cylinder 3̃4
0 intersect the symmetry axis of the involution (19) and thus they are

easier to study numerically (see Figure 11). Since I is conserved by the inner and outer

maps, these maps are integrable and the variables (I, t) are the action-angle variables. In

these variables, it is easier to understand the influence of ellipticity.
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2.2. The inner map

To study the diffusion mechanism, one could consider the normally hyperbolic invariant

manifold 3̃0 =
⋃6
j=0 3̃

j

0 . Nevertheless, since 3̃0 is not connected, it is more convenient

to consider just one of the cylinders that form 3̃0, for instance 3̃3
0. Then the inner map

F in
0 : 3̃3

0 → 3̃3
0 is defined as the analytic Poincaré map P7

0 restricted to the symplectic

invariant submanifold 3̃3
0. We express F in

0 in the global coordinates (I, t) of 3̃3
0.

Since I is an integral of motion, the inner map has the form

F in
0 :

(
I

t

)
7→

(
I

t + µT0(I)

)
, (25)

where the function T0 is independent of t because the inner map preserves the differential

form (24), which does not depend on t , and I is a first integral. In fact, 14π + µT0(I) is

the period of the periodic orbit obtained in Ansatz 1 on the corresponding energy surface.

In Section 2.3, the function T0(I) is written as an integral (see (38)).

Ansatz 2. The analytic symplectic inner map F in
0 defined in (25) is a twist map, that is,

∂IT0(I) 6= 0 for I ∈ [I−, I+].

Moreover, the function T0(I) satisfies

0 < µT0(I) < π. (26)

This Ansatz is based on the numerics of Appendix A. The Ansatz is crucial in Section 4

to prove the existence of a transition chain of invariant tori.

2.3. The outer map

First we recall the construction of the outer map in a general perturbative setting. Next

we apply it to the circular problem, and in Section 3.1 to the elliptic problem. The outer

map is sometimes called the scattering map (see for instance [DdlLS08]).

Let P0 be a map of a compact manifold M . Let 30 ⊂ M be a normally hyper-

bolic invariant manifold of P0, whose inner map P0|30
has zero Lyapunov exponents:

limn→∞ ln ‖dPn0 (z)v‖/n = 0 for any z ∈ 30 and v ∈ Tz30 (where ‖ · ‖ is some smooth

Riemannian norm onM). Further assume that the stable and unstable invariant manifolds

of 30 intersect transversally.

Let P be a small perturbation of P0. Since30 is normally hyperbolic, it persists under

small perturbation of P0. Let 3 ⊂ M be a normally hyperbolic invariant manifold of P .

Then the outer map associated to P and 3 (a particular case being P = P0 and

3 = 30) is defined over some domain as follows.

Definition 2.3. Assume thatW s
3 andWu

3 intersect transversally along a homoclinic man-

ifold Ŵ, that is,

TzW
s
3 + TzW

u
3 = TzM and TzW

s
3 ∩ TzWu

3 = TzŴ for z ∈ Ŵ.
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Then we say that S(x−) = x+ if there exists a point z ∈ Ŵ such that for some C > 0,

dist(Pn(z),Pn(x±)) < Cλ−|n| for all n ∈ Z
±. (27)

Condition (27) indeed defines a map x− 7→ x+ locally uniquely, as justified in [DdlLS08].

Remark 2.4. Since 3 is normally hyperbolic, for every x ∈ 3 there are strong stable

and unstable manifoldsW ss(x) andW su(x). Then S(x−) = x+ if and only if W su(x−)∩
W ss(x+) 6= ∅ and the intersection occurs on Ŵ.

When the Lyapunov exponents of the inner dynamics P |3 are positive, for the points

x− and x+ to be still uniquely defined given z ∈ γ , λmust exceed the maximal Lyapunov

exponent, i.e., convergence towards3 must dominate the motion inside of3. Otherwise,

one cannot distinguish if the orbit of z is (backward- or forward-) asymptotic to a point

of 3 or to the stable manifold of this point.

Remark 2.5. If the Lyapunov exponents of the inner map P |3 (and, in particular, of the

unperturbed map P0) are zero, the outer map S is C∞. If the Lyapunov exponents of the

inner map are small (thus in particular for a map P close enough to P0), the outer map

is Ck , where k tends to infinity as the Lyapunov exponents tend to 0.

Strictly speaking, there is hardly any published regularity theorem from which these

assertions follow directly. In order to prove them, one can first localize in the neighbor-

hood of a small continuous set of hyperbolic periodic orbits of P0, modify P outside this

neighborhood in order to embed the periodic orbits into a compact invariant normally

hyperbolic cylinder, and characterize the stable and unstable manifolds of the modified

system in terms of an equation of class Ck , the perturbative parameter being the dis-

tance from the invariant cylinder. Such arguments belong to the well understood theory

of normally hyperbolic invariant manifolds, and we omit further details, referring to the

techniques developed in [Fen72, Cha04], or [BKZ11, Appendix B] for a closer context.

We apply a variant of this definition to the dynamics of the circular problem (unperturbed

case). As in the previous section, we look for an outer map that sends 3̃3
0 to itself. Now

one has to be more careful since the transversal intersections obtained in Corollary 2.2

correspond to heteroclinic connections between 3̃3
0 and 3̃4

0 and between 3̃4
0 and 3̃3

0. Thus

the outer maps induced by P7
0 do not leave 3̃3

0 invariant. To overcome this problem we

compose these heteroclinic outer maps (denoted by Sf and Sb below) with the Poincaré

map P0 as many times as necessary so that the composition sends 3̃3
0 to itself.

Therefore, the smooth outer maps Fout,±
0 that we consider connect 3̃3

0 to itself and

are defined as

Fout,f
0 = P6

0 ◦ Sf : 3̃3
0 → 3̃3

0, Fout,b
0 = Sb ◦ P0 : 3̃3

0 → 3̃3
0, (28)

where Sf is the outer map which connects 3̃3
0 and 3̃4

0 through Wu(3̃3
0) ∩W s (3̃4

0), and

Sb is the outer map which connects 3̃4
0 and 3̃3

0 through Wu(3̃4
0) ∩ W s(3̃3

0). Note the

abuse of notation since the forward and backward outer maps are only defined provided

I ∈ Df and I ∈ Db respectively and not in the whole cylinder 3̃3
0.
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The outer map is always exact symplectic (see [DdlLS08]). So, in the circular prob-

lem, since I is preserved, the outer maps are of the form

Fout,∗
0 :

(
I

t

)
7→

(
I

t + µω∗(I)

)
, ∗ = f, b. (29)

Outer maps can be defined with either discrete or continuous time. Since the Poincaré–

Melnikov theory is considerably simpler for flows than for maps, we computeFout,∗
0 using

continuous time. Moreover, in Section 3.5 we also use flows to study the outer map of the

elliptic problem as a perturbation of (29).

The outer map induced by the flow associated to the Hamiltonian (16) with e0 = 0

does not preserve the section {g = 0}, but the inner map does. We reparameterize the flow

so that both maps preserve this section. This reparameterization corresponds to identify-

ing the variable g with time and is given by

d

ds
ℓ = ∂LH

−1 + µ∂G1Hcirc
,

d

ds
L = − ∂ℓH

−1 + µ∂G1Hcirc
,

d

ds
g = 1,

d

ds
G = − ∂gH

−1 + µ∂G1Hcirc
,

d

ds
t = 1

−1 + µ∂G1Hcirc
,

d

ds
I = 0,

(30)

whereH is the Hamiltonian (16) with e0 = 0. Notice that this reparameterization implies

the change of direction of time. However, geometric objects stay the same. In particu-

lar, the new flow also possesses the normally hyperbolic invariant cylinder obtained in

Corollary 2.1 and its invariant manifolds.

We refer to this system as the reduced circular problem. We call it reduced because

we identify g with the time s. Note that the right hand side of (30) does not depend on t .

Let 8circ
0 denote the flow associated to the (L, ℓ,G, g) components of (30) (which are

independent of t and I ). Componentwise it can be written as

8circ
0 {s, (L, ℓ,G, g)}

=
(
8L0 {s, (L, ℓ,G, g)},8ℓ0{s, (L, ℓ,G, g)},8G0 {s, (L, ℓ,G, g)}, g + s

)
. (31)

Now, the outer map is computed as follows. Let

γ ∗
I (σ ) = 8circ

0 {σ, (C∗,L
0 (I), C∗,ℓ

0 (I), C∗,G
0 (I), 0)}, ∗ = f, b,

λ
j
I (σ ) = 8circ

0 {σ, (Gj,L0 (I),G
j,ℓ

0 (I),G
j,G

0 (I), 0)}, j = 3, 4,
(32)

be trajectories of the circular problem. Every trajectory γ ∗
I has the initial condition at the

heteroclinic point of the Poincaré map P7
0 obtained in Ansatz 1 with action I , since C∗

0

is the parameterization of the intersection Ŵ∗
0 given in Corollary 2.2. Every trajectory λ

j
I

has the initial condition at the fixed point of the Poincaré map P7
0 , since G

j

0 is the param-

eterization of the invariant cylinder 3̃
j

0 given in Corollary 2.2.
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Lemma 2.6. Assume Ansatz 1. The functions ωf,b(I) involved in the definition of the

outer maps in (29) are given by

ω∗(I) = ω∗
out(I)+ ω∗

in(I),

where

ω∗
out(I) = ω∗

+(I)− ω∗
−(I) (33)

with

ω∗
+(I) = lim

N→∞

(∫ 14Nπ

0

(∂G1Hcirc) ◦ γ ∗
I (σ )

−1 + µ(∂G1Hcirc) ◦ γ ∗
I (σ )

dσ +NT0(I)

)

ω∗
−(I) = lim

N→−∞

(∫ 14Nπ

0

(∂G1Hcirc) ◦ γ ∗
I (σ )

−1 + µ(∂G1Hcirc) ◦ γ ∗
I (σ )

dσ +NT0(I)

)
, ∗ = f, b,

(34)

and

ωf
in(I) =

∫ −12π

0

(∂G1Hcirc) ◦ λ4
I (σ )

−1 + µ(∂G1Hcirc) ◦ λ4
I (σ )

dσ,

ωb
in(I) =

∫ −2π

0

(∂G1Hcirc) ◦ λ3
I (σ )

−1 + µ(∂G1Hcirc) ◦ λ3
I (σ )

dσ.

(35)

(Recall that T0(I) is defined by (25).)

Note that the minus sign in the integration limit of ω∗
in(I) appears because the reparame-

terized flow (30) reverses time.

Using the fact that the circular problem is symmetric with respect to (19) and that

the heteroclinic points Cf
0 and Cb

0 belong to the symmetry axis, we find that ω∗
− = −ω∗

+,

∗ = f, b.

The geometric interpretation of ωf,b(I) is that the t-shift occurs since the homoclinic

orbits approach different points of the same invariant curve in the future and in the past.

This shift is equivalent to the shift in t that appears in Mather’s Problem [Mat96]. See,

for instance, [DdlLS00, (2.1) in Theorem 2.1] and the constants a and b used in [BT99,

(1.4)].

Proof of Lemma 2.6. We compute ωf(I); the function ωb(I) is computed analogously.

Since the t-component of the reduced circular system (30) does not depend on t , its be-

havior is given by

8t0{s, (L, ℓ,G, g, t)} = t + 8̃0{s, (L, ℓ,G, g)}

where

8̃0{s, (L, ℓ,G, g)} =
∫ s

0

1

−1 + µ∂G1Hcirc(8
circ
0 {σ, (L, ℓ,G, g)})

dσ. (36)
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Note that, using this reduced flow, the inner map (25) is just the (−14π)-time map in the

time s. Then the original period of the periodic orbits obtained in Ansatz 1 is expressed

using the reduced flow as

14π + µT0(I) =
∫ −14π

0

1

−1 + µ(∂G1Hcirc) ◦ λ3
I (σ )

dσ. (37)

This allows us to define the function T0(I) in (25) through integrals as

T0(I) =
∫ −14π

0

(∂G1Hcirc) ◦ λ3
I (σ )

−1 + µ(∂G1Hcirc) ◦ λ3
I (σ )

dσ. (38)

Consider now a point (Cf,L
0 (I), Cf,ℓ

0 (I), Cf,G
0 (I), 0, I, t) in Wu(3̃3

0) ∩ W s(3̃4
0) ∩

{g = 0}. Since the first four components are independent of t , this point is forward

asymptotic (in the reparameterized time) to a point

(
G3,L

0 (I),G3,ℓ
0 (I),G3,G

0 (I), 0, I, t + µωf
+(I)

)

and backward asymptotic (in the reparameterized time) to a point

(
G4,L

0 (I),G4,ℓ
0 (I),G4,G

0 (I), 0, I, t + µωf
−(I)

)
.

Using (36), the functions ωf
±(I) can be defined as

ωf
+(I) = lim

T→∞

∫ T

0

(
1

−1 + µ(∂G1Hcirc) ◦ γ f
I (σ )

− 1

−1 + µ(∂G1Hcirc) ◦ λ3
I (σ )

)
dσ,

ωf
−(I) = lim

T→−∞

∫ T

0

(
1

−1 + µ(∂G1Hcirc) ◦ γ f
I (σ )

− 1

−1 + µ(∂G1Hcirc) ◦ λ4
I (σ )

)
dσ.

(39)

Since the system is 14π-periodic in s due to the identification of s with g, it is more

convenient to write these integrals as

ωf
+(I) = lim

N→∞

∫ 14Nπ

0

(
1

−1+µ(∂G1Hcirc)◦γ f
I (σ )

− 1

−1+µ(∂G1Hcirc)◦λ3
I (σ )

)
dσ,

ωf
−(I) = lim

N→−∞

∫ 14Nπ

0

(
1

−1+µ(∂G1Hcirc)◦γ f
I (σ )

− 1

−1+µ(∂G1Hcirc)◦λ4
I (σ )

)
dσ.

Then, taking (37) into account, we obtain

ωf
±(I) = lim

N→±∞

(∫ 14Nπ

0

1

−1 + µ(∂G1Hcirc) ◦ γ f
I (σ )

dσ +N(14π + T0(I))

)
,

from which the formulas for ωf
± in (34) follow.

Finally, we compute ωf
in(I). This term corresponds to the contribution of P6

0 to the

outer map in formula (28). Then, taking into account that t is defined modulo 2π , it is

straightforward to obtain ωf
in(I) in (34). ⊓⊔
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3. The elliptic problem

Everything is now set up to study the elliptic problem. We obtain perturbative expansions

of the inner and outer maps. To this end, we apply Poincaré–Melnikov techniques to the

reduced elliptic problem, which is given by

d

ds
ℓ = ∂LH

−1+µ∂G1Hcirc +µe0∂G1Hell
,

d

ds
L = − ∂ℓH

−1+µ∂G1Hcirc +µe0∂G1Hell
,

d

ds
g = 1,

d

ds
G = − ∂gH

−1+µ∂G1Hcirc +µe0∂G1Hell
,

d

ds
t = 1

−1+µ∂G1Hcirc +µe0∂G1Hell
,

d

ds
I = − µe0∂t1Hell

−1+µ∂G1Hcirc +µe0∂G1Hell
.

(40)

This system is a perturbation of (30). One can study the inner map either with this sys-

tem or with the system associated to the Hamiltonian (15). Nevertheless, to simplify the

exposition we use only (40) for both the inner and outer maps. Again, we consider the

Poincaré map associated with this system and the section {g = 0},

Pe0
: {g = 0} → {g = 0}, (41)

which is a perturbation of (21).

Two main results are introduced in this section:

• Existence of a normally hyperbolic invariant manifold with transversal intersections of

its stable and unstable invariant manifolds for the elliptic problem (Theorem 2).

• Computation of the e0-expansions of the associated inner and outer maps (Theorem 3).

Theorem 2 is a direct consequence of Corollary 2.2, because we study the elliptic problem

as a perturbation of the circular one.

The proof of Theorem 3 consists of several steps. In Section 3.2 we obtain the e0-

expansion of the elliptic Hamiltonian, and from it, in Section 3.3, we deduce some prop-

erties of the e0-expansion of the flow associated to (40). In Section 3.4 we analyze the

normally hyperbolic invariant cylinders 3̃
j
e0

, which are the perturbation of the cylin-

ders 3̃
j

0 obtained in Corollary 2.2. This allows us to derive formulas for the inner map,

perturbative in e0. Finally, in Section 3.5 we use the expansions to compute the outer

maps using Poincaré–Melnikov techniques. The inner and outer maps are defined over

the cylinder 3̃3
e0

, which is e0-close to the cylinder 3̃3
0 of Corollary 2.2.

3.1. The specific form of the inner and outer maps

For e0 small enough the flow associated to the Hamiltonian (16) has a normally hyperbolic

invariant cylinder 3e0
, which is e0-close to 30 given in Corollary 2.1. Analogously, the

Poincaré map Pe0
associated to this system has a normally hyperbolic invariant cylinder

3̃e0
= 3e0

∩ {g = 0}. Moreover, 3̃e0
is formed by seven connected components 3̃

j
e0

,

j = 0, . . . , 6, which are e0-close to the cylinders 3̃
j

0 obtained in Corollary 2.2.
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Recall that, by Corollary 2.2, in the invariant planes I = constant there are forward

and backward transversal heteroclinic connections between 3̃3
0 and 3̃4

0 provided I ∈ Df

and I ∈ Db respectively. For the elliptic problem and e0 small enough we have transversal

heteroclinic connections in slightly smaller domains. We define

D∗
δ = {I ∈ D∗ : dist(I, ∂D∗) > δ}, ∗ = f, b. (42)

Theorem 2. Let Pe0
be the Poincaré map associated to the Hamiltonian (16) and the

section {g = 0}. Assume Ansatz 1. For any δ > 0, there exists e∗0 > 0 such that for

0 < e0 < e∗0 the mapP7
e0

has seven normally hyperbolic locally8 invariant manifolds 3̃
j
e0

,

which are e0-close to 3̃
j

0 in the C1 topology. There exist functions G
j
e0

: [I− + δ, I+ − δ]
× T → (R × T)3, j = 0, . . . , 6, which can be expressed in coordinates as

G
j
e0
(I, t) =

(
G
j,L
e0
(I, t),G

j,ℓ
e0
(I, t),G

j,G
e0
(I, t), 0, I, t

)
, (43)

that parameterize 3̃
j
e0

. In other words, 3̃
j
e0

is a graph over (I, t) defined as

3̃
j
e0

= {Ge0
(I, t) : (I, t) ∈ [I− + δ, I+ − δ] × T}.

Moreover, the invariant manifolds Wu(3̃3
e0
) and W s(3̃4

e0
) intersect transversally pro-

vided I ∈ Df
δ , and the invariant manifoldsWu(3̃4

e0
) andW s(3̃3

e0
) intersect transversally

provided I ∈ Db
δ . One of these intersections is e0-close in the C1 topology to the manifolds

Ŵ
f,b
0 defined in Corollary 2.2.

Let Ŵ
f,b
e0

denote these intersections. There exist functions

C∗
e0
(I, t) =

(
C∗,L
e0
(I, t), C∗,ℓ

e0
(I, t), C∗,G

e0
(I, t), 0, I, t

)
, ∗ = f, b,

that parameterize them, that is,

Ŵ∗
e0

= {C∗
e0
(I, t) : (I, t) ∈ [I− + δ, I+ − δ] × T}, ∗ = f, b.

For the elliptic problem, the coordinates (I, t) are symplectic not with respect to the

canonical symplectic form dI ∧dt . Indeed, if we pull back the canonical form dL∧dℓ+
dG ∧ dg + dI ∧ dt to the cylinders 3̃

j
e0

, we obtain the symplectic form

�
j
e0

=
(
1 + e0a

j

1 (I, t) + e2
0a
j

2 (I, t)+ e3
0a
j
≥(I, t)

)
dI ∧ dt, (44)

for certain functions a
j

k : [I−, I+] × T → R. The functions a
j
≥ are the e3

0 Taylor remain-

ders, and thus depend on e0 even if we do not write this dependence explicitly to simplify

notation.

8 See the remark right below.
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Remark 3.1. The objects and maps of Theorem 2 have increasing regularity when e0

tends to 0. Indeed, by Gronwall’s inequality the Lyapunov exponents of 3e0
tend to zero

with e0. So for every k ≥ 1, if e0 is small enough, the invariant manifold 3e0
and sub-

sequent objects are of class Ck (see Remark 2.5). For the sake of simplicity, we do not

henceforth emphasize regularity issues. The main point is that for e0 small enough all

objects of our construction are smooth enough, and in particular it is possible to apply the

KAM theorem to the invariant manifolds 3̃
j

0 .

Remark 3.2. Theorem 2 only guarantees local invariance for 3̃
j
e0

. Namely, the boundary

might not be invariant. Nevertheless, in Section 4 we show the existence of invariant tori

in 3̃
j
e0

that act as boundaries of 3̃
j
e0

. Thanks to these tori, one can choose 3̃
j
e0

to be

invariant. For this reason, we refer to 3̃
j
e0

as a normally hyperbolic invariant manifold.

Our analysis depends heavily on the harmonic structure of the various maps involved.

Thus we need the following definition.

Notation 3.3. For every function f that is 2π-periodic in t , let N (f ) denote the set of

integers k such that the k-th harmonic of f (possibly depending on other variables) is

non-zero.

One can define inner and outer maps in the invariant cylinder 3̃3
e0

given in Theorem 2

as done in 3̃3
0 for the circular problem. The next sections are devoted to the perturbative

analysis of these maps. We state here the main outcome.

Theorem 3. Let Pe0
be the Poincaré map associated to the Hamiltonian (16) and the

section {g = 0}. Assume Ansatz 1. The normally hyperbolic invariant manifold 3̃3
e0

given

in Theorem 2 of the map P7
e0

has associated inner and outer maps.

• The inner map is of the form

F in
e0

:
(
I

t

)
7→

(
I + e0A1(I, t) + e2

0A2(I, t)+ O(e3
0)

t + µT0(I)+ e0T1(I, t)+ e2
0T2(I, t)+ O(e3

0)

)
, (45)

where the functions A1, A2, T1, and T2 satisfy

N (A1) = {±1}, N (A2) = {0,±1,±2}, (46)

N (T1) = {±1}, N (T2) = {0,±1,±2}. (47)

• The outer maps are of the form

Fout,∗
e0

:
(
I

t

)
7→

(
I + e0B

∗(I, t) + O(e2
0)

t + µω∗(I)+ O(e0)

)
, ∗ = f, b, (48)

where the functions B∗ satisfy

N (B∗) = {±1}. (49)
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3.2. The e0-expansion of the elliptic Hamiltonian

Now we expand 1Hell in (16) with respect to e0. These expansions are used in Sections

3.3, 3.4 and 3.5. The most important goal is to see which harmonics in t have e0 and e2
0

terms. Note that the circular problem is independent of t .

Define the function

B(r, v, g, t) = 1

|rei(v+g−t ) − r0(t)eiv0(t)| . (50)

This function is the potential |q − q0(t)|−1 expressed in terms of g = ĝ − t , where ĝ is

the argument of the perihelion, the true anomaly v of the asteroid defined in (12) and the

radius r . The functions r0(t) and v0(t) are the radius and the true anomaly of Jupiter. The

functions r0(t) and v0(t) are the only ones in the definition of B that depend on e0.

Now, the perturbation in (15) is expressed as

µ1Hcirc(L, ℓ,G, g) + µe01Hell(L, ℓ,G, g, t)

= −1 − µ

µ
B

(
− r

µ
, v, g, t

)
− µ

1 − µ
B

(
r

1 − µ
, v, g− t, t

)
+ 1

r

∣∣∣∣
(r,v)=(r(L,ℓ,G),v(L,ℓ,G))

.

First we deduce some properties of the expansion of the function B:

B(r, v, g, t) = B0(r, v, g) + e0B1(r, v, g, t) + e2
0B2(r, v, g, t) + O(e3

0). (51)

From these properties, we deduce the expansion of 1Hell.

Lemma 3.4. The functions in the e0-expansion of B have the following properties.

• B0 satisfies N (B0) = {0}.
• B1 satisfies N (B1) = {±1} and is given by

B1(r, v, g, t) = − 1

213(r, v, g)

(
2 cos t − 3r cos(v+ g+ t)+ r cos(v+ g− t)

)
, (52)

where

1(r, v, g) =
(
r2 + 1 − 2r cos(v + g)

)1/2
.

• B2 satisfies N (B2) = {0,±1,±2}.

Note that the elliptic problem is a peculiar perturbation of the circular problem in the

sense that the k-th e0-order has non-trivial t-harmonics at most up to order k. This fact is

crucial when we compare the inner and outer dynamics in Section 4.

Proof of Lemma 3.4. We look for the e0-expansions of the functions r0(t) and v0(t) in-

volved in the definition of B. We obtain them using the eccentric, true and mean anomalies

of Jupiter.

From the relation t = u0 − e0 sin u0 (see (14)), we obtain

u0(t) = t + e0 sin t +
e2

0

2
sin 2t + O(e3

0).
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Then, using r0 = 1 − e0 cosu0,

r0(t) = 1 − e0 cos t + e2
0 sin2 t + O(e3

0).

For the eccentric anomaly we use

tan
v0

2
=

√
1 + e0

1 − e0
tan

u0

2

(see (94)) to obtain

v0 = u0 + e0 sin u0 + e2
0

(
9
2

sin u0 − 2 sin 2u0

)
+ O(e3

0)

and then

v0(t) = t + 2e0 sin t + e2
0

(
9
2

sin t − sin 2t
)
+ O(e3

0).

Plugging r0(t) and v0(t) into (50), it can be easily seen that the expansion (51) satisfies

all the properties of B0, B1 and B2 stated in the lemma. ⊓⊔
One can now easily study the first order expansion of 1Hell:

1Hell = 1H 1
ell + e01H

2
ell + O(e2

0).

(recall from formula (16) that one power of e0 has already been factored out of the defi-

nition of1Hell). In particular,

1H 1
ell(L, ℓ,G, g, t) = −1 − µ

µ
B1

(
− r(L, ℓ,G)

µ
, v(L, ℓ,G), g, t

)

− µ

1 − µ
B1

(
r(L, ℓ,G)

1 − µ
, v(L, ℓ,G), g, t

)
, (53)

where B1 is the function defined in Lemma 3.4.

Corollary 3.5. The functions in the e0-expansion of 1Hell satisfy

N (1H 1
ell) = {±1} and N (1H 2

ell) = {0,±1,±2}.

3.3. Perturbative analysis of the flow

Before studying the inner and outer maps perturbatively, we need to study the first orders

with respect to e0 of the flow 8e0
{s, (L, ℓ,G, g, I, t)} associated to the vector field (40),

particularly their dependence on the variable t . Recall that we already know the depen-

dence on t of the 0-order thanks to formulas (31) and (36).

Lemma 3.6. The flow8e0
{s, (L, ℓ,G, g, I, t)} has a perturbative expansion

8e0
{s, (L, ℓ,G, g, I, t)} = 80{s, (L, ℓ,G, g, I, t)} + e081{s, (L, ℓ,G, g, I, t)}

+ e2
082{s, (L, ℓ,G, g, I, t)} + O(e3

0)

that satisfies

N (81{s, (L, ℓ,G, g, I, t)}) = {±1}, (54)

N (82{s, (L, ℓ,G, g, I, t)}) = {0,±1,±2}. (55)



2346 Jacques Féjoz et al.

Proof. Let z = (L, ℓ,G, g, I) and let Xe0
denote the vector field (40), which has expan-

sion

Xe0
= X0 + e0X1 + e2

0X2 + O(e3
0).

First we prove (54). The e0-order81 is a solution of the ordinary differential equation

d

ds
ξ = DX0(80{s, (z, t)})ξ + X1(80{s, (z, t)})

with initial condition ξ(0) = (0, 0). By (30), X0 is independent of t , and thus

DX0(80{s, (z, t)}) = DX0(8
circ
0 (s, z)),

where8circ
0 is defined in (31). This term is also independent of t . From Corollary 3.5, we

deduce that N (X1) = {±1} and thus X1 is written as

X1(z, t) = X+
1 (z)e

it + X−
1 (z)e

−it .

Therefore, using formulas (31) and (36), we obtain

X1(80{s, (z, t)}) =
(
X+

1 (8
circ
0 {s, z})ei8̃0{s,z})eit +

(
X−

1 (8
circ
0 {s, z})ei8̃0{s,z})e−it .

To prove (54), it is enough to use the variation of constants formula. Let Mz(s) be the

fundamental matrix of the linear equation

d

ds
ξ = DX0(8

circ
0 (s, z))ξ.

Then

81{s, (z, t)} = 8+
1 {s, z}eit +8−

1 {s, z}e−it

with

8±
1 {s, z} = Mz(s)

∫ s

0

M−1
z (σ )

(
X±

1 (8
circ
0 {s, z})e±i8̃0{s,z}}) dσ.

The proof of (55) follows the same lines. Indeed, 82 is a solution of an equation of

the form
d

ds
ξ = DX0(8

circ
0 {s, z})ξ +4(s, g, I, t)

with initial condition ξ(0) = (0, 0, 0). The function 4 is given in terms of the previous

orders of Xe0
and 8e0

as

4 = 1
2
D2X0(8

circ
0 )(81)

⊗2 +DX1(8
circ
0 )81 + X2(8

circ
0 ),

so it satisfies N (4) = {0,±1,±2}. Since the homogeneous linear equation is the same

as the one for81 and does not depend on t , we easily obtain (55). ⊓⊔
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3.4. Perturbative analysis of the invariant cylinder and its inner map

This section is devoted to studying the normally hyperbolic invariant manifold of the

elliptic problem 3̃3
e0

, whose existence was proved in Theorem 2, and the associated inner

map. We study the inner map of the elliptic problem as a perturbation of (25), taking e0

as the small parameter. The inner map is denoted by F in
e0

: 3̃3
e0

→ 3̃3
e0

. It is defined as

the (−14π)-Poincaré map of the flow 8e0
, given in Lemma 3.6, restricted to 3̃3

e0
.

We want to see which t-harmonics appear in the first orders of the inner map, and we

also want to compute the first order of the I -component. To this end we use the classical

theory of normally hyperbolic invariant manifolds [Fen74, Fen77]. This theory ensures

the existence of the functions G
j
e0

parameterizing the normally hyperbolic manifolds 3̃
j
e0

of the map P7
e0

. Moreover, they can be made unique by imposing

πIG
j
e0
(I, t) = I and πtG

j
e0
(I, t) = t, (56)

where π∗ is the projection with respect to the corresponding component of the function.

Since we only need the cylinder 3̃3
e0

and the dynamics on it, we consider the case j = 3.

The map G3
e0

satisfies the invariance equation

P̃e0
◦ G3

e0
= G3

e0
◦ F in

e0
, (57)

where P̃e0
= P7

e0
and F in

e0
is the inner map of the elliptic problem, namely the Poincaré

map P7
e0

restricted to the cylinder 3̃3
e0

.

Since we have regularity with respect to parameters, the invariance equation allows

us to obtain expansions of the parameterizations of both 3̃3
e0

and the inner map F in
e0

with

respect to e0. Let us expand G3
e0

and F in
e0

as

G3
e0

= G3
0 + e0G

3
1 + e2

0G
3
2 + O(e3

0), (58)

F in
e0

= F in
0 + e0F

in
1 + e2

0F
in
2 + O(e3

0). (59)

Here, G3
0 is the function defined in (23) and F in

0 is the inner map of the circular problem

obtained in (25), which is defined in 3̃3
0. Recall that

P̃e0
(L, ℓ,G, 0, I, t) = P7

e0
(L, ℓ,G, 0, I, t) = 8e0

{−14π, (L, ℓ,G, 0, I, t)}. (60)

Then

N (P̃1) = {±1} and N (P̃2) = {0,±1,±2}.

Expanding equation (57) with respect to e0, we deduce the properties of the inner map.

They are summarized in the next lemma, which reproduces the part of Theorem 3 refer-

ring to the inner dynamics.

Recall that λ3
I (σ ) has been defined in (32), 8̃0 in (36) and G3

0 in Corollary 2.2.
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Lemma 3.7. Assume Ansatz 1. The expansions of the functions G3
e0

and F in
e0

in (58) and

(59) satisfy

N (G3
1 ) = {±1}, N (G3

2 ) = {0,±1,±2},
N (F in

1 ) = {±1}, N (F in
2 ) = {0,±1,±2}.

The inner map is of the form

F in
e0

:
(
I

t

)
7→

(
I + e0A1(I, t) + e2

0A2(I, t)+ O(µe3
0)

t + µT0(I)+ e0T1(I, t)+ e2
0T2(I, t)+ O(µe2

0)

)
, (61)

where the functions A1, A2, T1 and T2 satisfy

N (A1) = {±1}, N (A2) = {0,±1,±2}, (62)

N (T1) = {±1}, N (T2) = {0,±1,±2}. (63)

Moreover A1 can be split as

A1(I, t) = A+
1 (I)e

it + A−
1 (I)e

−it ,

with

A±
1 (I) = ∓iµ

∫ −14π

0

1H
1,±
ell ◦ λ3

I (σ )

−1 + µ∂G1Hcirc ◦ λ3
I (σ )

e±ĩλ
3
I (σ ) dσ, (64)

where the functions1H
1,±
ell are defined as

1H 1
ell(L, ℓ,G, g, t) = 1H

1,+
ell (L, ℓ,G, g)e

it +1H
1,±
ell (L, ℓ,G, g)e

−it ,

and

λ̃3
I (σ ) = 8̃0{σ, (G3,L

0 (I),G3,ℓ
0 (I),G3,G

0 (I), 0)}. (65)

From the properties of G3
e0

, we deduce the properties of the symplectic form �3
e0

defined

on the cylinder 3̃3
e0

. Recall that �3
e0

is the pullback of the symplectic form dL ∧ dℓ +
dG∧dg+dI∧dt on the invariant cylinder 3̃3

e0
. In (44) we denoted by a3

j the coefficients

of its expansion:

�3
e0

=
(
1 + e0a

3
1(I, t)+ e2

0a
3
2(I, t) + e3

0a
3
≥(I, t)

)
dI ∧ dt.

Corollary 3.8. Assuming Ansatz 1, the functions a3
1 and a3

2 satisfy

N (a3
1) = {±1} and N (a3

2) = {0,±1,±2}.
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Proof of Lemma 3.7. In the proof we omit the superscript 3 of the terms in the expansion

of G3
e0

. Expanding equation (57) with respect to e0, we have that the first terms satisfy

P̃0 ◦ G0 = G0 ◦ F in
0 , (66)

P̃1 ◦ G0 + (DP̃0 ◦ G0)G1 = G1 ◦ F in
0 + (DG0 ◦ F in

0 )F
in
1 , (67)

P̃2 ◦ G0 + (DP̃1 ◦ G0)G1 + 1
2
(D2P̃0 ◦ G0)G

⊗2
1 + (DP̃0 ◦ G0)G2

= G2 ◦ F in
0 + (DG1 ◦ F in

0 )F
in
1 + 1

2
(D2G0 ◦ F in

0 )(F
in
1 )

⊗2 + (DG0 ◦ F in
0 )F

in
2 . (68)

By the uniqueness condition (56), G1 is of the form

G1(g, I, t) = (G̃1(g, I, t), 0, 0, 0)

with G̃1(g, I, t) = (GL1 (g, I, t),G
ℓ
1 (g, I, t),G

G
1 (g, I, t)).

Equation (66) corresponds to the inner dynamics of the circular problem. We use (67)

and (68) to deduce the properties of F in
1 and F in

2 respectively. These equations can be

solved iteratively starting with (67). Since

DG0 =
(
DG̃0

Id

)
and DGi =

(
DG̃i

0

)
for i ≥ 1, (69)

we have

F in,∗
1 = π∗

(
P̃1 ◦ G0 + (DP̃0 ◦ G0)G̃1

)
, ∗ = I, t.

Inserting this into (67) we obtain an equation for G1. The equation for every Fourier t-

coefficient is uncoupled. Hence, using the definition (60), the t-independence of P̃0, and

the uniqueness of G1, we deduce N (G1) = {±1}. As a consequence, N (F in
1 ) = {±1}.

Reasoning analogously and using (60) again, we see that N (G2) = {0,±1,±2} and

N (F in
2 ) = {0,±1,±2}.

Now it remains to prove (64). Recall that the I -component of the inner map can be

written as

F in,I
e0
(I, t) = 8Ie0

{−14π,Ge0
(I, t)}

since it is defined as the (−14π)-Poincaré map associated to the flow of the system (40)

restricted to the cylinder 3̃3
e0

. Recall that the minus sign in the time appears because the

system (40) has the time reversed with respect to the original one. Now, we apply the

Fundamental Theorem of Calculus and use (40) to obtain

F in,I
e0
(I, t) =

∫ −14π

0

d

ds
8Ie0

{s,Ge0
(I, t)} ds

= −
∫ −14π

0

µe0∂t1Hell ◦8e0
{s,Ge0

(I, t)}
−1 + µ∂G1Hcirc ◦8e0

{s,Ge0
(I, t)} + µe0∂g1Hell ◦8e0

{s,Ge0
(I, t)} ds.

From the expansions of the Hamiltonian 1Hell (Corollary 3.5), of the flow 8e0
(Lemma

3.6) and of the function Ge0
just obtained, we deduce

F in,I
e0
(I, t) = −e0

∫ −14π

0

µ∂t1H
1
ell ◦80{s,G0(I, t)}

−1 + µ∂G1Hcirc ◦80{s,G0(I, t)}
ds + O(e2

0).
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That is,

A1(I, t) = −
∫ −14π

0

µ∂t1H
1
ell ◦80{s,G0(I, t)}

−1 + µ∂G1Hcirc ◦80{s,G0(I, t)}
ds.

To deduce the formulas for A±
1 it is enough to split 1H 1

ell as

1H 1
ell(L, ℓ,G, g, t) = 1H

1,+
ell (L, ℓ,G, g)e

it +1H
1,±
ell (L, ℓ,G, g)e

−it ,

and recall that, by (31) and (36), 80 can be written as

80{s, (L, ℓ,G, g, I, t)} =
(
8circ{s, (L, ℓ,G, g, I)}, t + 8̃0{s, (L, ℓ,G, g, I)}

)
. ⊓⊔

3.5. The outer map

This section is devoted to studying the outer maps

Fout,∗
e0

: 3̃3
e0

→ 3̃3
e0
, ∗ = f, b, (70)

for e0 > 0.

Theorem 2 in Section 3.1 proves the existence of Ŵ∗
e0

for ∗ = f, b, transversal inter-

sections between the invariant manifolds of 3̃3
e0

and 3̃4
e0

. We proceed as in Section 2.3 to

define the outer map Fout
e0

. We study it as a perturbation of the outer map of the circular

problem given in (29), using Poincaré–Melnikov techniques. As explained in Section 2.3,

the original flow associated to the Hamiltonian (15) does not allow us to study Fout
e0

per-

turbatively. Instead, we use the reduced elliptic problem defined in (40).

The results stated in Theorem 3 about the outer map follow from the next lemma. The

lemma also shows how to compute the first order term of the outer map. We use the same

notation as in Section 2.3. In particular, we use the trajectories γ
f,b
I (σ ) and λ

3,4
I (σ ) of the

circular problem, defined in (32), and we define their corresponding t-component of the

flow as

γ̃ ∗
I (σ ) = 8̃0{σ, (C∗,L

0 (I), C∗,ℓ
0 (I), C∗,G

0 (I), 0)}, ∗ = f, b,

λ̃
j

I (σ ) = 8̃0{σ, (Gj,L0 (I),G
j,ℓ

0 (I),G
j,G

0 (I), 0)}, j = 3, 4,
(71)

where 8̃0 is defined in (36) and C∗
0 and G

j

0 are given in Corollary 2.2.

Recall that

1H
1,±
ell (ℓ, L, g,G, t) = 1H

1,±
ell (ℓ, L, g,G)e

it +1H
1,±
ell (ℓ, L, g,G)e

−it ,

as defined in Corollary 3.5, and that the functions ω∗
± are defined in (34).

Lemma 3.9. Assume Ansatz 1. The outer maps Fout,∗
e0

have the following expansion with

respect to e0:

Fout,∗
e0

:
(
I

t

)
7→

(
I + e0(B

∗,+(I)eit + B∗,−(I)e−it )+ O(e2
0)

t + µω∗(I)+ O(e0)

)
, ∗ = f, b. (72)
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The functions B∗,±(I) are defined as

Bf,±(I) = B
f,±
out (I)+ B

f,±
in (I)e±iµω

f
out(I ),

Bb,±(I) = B
b,±
in (I)+ B

b,±
out (I)e

±iµωb
in
(I ),

(73)

where ωf
out(I) and ωb

in(I) are the functions defined in (33) and (35) respectively and

B
f,±
out (I) = ±iµ lim

T→∞

∫ T

0

(
1H

1,±
ell ◦ γ f

I (σ )

−1 + µ∂G1Hcirc ◦ γ f
I (σ )

e±iγ̃
f
I (σ )

−
1H

1,±
ell ◦ λ3

I (σ )

−1 + µ∂G1Hcirc ◦ λ3
I (σ )

e±i(̃λ
3
I (σ )+µωf

+(I ))
)
dσ

∓ iµ lim
T→−∞

∫ T

0

(
1H

1,±
ell ◦ γ f

I (σ )

−1 + µ∂G1Hcirc ◦ γ f
I (σ )

e±iγ̃
f
I (σ )

−
1H

1,±
ell ◦ λ4

I (σ )

−1 + µ∂G1Hcirc ◦ λ4
I (σ )

e±i(̃λ
4
I (σ )+µωf

−(I ))
)
dσ, (74)

B
b,±
out (I) = ±iµ lim

T→∞

∫ T

0

(
1H

1,±
ell ◦ γ b

I (σ )

−1 + µ∂G1Hcirc ◦ γ b
I (σ )

e±iγ̃
b
I (σ )

−
1H

1,±
ell ◦ λ4

I (σ )

−1 + µ∂G1Hcirc ◦ λ4
I (σ )

e±i(̃λ
4
I (σ )+µωb

+(I ))
)
dσ

∓ iµ lim
T→−∞

∫ T

0

(
1H

1,±
ell ◦ γ b

I (σ )

−1 + µ∂G1Hcirc ◦ γ b
I (σ )

e±iγ̃
b
I (σ )

−
1H

1,±
ell ◦ λ3

I (σ )

−1 + µ∂G1Hcirc ◦ λ3
I (σ )

e±i(̃λ
3
I (σ )+µωb

−(I ))
)
dσ, (75)

B
f,±
in (I) = ∓iµ

∫ −12π

0

1H
1,±
ell ◦ λ4

I (σ )

−1 + µ∂G1Hcirc ◦ λ4
I (σ )

e±ĩλ
4
I (σ ) dσ,

B
b,±
in (I) = ∓

∫ −2π

0

1H
1,±
ell ◦ λ3

I (σ )

−1 + µ∂G1Hcirc ◦ λ3
I (σ )

e±ĩλ
3
I (σ ) dσ.

(76)

Proof. Recall that the outer maps are the compositions of two maps. Indeed, as explained

in Section 2.3, they are defined as

Fout,f
e0

= P6
e0

◦ Sf
e0

: 3̃3
0 → 3̃3

0, Fout,b
e0

= Sb
e0

◦ Pe0
: 3̃3

0 → 3̃3
0.

Thus, we study both maps perturbatively and then their composition leads to the proof of

the lemma. We only deal with Fout,f
e0

since the proof for Fout,b
e0

is analogous.

To study Sf
e0

: 3̃3
0 → 3̃4

0 we use the Definition 2.3 of the (heteroclinic) outer map.

Let us consider points z ∈ Ŵ∗
e0

, x+ ∈ 3̃4
e0

and x− ∈ 3̃3
e0

such that

dist(Pne0
(z),Pne0

(x±)) < Cλ−|n| for n ∈ Z
±



2352 Jacques Féjoz et al.

for certain constants C > 0 and λ > 1. Using the parameterizations of Ŵf
e0

and 3̃
j
e0

,

j = 3, 4, given in Theorem 2, we write the points z and x± in coordinates as z =
Ce0
(I0, t0), x+ = G4

e0
(I+, t+) and x− = G3

e0
(I−, t−). Then the I -component of the outer

map is just

Fout,I
e0

(I−, t−) = I+ = I− + (I+ − I−).

To measure I+ − I− we first deal with I0 − I±. Consider the flow 8e0
associated to the

reduced elliptic problem (40). By the Fundamental Theorem of Calculus,

I0 − I+ = lim
T→−∞

∫ 0

T

(
d

ds
8e0

{s, Cf
e0
(I0, t0)} − d

ds
8e0

{s,G4
e0
(I+, t+)}

)
ds,

I0 − I− = lim
T→∞

∫ 0

T

(
d

ds
8e0

{s, Cf
e0
(I0, t0)} − d

ds
8e0

{s,G3
e0
(I−, t−)}

)
ds.

Note that the change of sign in the limit of integration comes from the fact that system

(40) has the time reversed.

Using the perturbative expansions of Cf
e0

and 3
j
e0

given in Theorem 2, equation (40),

the perturbative expansion of the Hamiltonian (15) given in Corollary 3.5 and the pertur-

bation of the flow 8e0
given in Lemma 3.6, we see that

I0 − I+ = −e0 lim
T→−∞

∫ 0

T

(
µ∂t1H

1
ell(L, ℓ,G, g, t)

−1 + µ∂G1Hcirc(L, ℓ,G, g)

∣∣∣∣
(L,ℓ,G,g,t)=(8circ

0 ,8t0){s,Cf
0(I0,t0)}

−
µ∂t1H

1
ell(L, ℓ,G, g, t)

−1 + µ∂G1Hcirc(L, ℓ,G, g)

∣∣∣∣
(L,ℓ,G,g,t)=(8circ

0
,8t

0
){s,G4

0
(I+,t+)}

)
ds + O(e2

0),

I0 − I− = −e0 lim
T→∞

∫ 0

T

(
µ∂t1H

1
ell(L, ℓ,G, g, t)

−1 + µ∂G1Hcirc(L, ℓ,G, g)

∣∣∣∣
(L,ℓ,G,g,t)=(8circ

0 ,8t0){s,Cf
0(I0,t0)}

−
µ∂t1H

1
ell(L, ℓ,G, g, t)

−1 + µ∂G1Hcirc(L, ℓ,G, g)

∣∣∣∣
(L,ℓ,G,g,t)=(8circ

0
,8t

0
){s,G3

0
(I−,t−)}

)
ds + O(e2

0),

where 8circ
0 and 8t0 are defined in (31) and (36) respectively.

Taking into account that 1H 1
ell satisfies that N (1H 1

ell) = {±1} (Corollary 3.5), one

can easily obtain the formula for B
f,±
out in (74).

To obtain the formula for B
f,±
in we proceed as in the study of the inner map in Sec-

tion 3.1. Finally, to obtain the formula for Bf,± it is enough to compose P6
e0

and Sf
e0

. ⊓⊔

4. Existence of diffusing orbits

4.1. Existence of a transition chain of whiskered tori

The numerics of Appendix B.4 support the following Ansatz, which is crucial to obtain

the main theorem of this section, Theorem 4. The dynamical significance of this Ansatz

appears in the averaging Lemma 4.2, which is one of the steps in the proof of the theorem.
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Ansatz 3. The functions of I ,

B̃∗,±(I) = B∗,±(I)− e±iµω
∗(I ) − 1

e±iµT0(I ) − 1
A±

1 (I),

do not vanish over the domains D∗, ∗ = f, b (defined in Corollary 2.2).

Next is the main result of this section.

Theorem 4. Assume Ansätze 1–3. For every δ > 0 there exist e∗0 > 0 and C > 0 such

that for every 0 < e0 < e∗0 the map Pe0
in (41) has a collection {Ti}Ni=1 ⊂ 3̃e0

of

invariant 1-dimensional tori such that

• T1 ∩ {I = I− + δ} 6= ∅ and TN ∩ {I = I+ − δ} 6= ∅.

• distHausdorff(Ti ,Ti+1) < Ce
3/2
0 .

• These tori form a transition chain:Wu
Ti

⋔ W s
Ti+1

6= ∅ for each i = 1, . . . , N − 1.

Proof of Theorem 4. Once we have computed the first orders in e0 of both the outer

and the inner map, we want to understand their properties and compare their dynamics.

To make this comparison we perform two steps of averaging [AKN88]. This change of

coordinates straightens the I -component of the inner map at order O(e3
0) in such a way

that, in the new system of coordinates, the dynamics of both maps is easier to compare.

Nevertheless, before averaging, we have to perform a preliminary change of coordinates

to straighten the symplectic form �3
e0

to deal with the canonical form dI ∧ dt .

Lemma 4.1. Assume Ansatz 1. There exists a change of variables e0-close to the identity,

(I, t) = (I ′, t ′)+ e0ϕ1(I
′, t ′), (77)

defined on 3̃3
e0

, which transforms the symplectic form �3
e0

defined in (44) into the canon-

ical form

�0 = dI ′ ∧ dt ′.
In the new coordinates:

• The inner map F in
e0

in (45) reads

F in′
e0

:
(
I ′

t ′

)
7→

(
I ′ + e0A1(I

′, t ′)+ e2
0A

′
2(I

′, t ′)+ O(µe3
0)

t ′ + µT0(I
′)+ e0T

′
1 (I

′, t ′)+ e2
0T

′
2 (I

′, t ′)+ O(µe3
0)

)
(78)

where A1 is the function given in Lemma 3.7 and A′
2, T ′

1 and T ′
2 satisfy

N (A′
2) = {0,±1,±2}, N (T ′

1 ) = {±1}, N (T ′
2 ) = {0,±1,±2}.

• The outer maps Fout,f
e0

and Fout,b
e0

in (48) read

Fout,∗′
e0

:
(
I ′

t ′

)
7→

(
I ′ + e0B

∗(I ′, t ′)+ O(µe2
0)

t ′ + µω∗(I ′)+ O(µe0)

)
, ∗ = f, b, (79)

where B∗ are the functions given in Lemma 3.9.
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Proof. We show that there exists a change of coordinates of the form

{
I = I ′ + e2

0f2(I
′, t ′)+ O(e3

0),

t = t ′ + e0g1(I
′, t ′)+ e2

0g2(I
′, t ′)+ O(e3

0),
(80)

with

N (g1) = {±1}, N (g2) = {0,±1,±2}, N (f2) = {0,±1,±2}, (81)

which straightens the symplectic form �3
e0

. In fact, we look for the inverse change.

Namely, we look for a change of coordinates of the form

{
I ′ = I + e2

0f̃2(I, t)+ e3
0f̃≥(I, t),

t ′ = t + e0g̃1(I, t),
(82)

such that the pullback of �0 = dI ′ ∧ dt ′ with respect to this change is the symplectic

form �3
e0

. Even though we do not write it explicitly, f̃≥ depends on e0. To obtain this

change, it is enough to solve the equations

∂t g̃1 = a3
1, ∂I f̃2 = a3

2, ∂I f̃≥ = b,

where

b = a3
≥ − ∂t g̃1∂I f̃2 − e0∂t g̃1∂I f̃≥ + ∂I g̃1∂t f̃2 + e0∂I g̃I ∂t f̃≥

and a3
1 , a3

2 and a3
≥ are the functions introduced in (44). These equations can be solved

iteratively.

Recall that by Corollary 3.8 we have N (a3
1) = {±1}. Now, we take g̃1 as the primitive

of a3
1 with zero average, which satisfies

N (g̃1) = {±1}. (83)

The other equations can be solved by taking

f̃2(I, t) =
∫ I

0

a3
2(J, t) dJ, f̃≥(I, t) =

∫ I

0

b(J, t) dJ.

Note that b depends on g̃1 and f̃2, which have been already obtained. Since by Corol-

lary 3.8 we have N (a3
2) = {0,±1,±2}, one can deduce that

N (f̃2) = {0,±1,±2}. (84)

To obtain the change (80) it is enough to invert the change (82). Then formulas (83) and

(84) imply (81).

To finish the proof of the lemma it remains to check the properties of the inner and

outer maps in the new coordinates. They follow from (81). ⊓⊔
Once we have straightened the symplectic form, we perform two steps of averaging of the

inner map.
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Lemma 4.2. Assume Ansätze 1 and 2. There exists a symplectic change of variables

e0-close to the identity,

(I ′, t ′) = (I, τ )+ e0ϕ2(I, τ ), (85)

defined on 3̃3
e0

, which:

• transforms the inner map F in′
e0

in (78) into

F̃ in
e0

:
(
I
τ

)
7→

(
I + O(µe3

0)

τ + µT0(I)+ e2
0T̃2(I)+ O(µe3

0)

)
; (86)

• transforms the outer maps Fout,f′
e0

and Fout,b′
e0

in (79) into

F̃out,∗
e0

:
(
I
τ

)
7→

(
I + e0B̃

∗(I, τ )+ O(µe2
0)

τ + µω∗(I)+ O(µe0)

)
, ∗ = f, b, (87)

where

B̃∗(I, τ ) = B̃∗,+(I)eiτ + B̃∗,−(I)e−iτ

with

B̃∗,±(I) = B∗,±(I)− e±iµω
∗(I) − 1

e±iµT0(I) − 1
A±

1 (I).

With the functions introduced in this lemma, Ansatz 3 can be restated as B̃∗,±(I) 6= 0

over the domains D∗.

Note that we can do two steps of averaging globally in the whole cylinder 3̃e0
due

to the absence of resonances in the first orders in e0. Namely, there are no big gaps. This

contrasts with the typical situation in Arnol’d diffusion (see e.g. [DdlLS06]).

Proof of Lemma 4.2. We perform two steps of (symplectic) averaging. To this end we

consider a generating function of the form

S(I, t ′) = It ′ + e0S1(I, t
′)+ e2

0S2(I, t
′),

which defines the change (85) implicitly as

I = I + e0∂t ′S1(I, t
′)+ e2

0∂t ′S2(I, t
′),

τ = t ′ + e0∂IS1(I, t
′)+ e2

0∂IS2(I, t
′).

By Ansatz 2 we have (26) and by Theorem 3 we know the t ′-harmonics of the functions

Ai and Ti . It follows that the functions Si corresponding to two steps of averaging are

globally defined in 3̃3
e0

. In these new variables, taking into account that the inner map is

exact symplectic, one can see that the inner map is of the form (86).

To obtain a perturbative expression for the outer maps F̃out,∗
e0

, we need to compute S1

explicitly:

S1(I, t) = −
iA+

1 (I)

eiµT0(I) − 1
eit +

iA−
1 (I)

e−iµT0(I) − 1
e−it .

Applying this change to the outer maps Fout,∗
e0

in (72), we obtain (87). ⊓⊔
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In the new coordinates (I, τ ) the inner map F̃ in
e0

in (86) is e3
0-close to an integrable map.

Moreover, thanks to Ansatz 2 it is a twist map. Therefore we can apply KAM theory to

prove the existence of invariant curves in 3̃3
e0

. We use a version of the KAM theorem

from [DdlLS00] (see also [Her83]).

KAM theorem. Let f : [0, 1]×T → [0, 1]×T be an exact symplectic C l map with l > 4.

Assume that f = f0 + δf1, where f0(I, ψ) = (I, ψ + A(I)), A is C l , |∂IA| > M and

‖f1‖Cl ≤ 1. If δ1/2M−1 = ρ is sufficiently small, then for a set of Diophantine numbers

ω of exponent θ = 5/4, we can find invariant tori which are the graph of C l−3 functions

uω, the motion on them is C l−3 conjugate to the rotation by ω, and ‖uω‖Cl−3 ≤ Cδ1/2.

Applying this theorem to the map F̃ in
e0

we obtain the KAM tori (see Remark 3.1 for their

regularity). Moreover, this theorem ensures that the distance between these tori is no

larger than e
3/2
0 . The results of Lemma 4.2 and the KAM theorem lead to the existence of

a transition chain of invariant tori, as explained next.

The transition chain is obtained by comparing the outer and inner dynamics. We do

this in the coordinates (I, τ ) given by Lemma 4.2 and thus we deal with the maps F̃ in
e0

and F̃out,∗
e0

in (86) and (87) respectively.

The KAM theorem ensures that there exists a torusT1 such thatT1∩{I = I−−δ} 6= ∅.

Either F̃out,f
e0

or F̃out,b
e0

are defined for points in T1. Assume without loss of generality that

F̃out,f
e0

is defined for points in T1. Thanks to Ansatz 3, Fout,f
e0

(T1) satisfies

dist(T1,F
out,f
e0

(T1)) ≥ Ce0

for a constant C > 0 independent of e0. Then the KAM theorem ensures that there exists

a torus T2 such that T2 ∩ Fout,f
e0

(T1) 6= 0. Iterating this procedure, choosing at each

step either F̃out,f
e0

or F̃out,b
e0

, we obtain the transition chain. This completes the proof of

Theorem 4. ⊓⊔

4.2. Shadowing

To finish the proof of Theorem 1 it remains to prove the existence of a diffusing orbit

using a Lambda Lemma. The study of the Lambda Lemma, often also called the Inclina-

tion Lemma, was initiated in the seminal work of Arnol’d [Arn64]. In the past decades

there have been several works proving analogous results in more general settings [CG94,

Mar96, Cre97, FM00, Sab13]. Here, we use a version of the Lambda Lemma proven in

[FM00, Theorem 7.1].

Lemma 4.3. Let f be a C1 symplectic map in a symplectic 2(d + 1)-manifold. Assume

that the map leaves invariant a C1 d-dimensional torus T and the motion on the torus is

an irrational rotation. Let Ŵ be a d + 1-manifold intersecting Wu
T

transversally. Then

W s
T

⊂
⋃

i>0

f−i(Ŵ).

An immediate consequence is that any finite transition chain can be shadowed by a true

orbit. Theorem 1 follows from the following lemma.
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Lemma 4.4. Assume Ansätze 1–3. Consider the transition chain {Ti}Ni=1 of invariant tori

obtained in Theorem 4 and a sequence {εi}Ni=1 of positive numbers. Then we can find a

point P = (L0, ℓ0,G0, g0, I0) and a sequence of times Ti such that

8(Ti , P ) ∈ Bεi (Ti),

where 8 is the flow associated to the Hamiltonian (16) and Bεi (Ti) is a neighborhood of

size εi of the torus Ti .

Proof. Consider P ′ ∈ W s
T1

. Then there exists a ball B1 centered at P ′ and a time T1 > 0

such that

8(T1, B1) ⊂ Bε1
(T1). (88)

Since Wu
T1

and W s
T2

intersect transversally, by Lemma 4.3, we know that W s
T2

∩ B1 6= ∅.

Thus, there exists a closed ball B2 ⊂ B1 centered at a point in W s
T2

that satisfies

8(T2, B2) ⊂ Bε2
(T2)

for some time T2 > 0. Hence, proceeding by induction, we obtain a sequence of nested

closed balls

BN ⊂ BN−1 ⊂ · · · ⊂ B1

and a sequence {Ti}Ni=1 of times such that

8(Tj , Bi ) ⊂ Bεi (Tj ) for i ≤ j.

Therefore, the intersection
⋂N
i=1 Bi is non-empty and any point belonging to it shadows

the transition chain of tori. ⊓⊔
In terms of the elliptical elements of the asteroid, such a diffusing orbit can be described

as follows. The orbit starts near the resonant cylinder 3e0
. The eccentricity of the pri-

maries is small: this is an essential feature of both the proof above and the qualitative

behavior of the orbit. Over a time interval of length ≪ 1/e0, the orbit closely follows a

hyperbolic periodic orbit of the circular problem. The semi-major axis is roughly constant

equal to 72/3 and the Jacobi constant to −1.81. The asteroid turns around the primaries,

making one full turn over a time interval of seven periods of Jupiter. In the frame ro-

tating approximately with the primaries, the Keplerian ellipse of the asteroid precesses

counterclockwise with fast frequency approximately equal to −1; in the inertial frame of

reference, it rotates only µ-slowly (see e.g. [AKN88, Féj02a]), while the eccentricity e

slowly oscillates around e = 0.48.

At some point (as soon as we can if we want to save time), the orbit undergoes a

heteroclinic excursion, during which a heteroclinic orbit is shadowed over a time interval

of size O(− ln(µe0)/
√
µ). During this excursion, the semi-major axis itself undergoes

an oscillation of magnitude O(
√
µ), eventually coming back to its initial approximate

value 72/3. On the other hand, the Jacobi constant and the eccentricity have increased

by O(µe0).

This process is repeated, and the increments in the eccentricity accumulate to reach

the value e = 0.67 in finite time.



2358 Jacques Féjoz et al.

Appendix A. Numerical study of the normally hyperbolic invariant cylinder of the

circular problem

We devote this appendix to the numerical study of the hyperbolic invariant manifold of

the circular problem given in Corollary 2.1 and its invariant manifolds. In other words,

we show numerical results which justify Ansatz 1.

Numerical analysis has several sources of error: mainly round-off errors in computer

arithmetic and in approximation of ideal mathematical objects (e.g. linear approximation

of local stable/unstable manifolds). In our analysis, we have tried to evaluate such errors,

and check that they are appropriately small. We do not claim to give a fully rigorous proof

of Ansatz 1, which would require computer-assisted techniques as in [WZ03]. Indeed,

we have focused our efforts on keeping the numerics relatively simple and, hopefully,

convincing. One could think of several possible numerical computations to prove our

result. The most numerically demanding one would be to check directly that some given

orbit has a suitable drift of eccentricity. This computation would not bring much light

to the mechanism of instability, and moreover it would involve formidable numerical

analysis problems, due to the necessarily very long time of integration. On the contrary,

our line of proof allows us to use numerical verifications involving only orbits of the

circular problem—a dramatic simplification, as we will see below.

Let us make a few more specific comments on the strategy of our numerical analysis.

As mentioned in Section 2, the circular problem has a conserved quantity, the Jacobi

constant which we denote by J (see (5)), which corresponds to energy when the system

is expressed in rotating coordinates. Thus it is natural to fix the Jacobi constant J = J0

and perform our analysis for a given J0. This allows us to reduce the dimension of the

computations by one. Finally, we let J vary and repeat the computations for all J in the

range of interest [J−, J+].
Another important comment is on the choice of coordinates. For numerics we prefer

Cartesian coordinates, since the equations of motion are explicit in these coordinates.

Thus we carry out our computations of the hyperbolic structure of the circular problem in

Cartesian coordinates (Appendix A).

On the other hand, for perturbative analysis we have used Delaunay coordinates

throughout this paper. Thus, in Appendix B we explain how to change coordinates from

Cartesian to Delaunay, and we carry out our computations of the inner and outer maps of

the circular and elliptic problems in Delaunay coordinates.

Regarding the integration method, we use a variable-order Taylor method specially

generated to integrate the equations of motion and variational equations of the circular

problem. The Taylor method has been generated using the “taylor” package of À. Jorba and

M. Zou (see http://www.maia.ub.es/˜angel/taylor/). The main advantage of using a Taylor

method is that it is very fast for long-time integrations (without sacrificing accuracy).

A.1. Computation of the periodic orbits

Consider the circular problem in rotating Cartesian coordinates

J (x, y, px, py) = 1

2
(p2
x + p2

y)+ ypx − xpy − 1 − µ

r1
− µ

r2
, (89)

http://www.maia.ub.es/~angel/taylor/
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where

r2
1 = (x − µ2)

2 + y2, r2
2 = (x + µ1)

2 + y2.

Recall that the energy of the circular problem in rotating coordinates coincides with the

Jacobi constant J in (5). From now on in this appendix we will refer to J as the energy

of the system.

We follow the convention to place the large mass (Sun) to the left of the origin, and

the small mass (Jupiter) to the right. (This is opposite to the astrodynamics convention.)

Thus we choose µ1 = µ as the small mass, and µ2 = 1 − µ as the large mass. Notice

that equation (89) is reversible with respect to the involution

R(x, px , y, py) = (x,−px,−y, py). (90)

Thus, a solution of the system is symmetric if and only if it intersects the symmetry axis

Fix(R) = {y = 0, px = 0}. This symmetry will facilitate our numerical computations.

Note that the involution R is just the involution (19) expressed in rotating Cartesian coor-

dinates.

Let the energy be fixed at J = J0. We look for a resonant periodic orbit λJ0
of (89)

at the level of energy J0. As a first approximation to λJ0
, we look for a resonant periodic

orbit of the two-body problem, i.e. of the Hamiltonian (18) with µ = 0. Let us denote the

approximate periodic orbit by λ̃J0
= (L, ℓ,G, g). The actions L and G are determined

by the resonant condition L3 = 7 and the energy condition −1/(2L2) − G = J0. To

determine λ̃J0
completely, we assume that the asteroid is initially at the perihelion, i.e. we

impose an initial condition λ̃J0
(0) = (L0, ℓ0,G0, g0) with ℓ0 = 0 and g0 = 0. Switching

to Cartesian coordinates, we obtain an initial condition (x0, p0
x , y

0, p0
y) with p0

x = 0 and

y0 = 0.

Next we refine the trajectory λ̃J0
to a true periodic orbit λJ0

for the system (89) with

µ = 10−3. Consider the Poincaré section

6+ = {y = 0, py > 0}

in the circular problem (89), and let P : 6+ → 6+ be the associated Poincaré map.

Since we are in rotating coordinates, this section corresponds to collinear configurations

of the three bodies.

Remark A.1. In numerical integrations, we use a variable-order Taylor method with lo-

cal error tolerance 10−16. Moreover, a point is considered to be on the Poincaré section

whenever |y| < 10−16 and py > 0.

Furthermore, the momentum variable py can be eliminated. Indeed, since ∂pyJ 6= 0,

for py in the region of the phase space we deal with, it can be recovered from the other

variables using the energy condition J (x, px, y, py) = J0. Hence, the Poincaré map is a

2-dimensional symplectic map at each energy level, acting only on (x, px).

Notice that, in the rotating frame, a 1 : 7 resonant periodic orbit makes six turns around

the origin (see Figure 5). In principle, we could look for the periodic orbit as a periodic
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Fig. 5. Resonant periodic orbit λ−1.6 of the circular problem in rotating Cartesian coordinates.

point p = (x, px) of the Poincaré map: p = P 6(p). This would imply solving a sys-

tem of two equations. Thanks to the reversibility (90), in fact it is only necessary to

solve one equation. Notice that our initial condition (x, px) is in the symmetry section

{y = 0, px = 0}, so the periodic orbit must be symmetric. Thus it is enough to impose

the condition that the trajectory λJ0
(t) after half the period is again in the symmetry sec-

tion. Hence we set up the problem as simple 1-dimensional root finding: we look for a

point p = (x, 0) whose third iterate P 3(p) has momentum px = 0:

πpx (P
3(p)) = 0.

(Here, πpx : R2 → R is the projection onto the px component.)

In order to solve this problem, we use a Newton-like method. Specifically, we use

a modified version of Powell’s hybrid method (see the GSL manual [GG09] for details)

without scaling. In our computations, the Newton method converges in less than five

iterations. As a test of the software, we have checked that the rate of convergence of the

Newton method is quadratic.

Remark A.2. We require an accuracy of 10−14 in the Newton method, i.e. a point

p = (x, 0) is accepted as a root if and only if its third iterate P 3(p) has momentum

|px | < 10−14.

For the Newton method, we need to compute the derivative of the Poincaré map. For each

ξ ∈ R
4, let u(t, ξ) be the solution of the system with initial condition u(0, ξ) = ξ . Let

T : 6+ → R be the Poincaré return time. The derivative of the Poincaré map at a point

p ∈ R
4 is given by the partial derivative DP(p) = uξ (T (p), p). It is well-known that
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uξ (t, p) is the matrix solution of the variational equation

Ẇ = Df (u(t, p))W,

where f is the vector field of the circular problem. We compute DP(p) by numerically

integrating the variational equation using the Taylor method mentioned above.

For illustration, let us show some numerical results corresponding to the energy value

J = −1.6. The first approximation λ̃−1.6 from the two-body problem has initial condition

p0 = (x0, p0
x) = (1.30253 . . . , 0). After refining this initial condition via the Newton

method, we obtain a resonant periodic orbit λ−1.6 of the circular problem passing through

the point p = (x, px) = (1.29858 . . . , 0), with period T−1.6 = 44.01796 . . . ∼ 14π (see

Figure 5). The periodic orbit λ−1.6 is symmetric, with the points p and P 3(p) located in

the symmetry section (they have y = 0 and px = 0). Notice that, in rotating coordinates,

the trajectory of the asteroid makes six turns around the origin before closing up at the

point p.

Finally, we let J vary and, using this procedure, we are able to obtain the resonant

periodic orbit for energy levels

J ∈ [J̄−, J̄+] = [−2.04,−1.56] (91)

(see Figure 6). This family of resonant periodic orbits constitutes the normally hyperbolic

invariant manifold30 given in Corollary 2.1. Notice that the period TJ stays close to the

resonant period 14π of the unperturbed system. From Figure 6, we obtain the bound

|TJ − 14π | < 60µ,

which is the first bound given in Ansatz 1.
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To determine the stability of the periodic orbit λJ0
, we compute the eigenvalues λ

and λ−1 of the matrixDP 6(p), whereDP 6(p) is the linearization of the iterated Poincaré

map P 6 about the fixed point p.

Figure 7 shows the characteristic exponent ln(λ) as a function of energy. The family

of periodic orbits is strongly hyperbolic as J → J̄+, and weakly hyperbolic as J → J̄−.

Note that one would expect that we are in a nearly integrable regime since µ is small.

Then one would expect the eigenvalues to be close to 1. Nevertheless, in this problem the

non-integrability is very noticeable when one increases µ to µ = 10−3. This is due to the

effect of the perturbing body (Jupiter) on the asteroid, as the asteroid passes close to it.

Furthermore, we verify that (the square of) the semi-major axis L stays close to

the resonant value 71/3. Integrating the periodic orbit in Delaunay coordinates λJ (t) =
(LJ (t), ℓJ (t),GJ (t), gJ (t)) over one period TJ , we compute the quantity

Lmax(J ) = max
t∈[0,TJ )

|LJ (t)− 71/3|. (92)

The function Lmax(J ) is plotted in Figure 6. Notice that we obtain the bound

|LJ (t)− 71/3| < 7µ

for all t ∈ R and J ∈ [J̄−, J̄+], which is the second bound given in Ansatz 1.

Let us briefly describe the family of periodic orbits λJ . For illustration, see Figure 8.

At one endpoint of the family, as J → J̄−, the periodic orbit λJ tends to a circular orbit

of period 14π centered at the origin and passing far away from the primaries (Sun and
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periodic orbit with J = J̄+ (green). The Lagrange equilibrium point L2 is marked with a ’+’
symbol.

Jupiter). Moreover, λJ looses hyperbolicity when J → J̄−. For instance, the periodic

orbit λ̃J̄− of the two-body problem approximation has eccentricity e(J̄−) = 0.09989 . . . .

At the other endpoint of the family, as J → J̄+, the periodic orbit λJ tends to a

homoclinic loop of the Lagrangian equilibrium point L2 that makes six turns around the

Sun-Jupiter system. (In rotating Cartesian coordinates, L2 is located on the x axis at the

point x2 ≃ 1.068). This explains the fact that the period TJ “explodes” as J → J̄+. Since

we are interested in working close to the resonance, we avoid energies J > J̄+ where the

period explodes.

A.2. Computation of invariant manifolds

In this appendix, we compute the stable and unstable invariant manifolds associated to

the periodic orbits found in the previous section.

Consider first a fixed energy level J = J0. Let λJ0
be the resonant periodic orbit of

the circular problem found in the previous section. To compute the invariant manifolds

of the periodic orbit, we continue using the iterated Poincaré map. Thus we look for

(1-dimensional) invariant manifolds of a hyperbolic fixed point at each energy level. Let

p ∈ λJ0
be a hyperbolic fixed point of the iterated Poincaré map P̃ = P 6. Let λ, λ−1 be

the eigenvalues ofDP̃ (z) with λ > 1, and vu, vs be the associated eigenvectors.

Assume that we want to compute the unstable manifoldWu(p). Let η be a small dis-

placement in the unstable direction vu. We approximate a piece of the local manifold by

the linear segment between the points p + ηvu and P̃ (p + ηvu). We call this segment a
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fundamental domain. We discretize the fundamental domain into an array of points, and

iterate them by P̃ to globalize the manifold. (The stable manifold is computed analo-

gously using the inverse map P̃−1.)

The error committed in the local approximation P̃ (p+ ηvu) = p+ ληvu +O(η2) of

the manifold is given by

err(η) = ‖P̃ (p + ηvu)− p − ληvu‖ ∈ O(η2).

Remark A.3. For each energy level J , we choose a displacement η = η(J ) such that the

local error is err(η) < 10−12.

One can think of p as a fixed point of the iterated Poincaré map P̃ = P 6, or as a 6-periodic

point of the Poincaré map P . If pi = P i(p) are the iterates of p for i = 0, . . . , 5, then

pi are also fixed points of P̃ . They have associated unstable and stable manifolds, which

can be obtained fromWu,s(p) by iteration.

For illustration, let us show some numerical results corresponding to the energy value

J = −1.6. Figure 9 shows the manifolds of all iterates {pi}i=0,...,5. Notice that the dy-

namics in Figure 9 is reversible with respect to the symmetry section {y = 0, px = 0},
as discussed in the previous section (see (90)). Figure 9 shows that the manifolds do in-

tersect transversally at different homoclinic points. We are interested in measuring the

splitting angle between the manifolds. Unfortunately, the homoclinic points do not lie on

the symmetry axis, which would be very useful in order to compute them.

In order to have the homoclinic points lie on the symmetry axis, we recompute the

manifolds on the new Poincaré section

6− = {y = 0, py < 0}.
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Numerically, we just transport points on the unstable manifold from section 6+ to sec-

tion 6− by the forward flow, and points in the stable manifold by the backward flow (see

Figures 10 and 11). Now the points that lie on the symmetry line px = 0 are homoclinic

points.
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Fig. 10. Invariant manifolds on the section 6−.
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A.3. Computation of transversal homoclinic points and splitting angle

In this appendix, we compute the angle between the invariant manifolds at one of the

transversal intersections. We will restrict the range of energy values to

J ∈ [J−, J+] = [−1.81,−1.56], (93)

or equivalently the range of eccentricities to e ∈ [e−, e+] = [0.48, 0.67]. This is the

range where we can validate the accuracy of our computations (see Appendix A.4). Below

e− = 0.48, the splitting size becomes comparable to the numerical error that we commit

in double precision arithmetic.

Remark A.4. In this paper we concentrate on proving the existence of global instabilities

in the restricted three-body problem; we are not so much concerned with finding the max-

imal range of eccentricities along which the asteroid drifts. Thus we do not investigate the

transversality of the splitting below e−. However, we are convinced that the maximal range

of eccentricities is larger than [e−, e+], in particular that the lower bound can be pushed

well below e−. We think that our mechanism of instability applies to this larger range of

eccentricities. In fact, it is possible to study such exponentially small splitting using more

sophisticated numerical methods, such as multiple-precision arithmetic, and high-order

approximation of local invariant manifolds (see for instance [FS90, DRR99, GS08]).

Consider first a fixed energy level J = J0 that is close to the unperturbed situation, e.g.

J = −1.74. The corresponding manifolds are given in Figure 12. In general, there are un-

countably many intersection points. For instance, in Figure 11 we show six intersections

on the symmetry line. However, when the perturbation is small, there is one distinguished
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Fig. 12. Invariant manifolds of the points p2 and p3 for the energy level J = −1.74.
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intersection point located “in the middle” of the homoclinic. We call it the primary inter-

section point.

Let us compute the primary intersection point z1 corresponding to the “outer” splitting

of the manifolds Wu,1(p3) and W s,1(p2). For J = −1.74, the primary intersection z1

corresponds to the first intersection of the manifolds with the px = 0 line, as we grow the

manifolds from the fix points. Thanks to symmetry, it is enough to look for the intersection

of Wu,1(p3) with the px = 0 axis, because W s,1(p2) must also intersect the axis at the

same point.

To compute the intersection point z1, we continue using a linear approximation of the

local manifold, and propagate a fundamental domain in the local manifold by iteration.

Let vu be the unstable eigenvector associated to the point p3. Consider the fundamental

segment lu between the points p3 + ηvu and P̃ (p3 + ηvu), as in the previous section.

First we look for the smallest natural n such that P̃ n(lu) intersects the px = 0 axis. Then

we use a standard numerical method (bisection-like 1-dimensional root finding) to find a

point zu in the fundamental segment lu such that

πpx (P̃
n(zu)) = 0.

Thus we obtain the homoclinic point z1 = P̃ n(zu) in Figure 12. Numerically, we verify

that z1 is on the px = 0 axis within 10−10 tolerance.

Finally, we vary energy J and use a continuation method to obtain the family {z1}J of

primary intersections, using as seed the primary intersection z1|J=−1.74 found above (see

Figure 13).
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Remark A.5. For low energy levels (such as J = −1.74), corresponding to weak hyper-

bolicity, the invariant manifolds behave as if they were close to integrable, and the primary

intersection corresponds to the first intersection of the manifolds with the px = 0 axis.

For high energy levels (such as J = −1.6), corresponding to strong hyperbolicity, the

manifolds develop some folds, and thus the primary intersection may not correspond to

the first intersection of the manifolds with the px = 0 axis (see Figure 11).

In practice, we first identify the primary intersection at low energy levels, and then

use a continuation method to obtain the primary family of intersections up to high energy

levels.

Analogously, we compute the family of primary intersections {z2}J corresponding to the

inner splitting (see Figure 13).
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Fig. 14. Outer splitting of the manifolds for energy level J = −1.74. This is a magnification of
Figure 12 at the intersection point z1. We show the vectorswu, ws tangent to the unstable and stable
manifolds at z1. The splitting angle σ is the angle between wu and ws .

Let us now compute the splitting angle between the manifoldsWu,1(p3) andW s,1(p2)

at the point z1. For illustration, we show some numerical results corresponding to the

energy value J = −1.74. First we need the tangent vectors wu and ws to the manifolds

at z1 (see Figure 14). As found above, let zu be the point in the unstable fundamental

segment that maps to z1, i.e. P̃ n(zu) = z1. Consider the tangent vector vu to the manifold

Wu,1(p3) at zu. (Recall that at this point the linear approximation is good enough, so we

can use the unstable eigenvector as vu.) Multiply vu by the Jacobian of P̃ at the successive

iterates P̃ i(pu) for i = 0, . . . , n−1. This way, we obtain the tangent vector to the unstable

manifold at z1. Denote this vector wu = (w1, w2). We normalize it to ‖wu‖ = 1.
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Due to reversibility, the vector ws tangent to the stable manifold at z1 is ws =
(w1,−w2) (see Figure 14). Notice that we choose the tangent vectors with appropriate

orientation, the same as that of the trajectories on the manifolds.

Thus the oriented splitting angle between wu and ws is

σ = 2 arctan2(−w1,−w2),

where arctan2 is the arctangent function of two variables, which uses the signs of the two

arguments to determine the sign of the result.

Finally, we let J vary and, using this procedure, we are able to obtain the splitting

angle for energy levels J ∈ [J−, J+] (see Figure 15). The splitting angle is non-zero for

all energy values except for a discrete set of them. The splitting angle oscillates around

zero with decreasing amplitude as J → J−. Numerically, we find that the zeros of the

splitting angle are in the intervals listed in Table 1.

Table 1. Subintervals of J ∈ [J−, J+] containing the zeros of inner splitting (left column) and
outer splitting (right column).

inner outer

(−1.695,−1.694) (−1.701,−1.700)

(−1.726,−1.725) (−1.731,−1.730)

(−1.756,−1.755) (−1.760,−1.759)

(−1.781,−1.780) (−1.784,−1.783)

(−1.802,−1.801) (−1.805,−1.804)
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Notice that the inner and outer splittings behave similarly. However, they become zero

at different values of J , as seen in Table 1. Thus, when one of the intersections becomes

tangent, the other one is still transversal, and we can always use one of them for diffusion.

A.4. Accuracy of computations

For small eccentricities, the splitting angle σ becomes very small. We need to check the

validity of σ , making sure that the size of (accumulated) numerical errors in the compu-

tation is smaller than the size of σ .

The smallest splitting angle in Figure 15, corresponding to J− = −1.81, is

σ(J−) = −1.777970294158603 × 10−5.

We check the validity of σ(J−) by recomputing this angle using an alternative numerical

method. First we compute the intersection of the manifoldsWu,1(p3) and W s,1(p2) with

the horizontal axis defined by

px = j/105 for j ∈ {−2,−1, 1, 2}.

Table 2. Sampling of the manifolds Wu,1(p3) and W s,1(p2) at different values of px , and their
difference (last column).

px xu xs xu − xs

−0.00002 −5.481541931871417 −5.481541932226887 0.000000000355470

−0.00001 −5.481541931790012 −5.481541931967703 0.000000000177691

0.00000 −5.481541931822124 −5.481541931822124 0.000000000000000

0.00001 −5.481541931967703 −5.481541931790012 −0.000000000177691

0.00002 −5.481541932226887 −5.481541931871417 −0.000000000355470

In Table 2 we tabulate the x coordinate of Wu,1(p3) andW s,1(p2) on these axes, and

their difference d = xu− xs gives the distance between the manifolds. We apply numeri-

cal differentiation to the last column of this table, using central differences centered at z1

with step sizes 0.00002 and 0.00004, and obtain the values

d1 = d(0.00001)− d(−0.00001)

0.00002
= −0.0000177691,

d2 = d(0.00002)− d(−0.00002)

0.00004
= −0.0000177735.

Finally, we use Richardson extrapolation and obtain

d = (4d1 − d2)/3 = −0.00001776763333333333.

Thus, using this alternative method, we obtain the splitting angle

σ(J−) = atan(−0.00001776763333333333)= −0.00001776763333146364.
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Compare the splitting angle computed using the two methods. They differ by approxi-

mately 10−8. This gives an estimate of the numerical error committed in our computation

of the splitting angle.
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Fig. 16. Splitting angle σ(J ) and estimate of the numerical error err(J ) as a function of energy
level J .

We repeat this test for a range of energies J ∈ [−1.81,−1.8]. In Figure 16, we

compare the splitting angle σ(J ) and the estimate of the numerical error err(J ). This

error stays below 10−7, and it is several orders of magnitude smaller than the splitting

angle. For higher energy values J ∈ [−1.8,−1.56], the splitting angle is large, so the

numerical error is certainly smaller. Therefore we are confident that the splitting angle

has been accurately computed in the range of eccentricities considered, [J−, J+].

Appendix B. Numerical study of the inner and outer dynamics

In Appendix A we have studied the periodic orbits and the invariant manifolds in rotating

Cartesian coordinates (x, y, px, py). Nevertheless, the study of the inner and outer maps

is done in rotating Delaunay coordinates. Indeed, since these coordinates are action-angle

coordinates for the two-body problem, it is much more convenient to use them to study

the mean motion resonance.

The Poincaré section {y = 0} is completely different from the section {g = 0} which

will be used from now on (see (21)). In particular, the periodic orbits {λJ }J∈[J̄−,J̄+] ob-

tained in Appendix A.1 intersect the section {y = 0} six times, whereas they intersect
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Fig. 17. Energy J = −1.74. Resonance structure in Cartesian coordinates. The axis of symmetry
is the horizontal line.

 1.9

 1.905

 1.91

 1.915

 1.92

 1.925

 1.93

 0  1  2  3  4  5  6

l

L

p0p0p0p0

p1p1p1p1 p2p2p2p2 p3p3p3p3 p4p4p4p4 p5p5p5p5 p6p6p6p6

z1z1z1z1

z2z2z2z2

Fig. 18. Energy J = −1.74. Resonance structure in Delaunay coordinates. The symmetry corre-
sponds to l = 0 and l = π and is marked with a vertical line.

{g = 0} seven times. However, we remark that the homoclinic points z1 and z2 lie on the

symmetry axis both in Cartesian and in Delaunay variables (see Figures 17 and 18).
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To obtain the intersection of these periodic orbits with {g = 0} we just need to ex-

press the 6-periodic points of the Poincaré map P obtained in Appendix A.1 in Delaunay

coordinates and then iterate them by the flow of the circular problem expressed in Delau-

nay coordinates until they hit the section {g = 0}. We do the same with the homoclinic

points. In Appendix B.1 we explain how to compute the change of coordinates and the

vector field in Delaunay coordinates. Then, in Appendices B.2 and B.3 we study the inner

and outer maps of the circular and elliptic problems respectively. Finally, in Appendix B.4

we compare the inner and outer maps of the elliptic problem, which leads to Ansatz 3.

B.1. From Cartesian to Delaunay and computation of ∂G1Hcirc

We explain an easy way to obtain rotating Delaunay coordinates from rotating Cartesian

(or polar) coordinates in the circular problem. First recall that G can be computed as

G = r(−px sin φ + py cosφ).

The potential µ1Hcirc in Cartesian coordinates only depends on the position (x, y)

of the asteroid, and can be easily computed. Then, one can use the equation

J = − 1

2L2
−G+ µ1Hcirc

to obtain L. Knowing L and G we can obtain the eccentricity e by

e =
√

1 −G2/L2.

Using the fact that r = L2(1 − e cosu), one can obtain u and from here ℓ using Kepler’s

equation u− e sinu = ℓ. On the other hand, from u we can obtain v using

tan
v

2
=

√
1 + e

1 − e
tan

u

2
.

Finally, we can find g using φ = v + g.

We devote the rest of this appendix to computing ∂G1Hcirc. The other derivatives of

1Hcirc can be computed analogously. Define

D[r0] = D[r0](r, v, g) =
(
r2 + r2

0 − 2rr0 cos(v + g)
)−1/2

.

Then

1Hcirc(L, ℓ,G, g) = −(1 − µ)D[−µ] − µD[1 − µ] −D[0].
Thus by the chain rule it only remains to compute ∂Gr and ∂Gv. First, let us point out that

∂Ge = − G

eL2
= e2 − 1

eG
.

On the other hand, as ℓ = u− e sin u, one has

∂eu = sin u

1 − e cosu
.
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Then, since r(L, e, ℓ) = L2(1 − e cosu(e, ℓ)), using

cos v = cosu− e

1 − e cosu
, (94)

we obtain

∂er(L, e, ℓ) = L2 cos v,

and therefore

∂Gr(L, ℓ,G) = −G cos v

e
.

To compute ∂Gv, let us point out that ∂Gv = ∂ev∂Ge. Therefore it only remains to com-

pute ∂ev; we obtain it using formula (94) and

sin v =
√

1 − e2 sin u

1 − e cosu
.

Then

∂ev = sin v

1 − e2
(2 + e cos v),

and therefore

∂Gv = − sin v

eG
(2 + e cos v).

B.2. Inner and outer dynamics of the circular problem

In this appendix, we numerically compute the inner map F in
0 and the outer maps Fout,∗

0
of the circular problem, given in Section 2. Recall that to compute these maps we deal

with the extended system given by the Hamiltonian H in (16) with e0 = 0 restricted to

the energy level H = 0, and thus we have I = −J . Then, we consider I ∈ [I−, I+] =
[−J+,−J−], where the range [−J+,−J−] is given in (93).

As seen in Section 2.2, the inner map has the form

F in
0 :

(
I

t

)
7→

(
I

t + µT0(I)

)
, (95)

where TJ = 14π + µT0(I) is the period of the periodic orbit obtained in Ansatz 1 on

the corresponding level of energy J , which now corresponds to an invariant hyperplane

I = constant.

Recall that we computed the periodic orbit λJ as well as its period TJ in Ap-

pendix A.1. In particular, Figure 6 shows a plot of the function TJ − 14π = µT0(I).

Notice that the derivative of the function T0(I) is non-zero for the whole range [I−, I+].
This shows that the inner map is a twist map. Moreover, Figure 6 shows that

0 < µT0(I) < 60µ < π.

Therefore, the function T0(I) has the properties stated in Lemma 2.
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Fig. 19. The functions ωf(I ) and ωb(I ) involved in the definition of the outer map (96) of the
circular problem as a function of the Jacobi constant J (recall that in the circular problem, I = −J ).

As a test, we have computed the same function T0(I) using two different methods: first

by computing the period of the periodic orbit, as above; then by computing the integral

expression (38) using numerical integration. The difference in T0(I) using both methods

is of the order 10−12.

As seen in Section 2.3, the outer maps have the form

Fout,∗
0 :

(
I

t

)
7→

(
I

t + µω∗(I)

)
, ∗ = f, b. (96)

For simplicity, let us only discuss the computation of ωf(I) (ωb(I) is computed analo-

gously). Recall from Lemma 2.6 that the function ωf(I) is defined as

ωf(I) = ωf
out(I)+ ωf

in(I),

where, taking into account that the homoclinic orbit is symmetric with respect to the

involution (19),

ωf
out(I) = ωf

+(I)− ωf
−(I) = 2ωf

+(I) (97)

with

ωf
+(I) = lim

N→∞

(∫ 14Nπ

0

(∂G1Hcirc) ◦ γ f
I (σ )

−1 + µ(∂G1Hcirc) ◦ γ f
I (σ )

dσ + NT0(I)

)
, (98)

ωf
in(I) =

∫ −12π

0

(∂G1Hcirc) ◦ λ4
I (σ )

−1 + µ(∂G1Hcirc) ◦ λ4
I (σ )

dσ. (99)
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To obtain ωf(I), we compute the integrals (98) and (99) numerically, using a standard

algorithm from the GSL library [GG09]. The integrals are computed within a relative

error limit 10−9.

The function ∂G1Hcirc involved in both integrals is given explicitly in Appendix B.1.

The integral ωf
in(I) is evaluated on a periodic trajectory λ4

I (σ ) of the reduced circular

problem (namely, with reparameterized time, see (30)) with initial condition p4, a fixed

point of the Poincaré map P7
0 . The integral ωf

+(I) is evaluated on a homoclinic trajectory

γ f
I (σ ) of the reduced circular problem with initial condition z2, the primary homoclinic

point corresponding to the inner splitting found in Appendix A.3.
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Fig. 20. Exponential decay of the function dist+ as a function of N (multiples of the period) for
different energy levels. The energy levels J ∈ [J−, J+] are color-coded.

Next we make a couple of important remarks about the numerical computation of the

integral ωf
+(I). The key point is that the homoclinic orbit γ f

I was already computed in

Appendix A.3 with high accuracy, and we can exploit this information here. Recall that

the primary homoclinic point z2 was obtained as the n-th iterate of a point zu in the local

fundamental segment lu under the Poincaré map:

z2 = {P7
0 }n(zu). (100)

Moreover, recall that the point zu was chosen to be suitably close to the fixed point p3 for

each energy level J (see Remark A.3).

Notice that the integral ωf
+(I) is defined by a limit as N → ∞, i.e. as the homoclinic

orbit γ f
I (σ ) asymptotically approaches the periodic orbit λ3

I (σ ) in forward time (see (39)).

Numerically, of course, we should stop integrating at an upper endpoint N large enough

such that the integral converges. In practice, we choose the upper endpoint N = N(I)
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to be the number of iterates n = n(I) in (100). This means that we evaluate the integral

along the homoclinic trajectory γ f
I (σ ) until it reaches the point zu, which is suitably close

to the periodic orbit.

Notice also that integrating the homoclinic trajectory γ f
I (σ ) forwards in the reduced

system means integrating it backwards along the unstable manifold in the original sys-

tem. This is numerically unstable, since numerical errors grow exponentially. In practice,

we rewrite the integral (98) using the change of variables σ̂ = σ − 14Nπ so that the

homoclinic trajectory is integrated forwards along the unstable manifold, starting from

the point zu.

The computed values of the functions ωf(I) and ωb(I) are shown in Figure 19. Note

that they are plotted as a function of the Jacobi constant J instead of as a function of I ,

so that they can be compared with Figure 6, where we have plotted µT0(I) = TJ − 14π

as a function of J .

To test the computation of the function ωf
+, we directly verify the definition of the

outer map in 2.3. Let z2 = (Lh, ℓh,Gh, 0) be the primary homoclinic point, and let

p3 = (Lp, ℓp,Gp, 0) be the periodic point. Given a point (Lh, ℓh,Gh, 0, I, t) in the

extended circular problem, we check that it is forward asymptotic (in the reparameterized

time) to the point (Lp, ℓp,Gp, 0, I, t + ωf
+(I)), where t ∈ T is arbitrary. Thus we check

that

dist+(s) = |80{s, (Lh, ℓh,Gh, 0, I, t)} −80{s, (Lp, ℓp,Gp, 0, I, t +ωf
+(I))}|

s→∞−−−→ 0

with exponential decay.

The result of the test is shown in Figure 20 for values of the energy J ∈ [J−, J+]
(recall that J = −I ). Notice that the vertical axis is in logarithmic scale. Let s = 14Nπ .

We plot the distance dist+ as a function of N (multiples of the period). The test shows

exponential decay of the distance function for all energy values, i.e. straight lines in the

plot.

Recall that the periodic orbits λ
3,4
I (s) become more hyperbolic as the energy I de-

creases. Thus, the rate of exponential convergence between the homoclinic and the pe-

riodic trajectory also increases, i.e. the straight lines have increasing slope in the plot.

As explained above, the length of integration N = N(I) along the homoclinic orbit is

suitably chosen for each energy level. For I → I−, there is exponential decay up to time

s = 40 · (14π) ≈ 1760.

B.3. Inner and outer dynamics of the elliptic problem

In this appendix, we numerically compute the first orders in e0 of the inner map F in
e0

and

the outer maps Fout,∗
e0

of the elliptic problem, given in Section 3. In order to compare the

inner and outer dynamics of the elliptic problem through Lemma 4.2, only some specific

terms in the expansions of the inner and outer maps are necessary. Namely, we only need

to compute the term A1 in the expansion of the inner map (61), and the terms B∗ in the

expansion of the outer maps (72).
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Fig. 21. The function A+
1
(I ) (real and imaginary parts) involved in the definition of the inner

map (61) of the elliptic problem as a function of the energy of the system in rotating coordinates Ĥ .

Recall that Ĥ = −I .

Recall from Section 3.4 that A1 can be split as

A1(I, t) = A+
1 (I)e

it + A−
1 (I)e

−it .

Since A+
1 and A−

1 are complex conjugate, it is only necessary to compute one of them.

Let us compute the positive harmonic,

A+
1 (I) = −iµ

∫ −14π

0

1H
1,+
ell ◦ λ3

I (σ )

−1 + µ∂G1Hcirc ◦ λ3
I (σ )

eĩλ
3
I (σ ) dσ. (101)

Notice that the denominator is the same one used in the previous section for the inner and

outer dynamics of the circular problem. Next we give the numerator i1H
1,+
ell explicitly.

Let

1H 1
ell(L, ℓ,G, g, t) = −1 − µ

µ
B1

(
− r(L, ℓ,G)

µ
, v(L, ℓ,G), g, t

)

− µ

1 − µ
B1

(
r(L, ℓ,G)

1 − µ
, v(L, ℓ,G), g, t

)
,

where B1 is the function defined in Lemma 3.4. Then it is straightforward to see that

1H
1,+
ell (l, L, g,G) = −1 − µ

µ
B+

1

(
− r(L, ℓ,G)

µ
, v(L, ℓ,G), g

)

− µ

1 − µ
B+

1

(
r(L, ℓ,G)

1 − µ
, v(L, ℓ,G), g

)
, (102)
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Fig. 22. The functions Bf,+ and Bb,+ (real and imaginary parts) involved in the definition of the
outer map (72) of the elliptic problem.

where

B+
1 (r, v, g) = −1 − r cos(v + g)− i2r sin(v + g)

213(r, v + g)
.

The computed value of the functionA+
1 is shown in Figure 21. We plot it as a function

of the energy of the elliptic problem in rotating coordinates Ĥ in (15). Recall that since

we are working in the energy level H = 0 of the extended Hamiltonian H in (16), we

have I = −Ĥ .

For the outer map, we compute the functions B∗(I). Similarly to A1, it is only nec-

essary to compute the positive harmonics B∗,+. Recall from Lemma 3.9 that the positive

harmonics Bf,+(I) and Bb,+(I) are defined as

Bf,+(I) = B
f,+
out (I)+ B

f,+
in (I)eiµω

f
out(I ),

Bb,+(I) = B
b,+
in (I)+ B

b,+
out (I)e

iµωb
in
(I ),

(103)

where ωf
out and ωb

in were obtained in Appendix B.2. To obtain B
∗,+
out and B

∗,+
in , we com-

pute the integrals (74)–(76) numerically, using the same techniques as in the previous

Appendix B.2. In particular, the integrands of the Melnikov integrals (74) and (75), by

construction, decay exponentially as T → ±∞ and we take the same approximate limits

of integration ±14πN where N = N(I) is the constant considered in Appendix B.2.

The computed values of the functions Bf,+(I) and Bb,+(I) are shown in Figure 22.
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B.4. Comparison of the inner and outer dynamics of the elliptic problem

Finally, we verify the non-degeneracy condition

B̃∗,±(I) 6= 0 for I ∈ D∗ (104)

stated in Lemma 4.2, which implies the existence of a transition chain of tori. Since B∗,+

and B∗,− are complex conjugate, it is only necessary to compute one of them. Let us

compute the positive harmonic,

B̃∗,+(I) = B∗,+(I)− eiµω
∗(I) − 1

eiµT0(I) − 1
A+

1 (I).

All the functions involved in the expression above are known: T0 and ω∗ are obtained in

Appendix B.2 and A+
1 and B∗,+ are obtained in Appendix B.3.

The computed values of the functions B̃f,+ and B̃b,+ are shown in Figure 23. Thus,

we see that the functions B̃∗,+ are not identically zero. This justifies Ansatz 3.
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Fig. 23. The functions B̃f,+ and B̃b,+ (real and imaginary parts).

Remark B.1. Figure 23 also shows that B̃f,+ and B̃b,+ are almost identical, which is

surprising to the authors. However, this fact is not relevant for the argument in Lemma 4.2;

we only need that these functions do not vanish identically.
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Appendix C. The Main Result for the 3 : 1 resonance: instabilities in the Kirkwood

gaps

We devote this appendix to showing how the proof of Theorem 1 in Sections 2–4 can be

adapted to deal with the 3 : 1 resonances. First, we state a more rigorous version of Main

Result (3 : 1).

Theorem 5. Assume Ansätze 4–6. Then there exists e∗0 > 0 such that for 0 < e0 < e∗0 ,

there exist T > 0 and an orbit of the Hamiltonian (16) which satisfy

G(0) > 0.56 and G(T ) < 0.32,

whereas

|L(t)− 3−1/3| ≤ 100µ for t ∈ [0, T ].
Ansätze 4 and 5 are stated in Appendix C.1 and Ansatz 6 is stated in Appendix C.2. They

are analogous to Ansätze 1–3 but refer to the 3 : 1 resonance instead of the 1 : 7 one. To

prove this theorem, we consider the Hamiltonian (16) and we study the resonance

ℓ̇ ∼ 3 and ġ ∼ −1. (105)

As for the 1 : 7 resonance, without loss of generality, we take H = 0 and we look for a

large drift in I which, L being almost constant, implies a big drift in G.

C.1. The circular problem

We first study the circular problem (18), close to the resonance 3−1ℓ̇+ ġ ∼ 0. We assume

the following Ansatz. It has been verified numerically (see Appendix C.3). It replicates

Ansatz 1.

Ansatz 4. Consider the Hamiltonian (18) with µ = 10−3. Then, at each energy level

J ∈ [J−, J+] = [−1.6,−1.3594], there exists a hyperbolic periodic orbit λJ =
(LJ (t), ℓJ (t),GJ (t), gJ (t)) of period TJ which satisfies

|TJ − 2π | < 15µ,

and is smooth with respect to J , and

|LJ (t)− 3−1/3| < 100µ for all t ∈ R.

Each λJ has two branches of stable and unstable invariant manifolds W s,j (λJ ) and

Wu,j (λJ ), j = 1, 2. Then, for each J ∈ [J−, J+] either W s,1(λJ ) and Wu,1(λJ ) or

W s,2(λJ ) and Wu,2(λJ ) intersect transversally.

Note that since now Jupiter is slower than the asteroid, the period of these periodic orbits

is approximately the period of Jupiter instead of the period of the asteroid. For the Ex-

tended Circular Problem given by the Hamiltonian (16) with e0 = 0, the periodic orbits

obtained in Ansatz 4 become invariant 2-dimensional tori which lie on the hyperplanes

I = constant for any

I ∈ [I−, I+] = [−J+,−J−] = [1.3594, 1.6].
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Corollary C.1. Assume Ansatz 4. Then the Hamiltonian (16) with µ = 10−3 and e0 = 0

has an analytic normally hyperbolic invariant 3-dimensional manifold 30, which is foli-

ated by 2-dimensional invariant tori.

Moreover,30 has two branches of stable and unstable invariant manifolds, which we

call W s,j (30) and Wu,j (30), j = 1, 2. Then, in the invariant planes I = constant, for

each I ∈ [I−, I+] either W s,1(30) and Wu,1(30) or W s,2(30) and Wu,2(30) intersect

transversally.

For the analysis of the 3 : 1 resonance it is more convenient to consider the global Poincaré

section {ℓ = 0} instead of the section {g = 0} considered in Section 2, since now the

asteroid moves faster than Jupiter. We consider the map

P0 : {ℓ = 0} → {ℓ = 0}, (106)

induced by the flow associated to the Hamiltonian (16) with e0 = 0. Now the intersection

of the cylinder30 with the section {ℓ = 0} is formed by three cylinders 3̃
j

0 , j = 0, 1, 2:

30 ∩ {ℓ = 0} = 3̃0 =
2⋃

j=0

3̃
j

0. (107)

As a whole,
⋃2
j=0 3̃

j

0 is a normally hyperbolic invariant manifold for the Poincaré

map P0, whereas each 3̃
j

0 is a normally hyperbolic invariant manifold for P3
0 . These

cylinders have a natural system of coordinates, which we use to study the inner and outer

dynamics on them. We work with 3̃1
0 and 3̃2

0 since in each invariant plane I = constant

they are connected by at least one heteroclinic connection (of P3
0 ) which is symmetric

with respect to the involution (19). As before, we call it a forward heteroclinic orbit if it

is asymptotic to 3̃1
0 in the past and 3̃2

0 in the future and a backward heteroclinic orbit if

it is asymptotic to 3̃2
0 in the past and to 3̃1

0 in the future. We denote by Df ⊂ [I−, I+],
where f stands for forward, the subset of [I−, I+] where Wu(3̃1

0) and W s(3̃2
0) inter-

sect transversally, and by Db ⊂ [I−, I+], where b stands for backward, the subset of

[I−, I+] where W s (3̃1
0) and Wu(3̃2

0) intersect transversally. By Corollary C.1 we have

Df ∪ Db = [I−, I+].

Corollary C.2. Assume Ansatz 4. Then the Poincaré map P3
0 defined in (106), which is

induced by the Hamiltonian (16) with µ = 10−3 and e0 = 0, has three analytic nor-

mally hyperbolic invariant manifolds 3̃
j

0 , j = 0, 1, 2. They are foliated by 1-dimensional

invariant curves. Moreover, there exist analytic functions G
j

0 : [I−, I+]×T → (R×T)3,

G
j

0 (I, t) =
(
G
j,L

0 (I), 0,G
j,G

0 (I),G
j,g

0 (I), I, t
)
,

that parameterize 3̃
j

0 ,

3̃
j

0 = {Gj0 (I, t) : (I, t) ∈ [I−, I+] × T}.
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The associated invariant manifoldsWu(3̃1
0) andW s (3̃3

0) intersect transversally provided

I ∈ Df; and W s (3̃1
0) and Wu(3̃2

0) intersect transversally provided I ∈ Db. Moreover,

one of the points of these intersections belongs to the symmetry axis of (19). Denote by

Ŵ∗
0 , ∗ = f, b, these intersections. Then there exist analytic functions

C∗
0 : Dj × R → (R × T)3, (I, t) 7→ C∗

0 (I, t), ∗ = f, b,

which parameterize them:

Ŵ∗
0 =

{
C∗

0 (I, t) =
(
C∗,L

0 (I), 0, C∗,G
0 (I), C

∗,g
0 (I), I, t

)
: (I, t) ∈ D∗ × T

}
, ∗ = f, b.

Corollary C.1 gives global coordinates (I, t) for each cylinder 3̃
j

0 . These coordinates are

symplectic with respect to the canonical symplectic form�0 = dI ∧ dt . We consider the

inner and the two outer maps in the cylinder 3̃1
0.

The inner map. The inner map F in
0 : 3̃1

0 → 3̃1
0 is defined as the Poincaré map P3

0

restricted to the symplectic invariant submanifold 3̃1
0. It is of the form

F in
0 :

(
I

t

)
7→

(
I

t + µT0(I)

)
, (108)

where the function T0 is such that 2π+µT0(I) is the period of the periodic orbit obtained

in Ansatz 4 on the corresponding energy surface. We assume the following Ansatz, which

asserts that this map is a twist map (see the corresponding Ansatz 2). It has been verified

numerically (see Appendix C.3).

Ansatz 5. The function T0(I) satisfies

∂IT0(I) 6= 0 for I ∈ [I−, I+].

Therefore, the analytic symplectic inner map F in
0 is a twist map. Moreover,

0 < µT0(I) < π.

The outer map. Proceeding as in Section 2.3, we define the outer map for the circular

problem at the 3 : 1 resonance. Recall that it has been defined as the composition of the

map given by Definition 2.3 and a suitable power of the Poincaré map P0 restricted to the

cylinders 3̃
j

0 . For the 3 : 1 resonance, we consider the outer maps Fout,∗
0 , ∗ = f, b, which

connect 3̃1
0 to itself and are defined as

Fout,f
0 = P2

0 ◦ Sf : 3̃1
0 → 3̃1

0, Fout,b
0 = Sb ◦ P0 : 3̃1

0 → 3̃1
0,

where Sf is the outer map which connects 3̃1
0 and 3̃2

0 through Wu(3̃1
0) ∩W s (3̃2

0), and

Sb is the outer map which connects 3̃2
0 and 3̃1

0 through Wu(3̃2
0) ∩W s(3̃1

0). Recall that

we are abusing notation since the forward and backward outer maps are only defined

provided I ∈ Df and I ∈ Db respectively, and not in the whole cylinder 3̃1
0.



2384 Jacques Féjoz et al.

As for the 1 : 7 case, these maps are of the form

Fout,∗
0 :

(
I

t

)
7→

(
I

t + µω∗(I)

)
, ∗ = f, b. (109)

Since we want to compute these outer maps using flows, we need to reparameterize time

in the vector field associated to the Hamiltonian (16) with e0 = 0, so that it preserves the

section {ℓ = 0}. We consider the following vector field, which corresponds to identifying

the variable ℓ with time:

d

ds
ℓ = 1,

d

ds
L = − ∂ℓH

L−3 + µ∂L1Hcirc

,

d

ds
g = −1 + µ∂G1Hcirc

L−3 + µ∂L1Hcirc

,
d

ds
G = − ∂gH

L−3 + µ∂L1Hcirc

,

d

ds
t = 1

L−3 + µ∂L1Hcirc

,
d

ds
I = 0,

(110)

where H is the Hamiltonian (16) with e0 = 0. Notice that now we are not changing the

time direction, as happened in the 1 : 7 resonance. We refer to this system as a reduced

circular problem. Recall that we denote by 8circ
0 the flow associated to the (L, ℓ,G, g)

components of equation (30) (which are independent of t and I ). We use it to derive the

formulas for the outer map. Let

γ ∗
I (σ ) = 8circ

0 {σ, (C∗,L
0 (I), 0, C∗,G

0 (I), C
∗,g
0 (I))}, ∗ = f, b,

λ
j
I (σ ) = 8circ

0 {σ, (Gj,L0 (I), 0,G
j,G

0 (I),G
j,g

0 (I))}
(111)

be trajectories of the circular problem. Then one can see that the functions ωf,b(I) in-

volved in the definition of the outer maps in (109) can be defined as

ω∗(I) = ω∗
out(I)+ ω∗

in(I),

where

ω∗
out(I) = ω∗

+(I)− ω∗
−(I) (112)

with

ω∗
+(I) = lim

N→∞

(∫ 6Nπ

0

(µ−1(3−L−3)−∂L1Hcirc)◦γ ∗
I (σ )

3(L−3 +µ∂L1Hcirc)◦γ ∗
I (σ )

dσ +NT0(I)

)
,

ω∗
−(I) = lim

N→−∞

(∫ 6Nπ

0

(µ−1(3−L−3)−∂L1Hcirc)◦γ ∗
I (σ )

3(L−3 +µ∂L1Hcirc)◦γ ∗
I (σ )

dσ +NT0(I)

)
, ∗ = f, b,

(113)

and

ωf
in(I) =

∫ 4π

0

(µ−1(3 − L−3)− ∂L1Hcirc) ◦ λ2
I (σ )

3(L−3 + µ∂L1Hcirc) ◦ λ2
I (σ )

dσ,

ωb
in(I) =

∫ 2π

0

(µ−1(3 − L−3)− ∂L1Hcirc) ◦ λ1
I (σ )

3(L−3 + µ∂L1Hcirc) ◦ λ1
I (σ )

dσ,

(114)

where T0(I) is the function in (108). Recall that along periodic and homoclinic orbits,

3 − L−3 ∼ µ.
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C.2. The elliptic problem

We now study the elliptic problem. Reasoning as for the 1 : 7 resonance, for e0 small

enough the system associated to the Hamiltonian (16) has a normally hyperbolic invariant

cylinder 3e0
, which is e0-close to 30 given in Corollary 2.1. Analogously, the Poincaré

map

Pe0
: {ℓ = 0} → {ℓ = 0}

associated to the flow of (16) and the section {ℓ = 0} has a normally hyperbolic invariant

cylinder 3̃e0
= 3e0

∩ {ℓ = 0}. Moreover, it is formed by three connected components

3̃
j
e0

, j = 0, 1, 2, which are e0-close to the cylinders 3̃
j
e0

obtained in Corollary C.2 and

have natural coordinates (I, t) as happened for the circular case.

We look for perturbative expansions of the inner and outer maps. For the 3 : 1 reso-

nances they are computed using the new reduced elliptic problem

d

ds
ℓ = 1,

d

ds
L = − ∂ℓH

L−3+µ∂L1Hcirc+µe0∂L1Hell

,

d

ds
g = ∂GH

L−3+µ∂L1Hcirc+µe0∂L1Hell

,
d

ds
G = − ∂gH

L−3+µ∂L1Hcirc+µe0∂L1Hell

,

d

ds
t = 1

L−3+µ∂L1Hcirc+µe0∂L1Hell

,
d

ds
I = − µe0∂t1Hell

L−3+µ∂L1Hcirc+µe0∂L1Hell

,

(115)

which is a perturbation of (110).

For the elliptic problem, the coordinates (I, t) are symplectic not with respect to the

canonical symplectic form dI ∧ dt but with respect to a symplectic form

�
j
e0

=
(
1 + e0a

j

1 (I, t)+ e2
0a
j

2 (I, t)+ e3
0a
j
≥(I, t)

)
dI ∧ dt (116)

with certain functions a
j
k : [I−, I+] × T → R which satisfy

N (a3
1) = {±1}, N (a3

2) = {0,±1,±2}

(see (84) for the definition of N and Corollary 3.8 for the corresponding result for the

1 : 7 resonance).

In the invariant cylinder 3̃1
e0

, one can define inner and outer maps as we have done

in 3̃1
0 for the circular problem. We proceed as in Section 3 for the 1 : 7 resonance.

The inner map. We first study the inner map. As for the circular problem, it is defined by

the map P3
e0

in (41) restricted to the normally hyperbolic invariant manifold 3̃1
e0

. For e0

small enough, proceeding as in the proof of Lemma 3.7, one can see that it is of the form

F in
e0

:
(
I

t

)
7→

(
I + e0A1(I, t) + e2

0A2(I, t)+ O(e3
0)

t + µT0(I)+ e0T1(I, t) + e2
0T2(I, t)+ O(e3

0)

)
(117)
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with functions A1, A2, T1, and T2 satisfying

N (A1) = {±1}, N (A2) = {0,±1,±2}, (118)

N (T1) = {±1}, N (T2) = {0,±1,±2}. (119)

Thus, A1 can be split as

A1(I, t) = A+
1 (I)e

it + A−
1 (I)e

−it .

Moreover, the Fourier coefficients are defined as

A±
1 (I) = ∓iµ

∫ 6π

0

1H
1,±
ell ◦ λ1

I (σ )

L−3 + µ∂G1Hcirc ◦ λ1
I (σ )

e±ĩλ
1
I (σ ) dσ,

where the functions1H
1,±
ell are defined as

1H 1
ell(L, ℓ,G, g, t) = 1H

1,+
ell (L, ℓ,G, g)e

it +1H
1,±
ell (L, ℓ,G, g)e

−it ,

and λ1
I (σ ) has been defined in (111). Finally, λ̃1

I (σ ) is defined as

λ̃1
I (σ ) = 8̃0{σ, (G1,L

0 (I),G1,ℓ
0 (I),G1,G

0 (I), 0)}, (120)

where G3
0 has been introduced in Corollary C.2 and

8̃0{s, (L, ℓ,G, g)} = t +
∫ s

0

1

L−3 + µ∂L1Hcirc(8
circ
0 {σ, (L, ℓ,G, g)})

dσ. (121)

The function 8̃0 is analogous to the corresponding function for the 1 : 7 resonance, de-

fined in (36).

The outer map. We now study the outer maps

Fout,∗
e0

: 3̃1
e0

→ 3̃1
e0
, ∗ = f, b, (122)

for e0 > 0. Thanks to Ansatz 4, we know that for e0 small enough, there exist transver-

sal intersections of the invariant manifolds of 3̃1
e0

and 3̃2
e0

. Thus, we can proceed as in

Section 2.3 to define the outer maps Fout
e0

for the 3 : 1 resonance and we study them as a

perturbation of the outer maps of the circular problem given in (109). We use the reduced

elliptic problem defined in (115) and we compute the first order of the outer maps in e0.

To this end, we use the notation γ
f,b
I (σ ) and λ

1,2
I (σ ) defined in (111). Analogously we

define the corresponding t-component of the flow as

γ̃ ∗
I (σ ) = 8̃0{σ, (C∗,L

0 (I), C∗,ℓ
0 (I), C∗,G

0 (I), 0)}, ∗ = f, b,

λ̃
j
I (σ ) = 8̃0{σ, (Gj,L0 (I),G

j,ℓ

0 (I),G
j,G

0 (I), 0)}, j = 1, 2,
(123)

where C∗
0 and G

j

0 have been given in Corollary C.2 and 8̃0 in (121).
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Lemma C.3. The outer map defined in (122) has the following expansion with respect

to e0:

Fout,∗
e0

:
(
I

t

)
7→

(
I + e0(B

∗,+(I)eit + B∗,−(I)e−it )+ O(e2
0)

t + µω∗(I)+ O(e0)

)
, ∗ = f, b. (124)

Moreover, the functions B∗,±(I) can be defined as

Bf,±(I) = B
f,±
out (I)+ B

f,±
in (I)e±iµω

f
out(I ),

Bb,±(I) = B
b,±
in (I)+ B

b,±
out (I)e

±iµωb
in(I ),

(125)

where ωf
out(I) and ωb

in(I) are the functions defined in (33) and (35) respectively and

B
f,±
out (I) = ±iµ lim

T→∞

∫ T

0

(
1H

1,±
ell ◦ γ f

I (σ )

L−3 + µ∂L1Hcirc ◦ γ f
I (σ )

e±iγ̃
f
I (σ )

−
1H

1,±
ell ◦ λ1

I (σ )

L−3 + µ∂L1Hcirc ◦ λ1
I (σ )

e±i(̃λ
1
I (σ )+µωf

+(I ))
)
dσ

∓ iµ lim
T→−∞

∫ T

0

(
1H

1,±
ell ◦ γ f

I (σ )

L−3 + µ∂L1Hcirc ◦ γ f
I (σ )

e±iγ̃
f
I (σ )

−
1H

1,±
ell ◦ λ2

I (σ )

L−3 + µ∂L1Hcirc ◦ λ2
I (σ )

e±i(̃λ
2
I (σ )+µωf

−(I ))
)
dσ, (126)

B
b,±
out (I) = ±iµ lim

T→∞

∫ T

0

(
1H

1,±
ell ◦ γ b

I (σ )

L−3 + µ∂L1Hcirc ◦ γ b
I (σ )

e±iγ̃
b
I (σ )

−
1H

1,±
ell ◦ λ2

I (σ )

L−3 + µ∂L1Hcirc ◦ λ2
I (σ )

e±i(̃λ
2
I (σ )+µωb

+(I ))
)
dσ

∓ iµ lim
T→−∞

∫ T

0

(
1H

1,±
ell ◦ γ b

I (σ )

L−3 + µ∂L1Hcirc ◦ γ b
I (σ )

e±iγ̃
b
I (σ )

−
1H

1,±
ell ◦ λ1

I (σ )

L−3 + µ∂L1Hcirc ◦ λ1
I (σ )

e±i(̃λ
1
I (σ )+µωb

−(I ))
)
dσ, (127)

B
f,±
in (I) = ∓iµ

∫ 4π

0

1H
1,±
ell ◦ λ2

I (σ )

L−3 + µ∂L1Hcirc ◦ λ2
I (σ )

e±ĩλ
2
I (σ ) dσ,

B
b,±
in (I) = ∓

∫ 2π

0

1H
1,±
ell ◦ λ1

I (σ )

L−3 + µ∂L1Hcirc ◦ λ1
I (σ )

e±ĩλ
1
I (σ ) dσ

(128)

where

1H
1,±
ell (ℓ, L, g,G, t) = 1H

1,±
ell (ℓ, L, g,G)e

it +1H
1,±
ell (ℓ, L, g,G)e

−it

has been defined in Corollary 3.5 and ω∗
± have been defined in (113).
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Existence of diffusing orbits. The last step to prove the existence of diffusing orbits can

be done analogously to what has been done in Section 4 for the 1 : 7 resonance. Namely,

we just need to obtain a change of coordinates (I, t) = (I, τ )+ e0ϕ(I, τ ) which

• straightens the symplectic form �1
e0

(see (116)) into �0 = dI ∧ dτ ;

• flattens the inner map in the I -direction.

This is summarized in the next lemma, which merges the corresponding Lemmas 4.1 and

4.2 for the 1 : 7 resonance.

Lemma C.4. There exists a change of variables e0-close to the identity,

(I, t) = (I, τ )+ e0ϕ(I, τ ),

defined on 3̃1
e0

, which:

• transforms the symplectic form �1
e0

into the canonical form �0 = dI ∧ dτ ;

• transforms the inner map F in
e0

in (117) into

F̃ in
e0

:
(
I
τ

)
7→

(
I + O(µe3

0)

τ + µT0(I)+ e2
0T̃2(I)+ O(µe3

0).

)
; (129)

• transforms the outer maps Fout,f
e0

and Fout,b
e0

in (124) into

F̃out,∗
e0

:
(
I
τ

)
7→

(
I + e0B̃

∗(I, τ )+ O(µe2
0)

τ + µω∗(I)+ O(µe0)

)
, ∗ = f, b, (130)

where

B̃∗(I, τ ) = B̃∗,+(I)eiτ + B̃∗,−(I)e−iτ

with

B̃∗,±(I) = B∗,±(I)− e±iµω
∗(I) − 1

e±iµT0(I) − 1
A±

1 (I).

To ensure the existence of transition chains of tori, we need to assume the following

Ansatz.

Ansatz 6. The functions B̃∗,± defined in Lemma C.4 satisfy

B̃∗,±(I) 6= 0 for I ∈ D∗,

where D∗ are the domains considered in Corollary C.2.

With this Ansatz, and also Ansätze 4 and 5, we can proceed as in Section 4 to prove the

existence of a transition chain of tori and of orbits shadowing such a chain.

C.3. Numerical study of the 3 : 1 resonance

In this section, we briefly describe our numerical analysis of the 3 : 1 resonance. In par-

ticular, we verify Ansätze 4–6 numerically.

The numerical methodology used for the 3 : 1 resonance is analogous to the 1 : 7 reso-

nance. Cartesian rotating coordinates are used for the computation of the hyperbolic struc-

ture of the circular problem (normally hyperbolic invariant cylinder, stable and unstable
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manifolds, and their homoclinic intersection). We now consider the Poincaré section

6̃+ = {y = 0, ẏ > 0},

and the associated 2-dimensional symplectic Poincaré map P : 6̃+ → 6̃+ acting on

(x, px). We look for 3 : 1 resonant periodic orbits as 2-periodic points of the Poincaré

map, i.e. letting p = (x, px), we need to solve the equation

P 2(p) = p.

In fact, exploiting the symmetry of the problem, it is enough to use the 1-dimensional

equation
πpx (P

2(p)) = 0,

since we impose that the point p lies on the symmetry section {y = 0, px = 0}.
Thus we obtain the family of resonant periodic orbits for energy levels

J ∈ [J̄−, J̄+] = [−1.7314,−1.3594]

(see Figure 24). Notice that the period TJ stays close to the resonant period 2π of the

unperturbed system. From Figure 24, we obtain the bound

|TJ − 2π | < 15µ,

which is the first bound given in Ansatz 4.

Furthermore, we verify that (the square of) the semi-major axis L stays close to the

resonant value 3−1/3. Integrating the periodic orbit in Delaunay coordinates λJ (t) =

 0.004
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 0.01
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 0.016
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Fig. 24. Resonant family of periodic orbits. We show the normalized period TJ − 2π , and the

maximum deviation of the L component with respect to the resonant value 3−1/3 (see (131)).
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(LJ (t), ℓJ (t),GJ (t), gJ (t)) over one period TJ , we compute the quantity

Lmax(J ) = max
t∈[0,TJ )

|LJ (t)− 3−1/3|. (131)

The function Lmax(J ) is plotted in Figure 24. Notice that we obtain the bound

|LJ (t)− 3−1/3| < 100µ

for all t ∈ R and J ∈ [J̄−, J̄+], which is the second bound given in Ansatz 4.

To determine the stability of the periodic orbits, we now compute the eigenvalues λ

and λ−1 of DP 2(p). Figure 25 shows the characteristic exponent ln(λ) as a function of

energy. The family of periodic orbits is hyperbolic in the interval [J̄−, J̄+], although the

strength of hyperbolicity is weaker than in the 1 : 7 resonance (cf. Figure 7).

The stable and unstable invariant manifolds of the periodic orbits are computed using

the same methodology explained for the 1 : 7 resonance. In particular, we switch to the

new Poincaré section

6̃− = {y = 0, ẏ < 0}
in order to have the homoclinic points lying on the symmetry axis. For illustration, we

show the result corresponding to the energy value J = −1.3594 in Figure 26. The man-

ifolds intersect transversally at the homoclinic points z1 (outer splitting) and z2 (inner

splitting), as we will show below.

Next we compute the splitting angle between the invariant manifolds at the homoclinic

points. We will restrict the range of energy values to

J ∈ [J−, J+] = [−1.6,−1.3594], (132)

 0

 0.1

 0.2

 0.3
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 0.5

 0.6

 0.7

 0.8

 0.9

-1.75 -1.7 -1.65 -1.6 -1.55 -1.5 -1.45 -1.4 -1.35

J

ln
(λ
)

Fig. 25. Characteristic exponent ln(λ) as a function of energy level J (the other exponent is
− ln(λ)).
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Fig. 26. Invariant manifolds of the fixed points p0 and p1 for energy level J = −1.3594.

or equivalently the range of eccentricities to e ∈ [e−, e+] = [0.59, 0.91]. This is the

range where we can validate the accuracy of our computations (see Appendix A.4). Below

e− = 0.59, the splitting size becomes comparable to the numerical error that we commit

in double precision arithmetic.

Remark C.5. In contrast with the 1 : 7 resonance, now the manifolds stay close to the in-

tegrable situation for the whole range of energies, i.e. they meet with small splitting angle

as we will show below. Thus for the 3 : 1 resonance there is no difficulty in identifying the

primary family of homoclinic points (cf. Remark A.5).

Using the same methodology as for the 1 : 7 resonance, we are able to obtain the splitting

angle for energy levels J ∈ [J−, J+] (see Figure 27). Numerically, we find that the zeros

of the splitting angle are contained in the intervals listed in Table 3. As seen from the

table, the inner and outer splittings become zero at different values of J . Thus, when one

of the intersections becomes tangent, the other one is still transversal, and we can always

use one of them for diffusion.

Table 3. Subintervals of J ∈ [J−, J+] containing the zeros of inner splitting (left column) and
outer splitting (right column).

inner outer

(−1.453,−1.451) (−1.477,−1.475)

(−1.537,−1.535) (−1.553,−1.551)

(−1.593,−1.591)
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Fig. 27. Splitting angle associated to inner and outer splitting.

Again, we check the validity of σ(J−) by computing this splitting angle using two

different numerical methods and comparing the results. They differ by less than 10−10,

which gives an estimate of the total numerical error.

Recall that the study of the inner and outer maps is done in rotating Delaunay co-

ordinates. As explained in Appendix C, for the analysis of the 3 : 1 resonance it is con-

venient to consider the Poincaré section {ℓ = 0}. Thus, we transform the hyperbolic

structure of the circular problem from Cartesian to Delaunay coordinates as explained in

Appendix B.1 (see Figure 28).

First we compute the inner map F in
0 and the outer maps Fout,∗

0 of the circular problem,

given in Appendix C.1. We consider I ∈ [I−, I+] = [−J+,−J−], where the range

[−J+,−J−] is given in (132). For the inner map, Figure 24 shows a plot of the function

TJ − 2π = µT0(I). Notice that the derivative of the function T0(I) is non-zero for the

whole range [I−, I+]. This shows that the inner map is a twist map. Moreover, Figure 24

shows that

0 < µT0(I) < 15µ < π.

Therefore, the function T0(I) has the properties stated in Ansatz 5.

Then we compute the first orders in e0 of the inner map F in
e0

and the outer maps

Fout,∗
e0

of the elliptic problem, given in Appendix C.2. For brevity, we do not show the

results here, since the plot of the functions A+
1 , Bf,+ and Bb,+ does not convey much

information.

Finally, we verify the non-degeneracy condition

B̃∗,±(I) 6= 0 for I ∈ D∗,
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Fig. 28. Energy J = −1.7194. Resonance structure in Delaunay coordinates. The symmetry cor-
responds to g = 0 and g = π and is marked with a vertical line.
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Fig. 29. The functions B̃f,+ and B̃b,+ (real and imaginary parts).

stated in Ansatz 6, which implies the existence of a transition chain of tori. The computed

values of the functions B̃f,+ and B̃b,+ are shown in Figure 29. We see that the functions

B̃∗,+ are not identically zero. This justifies Ansatz 6.
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Appendix D. Conjectures on the speed of diffusion

Instabilities for nearly integrable systems are often called Arnol’d diffusion. As far as we

know, this term was coined by Chirikov [Chi79]. In this section we state two conjectures

about random behavior of orbits near resonances, where randomness comes from the

initial condition.

A nearly integrable Hamiltonian system of two degrees of freedom in the region of

interest can often be reduced to a 2-dimensional area-preserving twist map. To construct

instability regions of these maps physicists often use a resonance overlap criterion (see

e.g. [SUZ88, Ch. 5, Sect. 2]). This criterion for nearby rational numbers p/q and p′/q ′

compares the “sizes” of averaged potentials. If the sum of the square roots of the maxima

of those potentials exceeds |p/q−p′/q ′|, this is a strong indication that the corresponding

periodic orbits can be connected. Doing this for an interval of rational numbers gives an

approximation for the so-called Birkhoff Region of Instability (BRI).

If non-integrability is small, then most of the space is laminated by KAM invariant

curves. In order to find channels outside of KAM curves, one considers a neighborhood

of a resonance and computes the size of the so-called stochastic layer. Heuristic formulas

can be found e.g. in [Chi79, Ch. 6.2] or in [SUZ88, Ch. 5, Sect. 3]. Treschev [TZ10]

estimated the width of the stochastic layer in a fairly general setting.

It turns out that Arnol’d’s example and the elliptic problem near mean motion reso-

nances can be viewed as a perturbation of a product of two area-preserving twist maps.

In loose terms, for the first map we study orbits located near a resonance inside the cor-

responding stochastic layer. The width of the stochastic layer gives an approximation

for time T it takes for many orbits to go around the layer. Stochastic behavior for the

other twist map occurs because it takes place “over” the stochastic layer with random be-

havior. This randomness gives rise to “random compositions” of twist maps. Numerical

experiments show behavior similar to a diffusion process (see e.g. [LL10, Figure 6.3] or

[LFG07]). Its diffusion coefficient is proportional to the square of the properly averaged

perturbation divided by T (see e.g. [Chi79, Ch. 7.2], [SUZ88, Ch. 5, Sect. 7]).

However, mathematically such randomness is a dark realm since there are many phe-

nomena competing with the diffusive behavior. For example, for twist maps here are a

few serious obstacles:

• Inside of a BRI there are elliptic islands, where orbits are confined and do not diffuse

(see e.g. [Chi79, Ch. 5.5] for a heuristic discussion of their size).

• Even if the elliptic islands do not occupy a dominant part of the phase space, there exist

so-called, in mathematical literature, Aubry–Mather sets. In physics literature they are

called Cantori. Orbits can stick to these sets for long periods of time (see e.g. [SUZ88,

Ch. 5, Sect. 7]).

• Similarly to sticking to Aubry–Mather sets, orbits can stick to elliptic islands.

For systems of two and a half degrees of freedom near a resonance the situation is

also quite complicated. We turn our attention to two basic examples: Arnol’d’s example

and the elliptic problem, both near a resonance.
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In terms of a perturbation parameter ε of a nearly integrable system one would like to

answer quantitatively the following natural questions. Fix a resonant segment Ŵ and let

Ŵε be its
√
ε-neighborhood.

• What is the natural time scale of diffusion? One would expect that there is an ε-

dependent time scale Tε in which one orbit diffuses by O(1) in action space and there

is another time scale T ∗
ε in which many orbits, in the measure sense, diffuse by O(1).

• Is there a natural time scale T ∗
ε so that a positive fraction of orbits in an ε-dependent

region in Ŵε diffuse by O(1)?
• At junctions of two resonances, which fraction of orbits chooses one resonance over

the other?

Call T ∗
ε the time scale of diffusion. It seems a sophisticated question to distinguish orbits

starting in Ŵε and staying inside such a neighborhood in time scale of diffusion from

those getting stuck near KAM tori located C
√
ε-away9 from Ŵ with C large. In this paper

we consider only the a priori unstable case, proposed by Arnol’d [Arn64]. In this case,

away from small velocities, there is only one dominant resonance and making precise

conjectures is simpler. This case will also motivate conjectures for certain a priori chaotic

systems.

D.1. Speed of diffusion for a priori unstable systems and positive measure

Consider the following nearly integrable Hamiltonian system proposed by Arnol’d

[Arn64]:

Hε(p, q, I, φ, t) = 1
2
p2 + cos q − 1 + 1

2
I 2 + εH1(p, q, I, φ, t),

where p, I ∈ R, φ, q, t ∈ T, (133)

for an analytic perturbation εH1. This system is usually called a priori unstable. Proving

Arnol’d diffusion for this system consists in showing that, for all small ε > 0 and a generic

εH1, there exist orbits with

|I (t) − I (0)| > O(1),

where O(1) is independent of ε. There has been a fascinating progress on this prob-

lem achieved by several groups (see [Ber08, CY04, DdlLS06, DH09, Tre04]). Treschev

[Tre04] not only proved existence of Arnol’d diffusion, but also gave an optimal estimate

on its speed, namely, he constructed orbits with

|I (t) − I (0)| > c
ε

|ln ε| t

for some c > 0. One can see that this estimate is optimal, i.e. |I (t)− I (0)| < C ε
|ln ε| t for

some C > c.

Heuristically the mechanism of diffusion is the following. For small ε > 0 the Hamil-

tonian Hε has a 3-dimensional normally hyperbolic invariant cylinder 3ε close to 30 =

9 This is the so-called stickiness phenomenon (see e.g. [MG95, PW94]).
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{p = q = 0}. A hypothetical diffusing orbit starts close to 3ε and makes a homoclinic

excursion. Each homoclinic excursion takes approximately O(|ln ε|)-time. Increment of

I (t) after such an excursion is O(ε).10 If one can arrange that all excursions lead to in-

crements of I (t) of the same sign, the result follows.

It seems natural that orbits will be trapped inside the resonance p = 0 for polynomi-

ally long time. Using this heuristic description one can conjecture that increments I (t)

can behave as a random walk for a positive conditional measure for polynomially large

time.

Positive measure conjecture. Consider the Hamiltonian Hε with a generic perturba-

tion εH1. Pick an ε-ball Bε of initial conditions, whose center projects into (p, q) = 0,

and denote the Lebesgue probability measure supported on it by Lebε. Then, for some

constants c, C > 0 independent of ε, the set of initial conditions satisfying

|I (T )− I (0)| > 1 for some 0 < T < C
|ln ε|
ε2

is denoted Diff and has measure Leb√
ε(Diff) > c.

Since a typical excursion takes O(|ln ε|)-time and each increment is O(ε), we essentially

conjecture that after O(ε−2) excursions with uniformly positive probability there will be

drift of order O(ε)O(ε−1) = O(1).

D.2. Structure of the restricted planar elliptic three-body problem

In this appendix we relate a priori unstable systems and the restricted planar elliptic three-

body problem. Recall that we managed to write the Hamiltonian of the latter problem in

the form

Hell(L, ℓ,G, g, t) = Hcirc(L, ℓ,G, g,µ) + µe01Hell(L, ℓ,G, g, t, µ, e0)

= H ∗
0 (L,G)+ µ1Hcirc(L, ℓ,G, g,µ) + µe01Hell(L, ℓ,G, g, t, µ, e0)

= − 1

2L2
−G+ µ1Hcirc(L, ℓ,G, g,µ) + µe01Hell(L, ℓ,G, g, t, µ, e0).

We know that

• H ∗
0 is an integrable Hamiltonian.

• Hcirc is non-integrable and for Hcirc in a certain interval [J−, J+] of energy levels

there is a family {pJ } of hyperbolic periodic orbits whose invariant manifolds intersect

transversally along at least one homoclinic.

• Hell is an O(µe0)-perturbation of Hcirc such that a certain Melnikov integral evalu-

ated along a transverse homoclinic of Hcirc is non-degenerate in two different ways:

dependence on time is non-trivial and relation between inner and outer integrals is

non-degenerate (see (9)).

10 This is only a heuristic description as dynamics inside of the cylinder should come into play.
Near so-called double resonance, dynamics is different from the one near single resonances.
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Having all these non-degeneracy conditions we prove the existence of diffusing or-

bits. It is not difficult to prove, using averaging techniques, that for µ > 0 small, there

is a family {γJ } of saddle periodic orbits on some interval [J−, J+], whose hyperbolicity

is ∼ √
µ. It seems, however, to be a non-trivial problem to establish the splitting of its

separatrices. Due to reversibility (90) there are at least four homoclinic intersections (two

for upper separatrices and two for lower ones). Having these two conditions, it is natural

to expect that at least one of the four associated Melnikov integrals is non-degenerate.

Qualitative analysis shows that it should be possible to have a homoclinic excursion

O(µe0)-close to the invariant cylinder. Such an excursion takes O(|ln(µe0)|)/
√
µ-time.

If the excursion is selected properly, then the result of the excursion is that the incre-

ment of the eccentricity is O(µe0). This makes us believe that the instability time obeys

T ∼ −ln(µe0)/(µ
3/2e0) stated in (6).

Let us point out that we believe that our diffusion mechanism survives even for non-

infinitesimal e0’s, e.g. realistic e0 = 0.048. To justify this, we review the above structure.

Notice that we use a 3-dimensional normally hyperbolic invariant cylinder and the

intersection of its invariant manifolds to diffuse. The cylinder arises from the family

{γJ }J∈[J−,J+] of periodic orbits of the circular problem, which persist under the elliptic

time-periodic perturbation µe01Hell(L, ℓ,G, g, t, µ, e0) (see (15) and the derivation in

the corresponding section). As the analysis carried out in Section 3.2 shows, in the neigh-

borhood of the family {γJ }J∈[J−,J+], the perturbation µe01Hell(L, ℓ,G, ĝ − t, t, µ, e0)

can be averaged out to O(µe6
0). Thus, invariant cylinders could persist even for not very

small e0’s. However, estimating remainders analytically after several steps of averaging

is nearly impossible. Numerically though it might be feasible.

Once the existence of an invariant cylinder is established, we need to justify the ex-

istence of transverse intersections of its manifolds. As before, analytically it is an insur-

mountable task, but numerically it seems to be achievable.

If these two steps are done, then one could try to compute numerically inner and outer

maps and show that they do not have common invariant curves. This is again a difficult,

but numerically realistic task (see [DMR08] for the computation of the outer map in

another problem in celestial mechanics).

On the other hand, the above asymptotics probably does not hold in the neighborhood

of circular motions of the massless body, which might be much more stable than more

eccentric motions. Yet many other factors might influence the local stability or instability

of various objects (see Section 1.2.3).

D.3. The Mather accelerating problem and its speed of diffusion

The structure we use to build diffusion is similar to the Mather acceleration problem.

Let us recall this problem and state an interesting result of Piftankin [Pif06] on speed of

diffusion.

Consider a Hamiltonian system

H(q, p, t) = K(q, p)+ V (q, t), q ∈ T
2, p ∈ R

2, t ∈ T,
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where K(q, p) = 1
2
〈A−1(q)p, p〉 is the kinetic energy corresponding to a Riemannian

metric, p = A(q)q̇, q̇ ∈ TqT
2 and V (q, t) is a time-periodic potential energy. Since the

system is not autonomous, energy is not conserved.

H1. Suppose the geodesic flow associated to K has a hyperbolic periodic orbit Ŵ and

transversal intersection of its invariant manifolds, which contains a homoclinic orbit

γ (t), t ∈ R.

H2. The Melnikov integral is not constant. More exactly, define a function

L(t) = lim
T→∞

(∫ T

−T
V (γ (τ ), t) dτ −

∫ T+t s

−T+tu
V (γ (τ ), t) dτ

)
.

The limit turns out to exist and is independent of the choice of ts , tu. This function

is assumed to be non-constant.

Mather and his followers [Mat96, BT99, DdlLS00, GT08, Kal03, Pif06] proved existence

of an orbit (qτ (t), pτ (t)), t ∈ R, of unbounded energy. De la Llave [dlL04], Piftankin

[Pif06], and Gelfreich–Turaev [GT08] proved that such an orbit can be chosen to have

linear growth of energy,

H(qτ (t), pτ (t)) ≥ At + B for all t ≥ 0

for some A > 0 and B ∈ R.

Notice that for large energiesH ∼ ε−2 the conformal change of coordinates

p̂ = p/ε, H = ε−2Ĥ , t = εt̂

leads to the new Hamiltonian

Ĥ (q, p, t) = K(q, p)+ ε2V (q, εt̂).

It was shown in [dlL04, Pif06, GT08] that there are orbits diffusing linearly in the size of

the perturbation. In order to see these orbits, notice that K(q, p) has a horseshoe. Then,

Ĥ can be considered as a time-periodic perturbation over such a horseshoe. It is shown by

different methods in [dlL04, Pif06, GT08] that for a generic time-periodic perturbation of

the horseshoe there are linearly diffusing orbits.

D.4. Modified positive measure conjecture

For systems with the properties discussed above we can modify the positive measure

conjecture as follows:

Positive measure conjecture for Mather type systems. Consider the Hamiltonian

Hµ,ε(L, ℓ,G, g, t) = H ∗
0 (L,G)+µ1H0(L, ℓ,G, g,µ)+µe01H1(L, ℓ,G, g, t, µ, e0)

such that
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• for some interval [J−, J+] the HamiltonianH ∗
0 +µ1H0 has a family {pJ }J∈[J−,J+] of

saddle periodic orbits,

• for each J ∈ [J−J+] there is at least one transverse intersection of its invariant mani-

folds,

• a Melnikov integral evaluated along a transverse homoclinic and inner dynamics are

non-degenerate: the dependence of the Melnikov integral on time is non-trivial and the

relation between inner and outer maps is non-degenerate (see (9)).

Pick a µe0-ball Bµe0
of initial conditions whose action components are centered at a

resonance between ℓ and g. Denote the Lebesgue probability measure supported on the

ball Bµe0
by Leb. Then for some constants c, C > 0 independent of µ and e0, the set of

initial conditions satisfying

|G(T )−G(0)| > 1 for some 0 < T < C
|ln(µe0)|
µ5/2e2

0

is denoted Diff and has measure Leb(Diff) > c.

Here is an important difference between the system Hµ,e0
and an priori unstable one

Hε, given by (133): the Hamiltonian H ∗
0 + µ1H0 already has “chaos” and a family of

horseshoes on each energy surface with J ∈ [J−J+], whileH0 = Hε−εH1 is integrable.

As pointed out above, for a generic time-periodic perturbation over a horseshoe there

are orbits diffusing linearly fast [dlL04, Pif06, GT08]. Yet we are interested in a set of

conditional positive measure.

In order to see the time of diffusion on a heuristic level, notice that H ∗
0 + µ1H0 has

a family {pJ }J∈[J−,J+] of saddle periodic orbits whose exponents are ∼ √
µ. Thus, one

homoclinic excursion passing µe0-close to separatrices takes |ln(µe0)|/
√
µ-time. Each

excursion might lead to increment of G of size ∼ µe0. Conjecturing that random walk

approximation holds true to have O(1)-changes in G, we need O(µ−2e−2
0 ) excursions.
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planétaire (d’après Herman). Ergodic Theory Dynam. Systems 24, 1521–1582 (2004)
Zbl 1087.37506 MR 2104595
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ity for a Hamiltonian system near an elliptic equilibrium point, with an application
to the restricted three-body problem. J. Differential Equations 77, 167–198 (1989)
Zbl 0675.70027 MR 0980547

[GG85] Giorgilli, A., Galgani, L.: Rigorous estimates for the series expansions of Hamiltonian
perturbation theory. Celestial Mech. 37, 95–112 (1985) MR 0838181

[Her83] Herman, M. R.: Sur les courbes invariantes par les difféomorphismes de l’anneau.
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