
DOI 10.4171/JEMS/539

J. Eur. Math. Soc. 17, 1569–1592 c© European Mathematical Society 2015
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Abstract. We prove that the bounded derived category of the surface S constructed by Barlow
admits a length 11 exceptional sequence consisting of (explicit) line bundles. Moreover, we show
that in a small neighbourhood of S in the moduli space of determinantal Barlow surfaces, the generic
surface has a semiorthogonal decomposition of its derived category into a length 11 exceptional
sequence of line bundles and a category with trivial Grothendieck group and Hochschild homology,
called a phantom category. This is done using a deformation argument and the fact that the derived
endomorphism algebra of the sequence is constant. Applying Kuznetsov’s results on heights of
exceptional sequences, we also show that the sequence on S itself is not full and its (left or right)
orthogonal complement is also a phantom category.

Keywords. Derived categories, exceptional collections, semiorthogonal decompositions, Hoch-
schild homology, Barlow surfaces

1. Introduction

A (geometric) phantom category is an admissible subcategory A of the bounded derived
category of coherent sheaves Db(X) on a smooth projective variety X with Hochschild
homology HH∗(A) = 0 and Grothendieck group K0(A) = 0. Recently Katzarkov et al.
[DKK, Conj. 4.1], [CKP, Conj. 29] conjectured that the derived category of the Barlow
surface of [Barl1] should contain a phantom. Evidence for the possible existence of phan-
toms was given in the article [BBS12], where an admissible subcategory with vanishing
Hochschild homology but with nonzero torsion Grothendieck group was produced in the
derived category of the classical Godeaux surface. Later such “quasi-phantoms” were
also found on Burniat surfaces in [A-O12], on Beauville surfaces in [GS] and on some
surfaces isogenous to a product in [Lee].
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In this article we prove the existence of a phantom on a generic determinantal Barlow
surface St in a small neighbourhood of S = S0 (the moduli space of determinantal Barlow
surfaces is 2-dimensional, see [Cat81] or [Lee00]), as well as on the Barlow surface S
itself. We think of t as a deformation parameter. More precisely, our main result is the
following.

Theorem 1.1. The derived category Db(St ) of a generic determinantal Barlow surface St
in a small neighbourhood of S = S0 admits a semiorthogonal decomposition

Db(St ) = 〈At ,L1,t , . . . ,L11,t 〉

where (L1,t , . . . ,L11,t ) is an exceptional sequence of line bundles and At is a phan-
tom category. Moreover, if St1 and St2 are two surfaces in a small neighbourhood of a
generic point of this family, then the categories 〈L1,t1 , . . . ,L11,t1〉 and 〈L1,t2 , . . . ,L11,t2〉

are equivalent. Furthermore, Db(S) itself has a phantom.

After the discovery of the main results of this paper, we learned that Gorchinskiy and
Orlov [GorOrl] very recently produced a phantom category in the bounded derived cate-
gory of a product of two surfaces by an ingenious and totally different method.

Note that by [BM] two minimal surfaces of general type with equivalent derived cate-
gories are isomorphic (note that [BonOrl] is not applicable, since the canonical bundle of a
determinantal Barlow surface is not ample), so Db(St ) has to vary with the moduli of St .
The way the moduli are encoded is analogous to what happens for Burniat surfaces in
[A-O12] (which was very inspiring for our proof). We prove that the A∞-Yoneda algebra
of the exceptional sequence does not vary in a neighbourhood of a generic determinantal
Barlow, and deduce from this the existence of the phantoms. Note that K0(St ) ' Z11

is torsion free, so we cannot use torsion to prove that our exceptional sequence is not
full. Likewise, we do not yet know how to exhibit explicit objects in At as was done in
[BBS12] (they all came from the fundamental group which is trivial here). It is an in-
teresting topic for future investigations to try to “lay hands” on At and produce explicit
objects in it or even explicitly describe a strong generator.

Here is a short roadmap of the paper: In Section 2 we recall the features of Barlow’s
construction of the surface S which we will need later. In Section 3 we describe the
symmetry of the classes of line bundles in the exceptional sequence we are going to
construct. Section 4 contains the construction of curves leading to an explicit integral
basis in Pic(S), and the description of the intersection theory pertaining to it. In Section 5
we explain how we obtain estimates for spaces of sections of line bundles on S and prove
the existence of the length 11 exceptional sequence. In Section 6, we compute what we
call cohomology data associated to this sequence, that is, the dimensions of extension
groups (in the forward direction). Using a deformation argument, we prove existence of
phantoms. In Section 7, we prove that S itself has a phantom using Kuznetsov’s recent
results on heights for exceptional sequences.

We hope that the existence of phantom categories is not exclusively a pathology, but
rather an interesting and potentially useful structure.
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2. Notation and construction of the Barlow surface

Let us recall the construction of determinantal Barlow surfaces in general. References
are, for example, [Barl1], [Lee00] and [Lee01]. Let (x1, . . . , x4) be coordinates in P3 and
consider an action of D10 = 〈σ, τ 〉 on P3 via

σ : (x1, x2, x3, x4) 7→ (ξ1x1, ξ
2x2, ξ

3x3, ξ
4x4),

τ : (x1, x2, x3, x4) 7→ (x4, x3, x2, x1),

where ξ is a primitive fifth root of unity. Then D10-invariant symmetric determinantal
quintic surfaces Q in P3 can be given as the determinants of the following matrices (see
e.g. [Lee00, p. 898]):

A =


0 a1x1 a2x2 a2x3 a1x4
a1x1 a3x2 a4x3 a5x4 0
a2x2 a4x3 a6x4 0 a5x1
a2x3 a5x4 0 a6x1 a4x2
a1x4 0 a5x1 a4x2 a3x3


where a1, . . . , a6 are parameters. The generic surface Q has an even set of 20 nodes, so
that there is a double cover ϕKY : Y → Q with involution ι branched over the nodes. Here
ϕKY is the canonical morphism. There is a twisted action ofD10 = 〈σ, (τ, ι)〉 on Y which
has a group of automorphisms H = 〈σ, τ 〉 × 〈ι〉 = D10 × Z/2. Then X = Y/〈σ, (τ, ι)〉
is a surface with four nodes whose resolution X̃ is a simply connected surface with
pg = q = 0 (a determinantal Barlow surface) and W = Y/〈σ, ι〉 is a determinantal
Godeaux surface (with four nodes). This construction gives a 2-dimensional moduli space
of determinantal Barlow surfaces. The geometry is summarized in the following diagram:

Y

Z/5=〈σ 〉
��Z/2=〈ι〉

ϕKY

uu
D10 p

tt

Ỹ
γ̃oo

p̃

��

Q

Z/5=〈σ 〉π

��

V

Z/2=〈(ι,τ )〉
��Z/2=〈ι〉

uu
W

Z/2=〈τ 〉
##

X

Z/2=〈ι〉
{{

X̃
γ

oo

6

bir.'

��
P1
× P1

Here V is a numerical Campedelli surface or more precisely a Catanese surface, the
double cover of the Godeaux surface W ramified in the even set of four nodes of W .
Thus pg(V ) = q(V ) = 0, K2

V = 2, π1(V ) = Z/5.
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The surface Y has an explicit description as follows [Cat81], [Reid81]: Let

R = C[x1, . . . , x4, y0, . . . , y4]/I

where deg(xi) = 1, deg(yj ) = 2 and the ideal I of relations is generated by∑
j

Aijyj (5 relations in degree 3),

yiyj − Bij (15 relations in degree 4),

where Bij is the (i, j)-entry of the adjoint matrix of A (in particular, I contains detA).
Then Y is the subvariety in weighted projective space

Y = Proj(R) ⊂ P(14, 25).

This is a smooth [Cat81, Prop. 2.11] surface of general type with pg = 4, q = 0,
K2
= 10.

Remark 2.1. The special Barlow surface considered in [Barl1] corresponds to the choice
of parameters

a1 = a2 = a4 = a5 = 1, a3 = a6 = −4.

This can be seen by applying the base change

X1 = 5(x1 + x2 + x3 + x4),

X2 = 5(ξx1 + ξ
2x2 + ξ

3x3 + ξ
4x4),

X3 = 5(ξ2x1 + (ξ
2)2x2 + (ξ

3)2x3 + (ξ
4)2x4),

X4 = 5(ξ3x1 + (ξ
2)3x2 + (ξ

3)3x3 + (ξ
4)3x4),

X5 = 5(ξ4x1 + (ξ
2)4x2 + (ξ

3)4x3 + (ξ
4)4x4),

Y0 =
1
5 (y0/6+ ξ2y1 + ξ

4y2 + ξy3 + ξ
3y4),

Y1 =
1
5 (y0/6+ ξy1 + ξ

2y2 + ξ
3y3 + ξ

4y4),

Y2 =
1
5 (y0/6+ y1 + y2 + y3 + y4),

Y3 =
1
5 (y0/6+ ξ4y1 + ξ

3y2 + ξ
2y3 + ξy4),

Y4 =
1
5 (y0/6+ ξ3y1 + ξy2 + ξ

4y3 + ξ
2y4),

to get the setup given in [Reid81]. We denote this special surface by S. It is distinguished
by the fact that Q is even invariant under a larger group S5.

Remark 2.2. The numerical invariants of S are:

K2
S = 1, pg = q = 0, π1(S) = {1},

K0(S) ' Z11, Pic(S) ' H 2(S,Z) ' H2(S,Z) ' Z9.

All integral cohomology classes on S are algebraic.
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The least obvious statement that K0(S) ' Z11 follows from the fact that Pic(S) ' Z9

and from the Bloch conjecture for S: CH2(S) ' Z (this is known from [Barl2]). The
argument is as follows: For surfaces we have (see [Ful, Ex. 15.3.6])

rank : F 0K(S)/F 1K(S) ' CH0(S) ' Z,

det : F 1K(S)/F 2K(S) ' Pic(S), c2 : F
2K(S) ' CH2(S),

where F iK(S) is the filtration of K0(S) by codimension of support. Moreover, CH2(S)

is generated by the structure sheaf Op of a point in S, and this is primitive in K0(S)

(e.g. because χ(Op,OS) = 1). Then, looking at the sequence of extensions given by the
filtration steps, one sees that K0(S) ' Z11.

Remark 2.3. The following are some basic facts in this set-up.

(1) X andW have rational singularities,KX andKW are invertible, and if π : Q→ W is
the projection, (π ◦ ϕK)∗(KW ) = KY . Moreover, p∗KX = KY and γ ∗(KX) = KX̃.

(2) Locally around the four fixed points of the group Z/2 = 〈(ι, τ )〉, the quotient map
V → X = V/(Z/2) looks like A2

→ cone ⊂ A3 given by (x, y) 7→ (x2, y2, xy).
(3) The bundleKY carries a canonicalD10-linearization corresponding to theD10-action

on H 0(Y,KY ) ' 〈x1, . . . , x4〉 given by the cycles σ and τ as above. In general, the
action on

⊕
m≥0H

0(Y,mKY ) is the one described in Remark 4.1 on R: this is the
canonical ring.

3. Lattice theory and semiorthonormal bases

We have Pic(S) = 1 ⊥ (−E8) as a lattice. We recall some facts from [BBS12] which we
will use.

Definition 3.1. A sequence l1, . . . , lN of classes in K0(S) is called numerically excep-
tional if χ(li, li) = 1 for all i, and χ(li, lj ) = 0 for i > j .

Let A1, . . . , A8 and B1, B2 be roots in Pic(S) with the following intersection behaviour:

• • • • • • • •

• •

A1 A2 A3 A4 A5 A6 A7 A8

B1 B2
−1

Here, if two nodes are joined by a solid line, the intersection is 1, otherwise it is zero.
Moreover, B1 and B2 have intersection −1.
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Proposition 3.2. The sequence

A1,

A1 + A2,

k − B1,

A1 + A2 + A3,

A1 + A2 + A3 + A4,

A1 + A2 + A3 + A4 + A5,

k − B2,

A1 + A2 + A3 + A4 + A5 + A6,

A1 + A2 + A3 + A4 + A5 + A6 + A7,

A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8,

O

is numerically exceptional of length 11.

This is [BBS12, Prop. 5.6]. The exceptional sequence we will construct on S has this
numerical behaviour. One advantage of this particular sequence is that the degrees of the
differences of two classes in it are quite small, so there is a good chance to realize it as an
actual exceptional sequence on S. The surface S is homeomorphic to P2 blown up in eight
points, a del Pezzo surface of degree 1, and the numerics of full exceptional sequences on
del Pezzo surfaces has been thoroughly investigated (see, for example, [KarNog]); also in
this light, the sequence above seems to be most advantageous for our purposes.

4. Curves on the Barlow surface and an explicit basis of the Picard group

In this section we construct curves on the Barlow surface S. They will be used to make the
intersection theory on the Barlow surface explicit. We will also use them to write down the
exceptional sequence and to calculate sections of line bundles in Section 5. In a first step
we construct D10-invariant curves on Q, pull them back to Y and consider their images
on X and strict transforms on X̃. These curves are of degree 1 and generate a 1⊕ (−D8)-
sublattice of Pic(X̃). In a second step, using lattice theory, we find an effective divisor in
the 1⊕ (−D8)-lattice which is divisible by 2 as an effective divisor. The resulting divisor
is of degree 2. The degree 1 curves together with this degree 2 curve generate Pic(X̃) as a
lattice. In a third step we use linkage and the automorphisms of Y to construct 32 curves
of the same type as the degree 2 curve above. Finally, we calculate intersection numbers
and write down our exceptional sequence and prove that the classes of the line bundles
form a semiorthonormal basis of K0(X̃).

The Macaulay2 scripts used to do the necessary calculations of this section and the
following ones can be found at [BBKS12].
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Remark 4.1. The D10-action on Y (resp. the ambient P(14, 25)) is given by

σ(xi) = ξ
ixi and σ(yi) = ξ

−iyi,

τ (xi) = x−i and τ(yi) = y−i,

ι(xi) = xi and ι(yi) = −yi,

α(xi) = xα(i) and α(yi) = yα(i),

with α = (1342). Moreover, we set β = ι ◦ τ . Then D10 = 〈σ, β〉 operates on Y . The
indices are interpreted as elements of Z/5. The projection Y → Q is D10-equivariant,
where β acts as τ on Q. Moreover, α, τ and ι normalize the subgroup D10. Hence they
induce automorphisms on the quotient X and we have τ = ι = α2.

Proposition 4.2. The determinantal quintic Q contains 15 lines:

L
0
i = σ

i(−t : −s : s : t),

L
+

i = σ
i(s −8t : −s +8−1t : −s : s + t),

L
−

i = σ
i(s +8−1t : −s −8t : −s : s + t),

where (s : t) ∈ P1 and 8 = (
√

5− 1)/2 is the golden ratio.

Proof. L
0
0 is the unique τ -invariant line on Q. A direct calculation also shows L

±

0 ⊂ Q

(see for example determinantalGodeaux.m2 at [BBKS12]). The remaining lines lie
on Q since Q is σ -invariant. A direct calculation on the Grassmannian shows that there
are at most 15 lines on Q (see linesQ.m2). ut

Lemma 4.3. The lines of the σ -orbit 〈L
0
0〉 are disjoint. The lines in the σ -orbits 〈L

±

0 〉

form two pentagons.

Proof. A direct calculation can be found in determinantalGodeaux.m2 at [BBKS12].
ut

Proposition 4.4. The τ -invariant line (s : t) 7→ (t : s : s : t) intersects Q in five points.
Over F421 the coordinates of these points are

P 1 = (−33 : 1 : 1 : −33),

P 2 = (1 : −33 : −33 : 1),

P 3 = (−50 : 1 : 1 : −50),

P 4 = (1 : −50 : −50 : 1),

P 5 = (1 : −1 : −1 : 1).

In particular, we have P 5 ∈ L
±

0 .

Proof. A direct calculation can be found in determinantalGodeaux.m2 at [BBKS12].
ut

We recall the classification result for Z/5-invariant elliptic quintics in P3 due to Reid.
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Theorem 4.5 ([Reid91]). Let E ⊂ P3 be a Z/5-invariant elliptic quintic curve not con-
taining any coordinate points. Then

• the homogeneous ideal of E is generated by five cubics of the form

R0 = ax
2
1x3 − bx1x

2
2 + cx

2
3x4 − dx2x

2
4 ,

R1 = asx1x2x3 − atx
2
1x4 − bsx

3
2 − ctx3x

2
4 ,

R2 = asx1x
2
3 − bsx

2
2x3 − btx1x2x4 − dtx

3
4 ,

R3 = atx
3
1 + csx2x

2
3 + ctx1x3x4 − dsx

2
2x4,

R4 = btx
2
1x2 + csx

3
3 − dsx2x3x4 + dtx1x

2
4 ,

where a, b, c, d are nonzero constants and (s : t) ∈ P1. For E to be nonsingular, we
must have tbc

sad
6∈
{
0,∞, −11±5

√
5

2 =
(
−1±
√

5
2

)5}. The set of all E is parametrized
1-to-1 by (s : t) ∈ P1 and the ratio (a : b : c : d) ∈ P3.
• The vector space of Z/5-invariant quintic forms vanishing on E has a basis consisting

of the seven elements

x2
1R3, x

2
2R1, x

2
3R4, x

2
4R2, x1x4R0, x2x3R0, x3x4R3.

From this one gets

Proposition 4.6. Q contains exactly eight D10-invariant elliptic quintic curves. Their
coordinates over F421 in Reid’s parameter space are

e1 = (−1 : 33 : −33 : 1, 1 : 202),
e2 = (−33 : 1 : −1 : 33, 202 : −1),

e+3 = (−1 : 50 : −50 : 1, 1 : 133),

e−3 = (−1 : 50 : −50 : 1, 1 : −108),

e+4 = (−50 : 1 : −1 : 50, 133 : −1),

e−4 = (−50 : 1 : −1 : 50,−108 : −1),

e+5 = (−1 : 1 : −1 : 1, 1 : 126),

e−5 = (−1 : 1 : −1 : 1, 126 : −1).

We denote by E
±

i the elliptic quintic curve corresponding to e±i . We have P i ∈ E
±

j if and

only if i = j . Furthermore E
±

5 = 〈L
±

0 〉 are two pentagons.

Proof. Using Reid’s setup we calculate the ideal of points on P3
× P1 parametrizing

Z/5Z-invariant elliptic quintic curves in Q. It turns out that this ideal has degree 10 and
two solution points appear with multiplicity 2. Over F421 we obtain the same degrees and
check that the above points are in the solution set by substitution. From the form of the so-
lutions we see that the E

±

i are also τ -invariant. Our script determinantalGodeaux.m2
at [BBKS12] shows that E

±

i are indeed elliptic curves onQ over F421. The fact that these
are all such curves is checked in allEllipticCurvesQ.m2. ut

Remark 4.7. The points e1 and e2 appear with multiplicity 2 on Reid’s parameter space
(see allEllipticCurvesQ.m2).
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Remark 4.8. The elliptic curves constructed in Proposition 4.6 are reductions of elliptic
curves in characteristic 0 since a calculation over Q shows that the number of such curves
over C is also 8 (see allEllipticCurvesQ.m2).

Proposition 4.9. The preimages of P 1 and P 2 on Y are representatives of the branch
locus of p. Their coordinates on Y are

P+1 = (−33 : 1 : 1 : −33 : 0 : −181 : 53 : −53 : 181),

P−1 = (−33 : 1 : 1 : −33 : 0 : 181 : −53 : 53 : −181),

P+2 = (1 : −33 : −33 : 1 : 0 : 53 : 181 : −181 : −53),

P−2 = (1 : −33 : −33 : 1 : 0 : −53 : −181 : 181 : 53).

Proof. A direct calculation can be found in BarlowD8.m2 at [BBKS12]. ut

Notation 4.10. We now pull back the curves constructed so far to Y and denote them by
E±i and 〈L〉. Since they are D10-invariant, they descend to X. We then denote their strict
transforms in X̃ by L̃ and Ẽ±i . The nodes of X are at the images of P±i , i = 1, 2. We
denote their preimages on X̃ by C̃±i . The whole configuration of the elliptic curves and
the (−2)-curves on X̃ is visualized in Figure 1.

Fig. 1. The configuration of curves on the Barlow surface.

Lemma 4.11. Let D̃1, D̃2 be two irreducible effective divisors on the Barlow surface X̃.
Let Ij be the ideal of Dj = γ̃ (p̃∗(D̃j )) on Y . Set I = I1 + I2. We distinguish several
cases:

(1) V (I) is empty. Then D̃1.D̃2 = 0.
(2) V (Ii) are ramification points. Then D̃1.D̃2 = (−2) degV (I)/5.
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(3) V (I1) are ramification points and V (I2) is a curve which is smooth at all ramification
points, or vice versa. Then D̃1.D̃2 = degV (I)/5.

(4) V (I1) and V (I2) are curves which are smooth at all ramification points and V (I) is
finite. Let Ir be the ideal of the ramification locus of p. Then

D̃1.D̃2 =
deg I − deg(I + Ir)

10
.

(5) We have

K̃.D̃1 =
deg(I1 + (x1))

10
.

(6) V (I1) = V (I2) = V (I) = D = D1 = D2 is a curve. Then

D̃2
=

2pa(D)− 2− degV (I + Ir)− degV (I)
10

.

Proof. Consider the diagram

Y

p

��

Ỹ
γ̃oo

p̃

��

Ĉ±i,j
? _oo

X X̃
γoo C̃±i

? _oo

Here C̃±i are the four (−2)-curves on X̃ and Ĉ±i,j , j = 1, . . . , 5, are the twenty (−1)-
curves lying over them. Assertions (1) and (2) are clear.

In case (3), D̃1 is one of the (−2)-curves, and D̃2 is a curve intersecting all C̃±i
transversely. The number in (3) counts the intersection number of the (−2)-curve with D̃2.

For (4) we compute

degV (I) = D1.D2 = γ̃
∗(D1).γ̃

∗(D2)

=

(
p̃∗(D̃1)+

∑
δ±ij Ĉ

±

ij

)
.
(
p̃∗(D̃2)+

∑
ε±ij Ĉ

±

ij

)
= p̃∗(D̃1)p̃

∗(D̃2)+ 2
∑

δ±ij · ε
±

ij −

∑
δ±ij · ε

±

ij

= p̃∗(D̃1)p̃
∗(D̃2)+

∑
δ±ij · ε

±

ij = 10D̃1.D̃2 +
∑

δ±ij · ε
±

ij

where δ±ij = 1 or 0 depending on whether D1 passes through γ̃ (Ĉ±ij ) or not, and analo-
gously for ε±ij . This proves (4).

For (5) note that the formula is correct for D̃1 a (−2)-curve because x1 = 0
contains none of the ramification points of p. If D̃1 is not a (−2)-curve, then, since
γ̃ ∗(KY ) = p̃

∗(K̃),

K̃.D̃1 =
1
10 p̃
∗(K̃).p̃∗(D̃1) =

1
10 γ̃
∗(KY ).γ̃

∗(D1) =
1

10KY .D1 =
1
10 degV ((x1)+ I1).

The second equality holds because p̃∗(D̃1) is equal to γ̃ ∗(D1) up to exceptional divisors
on which γ̃ ∗(KY ) is trivial.

In (6), D̃1 = D̃2 =: D̃. The genus formula for D̃ yields

D̃2
= 2pa(D̃)− 2− K̃.D̃.
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The Hurwitz formula gives

2pa(D)− 2 = 2pa(p̃∗(D̃))− 2 = 10(2pa(D̃)− 2)+ degV (I + Ir)

since D is smooth at the ramification points of p. It follows that

D̃2
=

2pa(D)− 2− degV (I + Ir)− degV (I)
10

ut

Proposition 4.12. The intersection matrix of the curves

{Ẽ1, Ẽ2, Ẽ
+

3 , Ẽ
−

3 , Ẽ
+

4 , Ẽ
−

4 , Ẽ
+

5 , Ẽ
−

5 , L̃, K̃, C̃
+

1 , C̃
−

1 , C̃
+

2 , C̃
−

2 },

where K̃ is the canonical divisor on X̃, is

−1 0 0 0 0 0 0 0 3 1 1 1 0 0
0 −1 0 0 0 0 0 0 3 1 0 0 1 1
0 0 −1 1 0 0 0 0 3 1 0 0 0 0
0 0 1 −1 0 0 0 0 3 1 0 0 0 0
0 0 0 0 −1 1 0 0 3 1 0 0 0 0
0 0 0 0 1 −1 0 0 3 1 0 0 0 0
0 0 0 0 0 0 −1 1 3 1 0 0 0 0
0 0 0 0 0 0 1 −1 3 1 0 0 0 0
3 3 3 3 3 3 3 3 −3 1 0 0 0 0
1 1 1 1 1 1 1 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 −2 0 0 0
1 0 0 0 0 0 0 0 0 0 0 −2 0 0
0 1 0 0 0 0 0 0 0 0 0 0 −2 0
0 1 0 0 0 0 0 0 0 0 0 0 0 −2



.

The rank of this matrix is 9. See also Figure 1.

Proof. We calculate the intersection numbers on Y . For this we first check that E±i ,
〈L〉 are smooth at the P±i . By the D10-invariance of the orbits this shows that they are
smooth at all branch points of p. We also represent K by the curve {x1 = 0} and set
C±i = 〈P

±

i 〉. The assertion follows from a calculation in BarlowD8.m2 at [BBKS12]
using Lemma 4.11. ut

Remark 4.13. The intersections are calculated over a finite field (namely, F421) and may
potentially be different from those in characteristic zero. The way the argument works is
however the following: we produce eventually an exceptional sequence

(L1, . . . ,L11)

of line bundles on the reduction of the Barlow surface to finite characteristic. However,
the Li themselves are reductions of line bundles Li defined over an algebraic number field
of characteristic 0. Hence by upper semicontinuity over Spec(O), where O is the ring of
integers of this number field, the sequence

(L1, . . . ,L11)

will also be exceptional in characteristic 0.
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Remark 4.14. We have 14 effective possibly reducible genus one curves of degree 1
on X̃. These are

{Ẽi, Ẽi + C̃
+

i , Ẽi + C̃
−

i , Ẽi + C̃
+

i + C̃
−

i }

for i = 1, 2 and Ẽ±j for j = 3, 4, 5.

Proposition 4.15. On X̃ we have the following roots (so far):

• F̃i − F̃j with F̃i .F̃j = 0 and F̃i, F̃j possibly reducible elliptic curves of degree one (84
of these).
• ±K̃ ∓ F̃i with F̃i as above (28 of these).

These 112 roots form a D8-root system. A D8-basis is given, for example, by the simple
roots

D1 = K̃ − Ẽ2 − C̃
−

2 ,

D2 = Ẽ2 + C̃
−

2 − Ẽ2,

D3 = Ẽ1 − Ẽ2 − C̃
+

2 − C̃
−

2 ,

D4 = Ẽ1 + C̃
+

1 + C̃
−

1 − Ẽ
−

3 ,

D5 = Ẽ
−

3 − Ẽ
−

4 ,

D6 = Ẽ
−

4 − Ẽ
−

5 ,

D7 = Ẽ1 + C̃
−

1 − Ẽ
+

5 ,

D8 = Ẽ1 + C̃
+

1 − Ẽ
+

5 ,

They have intersection matrix

−2 1 0 0 0 0 0 0
1 −2 1 0 0 0 0 0
0 1 −2 1 0 0 0 0
0 0 1 −2 1 0 0 0
0 0 0 1 −2 1 0 0
0 0 0 0 1 −2 1 1
0 0 0 0 0 1 −2 0
0 0 0 0 0 1 0 −2


.

Proof. Calculation using the above intersection matrix in Proposition 4.12. A Macaulay2
script checking this can be found in BarlowD8.m2 at [BBKS12]. ut

Remark 4.16. All effective curves constructed so far can be written in this D8-basis
and K̃ using integer coefficients.

Proposition 4.17. On X̃ there exist 32 curves B̃±ijk , i, j ∈ Z/2Z and k ∈ {0, 1, 2, 3}, of
genus 3 and canonical degree 2 each intersecting two (−2)-curves, say F̃±ijk and G̃±ijk ,
such that

2K̃ − B̃±ijk, 2K̃ − B̃±ijk − F̃
±

ijk, 2K̃ − B̃±ijk − G̃
±

ijk, 2K̃ − B̃±ijk − F̃
±

ijk − G̃
±

ijk

represent 128 additional roots. The total of 112+ 128 = 240 roots forms an E8-lattice.

Proof. Let d1, . . . , d8 be a system of simple roots in a D8-lattice. If this lattice is a sub-
lattice of an E8-lattice, the Borel–Siebenthal algorithm (see e.g. [MT, 13.2, p. 109]) gives
the highest root in the E8-lattice as

e = 1
2 (d1 + 2d2 + 3d3 + 4d4 + 5d5 + 6d6 + 3d7 + 4d8),
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and {e, d8, . . . , d2} is a system of simple roots in the E8-lattice. Observe that

χ(e + 2K̃) =
(e + 2K̃).(e + K̃)+ 2

2
=
−2+ 2+ 2

2
= 1.

Since H 2(e + 2K̃) = H 0(−K̃ − e) = 0, this implies that H 0(e + 2K̃) 6= 0. We will
construct a curve B ∈ |e + 2K̃|. By construction B is not in the subgroup of Pic X̃
considered so far, but 2B is, i.e. there exists a nonreduced curve in the linear system |2B|
whose support is B. To represent |2B| in a computer, we write

2B ≡ 8K̃ − L̃− Ẽ+3 − Ẽ
+

4 − Ẽ
+

5 + C̃
+

1 − C̃
+

2 ,

and therefore consider D10-invariant polynomials of degree 8 that lie in the ideal I of
〈L〉 ∪E+3 ∪E

+

4 ∪E
+

5 ∪ 〈P
+

1 〉 in Y . A computation shows that there is a P3 of such poly-
nomials. By restricting to lines we find the unique such polynomial F that is nonreduced
on a curve outside of L ∪ E+3 ∪ E

+

4 ∪ E
+

5 . The ideal of the curve B is then obtained as
rad(((F ) + I (Y )) : I ). It is D10-invariant and hence descends to X. We denote its strict
transform by B̃+000.

The intersection of B̃+000 with the effective curves of Proposition 4.12 can be calcu-
lated to be

{2, 2, 3, 2, 3, 2, 3, 2, 1, 2, 0, 1, 1, 0}.

Now let Ẽ be an elliptic curve and B̃ be a genus 3 curve of degree 2 with Ẽ.B̃ = 3
on X̃. Then

χ(5K̃ − Ẽ − B̃) = 1.

We thus have an effective curve B̃ ′ ∈ |5K̃−Ẽ−B̃|, and since B̃2
= 2, we have g(B̃ ′) = 3

and B̃ ′.K̃ = 2. We say that B̃ ′ is linked via 5K̃ to B̃ + Ẽ. Performing this construction
with B̃+0 and Ẽ+3 , Ẽ+4 and Ẽ+5 , we obtain further genus 2 curves B̃+001, B̃

+

002, B̃
+

003. Observe
that, furthermore,

χ(4K̃ − B̃) = 1,

and for B̃ ′ ∈ |4K̃ − B̃| we also have g(B̃ ′) = 3 and B̃ ′.K̃ = 2. Therefore we can link
B̃+00k via 4K̃ to B̃−00k . Now we set

B̃±ijk = ι
i(αj (B̃±00k))

and obtain a total of 32 curves. With a computer we can check that all of the 32 constructed
curves are distinct and each of them intersects exactly two (−2)-curves.

For the calculation of the roots we choose an effective Z-basis of Pic(X̃), for example

{Ẽ1, Ẽ2, Ẽ
+

3 , Ẽ
−

3 , Ẽ
+

4 , Ẽ
+

5 , K̃, C̃
+

1 , B̃
+

000}.

With respect to this basis we can calculate the numerical class of all effective curves
constructed so far, by using Lemma 4.11. The remaining assertions of the proposition are
then simple calculations with numerical classes.

All computations needed in this proof can be found in BarlowE8.m2 at [BBKS12].
ut
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Proposition 4.18. We have the following intersections on X̃:

(B̃±ijk − 2K̃).L̃ = ∓1.

Proof. Calculation using numerical classes (see BarlowE8.m2). ut

Proposition 4.19. The exceptional curves C̃±i have the following intersections with
B̃±ijk − 2K̃ on X̃:

i = 0 i = 1
j = 0 j = 1 j = 0 j = 1

C̃+1 0 1 0 1
C̃−1 1 0 1 0
C̃+2 1 0 0 1
C̃−2 0 1 1 0

Proof. Calculation using numerical classes (see BarlowE8.m2). ut

Proposition 4.20. We have the following intersections with the elliptic curves Ẽ1 and Ẽ2:

(B̃+ijk − 2K̃).Ẽi = 0, (B̃−ijk − 2K̃).Ẽi = −1.

For the elliptic curves Ẽ±3 and Ẽ±4 we have:

k = 0 k = 1 k = 2 k = 3

B̃±0jk − 2K̃

Ẽ+3 ±1 ±1 0 0

Ẽ−3 0 0 ±1 ±1

Ẽ+4 ±1 0 ±1 0
Ẽ−4 0 ±1 0 ±1

B̃±1jk − 2K̃

Ẽ−3 ±1 0 ±1 0

Ẽ+3 0 ±1 0 ±1

Ẽ−4 ±1 ±1 0 0
Ẽ+4 0 0 ±1 ±1

For the elliptic curves Ẽ±5 we have:

k = 0 k = 1 k = 2 k = 3

(B̃±0jk − 2K̃).Ẽ−5 0 ±1 ±1 0

(B̃±1jk − 2K̃).Ẽ+5 0 ±1 ±1 0

(B̃±1jk − 2K̃).Ẽ−5 ±1 0 0 ±1

(B̃±0jk − 2K̃).Ẽ+5 ±1 0 0 ±1

Proof. Calculation using numerical classes (see BarlowE8.m2). ut
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Proposition 4.21. Let i, j, i′, j ′ ∈ {0, 1} and q, q ′ ∈ {+1,−1}. If i = i′, then

(B̃
q
ijk.B̃

q ′

i′j ′k′
)k=0,...,3,k′=0,...,3 =


b a a a

a b a a

a a b a

a a a b


with a = 3+ ((j + j ′) mod 2) and b = a − qq ′. If i 6= i′ then

(B̃
q
ijk.B̃

q ′

i′j ′k′
)k=0,...,3,k′=0,...,3 =


a a a b

a b a a

a a b a

b a a a


with a = 4− (qq ′ + 1)/2 and b = 3+ (qq ′ + 1)/2.

Proof. Calculation using numerical classes (see BarlowE8.m2). ut

Using these roots, we can apply the method of Section 3 to obtain an explicit numerically
semiorthogonal sequence of line bundles:

Proposition 4.22. The following sequence of line bundles is numerically semiorthogo-
nal:

L1 = Ẽ1 − Ẽ2,

L2 = Ẽ
+

3 − Ẽ2,

L3 = 2K̃ − Ẽ+4 ,

L4 = Ẽ
−

4 − Ẽ2,

L5 = 2K̃ − B̃−012 − C̃
+

1 ,

L6 = 2K̃ − B̃−002 − C̃
−

1 ,

L7 = 2K̃ − Ẽ+5 ,

L8 = 2K̃ − B̃−111 − C̃
+

1 ,

L9 = 2K̃ − B̃−101 − C̃
−

1 ,

L10 = O,
L11 = K̃ − Ẽ2.

Proof. The following matrix contains χ(Li − Lj ) at the (i, j)-th entry:

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
−1 −1 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0
−1 −1 0 −1 −1 −1 1 0 0 0 0
0 0 1 0 0 0 1 1 0 0 0
0 0 1 0 0 0 1 0 1 0 0
0 0 1 0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 0 0 0 1


.

This can be checked using numerical classes and Riemann–Roch (see BarlowE8.m2 once
again). ut

5. Sections of line bundles and the exceptional sequence

Here we explain how we calculate sections of line bundles on S, or rather, obtain upper
bounds for the dimensions of the spaces of sections of those line bundles.
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Look at the natural commutative diagram of G-varieties (recall G = D10 here)

Y

p

��

Ỹ

p̃

��

γ̃

oo

X S
γoo

We write
D ≡ nKS − P

where P is an effective divisor and n ∈ N. Note that numerical equivalence coincides
with linear equivalence on S. We find P using integer programming [BBKS12].

Write P = P ′ +
∑
aiC̃i where C̃i are the (−2)-curves on S (these are the C̃±k of

Section 4; here i runs from 1 to 4), and P ′ does not contain (−2)-curves as components.
Let P ′′ be the strict transform of p̃∗(P ′) on Y .

Proposition 5.1. We have

dim
(
H 0(Y,OY (nKY − P

′′))G
)
≥ dimH 0(S,OS(D)).

If p is some prime number and we denote reduction by subscripts p (all data are defined
over Z), an analogous inequality holds:

dim
(
H 0(Yp,OYp(nKYp − P

′′
p ))

G
)
≥ dimH 0(S,OS(D)).

Proof. First note that KX, KY and KS are all line bundles (Cartier), and γ ∗(KX) = KS ,
p∗(KX) = KY . We want to calculate

dimH 0(S,OS(D)) = dimH 0
(
S,OS

(
nKS − P

′
−

∑
i

aiC̃i

))
,

and this is bounded by dimH 0(S,OS(nKS − P
′)). Now H 0(S,OS(nKS − P

′)) is the
subspace of sections inH 0(S,OS(nKS)) which vanish along the components of P ′ (with
prescribed multiplicities). Since X is normal, we have γ∗OS = OX, hence by the pro-
jection formula H 0(S, nKS) = H

0(S, γ ∗(nKX)) = H
0(X, nKX), and sections in nKS

vanishing along P ′ map to sections of nKX vanishing along the strict transform P ′X of
P ′ on X (by which we mean the Weil divisor on X whose irreducible components are
the images of the components of P ′ on S, and each component of P ′X has the multi-
plicity of the component of P ′ of which it is the image). Now sections in nKX inject
into G-invariant sections in p∗(nKX) = nKY because p is a quotient map (in fact, the
two spaces of sections are equal because the line bundles KY and OY , together with
the G-linearizations we use here, are pulled back from the base). Under this correspon-
dence, sections in nKX vanishing along P ′X map toG-invariant sections in nKY vanishing
along P ′′, where P ′′ is as defined above, or equivalently, the unique divisor on Y which
restricts to (p|V )∗((P ′X)|p(V )) on the complement V of the ramification points (P ′X is
Cartier off the nodes of X and the divisorial pull-back from the complement U of the
nodes in X to the complement V = p−1(U) of the ramification points upstairs makes
sense). This proves the first inequality, and the second follows using upper semicontinu-
ity over Spec(Z). ut
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We will use the second inequality in Proposition 5.1 to obtain bounds on dimensions
of spaces of sections: we will set p = 421 and compute (with Macaulay2) the di-
mension of the space of degree n polynomials in the coordinates x1, . . . , x4, y0, . . . , y4
on the weighted projective space P(14, 25) vanishing on p∗(P ′p) modulo the space
of degree n polynomials in the homogeneous ideal of Y in P(14, 25). Note that
C[x1, . . . , x4, y1, . . . , y5]/I is indeed exactly the canonical ring of Y , thus its elements
give the pluricanonical sections on Y .

We obtain the following vanishing theorem:

Proposition 5.2. Let R̃ ∈ Pic X̃ be a root, i.e. R̃.K̃ = 0 and R̃2
= −2. Then:

• h0(R̃) 6= 0 if and only if R̃ ' C±i . In this case h1(R) = 1 and h2(R) = 0.
• h2(R̃) 6= 0 if and only if K̃ − R̃ is numerically equivalent to one of the 14 elliptic

curves of Remark 4.14. In this case h1(R̃) = 1 and h0(R̃) = 0.

Proof. The “if” part is obvious. The reverse can be checked for all 240 roots by calculat-
ing directly over F421 using Proposition 5.1. This is done in BarlowSections.m2. ut

We obtain furthermore

Theorem 5.3. The sequence of line bundles given in Proposition 4.22 is exceptional
on S: RHom•(Lj ,Li) = 0 for j > i.

Proof. Most of the Li and the differences Li − Lj are roots by construction. For these
the vanishing of all cohomology follows from Proposition 5.2 by comparing numeri-
cal classes. For the remaining differences we calculate the cohomology over F421 using
Proposition 5.1. This is done in BarlowSections.m2. ut

6. The deformation argument and existence of phantoms

In this section we will prove the existence of phantom categories in Db(St ) where St is
generic in the moduli space of determinantal Barlow surfaces in a small neighbourhood
of the distinguished Barlow surface S = S0 of Section 2.

Lemma 6.1. Let St be a generic determinantal Barlow surface in a small neighbourhood
of S. Then there is an exceptional sequence (L1,t , . . . ,L11,t ) in Db(St ) consisting of line
bundles Li,t which are deformations of the Li .
Proof. Consider a small nontrivial deformation of S (one deformation parameter t for
simplicity) among determinantal Barlow surfaces:

S S0
� � //

��

S

��
0 �
� // B

The line bundles Li deform to line bundles Li,t and by upper semicontinuity, the Li,t are
also an exceptional sequence. ut
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Consider now Lt =
⊕11

i=1 Li,t and the differential graded algebra At = RHom•(Lt ,Lt )
of derived endomorphisms of the exceptional sequence (L1,t , . . . ,L11,t ) above. It has
a minimal model in the sense of [Keller01, Sect. 3.3], that is, we consider the Yoneda
algebra H ∗(At ) together with its A∞-structure such that m1 = 0, m2 = Yoneda multipli-
cation and there is a quasi-isomorphism of A∞-algebras At ' H ∗(At ) lifting the identity
of H ∗(At ). We will show

Proposition 6.2. In the neighbourhood of a generic value of the deformation parame-
ter t , the algebra H ∗(At ) is constant. Hence, the subcategories 〈L1,t , . . . ,L11,t 〉 are all
equivalent in a neighbourhood of a generic value of t .

In fact, we are dealing here with an A∞-category on the eleven objects Li,t . Let us recall
now some facts about A∞-categories which we need to prove Proposition 6.2. A possible
reference is the first chapter in Seidel’s book [Seid]. In particular, in an A∞-category we
are given a set of objects Xi with a graded vector space hom(X0, X1) for any pair of
objects, and composition maps of every order d ≥ 1

hom(X0, X1)⊗ hom(X1, X2)⊗ · · · ⊗ hom(Xd−1, Xd)→ hom(X0, Xd)[2− d]

satisfying the A∞-associativity equations, whose precise form we actually need not know
here. The important point is that md is homogeneous of degree 2− d . Another important
point is (cf. [Seid, Lem. 2.1]) that any homotopy unital A∞-category is quasi-isomorphic
to a strictly unital one, i.e. we may assume

md(a0 ⊗ · · · ⊗ ai−1 ⊗ id⊗ ai+1 ⊗ · · · ⊗ ad) = 0, d ≥ 3,

which means md , d ≥ 3, is zero as soon as one of its arguments is a homothetic automor-
phism of an object.

We use

Lemma 6.3. The following matrix describes the Extn(Lj,t ,Li,t ) arising from the excep-
tional sequence. More precisely, the (i, j)-entry of the matrix is

[dim Hom(Lj,t ,Li,t ), dim Ext1(Lj,t ,Li,t ), dim Ext2(Lj,t ,Li,t )].

We call this triple a cohomology datum for short. We just write 0 for the trivial cohomol-
ogy datum [0, 0, 0].



[1, 0, 0] 0 0 0 0 0 0 0 0 0 0
0 [1, 0, 0] 0 0 0 0 0 0 0 0 0

[0, 1, 0] [0, 1, 0] [1, 0, 0] 0 0 0 0 0 0 0 0
0 0 [0, 0, 1] [1, 0, 0] 0 0 0 0 0 0 0
0 0 [0, 0, 1] 0 [1, 0, 0] 0 0 0 0 0 0
0 0 [0, 0, 1] 0 0 [1, 0, 0] 0 0 0 0 0

[0, 1, 0] [0, 1, 0] 0 [0, 1, 0] [0, 1, 0] [0, 1, 0] [1, 0, 0] 0 0 0 0
0 0 [0, 0, 1] 0 0 0 [0, 0, 1] [1, 0, 0] 0 0 0
0 0 [0, 0, 1] 0 0 0 [0, 0, 1] 0 [1, 0, 0] 0 0
0 0 [0, 0, 1] 0 0 0 [0, 0, 1] 0 0 [1, 0, 0] 0
∗ ∗ [0, 0, 1] ∗ ∗ ∗ [0, 0, 1] ∗ ∗ ∗ [1, 0, 0]


.

Here ∗ means either [0, 0, 0] or [0, 1, 1].

Proof. We check this for the sequence (L1, . . . ,L11) by explicit calculation over F421 in
BarlowSections.m2. The general statement follows by upper semicontinuity. ut
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Remark 6.4. It is helpful to think of the degree 0 line bundles Li,t , i 6= 3, 7, as “circles”
and of the degree 1 line bundles L3,t , L7,t as “squares”. Then the assertion of Lemma
6.3 can be paraphrased as saying that there are no derived homomorphisms between cir-
cles except from the first to the last (eleventh) circle where one can have the cohomology
datum [0, 1, 1]. The squares are completely orthogonal, and derived homomorphisms of
a circle into a square (in the forward direction) have χ = −1 and cohomology datum
[0, 1, 0], whereas derived homomorphisms of a square into a circle (in the forward direc-
tion) have χ = 1 and cohomology datum [0, 0, 1]. In the proof of Proposition 6.2 we will
first show that H ∗(At ) has no higher multiplication, and then that the algebra structure
is also fixed in the neighbourhood of a generic point. It is instructive to think of pictures
like the following illustrating a potential composition for m4:

◦

χ=−1, [0,1,0]

��

χ=0, [0,1,1] or [0,0,0]

44◦ �

χ=1, [0,0,1]

��
◦ ◦

χ=−1, [0,1,0]

��
◦ �

χ=1, [0,0,1]

$$
◦ ◦ ◦ ◦

Proof of Proposition 6.2. We choose t in a neighbourhood of a generic point in the moduli
space of determinantal Barlow surfaces; hence we can assume that the matrix of coho-
mology data in Lemma 6.3 is constant (i.e. there are no changes of the entries ∗ in the
matrix).

We think of the Li,t as the objects of our A∞-category. It is clear that

m2 : hom(X0, X1)⊗ hom(X1, X2)→ hom(X0, X2)

is always the zero map in our case if X0, X1, X2 are pairwise different; in fact, the only
way to get a potentially nonzero composition would be to compose a morphism from a
circle to a square with a morphism from that square to the last circle, which is impossible
because this is a degree 3 morphism; or to compose a morphism from a square to a circle
with a morphism from that circle to the last circle, but this is also at least of degree 3.

Hence it suffices to prove that there is no higher multiplication, i.e. mi = 0 for i ≥ 3.
Then the endomorphism algebra of our category is just a usual graded algebra, and the
algebra structure is completely determined and does not deform.

Clearly, md = 0 for d ≥ 6: in fact, if i < j < k < l < m < n < o, one of the spaces

RHom•(Li,t ,Lj,t ), RHom•(Lj,t ,Lk,t ), RHom•(Lk,t ,Ll,t ),
RHom•(Ll,t ,Lm,t ), RHom•(Lm,t ,Ln,t ), RHom•(Ln,t ,Lo,t )

is the zero space.
Now look at m5: the smallest degree of a nonzero element in a space

hom(Li,t ,Lj,t )⊗hom(Lj,t ,Lk,t )⊗hom(Lk,t ,Ll,t )⊗hom(Ll,t ,Lm,t )⊗hom(Lm,t ,Ln,t )

for i < j < k < l < m < n is equal to 7. But m5 lowers the degree by 3, and there are
no Ext4’s.
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For m4 resp. m3 we argue similarly: the lowest degrees of nonzero elements in the
spaces of four resp. three composable morphisms are 6 resp. 4; but m4 lowers the degree
by 2 and m3 lowers the degree by 1. ut

We will need the following special case of a result by Voisin [Voi].

Theorem 6.5. The generic determinantal Barlow surface X̃ of Section 2 satisfies the
Bloch conjecture CH2(X̃) = Z.

Corollary 6.6. The exceptional sequence (L1,t , . . . ,L11,t ) is not full, in other words,
there exists a phantom category At in Db(St ) as in Theorem 1.1 for a surface St which is
generic in a small neighbourhood of the Barlow surface S = S0 in the moduli space of
determinantal Barlow surfaces.

Proof. By Proposition 6.2, the subcategories 〈L1,t , . . . ,L11,t 〉 are all equivalent. How-
ever, by [BM], two minimal surfaces of general type whose derived categories are equiv-
alent are isomorphic. It follows that the sequence (L1,t , . . . ,L11,t ) cannot be full, i.e.
there is a nontrivial complement At (generically). Since K0(St ) is isomorphic to Z11, it
follows that At is a phantom. Here we use Theorem 6.5 for the generic determinantal
Barlow surface to have K0(St ) ' Z11. ut

7. Heights of exceptional collections and a phantom on the Barlow surface

This section contains a proof that the Barlow surface S itself contains a phantom
(whereas Corollary 6.6 gives this for a general determinantal Barlow surface somewhere
in the moduli space). For this, we will use results of Kuznetsov [Kuz12] concerning
(pseudo)heights of exceptional collections. First we need to recall some notions.

Given objects F,F ′ in a triangulated category T , we define their relative height to be

e(F, F ′) := min{p ∈ Z | Hom(F, F ′[p]) 6= 0}.

Consider an exceptional collection (E1, . . . , En) in the bounded derived category of
coherent sheaves on some smooth projective variety Z. The anticanonical pseudoheight
of this exceptional collection is defined as follows. For a sequence a = (a0, . . . , ap) of
integers with 1 ≤ a0 < a1 < · · · < ap ≤ n consider the number

e(a) = e(Ea0 , Ea1)+ · · · + e(Eap−1 , Eap )+ e(Eap , Ea0 ⊗ ω
−1
Z )− p.

Now the anticanonical pseudoheight is given by

phac(E1, . . . , En) = min
a
e(a).

The pseudoheight ph of the exceptional collection is given by phac = ph− dimZ.
It is proved in [Kuz12, Cor. 6.2] that if phac(E1, . . . , En) > −2, then the collection is

not full. We can apply this to the Barlow surface.
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Proposition 7.1. The exceptional sequence on the Barlow surface constructed in Sec-
tion 4 is not full.

Proof. For Li, i = 1, . . . , 11, as in Proposition 4.22 and Li+11 := Li(−K̃) we use
Proposition 5.1 and BarlowSections.m2 to directly calculate lower bounds:

(e(Lj ,Li))i,j=1,...,22 ≥



− − − − − −−− −−− − − − − − −−− −−−

∞−− − − −−− −−− − − − − − −−− −−−

1 1 − − − −−− −−− − − − − − −−− −−−
∞∞ 2 − − −−− −−− − − − − − −−− −−−
∞∞ 2∞−−−− −−− − − − − − −−− −−−
∞∞ 2∞∞−−− −−− − − − − − −−− −−−
1 1∞ 1 1 1 −− −−− − − − − − −−− −−−
∞∞ 2∞∞∞2 − −−− − − − − − −−− −−−
∞∞ 2∞∞∞2∞−−− − − − − − −−− −−−
∞∞ 2∞∞∞2∞∞−− − − − − − −−− −−−
1 1 2 1∞∞2∞∞1 − − − − − − −−− −−−
2 2 2 2 2 2 2 2 2 2 2 − − − − − −−− −−−
− 2 2 2 2 2 2 2 2 2 2 ∞−−− − −−− −−−
− − 2 1∞∞2∞∞1∞ 1 1 − − − −−− −−−
− − − 2 2 2 2 2 2 2 2 ∞∞ 2 − − −−− −−−
− − − − 2 2 2 2 2 2 2 ∞∞ 2∞−−−− −−−
− − − − − 2 2 2 2 2 2 ∞∞ 2∞∞−−− −−−
− − − − − − 2∞∞1∞ 1 1∞ 1 1 1 −− −−−
− − − − − −− 2 2 2 2 ∞∞ 2∞∞∞2 − −−−
− − − − − −−− 2 2 2 ∞∞ 2∞∞∞2∞−−−
− − − − − −−− − 2 2 ∞∞ 2∞∞∞2∞∞−−
− − − − − −−− −− 2 1 1 2 1∞∞2∞∞1−



,

where we have placed−’s where no information is needed. This data immediately allows
us to conclude the proof.

One can also prove this result by hand as follows. First note that if p = 1 for a
sequence a, then e(a) = −1. Indeed, we have to consider Hom(Li, (Li+11 − K̃)[p]) '

H 2−p(2K̃), and this is 0 for p ≤ 2 by Kodaira–Viehweg vanishing. On the other hand,
H 0(2K̃) 6= 0.

Thus, we consider sequences with at least two segments. It follows from the data
collected in the matrix in Lemma 6.3 that any of the first p − 1 segments of a sequence
a contributes at least 1 to the sum e(a). The last segment’s contribution is at least 0,
because all members of the collection are sheaves, hence e(a) > −1 also in these cases.
Therefore, phac is certainly greater than −2 and the sequence is not full.

In fact, one can prove that phac ≥ 0 as follows. We will concentrate on the last segment
of a sequence a. Hence, the first object of this segment is in the original sequence and the
second is tensored with −K̃ . Also note that, by definition, the distance between them is
at most 11. Since the canonical bundle K̃ = KS is big and nef on the Barlow surface, the
following statement holds.

If L.KS ≥ L′.KS , then either Hom(L,L′) = 0, L ' L′, or D = L′ − L is a
sum of (−2)-curves such that D.KS = 0. This follows at once from the assumption and
the fact that a nontrivial homomorphism from L to L′ gives a section of the effective
divisor L′−L. Applying this to our extended sequence, we see that both the line bundles
involved in the segment have to be of degree 0, hence the second bundle in the segment
can be either E14 = L3 − KS or E18 = L7 − KS . Since the length of the segment is at
most 11, we only have to consider the spaces Hom(Li, L3 − KS) for i ≥ 4, i 6= 7 and
Hom(Lj , L7 − KS) for j ≥ 8. Now any sequence with p segments whose last segment
is (Li, L3 − KS) with i ≥ 4, i 6= 7, 11, has the property that each of the first p − 1
segments has relative height at least 2, which again follows from Lemma 6.3. Hence, any
such sequence has length at least 0. The same reasoning holds for sequences involving
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(Lj , L7−K), 8 ≤ j < 11. Thus, we only need to consider the spaces Hom(L11, L3−KS)

and Hom(L11, L7 − KS) or, to put it differently, we have to check whether the divisors
L3 −KS −L11 and L7 −KS −L11 are sums of irreducible effective (−2)-curves. Since
the first divisor is Ẽ2 − Ẽ

+

4 and the second is Ẽ2 − Ẽ
+

5 , their intersection with C̃±1 is 0
and the intersection with C̃±2 is 1. Hence, they cannot be sums of exceptional curves.
Furthermore, one can directly check that, in fact, Hom(L11, (L7 − KS)[1]) = 0, so the
above argument readily gives the desired statement. ut

Remark 7.2. Notice that our result implies the existence of rational fourfolds whose
derived category contains a phantom. Namely, we can embed the Barlow surface S into
P5 and find a generic projection to P4 such that the image S̄ ⊂ P4 has improper double
points as only singularities (which look like two planes meeting transversally in one point
locally). Blowing up the double points, we have an embedding S ⊂ P̃4. Now consider the
fourfold Z = BlS(P̃4).
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