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Abstract. We give a complete characterization of the positive trigonometric polynomials Q(θ, ϕ)
on the bi-circle which can be factored as Q(θ, ϕ) = |p(eiθ , eiϕ)|2 where p(z,w) is a polyno-
mial nonzero for |z| = 1 and |w| ≤ 1. The conditions are in terms of recurrence coefficients
associated with the polynomials in lexicographical and reverse lexicographical ordering orthogonal
with respect to the weight 1

4π2Q(θ,ϕ)
on the bi-circle. We use this result to describe how specific

factorizations of weights on the bi-circle can be translated into identities relating the recurrence co-
efficients for the corresponding polynomials and vice versa. In particular, we characterize the Borel
measures on the bi-circle for which the coefficients multiplying the reverse polynomials associated
with the two operators: multiplication by z in lexicographical ordering and multiplication by w in
reverse lexicographical ordering vanish after a particular point. This can be considered as a spectral
type result analogous to the characterization of the Bernstein–Szegő measures on the unit circle.

Keywords. Fejér–Riesz factorizations, bivariate Bernstein–Szegő measures, orthogonal poly-
nomials, spectral theory.

1. Introduction

The representation of positive polynomials as a sum of squares of polynomials or ratio-
nal functions is an important problem in mathematics and led Hilbert to pose his 17th
problem which was solved by Artin. In the case of trigonometric polynomials one of the
simplest factorization results is the lemma of Fejér–Riesz which states that every positive
trigonometric polynomialQn(θ) of degree n can be written asQn(θ) = |pn(e

iθ )|2 where
pn(z) is a polynomial of degree n in z. This result has been useful for the trigonometric
moment problem, orthogonal polynomials, wavelets, and signal processing.

Extensions of this result to the multivariable case cannot be generic as a simple degree
of freedom calculation on the coefficients shows. Recently [11] these results have been
extended to two-variable factorizations

Qn,m(θ, ϕ) = |pn,m(e
iθ , eiϕ)|2 (1.1)
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where n and m are the degrees of Qn,m in θ and ϕ, respectively, in the case when
pn,m(z, w) is a polynomial of degree n in z and m in w which is nonzero for |z| ≤ 1
and |w| ≤ 1. This extends results obtained earlier by Kummert [18] (see also Ball [4]),
Cole and Wermer [5], and Agler and McCarthy [1] (see also Knese [16]). In particular,
using the results of Knese [17] it is easy to see that, except for certain special cases, the
polynomials pn,m in (1.1) cannot be associated with the distinguished varieties defined by
Agler and McCarthy [1]. Some extensions to more than two variables of the above results
have also recently been obtain by Grinshpan et al. [14], Bakonyi and Woerdeman [3], and
Woerdeman [19].

In this paper we extend the results in [11] in a different direction. We completely
characterize positive trigonometric polynomials Qn,m(θ, ϕ) which can be factored as in
(1.1) where pn,m(z, w) is a polynomial which is nonzero for |z| = 1 and |w| ≤ 1. The
conditions can be written in a relatively simple form if we use the orthogonal polynomials
in lexicographical and reverse lexicographical ordering introduced in [12] with respect to
the weight 1

4π2Qn,m(θ,ϕ)
on the bi-circle. More precisely, in Theorem 2.4 we prove that

(1.1) holds if and only if certain matrices (which represent recurrence coefficients) Kn,m,
K1
n,m, 0̃n,m, 0̃1

n,m satisfy the equations

Kn,m[0̃1
n,m0̃

†
n,m]

j (K1
n,m)

T
= 0 for j = 0, 1, . . . , n− 1. (1.2)

There are two important cases when equation (1.2) holds:

(i) The case when Kn,m = 0 characterizes the stable factorizations ofQn,m discussed in
[11] (i.e. (1.1) holds with a polynomial pn,m(z, w) which is nonzero for |z| ≤ 1 and
|w| ≤ 1).

(ii) The case when K1
n,m = 0 characterizes the anti-stable factorizations of Qn,m. In

this case (1.1) holds with a polynomial pn,m(z, w) such that znpn,m(1/z,w) 6= 0 for
|z| ≤ 1 and |w| ≤ 1.

We derive several corollaries of the above result which are of independent interest. For
instance, we characterize the Borel measures on the bi-circle for which the recurrence
coefficients Êk,l ,

˜̂
Ek,l multiplying the reverse polynomials associated with the two oper-

ators: multiplication by z in lexicographical ordering and multiplication by w in reverse
lexicographical ordering, vanish after a particular point (see Theorem 2.10). This can be
considered as a spectral theory type result analogous to the characterization of Bernstein–
Szegő measures on the circle. We also show that in this case the space of orthogonal
polynomials can be decomposed as an appropriate direct sum of two sets of orthogonal
polynomials associated with the stable and the anti-stable factorizations described above
(see Theorem 2.7).

The paper is organized as follows. In Section 2 we introduce the notation used
throughout the paper including the recurrence formulas and state the main theorems. In
Section 3 some preliminary results are proved and certain relations among the recurrence
coefficients developed in [9] and their consequences are discussed. In Section 4 we prove
the first main theorem which yields the factorizations (1.1) with pn,m(z, w) nonzero for
|z| = 1 and |w| ≤ 1. In the forward direction, we use the Gohberg–Semencul formula,
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parametric and matrix-valued orthogonal polynomials to show that if (1.1) holds, then the
recurrence coefficients Êk,l for the polynomials in lexicographical ordering associated
with the weight 1

4π2Qn,m(θ,ϕ)
vanish after a particular point. This leads to (1.2). The heart

of the proof in the opposite direction is based on a subtle decomposition of the space
of polynomials in the reverse lexicographical ordering as the sum of two subspaces pos-
sessing a lot of extra orthogonality properties. Using this decomposition, we construct an
appropriate rotation on the space of polynomials which gives the polynomial pn,m(z, w)
satisfying (1.1). All these constructions are missing in the stable case: the space decom-
position is trivial (one of the subspaces is empty) and the rotation is simply the identity
transformation. Thus, in our construction, the polynomial pn,m(z, w) is no longer the first
column of the inverse of the Toeplitz matrix associated with the trigonometric moments,
but instead is a linear combination of the columns in the first block column of this matrix.
One can use also the general theory of Helson and Lowdenslager [15] and the construc-
tions in Delsarte et al. [7] to obtain factorizations of positive functions Q(θ, ϕ) on the
bi-circle. Note, however, that their approach works in a rather general setting and will
provide (in general) nonpolynomial factorizations of Qn,m, even when (1.1) holds with a
polynomial pn,m(z, w). In Section 5 we prove all remaining statements and corollaries.
In Section 6 some examples are presented as illustrations of the main theorems.

2. Statement of results

2.1. Basic notations

We denote by T = {z ∈ C : |z| = 1} the unit circle, and by

T2
= {(z, w) : |z| = |w| = 1}

the bi-circle (torus) in C2. Throughout the paper, we will use the parametrization z = eiθ

and w = eiϕ , where θ, ϕ ∈ [−π, π].
We consider moment matrices associated with the lexicographical ordering which is

defined by
(k, `) <lex (k1, `1) ⇔ k < k1 or (k = k1 and ` < `1),

and the reverse lexicographical ordering defined by

(k, `) <revlex (k1, `1) ⇔ (`, k) <lex (`1, k1).

Both of these orderings are linear and in addition they satisfy

(k, `) < (m, n) ⇒ (k + p, `+ q) < (m+ p, n+ q).

Let 5n,m denote the bivariate Laurent linear space span{zkwl : −n≤k≤n, −m≤ l≤m}
and let L be a linear functional defined on 5n,m such that

L(z−kw−l) = ck,l = L(zkwl).
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We will call ck,l the (k, l) moment of L, and L a moment functional. If we form the
(n+ 1)(m+ 1)× (n+ 1)(m+ 1) matrix Cn,m for L in the lexicographical ordering then
it has the special block Toeplitz form

Cn,m =


C0 C−1 · · · C−n
C1 C0 · · · C−n+1
...

...
. . .

...

Cn Cn−1 · · · C0

 , (2.1)

where each Ck is an (m+ 1)× (m+ 1) Toeplitz matrix as follows

Ck =


ck,0 ck,−1 · · · ck,−m
ck,1 ck,0 · · · ck,−m+1
...

...
. . .

...

ck,m ck,m−1 · · · ck,0

 , k = −n, . . . , n. (2.2)

Thus Cn,m has a doubly Toeplitz structure. If the reverse lexicographical ordering is used
in place of the lexicographical ordering we obtain another moment matrix C̃n,m where
the roles of n and m are interchanged. We say that the moment functional L : 5n,m→ C
is positive if

L [p(z,w)p̄(1/z, 1/w)] > 0 (2.3)

for every nonzero polynomial p(z,w) ∈ 5n,m∩C[z,w]. Here and later we set p̄(z, w) =
p(z̄, w̄). It follows from a simple quadratic form argument that L is positive if and only
if its moment matrix Cn,m is positive definite. A finite Borel measure µ on the bi-circle is
said to be nondegenerate if ∫

T2
|p(z,w)|2 dµ > 0

for every nonzero polynomial p(z,w).
With a positive linear functional L : 5N,M → C we can naturally associate an inner

product on the space of polynomials span{zkwl : 0 ≤ k ≤ N, 0 ≤ l ≤ M} by

〈φ(z,w), ψ(z,w)〉 = L
(
φ(z,w)ψ̄(1/z, 1/w)

)
.

We will use the same notation for vector-valued polynomials. More precisely, if 8(z,w)
and 9(z,w) are vectors whose components are polynomials we set

〈8(z,w),9(z,w)〉 = L
(
8(z,w)9̄(1/z, 1/w)T

)
.

The study of orthogonal polynomials on the bi-circle using the lexicographical order-
ing was begun by Delsarte et al. [6] and extended in [12]. Given a positive linear func-
tional L : 5N,M → C we perform the Gram–Schmidt procedure using the lexicograph-
ical ordering on the spaces span{zkwl : 0 ≤ k ≤ n, 0 ≤ l ≤ m} where n ≤ N , m ≤ N .
Thus we define the orthonormal polynomials φsn,m(z, w), 0 ≤ n ≤ N , 0 ≤ m ≤ M ,
0 ≤ s ≤ m, by the equations

〈φsn,m(z, w), z
kwl〉 = 0, 0 ≤ k < n and 0 ≤ l ≤ m, or k = n and 0 ≤ l < s,

〈φsn,m(z, w), φ
s
n,m(z, w)〉 = 1,

(2.4)
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and
φsn,m(z, w) = k

n,s
n,m,sz

nws +
∑

(k,l)<lex(n,s)

kk,ln,m,sz
kwl . (2.5)

With the convention kn,sn,m,s > 0, the above equations uniquely specify φsn,m. Polynomials
orthonormal with respect to the inner product defined above but using the reverse lexico-
graphical ordering will be denoted by φ̃sn,m. They are uniquely determined by the above
relations with the roles of n and m interchanged. Set

8n,m(z, w) =


φmn,m
φm−1
n,m
...

φ0
n,m

 = Kn,m

znwm

znwm−1

...

1

 , (2.6)

where the (m+ 1)× (n+ 1)(m+ 1) matrix Kn,m is given by

k
n,m
n,m,m k

n,m−1
n,m,m · · · · · · · · · k

0,0
n,m,m

0 k
n,m−1
n,m,m−1 · · · · · · · · · k

0,0
n,m,m−1

...
. . .

. . .
. . .

. . .
...

0 · · · k
n,0
n,m,0 k

n−1,m
n,m,0 · · · k

0,0
n,m,0


. (2.7)

As indicated above, denote

8̃n,m(z, w) =


φ̃nn,m
φ̃n−1
n,m
...

φ̃0
n,m

 = K̃n,m

wmzn

wmzn−1
...

1

 , (2.8)

where the (n+ 1)× (n+ 1)(m+ 1) matrix K̃n,m is given similarly to (2.7) with the roles
of n and m interchanged. For the bivariate polynomials φsn,m(z, w) above we define the
reverse polynomials

E

φsn,m(z, w) by the relationE

φsn,m(z, w) = z
nwmφ̄sn,m(1/z, 1/w). (2.9)

With this definition

E

φsn,m(z, w) is again a polynomial in z and w, and furthermore

E

8n,m(z, w) :=



E

φmn,m

E

φm−1
n,m
...

E

φ0
n,m


T

. (2.10)

An analogous procedure is used to define

E

φ̃sn,m. We use Mm,n to denote the space of all
m× n matrices and for a matrix A we denote by A†

= ĀT the conjugate transpose of A.
In [12] the following was shown:
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Theorem 2.1. The vector polynomials {8n,m} and {8̃n,m} satisfy the following recur-
rence relations:

An,m8n,m = z8n−1,m − Ên,m

E

8Tn−1,m, (2.11a)

8n,m + A
†
n,mÊn,m(A

T
n,m)

−1

E

8Tn,m = A
†
n,mz8n−1,m, (2.11b)

0n,m8n,m = 8n,m−1 −Kn,m8̃n−1,m, (2.11c)

01
n,m8n,m = w8n,m−1 −K1

n,m

E

8̃Tn−1,m, (2.11d)

8n,m = In,m8̃n,m + 0
†
n,m8n,m−1, (2.11e)E

8Tn,m = I
1
n,m8̃n,m + (0

1
n,m)

T

E

8Tn,m−1, (2.11f)

where

Ên,m = 〈z8n−1,m,

E

8Tn−1,m〉 = Ê
T
n,m ∈ M

m+1,m+1, (2.12a)

An,m = 〈z8n−1,m,8n,m〉 ∈ M
m+1,m+1, (2.12b)

Kn,m = 〈8n,m−1, 8̃n−1,m〉 ∈ M
m,n, (2.12c)

0n,m = 〈8n,m−1,8n,m〉 ∈ M
m,m+1, (2.12d)

K1
n,m = 〈w8n,m−1,

E

8̃Tn−1,m〉 ∈ M
m,n, (2.12e)

01
n,m = 〈w8n,m−1,8n,m〉 ∈ M

m,m+1, (2.12f)

In,m = 〈8n,m, 8̃n,m〉 ∈ M
m+1,n+1, (2.12g)

I 1
n,m = 〈

E
8Tn,m, 8̃n,m〉 ∈ M

m+1,n+1. (2.12h)

Equations (2.11a)–(2.11b) hold for n ≥ 1, m ≥ 0, equations (2.11c)–(2.11d) for n ≥ 0,
m ≥ 1, and equations (2.11e)–(2.11f) for n ≥ 0,m ≥ 0. In the above formulas we use the
convention that terms containing 8n,m or 8̃n,m with n < 0 or m < 0 are omitted.

Remark 2.2. For every statement (resp. formula) we will refer to the analogous state-
ment (resp. formula) with the roles of z andw exchanged as the tilde analog. For instance,

the tilde analog of (2.11a) is Ãn,m8̃n,m = w8̃n,m−1 −
˜̂
En,m

E

8̃Tn,m−1.

Finally, we note that

K̃n,m = K†
n,m and K̃1

n,m = (K1
n,m)

T .

2.2. Main results

We say that a polynomial p(z,w) ∈ C[z,w] is of degree (n,m) where n and m are the
minimal nonnegative integers such that p(z,w) ∈ 5n,m. We say that the polynomial
p(z,w) is stable if it does not vanish for |z| ≤ 1 and |w| ≤ 1. Similarly, for a trigonomet-
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ric polynomial Q(θ, ϕ) = p(eiθ , eiϕ), we define the degree as the ordered pair (n,m),
where n and m are the minimal nonnegative integers such that p(z,w) ∈ 5n,m.

We can now state our main results.

Theorem 2.3. For a positive moment functional L defined on the space5n,m the follow-
ing conditions are equivalent:

(i) There exists a polynomial p(z,w) of degree at most (n,m), nonzero for |z| = 1 and
|w| ≤ 1, such that

L(zkwl) =
1

4π2

∫
[−π,π ]2

eikθeilϕ

|p(eiθ , eiϕ)|2
dθ dϕ for |k| ≤ n and |l| ≤ m. (2.13)

(ii) The coefficients Kn,m, K1
n,m, 0̃n,m, 0̃1

n,m satisfy

Kn,m[0̃1
n,m0̃

†
n,m]

j (K1
n,m)

T
= 0 for j = 0, 1, . . . , n− 1. (2.14)

Moreover, if the conditions above hold, we have, for (z, w) ∈ T2,

|p(z,w)|2 = 8n,m(z, w)
T 8n,m(z, w)−8n,m−1(z, w)

T 8n,m−1(z, w)

= 8̃n,m(z, w)
T 8̃n,m(z, w)− 8̃n−1,m(z, w)

T 8̃n−1,m(z, w).
(2.15)

The polynomial p(z,w) in Theorem 2.3 can be computed from equation (4.11) in Sec-
tion 4, which depends on the matrices Ũ and Ṽ constructed from Kn,m, K1

n,m, 0̃n,m and
0̃1
n,m in Lemma 4.6 and Lemma 4.8 (see Remark 4.5 for more details).

As an immediate corollary of the above theorem and the maximum entropy principle
[2] we obtain the first Fejér–Riesz factorization.

Theorem 2.4 (Fejér–Riesz I). Suppose that Q(θ, ϕ) is a strictly positive trigonometric
polynomial of degree (n,m). Then Q(θ, ϕ) = |p(eiθ , eiϕ)|2 where p(z,w) is a polyno-
mial of degree (n,m) such that p(z,w) 6= 0 for |z| = 1, |w| ≤ 1 if and only if the
coefficients Kn,m, K1

n,m, 0̃n,m, 0̃1
n,m associated with the measure dθ dϕ

4π2Q(θ,ϕ)
on [−π, π]2

satisfy (2.14).

Analogous results hold with the roles of z and w and n and m interchanged if the co-
efficients in the reverse lexicographical ordering satisfy the tilde analogs of (2.14) (see
(2.17b) below). In the case when both sets of conditions hold we find:

Theorem 2.5. For a positive moment functional L defined on the space5n,m the follow-
ing conditions are equivalent:

(i) There exist stable polynomials p(z,w) and q(z,w) of degrees (n1, m1) and (n2, m2)

with n1 + n2 ≤ n, m1 +m2 ≤ m such that

L(zkwl)=
1

4π2

∫
[−π,π ]2

eikθeilϕ

|p(eiθ , eiϕ)q(e−iθ , eiϕ)|2
dθ dϕ for |k| ≤ n and |l| ≤m.

(2.16)
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(ii) The coefficients Kn,m, K1
n,m, 0n,m, 01

n,m, 0̃n,m, 0̃1
n,m satisfy

Kn,m[0̃1
n,m0̃

†
n,m]

j (K1
n,m)

T
= 0 for j = 0, 1, . . . , n− 1, (2.17a)

K†
n,m[0

1
n,m0

†
n,m]

lK1
n,m = 0 for l = 0, 1, . . . , m− 1. (2.17b)

As in Theorem 2.3, given the coefficients in the recurrence formulas, the polynomial
p(z,w)zn2q(1/z,w) can be computed from (4.11) (see also Remark 4.5). In view of
(2.16), we say in the rest of the paper that a functional satisfying the equivalent conditions
in the above theorem belongs to the splitting case. Theorem 2.5 can also be recast as a
Fejér–Riesz factorization.

Theorem 2.6 (Fejér–Riesz II). Suppose that Q(θ, ϕ) is a strictly positive trigonometric
polynomial of degree (n,m). Then Q(θ, ϕ) = |p(eiθ , eiϕ)q(e−iθ , eiϕ)|2 where p(z,w)
and q(z,w) are stable polynomials of degrees (n1, m1) and (n2, m2) respectively, with
n1 + n2 = n, m1 +m2 = m if and only if the coefficients Kn,m, K1

n,m, 0n,m, 01
n,m, 0̃n,m,

0̃1
n,m associated with the measure dθ dϕ

4π2 Q(θ,ϕ)
on [−π, π]2 satisfy (2.17).

In the case when the equivalent conditions in Theorem 2.5 hold we have the following
structural theorem.

Theorem 2.7. Suppose that (2.16) holds, where p(z,w) and q(z,w) are stable poly-
nomials of degrees (n1, m1) and (n2, m2), respectively. Let 8pk,l(z, w) and 8qk,l(z, w)
be the (vector) polynomials orthogonal with respect to the measures dθ dϕ

4π2|p(eiθ ,eiϕ)|2
and

dθ dϕ

4π2|q(eiθ ,eiϕ)|2
, respectively. Then

8
p
n1,m1(z, w) =

[ E

p(z,w)

8
p

n1,m1−1(z, w)

]
, 8

q
n2,m2(z, w) =

[ E

q(z,w)

8
q

n2,m2−1(z, w)

]
. (2.18)

Moreover, if we set n = n1 + n2 and m = m1 + m2, then there exist unitary matrices
U ∈ Mm,m and V ∈ Mm+1,m+1 such that

U†8n,m−1(z, w) =

 zn2q(1/z,w)8pn1,m1−1(z, w)E

p(z,w)wm2−18
q

n2,m2−1(z, 1/w)

 , (2.19a)

and

V †8n,m(z, w) =



E

p(z,w)zn2q(1/z,w)

zn2q(1/z,w)8pn1,m1−1(z, w)E

p(z,w)wm2 8
q

n2,m2−1(z, 1/w)

 . (2.19b)

Roughly speaking, the above theorem allows one to decompose the space of orthogonal
polynomials associated with the functional in (2.16) as a sum of the two extreme cases:

• the stable case when q(z,w) = 1;
• the anti-stable case when p(z,w) = 1.

As a corollary of the proof we also obtain the following characterizations of these situa-
tions.
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Corollary 2.8. For a positive moment functional L defined on the space 5n,m the fol-
lowing statements hold:

(i) There exists a stable polynomial p(z,w) of degree at most (n,m) such that

L(zkwl) =
1

4π2

∫
[−π,π ]2

eikθeilϕ

|p(eiθ , eiϕ)|2
dθ dϕ for |k| ≤ n and |l| ≤ m (2.20)

if and only if Kn,m = 0. Moreover, we can take p(z,w) =

E

φmn,m(z, w).
(ii) There exists a stable polynomial q(z,w) of degree at most (n,m) such that

L(zkwl) =
1

4π2

∫
[−π,π ]2

eikθeilϕ

|q(e−iθ , eiϕ)|2
dθ dϕ for |k| ≤ n and |l| ≤ m (2.21)

if and only if K1
n,m = 0.

As a consequence of the above corollary, we obtain a simple characterization of the func-
tionals which are tensor products of functionals on the circle.

Corollary 2.9. Let L be a positive moment functional on the space 5n,m. Then there
exist a positive functional Lz defined on span{zk : |k| ≤ n} and a positive functional Lw
defined on span{wl : |l| ≤ m} such that L(zkwl) = Lz(zk)Lw(wl) for all |k| ≤ n and
|l| ≤ m if and only if Kn,m = K1

n,m = 0. In this case,

E

φmn,m(z, w) = α(z)β(w), where
α(z) and β(w) are stable polynomials of degrees at most n and m, respectively and

L(zkwl) =
1

4π2

∫
[−π,π ]2

eikθeilϕ

|α(eiθ )β(eiϕ)|2
dθ dϕ for |k| ≤ n and |l| ≤ m. (2.22)

Finally, the above results can be used to completely characterize the measures on T2 for

which the corresponding coefficients Êk,l and ˜̂Ek,l vanish after a particular point.

Theorem 2.10. Let µ be a nondegenerate, finite Borel measure on the bi-circle. Then µ
is absolutely continuous with respect to Lebesgue measure and

dµ =
dθ dϕ

4π2|p(eiθ , eiϕ)q(e−iθ , eiϕ)|2
, (2.23)

where p(z,w) and q(z,w) are stable polynomials of degrees (n1, m1) and (n2, m2), re-
spectively, with n1 + n2 ≤ n, m1 +m2 ≤ m if and only if

Êk,l = 0 and ˜̂Ek,l = 0 for all k ≥ n+ 1, l ≥ m+ 1. (2.24)

Moreover, in this case we have

Êk,l = 0 for k ≥ n+ 1, l ≥ m− 1, ˜̂
Ek,l = 0 for k ≥ n− 1, l ≥ m+ 1. (2.25)
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3. Preliminary results

3.1. Connection between bivariate and matrix orthogonal polynomials

The vector polynomial 8n,m(z, w) defined in (2.6) can be written as

8n,m(z, w) = 8
m
n (z)


wm

wm−1

...

1

 , (3.1a)

where8mn (z) is a unique (m+1)× (m+1)matrix polynomial of degree n in z. Similarly,
the vector polynomial 8̃n,m(z, w) defined in (2.8) can be written as

8̃n,m(z, w) = 8̃
n
m(w)


zn

zn−1

...

1

 , (3.1b)

where 8̃nm(w) is a unique (n + 1) × (n + 1) matrix polynomial of degree m in w. The
recurrence relation (2.11a) and its tilde analog are equivalent to the recurrence relations
for the matrix-valued polynomials {8mn (z)}n≥0 and {8̃nm(w)}m≥0.

We will also need the following Christoffel–Darboux formula, which is a tilde analog
of formula (4.1a)–(4.1c) in [12]:E

8̃n,m(z, w)

E

8̃n,m(z1, w1)
†
−

E

8̃n−1,m(z, w)

E

8̃n−1,m(z1, w1)
†

− ww̄1

[
8̃n,m(z, w)

T 8̃n,m(z1, w1)− 8̃n−1,m(z, w)
T 8̃n−1,m(z1, w1)

]
= (1− ww̄1)8n,m(z, w)

T 8n,m(z1, w1), (3.2)

and its corollary (see [12, equation (4.2)])

8n,m(z, w)
T 8n,m(z1, w1)−8n,m−1(z, w)

T 8n,m−1(z1, w1)

= 8̃n,m(z, w)
T 8̃n,m(z1, w1)− 8̃n−1,m(z, w)

T 8̃n−1,m(z1, w1). (3.3)

3.2. Relations among the coefficients

We list below different relations among the coefficients defined in (2.12) needed in the
paper.

The tilde analog of formula (3.52) in [12, p. 811] can be written as follows:

0̃1
k+1,l0̃

†
k+1,l = 0̃

†
k,l0̃

1
k,l + Ĩk,lÊk+1,l(Ĩ

1
k,l)

T

+ K̃1
k+1,l(Āk+1,l−1)

−1Ê
†
k+1,l−1Ak+1,l−1K̃†

k+1,l . (3.4)
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We also need formulas (3.1), (3.4) and (3.6) from [9]:

Êk+1,l−1 = 0k,lÊk+1,l(0
1
k,l)

T
+Kk,l(K1

k,l)
T , (3.5a)

0k,lÊk+1,lI
1
k,l = Ak+1,l−1Kk+1,l −Kk,l0̃1

k,l, (3.5b)

I
†
k,lÊk+1,l(0

1
k,l)

T
= (K1

k+1,l)
TATk+1,l−1 − 0̃

†
k,l(K

1
k,l)

T . (3.5c)

Recall that if Êk,l = 0 then Ak,l = Il+1 is the identity (l+ 1)× (l+ 1) matrix. Using this
fact and the above formulas, we see that the following lemma holds.

Lemma 3.1. If
Êk+1,l = 0 and Êk+1,l−1 = 0, (3.6)

then

Kk,l(K1
k,l)

T
= 0, (3.7a)

0̃1
k+1,l0̃

†
k+1,l = 0̃

†
k,l0̃

1
k,l, (3.7b)

Kk+1,l = Kk,l0̃1
k,l, (3.7c)

(K1
k+1,l)

T
= 0̃

†
k,l(K

1
k,l)

T . (3.7d)

3.3. Stability criterion

Throughout the paper we will use the following fact several times: a polynomial p(z,w)
is stable (i.e. nonvanishing for |z| ≤ 1 and |w| ≤ 1) if and only if

• p(z,w) 6= 0 for |z| = 1 and |w| ≤ 1, and
• p(z,w) 6= 0 for |z| ≤ 1 and |w| = 1.

The above criterion is a simple corollary of the well-known stability criteria for bivariate
polynomials (see for instance [8]).

4. One sided stable polynomials

In this section we prove Theorem 2.3.

4.1. Proof of the implication (i)⇒(ii) in Theorem 2.3

Assume first that the conditions in Theorem 2.3(i) hold, i.e. the moment functional L is
defined on 5n,m by

L(zkwl) =
1

4π2

∫
[−π,π ]2

eikθeilϕ

|p(eiθ , eiϕ)|2
dθ dϕ, (4.1)

where p(z,w) is of degree (n,m), nonzero for |z| = 1 and |w| ≤ 1. We can use (4.1) to
extend the functional L on the space of all Laurent polynomials C[z, z−1, w,w−1

]. Thus
we can define vector polynomials 8k,l(z, w) for all k, l ∈ N0.
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For every fixed z = eiθ ∈ T, we denote by Lθ the corresponding positive moment
functional on the space C[w,w−1

] given by

Lθ (wl) =
1

2π

∫ π

−π

eilϕ

|p(eiθ , eiϕ)|2
dϕ. (4.2)

Similarly, for a polynomial φ(z,w) of degree (k, l) we can fix z = eiθ on the unit circle
and consider the corresponding polynomial φ(eiθ , w) of degree l in w which depends on
the parameter θ . We will denote by

E

φθ (eiθ , w) the reverse polynomial of φ(eiθ , w), i.e.
we set

E

φθ (eiθ , w) = wl φ̄(e−iθ , 1/w).

Lemma 4.1. Suppose that (4.1) holds. Then with respect to Lθ we have

p(eiθ , w) ⊥ {wl : l > 0}, (4.3a)E

pθ (eiθ , w) ⊥ {wl : l < m}, (4.3b)

and ‖p(eiθ , w)‖ = ‖

E

pθ (eiθ , w)‖ = 1.

Proof. We have

Lθ
(
wl p(eiθ , w)

)
=

1
2π

∫ π

−π

eilϕ p(eiθ , eiϕ)

|p(eiθ , eiϕ)|2
dϕ = −

i

2π

∮
T

wl−1

p(eiθ , w)
dw = 0

for l > 0 by Cauchy’s residue theorem, establishing (4.3a). The second orthogonality fol-
lows by a similar computation. The assertion about the norms of p(eiθ , w) and

E

pθ (eiθ , w)

is straightforward. ut

We would now like to construct polynomials {φθl (w)}l≥0 orthonormal with respect to Lθ .
From Lemma 4.1 it follows that we can take

φθl (w) = w
l−m

E
pθ (eiθ , w) for l ≥ m. (4.4)

Let us denote by Cθl the (l + 1) × (l + 1) Toeplitz matrix associated with Lθ , i.e. if
we put cθj = Lθ (w−j ) then

Cθl =


cθ0 cθ

−1 · · · cθ
−l

cθ1 cθ0 · · · cθ
−l+1

...
...

. . .
...

cθl cθl−1 · · · cθ0

 .
Recall that we can use the coefficients of the orthonormal polynomial φθl (w) to com-
pute the inverse of Cθl−1 via the Gohberg–Semencul formula [13, Theorem 6.2, p. 88].
Explicitly, if we set E

φθl (w) =

l∑
j=0

r ljw
j , (4.5)

then
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(Cθl−1)
−1
=


r l0 ©

r l1
. . .

...
. . .

r ll−1 · · · r l1 r l0




r l0 r l1 . . . r ll−1

. . .
...

. . . r l1

© r l0



−


r ll ©

r ll−1
. . .

...
. . .

r l1 · · · r ll−1 r ll




r ll r ll−1 . . . r l1

. . .
...

. . . r ll−1

© r ll

 . (4.6)

Lemma 4.2. Suppose that (4.1) holds for all (k, l) ∈ Z2. Then

Êk,l = 0 for k ≥ n+ 1 and l ≥ m− 1. (4.7)

Proof. Note that for fixed l ≥ m − 1, the matrix polynomials {8lk(z)}k≥0 defined in
Subsection 3.1 are orthonormal on [−π, π] with respect to the matrix weight 1

2πC
θ
l , i.e.

1
2π

∫ π

−π

8lk(e
iθ )Cθl [8

l
j (e

iθ )]† dθ = δkj Il+1.

From the theory of matrix-valued orthogonal polynomials it will follow that Êk,l = 0 for
k ≥ n + 1 if we can show that (Cθl )

−1 is a (matrix) trigonometric polynomial in θ of
degree at most n. This follows immediately from (4.4)–(4.6). ut

Lemma 4.3. Suppose that (4.7) holds. Then

Kk,l[0̃1
k,l0̃

†
k,l]

j (K1
k,l)

T
= 0 for all j ≥ 0, k ≥ n, l ≥ m. (4.8)

Proof. From Lemma 3.1 we see that equations (3.7) hold as long as k ≥ n and l ≥ m.
First, we would like to show by induction on j ∈ N0 that

Kk+j,l(K1
k+j,l)

T
= Kk,l[0̃1

k,l0̃
†
k,l]

j (K1
k,l)

T for k ≥ n, l ≥ m. (4.9)

If j = 0, the above statement is obvious. Suppose now that (4.9) holds for some j ≥ 0.
From (3.7b) it follows that

[0̃1
k,l0̃

†
k,l]

j+1
= 0̃1

k,l[0̃
1
k+1,l0̃

†
k+1,l]

j 0̃
†
k,l .

Using the above formula we find

Kk,l[0̃1
k,l0̃

†
k,l]

j+1(K1
k,l)

T
= Kk,l0̃1

k,l[0̃
1
k+1,l0̃

†
k+1,l]

j 0̃
†
k,l(K

1
k,l)

T

= Kk+1,l[0̃
1
k+1,l0̃

†
k+1,l]

j (K1
k+1,l)

T (by (3.7c) and (3.7d))

= Kk+1+j,l(K1
k+1+j,l)

T (by the induction hypothesis),
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establishing (4.9) for j + 1 and completing the induction. From (3.7a) we see that the
left-hand side of (4.9) is equal to 0, leading to (4.8). ut

Proof of the implication (i)⇒(ii) in Theorem 2.3. This follows immediately from Lem-
mas 4.2 and 4.3. ut

4.2. Proof of the implication (ii)⇒(i) in Theorem 2.3

The key ingredient of the proof in the opposite direction, which also explains the con-
struction of the polynomial p(z,w), is the following lemma.

Lemma 4.4. Let L be a positive moment functional defined on 5n,m. Suppose that there
exist unitary matrices Ũ ∈ Mn,n and Ṽ ∈ Mn+1,n+1 such that

Ũ†8̃n−1,m(z, w) =

[
9̃
(1)
n−1,m(z, w)

9̃
(2)
n−1,m(z, w)

]
, (4.10a)

Ṽ †8̃n,m(z, w) =

 ψ̃nn,m(z, w)

z9̃
(1)
n−1,m(z, w)

9̃
(2)
n−1,m(z, w)

 , (4.10b)

where 9̃(j)n−1,m(z, w) is an nj -dimensional vector whose components are polynomials of
degrees at most (n − 1, m) with n1 + n2 = n, and ψ̃nn,m(z, w) is a polynomial of degree
at most (n,m). Then

p(z,w) =

E

ψ̃nn,m(z, w) = z
nwm ψ̃nn,m(1/z̄, 1/w̄) (4.11)

is a polynomial of degree at most (n,m), nonzero for |z| = 1, |w| ≤ 1, and equations
(2.13) and (2.15) hold.

Proof. From (4.10) and (4.11) it follows thatE

8̃n,m(z, w)

E

8̃n,m(z1, w1)
†
−

E

8̃n−1,m(z, w)

E

8̃n−1,m(z1, w1)
†

= p(z,w) p(z1, w1) for zz̄1 = 1, (4.12a)

and

8̃n,m(z, w)
T 8̃n,m(z1, w1)− 8̃n−1,m(z, w)

T 8̃n−1,m(z1, w1)

=

E

p(z,w)

E

p(z1, w1) for zz̄1 = 1, (4.12b)

where

E

p(z,w) = znwm p(1/z̄, 1/w̄). Plugging equations (4.12) in (3.2) we obtain

p(z,w) p(1/z̄, w1)− ww̄1

E

p(z,w)

E

p(1/z̄, w1)

= (1− ww̄1)8n,m(z, w)
T 8n,m(1/z̄, w1). (4.13)
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Using the last equation we can prove that p(z,w) is nonzero for |z| = 1 and |w| ≤ 1.
Recall first that the vector polynomials8n,m(z, w) can be connected to the matrix polyno-
mials8mn (z) via (3.1a). Moreover the matrix-valued orthogonal polynomials {8mk (z)}

n
k=0

constructed in Subsection 3.1 are orthonormal with respect to the matrix inner product

〈A,B〉 = L(AMm(w)B
†), (4.14a)

where Mm(w) is the (m+ 1)× (m+ 1) Toeplitz matrix

Mm(w) =


wm

wm−1

...

1

 [
w−m w−m+1 . . . 1

]

=


1 w . . . wm

w−1 1 . . . wm−1

...
. . .

...

w−m w−m+1 . . . 1

 . (4.14b)

In particular, from the theory of matrix-valued orthogonal polynomials we know that
det[8mn (z)] 6= 0 for |z| ≥ 1. This implies that

8n,m(z, w) is a nonzero vector for |z| = 1 and w ∈ C. (4.15)

Suppose first that p(z0, w0) = 0 for some |z0| = 1 and |w0| < 1. Then using (4.13) with
z = z0 and w = w1 = w0 we obtain

−|w0|
2
|

E
p(z0, w0)|

2
= (1− |w0|

2)8n,m(z0, w0)
T 8n,m(z0, w0).

Since the left-hand side of the above equation is ≤ 0 and the right-hand side is ≥ 0, we
see that 8n,m(z0, w0) must be the zero vector, which contradicts (4.15).

Suppose now that p(z0, w0) = 0 for some |z0| = 1 and |w0| = 1. Then

E

p(z0, w0) = 0
and therefore (4.13) with z = z0, w = w0 and w1 6= w0 gives

8n,m(z0, w0)
T 8n,m(z0, w1) = 0 for all w1 6= w0,

which implies that 8n,m(z0, w0) is the zero vector, leading to a contradiction, thus prov-
ing the required stability for p(z,w).

Note that (2.15) follows easily from (4.12a) and (3.3). Thus, it remains to prove that
(2.13) holds. Let us denote by pl(z) the coefficient of wl in p(z,w), i.e.

p(z,w) =

m∑
l=0

pl(z)w
l . (4.16)
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Then a straightforward computation shows that for |z| = 1 we have

p(z,w) p(z,w1)− ww̄1

E

p(z,w)

E

p(z,w1)

1− ww̄1

=
[
1 w · · · wm

]



p0(z) ©

p1(z)
. . .

...
. . .

pm(z) · · · p1(z) p0(z)



p0(z) p1(z) . . . pm(z)

. . .
...

. . . p1(z)

© p0(z)



−


0 ©

pm(z)
. . .

...
. . .

p1(z) · · · pm(z) 0




0 pm(z) . . . p1(z)

. . .
...

. . . pm(z)

© 0






1
w̄1
...

w̄m1

 .
(4.17)

From (3.1a) we see that

8n,m(z, w)
T 8n,m(z, w1) =

[
1 w · · · wm

]
Jm8

m
n (z)

T 8mn (z)Jm


1
w̄1
...

w̄m1

 , (4.18)

where Jm = [δi,m−j ]0≤i,j≤m. From (4.13), (4.17) and (4.18) it follows that for |z| = 1
we have
p0(z) ©

p1(z)
. . .

...
. . .

pm(z) · · · p1(z) p0(z)



p0(z) p1(z) . . . pm(z)

. . .
...

. . . p1(z)

© p0(z)



−


0 ©

pm(z)
. . .

...
. . .

p1(z) · · · pm(z) 0




0 pm(z) . . . p1(z)

. . .
...

. . . pm(z)

© 0


= Jm8

m
n (z)

T 8mn (z) Jm. (4.19)

Since p(z,w) is nonzero for |z| = 1 and |w| ≤ 1 we see that for fixed z = eiθ on the unit
circle, φθm(w) = w

m p(eiθ , 1/w̄) is an orthonormal polynomial of degree m with respect
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to the (parametric) moment functional Lθ , with moments

cθl = Lθ (w−l) =
1

2π

∫ π

−π

e−ilϕ

|p(eiθ , eiϕ)|2
dϕ for |l| ≤ m. (4.20)

From the Gohberg–Semencul formula (see [13, Theorem 6.1, p. 86]) it follows that the
left-hand side of (4.19) is the inverse of the Toeplitz matrix

Cθm =


cθ0 cθ

−1 · · · cθ−m

cθ1 cθ0 · · · cθ
−m+1

...
...

. . .
...

cθm cθm−1 · · · cθ0

 .
Since J 2

m = Im+1 and JmCθmJm = (C
θ
m)
T , equation (4.19) gives

Cθm = [8
m
n (z)

†8mn (z)]
−1, where z = eiθ . (4.21)

From the theory of matrix-valued orthogonal polynomials we know that the matrix weight
on the right-hand side of (4.21) generates the same matrix-valued orthonormal polynomi-
als {8mk (z)}0≤k≤n and therefore

L(zkMm(w)) =
1

2π

∫ π

−π

eikθCθm dθ for −n ≤ k ≤ n.

From the first row and the first column of the above matrix equation we find that for
|k| ≤ n and |l| ≤ m we have

L(zkwl) =
1

2π

∫ π

−π

eikθcθ
−l dθ. (4.22)

Now (2.13) follows at once from (4.20) and (4.22). ut

Remark 4.5. To complete the proof of Theorem 2.3 we need to show that (2.14) implies
the existence of unitary matrices Ũ and Ṽ such that equations (4.10) hold. For moment
functionals satisfying (2.16) the existence of such matrices follows easily from the tilde
analogs of formulas (2.19). In general (for one-sided stability) the construction of Ũ and
Ṽ is the content of the next two lemmas.

Note also that if we know Ṽ we can compute explicitly p(z,w) in (2.13) from (4.10b)
and (4.11). In Theorem 2.3 we gave the simplest formula for |p(z,w)|2, which involves
only the orthogonal polynomials. However, one can easily extract from the proof of
Lemma 4.4 other formulas which can be used in practice to compute p(z,w). For in-
stance, we can use (4.12a) (which is stronger than (2.15)), or setting w1 = 0 in (4.13) we
obtain

p(z,w)p̄(1/z, 0) = 8n,m(z, w)T 8n,m(1/z, 0),

which gives p(z,w) up to a factor depending only on z.



1866 Jeffrey S. Geronimo, Plamen Iliev

Lemma 4.6. Let K and K1 be m × n matrices, and let r = rank(K), r1
= rank(K1).

Then the following conditions are equivalent:

(i) K(K1)T = 0.
(ii) We have

K = USŨ†, K1
= U1S1ŨT , (4.23)

where U,U1
∈ Mm,m, Ũ ∈ Mn,n are unitary and S, S1 are m × n “diagonal”

matrices with block structures of the form

S =


s1
. . . 0

sr

0 0

 , (4.24a)

S1
=


0 0

s1
1

0
. . .

s1
r1

 , (4.24b)

with positive s1, . . . sr , s1
1 , . . . , s

1
r1 and r + r1

≤ n.

Remark. Note that the condition r + r1
≤ n implies S(S1)T = 0.

Proof. We focus on the implication (i)⇒(ii), since the other direction is obvious. Con-
sider A = K†K and B = (K1)T K1. Note that A and B are Hermitian n × n matrices
such that AB = BA = 0. Hence, there exists an orthonormal basis (ũ1, . . . , ũn) for Cn
which diagonalizes A and B, i.e.

K†Kũj = λj ũj , (K1)T K1ũj = µj ũj , ũ
†
i ũj = δij . (4.25)

Let Ũ be the unitary matrix with columns ũ1, . . . , ũn. From (4.25) we see that

λj = ‖Kũj‖2 ≥ 0 and µj = ‖K1ũj‖
2
≥ 0.

Moreover, the fact that K(K1)T = 0 implies that λjµj = 0 for all j . Suppose now that

• λ1, . . . λr are positive and λr+1 = · · · = λn = 0;
• µn−r1+1, . . . , µn are positive and µ1 = · · · = µn−r1 = 0.

Set

si =
√
λi for i = 1, . . . , r,

s1
j =

√
µn−r1+j for j = 1, . . . , r1.
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Consider the sets of vectors

T =

{
ui =

Kũi
si
: i = 1, . . . , r

}
, (4.26a)

T1 =

{
uj =

K1 ¯̃uj+n−m

s1
j−m+r1

: j = m− r1
+ 1, . . . , m

}
. (4.26b)

Using (4.25) it is easy to see that T and T1 are orthonormal sets of vectors. Extending
the set T to an orthonormal basis for Cm and constructing a matrix with columns these
vectors we obtain a unitarym×mmatrix U ; extending the set T1 to an orthonormal basis
for Cm and constructing a matrix with columns these vectors we obtain a unitary m×m
matrix U1. With these matrices one can check that (4.23) holds. ut

Remark 4.7. If we know that K(K1)T = 0 and K†K1
= 0 (which are satisfied by the

matrices K = Kn,m and K1
= K1

n,m in Theorem 2.5) then we can choose U = U1 in
(4.23). Indeed, using the notations in the proof of Lemma 4.6 we see that all vectors in T
are perpendicular to all vectors in T1. Extending the orthonormal set T ∪T1 to an orthonor-
mal basis for Cm we can construct a unitary matrix U = U1 with columns these vectors.

Lemma 4.8. Let G be an n× n matrix. Suppose that

(Gk)i,j = 0 for all i = 1, . . . , r, j = n− r1
+ 1, n− r1

+ 2, . . . , n,
and k = 1, . . . , n− 1, (4.27)

where r + r1 < n. Then there exists a unitary n× n block matrix Ẽ of the form

Ẽ =


Ir 0 0

0 ∗ 0

0 0 Ir1

 (4.28)

such that the matrix Ẽ†GẼ has the following block structure:

Ẽ†GẼ =
[
∗ 0

∗ ∗

]
, (4.29)

where the zero block in (4.29) is an n1×n2 matrix with n1 ≥ r , n2 ≥ r
1 and n1+n2 = n.

Proof. Let {e1, . . . , en} be the standard basis for Cn, and let

W0 = span{en−r1+1, en−r1+2, . . . , en}.

Consider the space
W = W0 +GW0 + · · · +G

n−1W0. (4.30)
By the Cayley–Hamilton theorem,W is the minimal subspace of Cn which isG-invariant
and contains W0. From (4.27) it follows that

span{e1, . . . , er} ⊂ W
⊥. (4.31)

Let
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• {v1, . . . , vn1} be an orthonormal basis for W⊥ which extends {e1, . . . , er}, i.e. vj = ej
for j = 1, . . . , r;
• {vn1+1, . . . , vn} be an orthonormal basis for W which extends {en−r1+1, . . . , en}, i.e.
vj = ej for j > n− r1.

Then the unitary matrix Ẽ with columns v1, . . . , vn will have the block structure given in
(4.28), and the G-invariance of W implies (4.29). ut

Proof of the implication (ii)⇒(i) in Theorem 2.3. Applying Lemma 4.6 with

K = Kn,m and K1
= K1

n,m

we see that there exist unitary matrices U,U1
∈ Mm,m and Ũ ∈ Mn,n such that (4.23),

(4.24) hold. Moreover, applying Lemma 4.8 with

G = Ũ†0̃1
n,m0̃

†
n,mŨ ,

we see that Ũ can be modified (if necessary) so that (4.23), (4.24) hold and

G = Ũ†0̃1
n,m0̃

†
n,mŨ =

[
∗ 0

∗ ∗

]
, (4.32)

where the zero block is an n1 × n2 matrix with n1 ≥ r = rank(Kn,m), n2 ≥ r1
=

rank(K1
n,m) and n1 + n2 = n.

Replacing Kn,m and K1
n,m in the tilde analogs of (2.11c) and (2.11d) with the expres-

sions given in (4.23) we find

Ũ†0̃n,m8̃n,m = Ũ
†8̃n−1,m − S

TU†8n,m−1, (4.33c)

Ũ†0̃1
n,m8̃n,m = zŨ

†8̃n−1,m − (S
1)T (U1)T
E

8Tn,m−1. (4.33d)

With n1 and n2 fixed above, we will use the following notation: for an n-dimensional
vector 9̃, we denote by 9̃(1) (resp. 9̃(2)) the vector which consists of the first n1 (resp.
the last n2) entries of the vector 9̃. Thus if we set

9̃n−1,m = Ũ
†8̃n−1,m, (4.34)

then the vector 9̃n−1,m can be represented in the block form

9̃n−1,m =

[
9̃
(1)
n−1,m

9̃
(2)
n−1,m

]
. (4.35)

With this choice of a unitary matrix Ũ , we want to show that there exists a unitary ma-
trix Ṽ such that (4.10b) holds. Since the bottom n2 rows of the matrix ST are equal to 0,
we see from (4.33c) and (4.35) that

(Ũ†0̃n,m8̃n,m)
(2)
= 9̃

(2)
n−1,m. (4.36c)
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Similarly, since the first n1 rows of (S1)T are equal to 0, we see from (4.33d) and (4.35)
that

(Ũ†0̃1
n,m8̃n,m)

(1)
= z9̃

(1)
n−1,m. (4.36d)

Equations (4.36) show that the entries of the vector polynomials z9̃(1)n−1,m and 9̃(2)n−1,m are
linear combinations of the entries of the vector polynomial 8̃n,m, and therefore they are
orthogonal with respect to L to all monomials of degree at most (n,m − 1). Moreover,
since Ũ is unitary, it follows from (4.34) and (4.35) that the entries of each of the vectors
z9̃

(1)
n−1,m and 9̃(2)n−1,m form orthonormal sets of polynomials of degrees at most (n,m)

with respect to L. Finally, from (4.32) and (4.36) we see that the entries of z9̃(1)n−1,m are
perpendicular to the entries of 9̃(2)n−1,m. Therefore, all the entries in z9̃(1)n−1,m and 9̃(2)n−1,m
form an orthonormal set of n polynomials, which can be extended by adding a polynomial
ψ̃nn,m(z, w) to an orthonormal set of polynomials of degree at most (n,m), perpendicular
to all polynomials of degree at most (n,m−1). The transition matrix between this set and
the orthonormal polynomials {φ̃sn,m(z, w)}s=0,1,...,n is a unitary matrix whose transpose is
a unitary matrix Ṽ satisfying (4.10b). The statement now follows from Lemma 4.4. ut

5. Proofs of the theorems in the splitting case

5.1. Proof of Theorem 2.5

The proof of (i)⇒(ii) follows easily from Theorem 2.3 and its tilde analog. Indeed, note
that if (2.16) holds, then

L(zkwl) =
1

4π2

∫
[−π,π ]2

eikθeilϕ

|P(eiθ , eiϕ)|2
dθ dϕ (5.1a)

=
1

4π2

∫
[−π,π ]2

eikθeilϕ

|Q(eiθ , eiϕ)|2
dθ dϕ (5.1b)

where

P(z,w) = p(z,w)zn2q(1/z,w) is a polynomial of degree at
most (n,m), stable for |z| = 1 and |w| ≤ 1, (5.2a)

and

Q(z,w) = p(z,w)wm2 q̄(z, 1/w) is a polynomial of degree at
most (n,m), stable for |z| ≤ 1 and |w| = 1. (5.2b)

Therefore, equation (2.17a) follows from Theorem 2.3(i)⇒(ii) for the polynomialP(z,w)
and equation (2.17b) follows from the tilde analog of Theorem 2.3(i)⇒(ii) for Q(z,w).
Conversely, suppose that equations (2.17) hold. Then, by Theorem 2.3(ii)⇒(i) and its
tilde analog, we deduce that there exist polynomials P(z,w) and Q(z,w) of degrees at
most (n,m) such that equations (5.1) hold and
(a) P(z,w) is stable for |z| = 1 and |w| ≤ 1,
(b) Q(z,w) is stable for |z| ≤ 1 and |w| = 1.
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Without any restrictions, we can assume that P(z,w) and Q(z,w) are not divisible by z
and w. From (2.15) for P(z,w) and Q(z,w) we see that |P(z,w)|2 = |Q(z,w)|2 for all
(z, w) ∈ T2, which implies that in the ring C[z, z−1, w,w−1

] we have

P(z,w)P̄ (1/z, 1/w) = Q(z,w)Q̄(1/z, 1/w). (5.3)

Suppose now that we factor P(z,w) into a product of irreducible factors pj (z, w)
in C[z,w]. Likewise we can factor Q(z,w) into a product of irreducible factors
ql(z, w) in C[z,w]. Using (5.3) we see that we can factor P(z,w)P̄ (1/z, 1/w) =
Q(z,w)Q̄(1/z, 1/w) in C[z, z−1, w,w−1

] in two ways:

P(z,w)P̄ (1/z, 1/w) =
∏
j

pj (z, w)p̄j (1/z, 1/w)

=

∏
l

ql(z, w)q̄l(1/z, 1/w) = Q(z,w)Q̄(1/z, 1/w). (5.4)

Since C[z, z−1, w,w−1
] is a unique factorization domain, it follows that for every j , there

exists a unique l such that exactly one of the following holds:
(I) pj (z, w) and ql(z, w) are associates in C[z, z−1, w,w−1

];
(II) pj (z, w) and q̄l(1/z, 1/w) are associates in C[z, z−1, w,w−1

].
Note that the units in C[z, z−1, w,w−1

] are of the form czswr , where c 6= 0, s, r ∈ Z.
Thus, we see that if (I) holds then with the normalization chosen above (P and Q are
not divisible by z and w) we must have pj (z, w) = cql(z, w) where c is a nonzero
constant. From properties (a) and (b) of P(z,w) and Q(z,w) we deduce that pj (z, w) =
cql(z, w) 6= 0 when |z| = 1, |w| ≤ 1, and likewise pj (z, w) = cql(z, w) 6= 0 when
|z| ≤ 1, |w| = 1. This shows that if (I) holds, then pj (z, w) 6= 0 when |z| ≤ 1 and
|w| ≤ 1.

If (II) holds then pj (z, w) = czsjwrj q̄l(1/z, 1/w) where c 6= 0, and sj , rj are the
minimal nonnegative integers for which zsjwrj q̄l(1/z, 1/w) belongs to C[z,w]. It is easy
to see that pj (z, w) and ql(z, w) have the same degree (sj , rj ). From property (a) of
P(z,w) we deduce that zsjpj (1/z,w) = cwrj q̄l(z, 1/w) 6= 0 when |z| = 1, |w| ≤ 1.
From property (b) of Q(z,w) we conclude that zsjpj (1/z,w) = cwrj q̄l(z, 1/w) 6= 0
when |z| ≤ 1, |w| = 1. Thus we see that if (II) holds, then the polynomial zsjpj (1/z,w)
has no zeros when |z| ≤ 1 and |w| ≤ 1.

Let J1 (resp. J2) denote the set of indices j for which (I) (resp. (II)) holds. Then the
polynomials p(z,w) =

∏
j∈J1

pj (z, w) and q(z,w) =
∏
j∈J2

zsjpj (1/z,w) satisfy the
conditions in Theorem 2.5(i), completing the proof. ut

5.2. Proof of Theorem 2.7

For the proof we first summarize some basic properties of the vector orthogonal polyno-
mials 8k,l(z, w) associated with a moment functional L of the form

L(zkwl) =
1

4π2

∫
[−π,π ]2

eikθeilϕ

|p(eiθ , eiϕ)|2
dθ dϕ, (5.5)

where p(z,w) is of degree (n,m) and nonzero for |z| ≤ 1 and |w| ≤ 1.
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We define as usual

E

p(z,w) = znwm p(1/z̄, 1/w̄).

Lemma 5.1. If (5.5) holds then

L(p(z,w)z−kw−l) = 0 for all k ∈ Z, l > 0, (5.6a)

L(

E

p(z,w)z−kw−l) = 0 for all k < n, l ∈ Z. (5.6b)

Proof. (5.6a) follows immediately by computing first the w-integral and by using equa-
tion (4.3a) of Lemma 4.1. The proof of (5.6b) follows by a similar computation, by eval-
uating first the z-integral. ut

Lemma 5.2. Suppose that (5.5) holds. Then the vector polynomial 8n,m(z, w) has the
following block structure:

8n,m(z, w) =

[ E

p(z,w)

8n,m−1(z, w)

]
. (5.7)

Moreover,
L(8n,m−1(z, w)z

−kw−l) = 0 for all k < n, l ≥ 0. (5.8)

Proof. Equation (5.7) follows from Theorem 7.2 of [12]. Plugging (5.7) and its tilde
analog in (3.2) we obtain the identity

p(z,w) p(z1, w1)−

E

p(z,w)

E

p(z1, w1) = (1− ww̄1)8n,m−1(z, w)
T 8n,m−1(z1, w1)

+ (1− zz̄1)

E

8̃n−1,m(z, w)

E

8̃n−1,m(z1, w1)
†.

Thus, if we take z = z1 on the unit circle, the last term above will vanish and we can
rewrite the equation as follows:

p(z,w)p̄(1/z, w̄1)−

E

p(z,w)z−nw̄m1 p(z, 1/w̄1)

1− ww̄1
= 8n,m−1(z, w)

T 8n,m−1(z, w1).

Using the matrix-valued polynomial8m−1
n (z) defined in (3.1a) and its reverse

E

8m−1
n (z) =

zn8m−1
n (1/z̄)T we can replace in the last equation 8n,m−1(z, w1) by

z−n

E

8m−1
n (z)T

[
w̄m−1

1 w̄m−2
1 · · · 1

]T
,

and therefore we obtain

p(z,w)znp̄(1/z, w̄1)−

E

p(z,w)w̄m1 p(z, 1/w̄1)

1− ww̄1
= 8n,m−1(z, w)

T

E

8m−1
n (z)T


w̄m−1

1
w̄m−2

1
...

1

 .
(5.9)
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Let us denote by S(z,w, w̄1) the function on the left-hand side above. Note that we can
rewrite it as

S(z,w, w̄1) = p(z,w)
A(z, 1/w, w̄1)

w
+

E

p(z,w)
B(z, 1/w, w̄1)

w
, (5.10)

where

A(z, 1/w, w̄1) =
znp̄(1/z, w̄1)− z

np̄(1/z, 1/w)
1/w − w̄1

and

B(z, 1/w, w̄1) =
w−mp(z,w)− w̄m1 p(z, 1/w̄1)

1/w − w̄1

are polynomials in z, 1/w and w̄1 of degrees at most n,m−1 andm−1, respectively. Thus,
there exist 1 × m vectors Am(z, 1/w) and Bm(z, 1/w) whose entries are polynomials in
z and 1/w of degrees at most n and m− 1, respectively, such that

A(z, 1/w, w̄1) = Am(z, 1/w)


w̄m−1

1
w̄m−2

1
...

1

 , B(z, 1/w, w̄1) = Bm(z, 1/w)


w̄m−1

1
w̄m−2

1
...

1

 .
Combining these formulas with (5.9) and (5.10) we see that

p(z,w)
Am(z, 1/w)

w
+

E

p(z,w)
Bm(z, 1/w)

w
= 8n,m−1(z, w)

T

E

8m−1
n (z)T .

From the theory of matrix-valued orthogonal polynomials we know that det(

E

8m−1
n (z)) 6=0

for |z| ≤ 1. Therefore, the entries of the matrix [

E

8m−1
n (z)T ]−1 are analytic functions on

the closed unit disk |z| ≤ 1 and we have

8n,m−1(z, w)
T
=

(
p(z,w)

Am(z, 1/w)
w

+

E

p(z,w)
Bm(z, 1/w)

w

)[ E

8m−1
n (z)T

]−1
.

Equation (5.8) follows immediately from this and Lemma 5.1. ut

Proof of Theorem 2.7. The block structure of the vector polynomials given in (2.18) fol-
lows immediately from (5.7). Let us denote by Lp and Lq the positive moment functionals
corresponding to the stable polynomials p(z,w) and q(z,w), i.e.

Lp(zkwl) =
1

4π2

∫
[−π,π ]2

eikθeilϕ

|p(eiθ , eiϕ)|2
dθ dϕ,

Lq(zkwl) =
1

4π2

∫
[−π,π ]2

eikθeilϕ

|q(eiθ , eiϕ)|2
dθ dϕ.

To prove that there exists a unitary matrix U such that (2.19a) holds, it is enough to show
two things:
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(i) the entries of the vector polynomial on the right-hand side of (2.19a) form an or-
thonormal set of polynomials of degrees at most (n,m− 1) with respect to L;

(ii) the entries of the vector polynomial on the right-hand side of (2.19a) are orthogonal
with respect to L to all polynomials of degrees at most (n− 1, m− 1).

Clearly, the entries of the vector polynomial on the right-hand side of (2.19a) are polyno-
mials of degrees at most (n,m − 1) and it is easy to see that they all have norm 1. The
fact that they are mutually orthogonal follows from the following direct computation:

L
(
z−n2 q̄(z, 1/w)8pn1,m1−1(1/z, 1/w)

E

p(z,w)wm2−18
q

n2,m2−1(z, 1/w)T
)

= −
1

4π2

∫
T

[∫
T

E

8
p

n1,m1−1(z, w)
T wm2−18

q

n2,m2−1(z, 1/w)T

p(z,w)zn2q(1/z,w)
dw

]
dz

z

= 0,

since the w-integral is zero by Cauchy’s residue theorem. Thus, it remains to check (ii).
Below we compute the inner products with the monomials zkwl where 0 ≤ k ≤ n− 1 =
n1 + n2 − 1 and 0 ≤ l ≤ m− 1 = m1 +m2 − 1.

For the first m1 entries on the right-hand side of (2.19a) we obtain

L
(
zn2q(1/z,w)8pn1,m1−1(z, w)z

−kw−l
)
= −

1
4π2

∫
T2

8
p

n1,m1−1(z, w)z
n2−kw−l

|p(z,w)|2q̄(z, 1/w)
dz

z

dw

w

= Lp
(
8
p

n1,m1−1(z, w)
zn2−k

wl q̄(z, 1/w)

)
= 0,

by (5.8), and the computation for the last m2 entries on the right-hand side of (2.19a)
is similar. The fact that there exists a unitary matrix V such that (2.19b) holds can be
established along the same lines. ut

Remark 5.3. The decomposition in Theorem 2.7 can be naturally connected to a decom-
position of a Christoffel–Darboux type formula. Indeed, for a polynomial h(z,w) let us
consider the corresponding Christoffel–Darboux kernel

Lh(z, w; η) =
h(z,w) h(1/z̄, η)−

E

h(z,w)

E

h(1/z̄, η)
1− wη̄

.

Using the notations in Theorem 2.7, we set qw(z, w) = zn2q(1/z,w) and h(z,w) =
p(z,w)qw(z, w). Then it is easy to see that

Lh(z, w; η) = qw(z, w) qw(1/z̄, η) Lp(z, w; η)+

E

p(z,w)

E

p(1/z̄, η) Lq
w

(z, w; η).

The point now is that the polynomials p(z,w) and q(z,w) are stable for |z| ≤ 1, |w| ≤ 1
and therefore the corresponding kernels possess a great many orthogonality relations (see
for instance [10]) which can be used to prove equations (2.19) and thus give an alternative
proof of the implication (i)⇒(ii) in Theorem 2.5.
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It is a challenging problem to find a direct algebro-geometric proof of the implication
(i)⇒(ii) in Theorem 2.3 (i.e. if we have stability only with respect to one of the variables).
If we use the notations in Theorem 2.3 and Lemma 4.4, the heart of the problem is the
following: start with a polynomial p(z,w) which is stable for |z| = 1 and |w| ≤ 1 and
give an explicit description (or prove existence) of the spaces H1 and H2, where Hj is
the space spanned by the entries of the vector polynomials 9̃(j)n−1,m(z, w) in Lemma 4.4.
These spaces must be mutually orthogonal and must satisfy additional extra orthogonality
properties in view of (4.10b). Since the orthogonality relations can be expressed in terms
of residues, constructing bases for these spaces amounts to an interesting interpolation
problem on a zero-dimensional variety, which involves appropriate zeros of p(z,w) andE

p(z,w). Equivalently, this would give a subtle decomposition of the Christoffel–Darboux
kernel associated with p(z,w).

5.3. Proofs of Corollaries 2.8 and 2.9

Proof of Corollary 2.8. The statement in (i) is proved in [12, Theorem 7.2] but we sketch
it briefly below since it follows easily from the constructions in this paper. If (2.20) holds
then the defining relation (2.12c) for Kn,m and Lemma 5.2 show that Kn,m = 0. Con-
versely, suppose that Kn,m = 0. Equation (2.11c) and its tilde analog imply that

8n,m(z, w) =

[
φmn,m(z, w)

8n,m−1(z, w)

]
, 8̃n,m(z, w) =

[
φ̃nn,m

8̃n−1,m(z, w)

]
. (5.11)

Using the second formula above and Lemma 4.4 (with Ũ and Ṽ being the identity matri-
ces), we see that equation (2.20) holds where p(z,w) =

E

φmn,m(z, w) is stable for |z| = 1
and |w| ≤ 1. Since φmn,m(z, w) = φ̃

n
n,m(z, w)we can use the first formula in (5.11) and the

tilde analog of Lemma 4.4 to deduce that p(z,w) is stable also for |z| ≤ 1 and |w| = 1,
which shows that p(z,w) is stable for |z| ≤ 1 and |w| ≤ 1, completing the proof of (i).

Suppose now that (2.21) holds. Applying Theorem 2.7 and its tilde analog we see that
there exist unitary matrices U ∈ Mm,m and Ũ ∈ Mn,n such that

8n,m−1(z, w) = w
m−1U 8

q

n,m−1(z, 1/w), 8̃n−1,m(z, w) = z
n−1Ũ8̃

q

n−1,m(1/z,w).

Plugging these formulas in the definition (2.12e) of K1
n,m we find

K1
n,m = U 〈8

q

n,m−1(1/z,w), 8̃
q

n−1,m(1/z,w)〉 Ũ
T .

Note that the inner product in the expression above gives the matrix Kn,m for the measure
dθ dϕ

4π2|q(eiθ ,eiϕ)|2
, and therefore is zero from the first part of the corollary. Thus, K1

n,m = 0.

Conversely, suppose now that K1
n,m = 0. From (2.11d) and its tilde analog we see that

there exist unitary matrices V ∈ Mm+1,m+1 and Ṽ ∈ Mn+1,n+1 such that

V †8n,m(z, w) =

[
ψmn,m(z, w)

w8n,m−1(z, w)

]
, Ṽ †8̃n,m(z, w) =

[
ψ̃nn,m(z, w)

z8̃n−1,m(z, w)

]
. (5.12)
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From Lemma 4.4 we deduce that (2.21) holds with q(z,w) = zn

E

ψ̃nn,m(1/z,w), which is
stable for |z| = 1 and |w| ≤ 1. We want to show next that ψ̃nn,m(z, w) and

E

ψmn,m(z, w) are
equal up to a unimodular constant, i.e.

ψ̃nn,m(z, w) = ε

E

ψmn,m(z, w), where |ε| = 1. (5.13)

Note that if we can prove the above equation, we can use the tilde analog of Lemma 4.4
to deduce that q(z,w) = ε̄znψmn,m(1/z,w) is stable for |z| ≤ 1 and |w| = 1, thus proving
that q(z,w) is stable for |z| ≤ 1 and |w| ≤ 1.

The proof of (5.13) follows from the characteristic properties of ψmn,m(z, w) and
ψ̃nn,m(z, w). Indeed, from the first formula in (5.12) it is easy to see that ψmn,m(z, w) is the
unique (up to a unimodular constant) orthonormal polynomial of degree at most (n,m)
such that

ψmn,m(z, w) ⊥ {z
kwl : 0 ≤ k ≤ n− 1, 0 ≤ l ≤ m} ∪ {znwl : 1 ≤ l ≤ m}.

Similarly, from the second formula in (5.12) we see that ψ̃mn,m(z, w) is the unique (up to
a unimodular constant) orthonormal polynomial of degree at most (n,m) such that

ψ̃mn,m(z, w) ⊥ {z
kwl : 0 ≤ k ≤ n, 0 ≤ l ≤ m− 1} ∪ {zkwm : 1 ≤ k ≤ n}.

The above characteristic properties of ψmn,m(z, w) and ψ̃nn,m(z, w) establish (5.13), thus
completing the proof. ut

Proof of Corollary 2.9. Assume first that L(zkwl) = Lz(zk)Lw(wl). If we denote by
{αk(z)}0≤k≤n the (one-variable) polynomials orthonormal with respect to Lz and by
{βl(w)}0≤l≤m the (one-variable) polynomials orthonormal with respect to Lw, then it is
easy to see that

8n,m(z, w) = αn(z)


βm(w)

βm−1(w)
...

β0(w)

 , 8̃n,m(z, w) = βm(w)


αn(z)

αn−1(z)
...

α0(z)

 .
From these explicit formulas and the defining relations (2.12c), (2.12e) for Kn,m and K1

n,m

it follows that Kn,m = K1
n,m = 0.

Conversely, suppose that Kn,m = K1
n,m = 0. Note that if h(z,w) is a polynomial of

degree (k, l) such that h(z,w) and zkh(1/z,w) are stable, then h(z,w) is independent of z
(i.e. k = 0). Using this observation, Corollary 2.8 and arguments similar to the ones we
used in the proof of the implication (ii)⇒(i) in Theorem 2.5, we see that

E

φmn,m(z, w) =

α(z)β(w), where α(z) and β(w) are stable polynomials of degrees at most n and m,
respectively and that (2.22) holds, completing the proof. ut



1876 Jeffrey S. Geronimo, Plamen Iliev

5.4. Proof of Theorem 2.10

With the measure µ we associate the positive moment functional L defined on
C[z, z−1, w,w−1

] by

L(zkwl) =
∫
T2
zkwl dµ for k, l ∈ Z. (5.14)

First suppose that (2.23) holds where p(z,w) and q(z,w) are stable polynomials of
degrees (n1, m1) and (n2, m2), respectively, with n1+n2 ≤ n,m1+m2 ≤ m. Then we can
represent L as in (5.1) where P(z,w) and Q(z,w) are given in (5.2). Using Lemma 4.2
and its tilde analog, we see that (2.25) holds. To complete the proof, it remains to show
that (2.24) implies the existence of stable polynomials p(z,w) and q(z,w) of degrees
(n1, m1) and (n2, m2), with n1 + n2 ≤ n, m1 + m2 ≤ m such that (2.23) holds. From
Lemma 4.3 and its tilde analog we see that

Kk,l[0̃1
k,l0̃

†
k,l]

j (K1
k,l)

T
= 0 for all j ≥ 0, k ≥ n+ 2, l ≥ m+ 2, (5.15a)

(Kk,l)†[01
k,l0

†
k,l]

jK1
k,l = 0 for all j ≥ 0, k ≥ n+ 2, l ≥ m+ 2. (5.15b)

By Theorem 2.5 there exist stable polynomials p(z,w) and q(z,w) of degrees (n1, m1)

and (n2, m2) with n1+ n2 ≤ n+ 2, m1+m2 ≤ m+ 2 such that (2.16) holds for all (k, l)
satisfying |k| ≤ n+ 2, |l| ≤ m+ 2. Moreover, from (2.15) we see that

p(z,w)p̄(1/z, 1/w)q(1/z,w)q̄(z, 1/w)

= 8̃n+2,m+2(z, w)
T 8̃n+2,m+2(1/z, 1/w)− 8̃n+1,m+2(z, w)

T 8̃n+1,m+2(1/z, 1/w)

= 8n+2,m+2(z, w)
T 8n+2,m+2(1/z, 1/w)−8n+2,m+1(z, w)

T 8n+2,m+1(1/z, 1/w).
(5.16)

Recall that if Êk,l = 0 then Ak,l = Il+1 and therefore by (2.11a) we obtain

8k,l(z, w) = z8k−1,l(z, w). (5.17a)

Similarly, if ˜̂Ek,l = 0 then

8̃k,l(z, w) = w8k,l−1(z, w). (5.17b)

Using (2.24) we see that equations (5.17) hold for all k ≥ n + 1 and l ≥ m + 1, which
combined with (5.16) shows that

p(z,w)p̄(1/z, 1/w)q(1/z,w)q̄(z, 1/w)

= 8̃k,l(z, w)
T 8̃k,l(1/z, 1/w)− 8̃k−1,l(z, w)

T 8̃k−1,l(1/z, 1/w) (5.18a)

for k ≥ n+ 2, l ≥ m, and

p(z,w)p̄(1/z, 1/w)q(1/z,w)q̄(z, 1/w)

= 8k,l(z, w)
T 8k,l(1/z, 1/w)−8k,l−1(z, w)

T 8k,l−1(1/z, 1/w) (5.18b)
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for k ≥ n, l ≥ m + 2. From Theorem 2.3 we see that (2.16) holds for all k, l ∈ Z which
establishes (2.23). It remains to show now that in fact n1+ n2 ≤ n and m1+m2 ≤ m. To
see this, we will use the following two observations:

(i) If p(z,w) and q(z,w) are stable polynomials of degrees (n1, m1) and (n2, m2), then
P(z,w) = p(z,w)zn2q(1/z,w) is a polynomial of degree (n1+n2, m1+m2) which
is not divisible by z and w (i.e. P(0, w) 6≡ 0 and P(z, 0) 6≡ 0).

(ii) If P(z,w) is a polynomial of degree (n0, m0) which is not divisible by z and w, and
P(z,w)P̄ (1/z, 1/w) ∈ 5n,m, then n0 ≤ n and m0 ≤ m.

From (i) we see that P(z,w) = p(z,w)zn2q(1/z,w) is a polynomial of degree (n1 +

n2, m1 +m2) which is not divisible by z and w. From (5.18a) with k = n+ 2, l = m and
(5.18b) with k = n, l = m+ 2 we see that

P(z,w)P̄ (1/z, 1/w) ∈ 5n+2,m
∩5n,m+2

= 5n,m,

which combined with (ii) completes the proof. ut

6. Examples

We now consider some examples that exhibit the properties of the theorems proved earlier.

6.1. One-sided stability

Our first example will be a polynomial of degree (2,2) that is stable for |z| = 1, |w| ≤ 1.
We will construct the polynomial using the algorithm given in [12]. Setting u0,0 = 1,

u2,0 = 1/4, u−1,2 =
1−a2

1+a2 , u2,2 = −
√

15(1−a2)
60a , u−2,2 = −

a(1−a2)
(1+a2)2

with (−3+
√

13)/2 <
a < 1 and ui,j = 0 for (i, j) ∈ {(0, 1), (1, 0), (0, 2), (−1, 1), (1, 1), (1, 2), (−2, 1),
(2, 1)} we construct the orthogonal polynomials up to level (2, 2). In this case we find
using Maple or Mathematica that

K2,2 =
2
√

15(1− a2)

15(1+ a2)

[
0 0
2 −1

]
, 01

2,2 =

[
2
√

3d
3
√
c

0
√

3(1−a4)
12a
√
c

0 1 0

]
,

K1
2,2 = −

√
15(1− a2)

60a

[
1 2
0 0

]
, 0̃2,2 =

0 5
√
c
√
e

8
√

15(1−a2)2

15(1+a2)
√
f

0 0
√

15f
15(1+a2)

 ,
02,2 =

[
0 1 0
0 0

√
3c

3(1+a2)

]
0̃1

2,2 =

√5d
2
√
c
−
(1−a4)(1−a2)

√
e

4af
√
c

√
15g

30a
√
f

0 5(1+a2)
√
c

2a
√
e

4
√

15(1−a2)2

15a
√
f

 ,
where c = 14a2

−a4
−1, d = 11a2

−a4
−1, e = 55+190a2

+55a4, f = 11+38a2
+11a4,

g = 4a4
+ 7a2

+ 4.
It is not difficult to see that K2,2(K1

2,2)
T
= 0 = K†

2,2K
1
2,2, and using Maple or Math-

ematica we find
K2,20̃

1
2,20̃

†
2,2(K

1
2,2)

T
= 0
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while

K†
2,20

1
2,20

†
2,2K

1
2,2 =

(1− a2)2

15a(1+ a2)

[
−1 −2

1
2 1

]
6= 0. (6.1)

Using Remark 4.5 we find that a candidate for p(z,w) is

p̂(z, w) =
(
4a(1− a2)w2

− 3(1+ a2)2
)
z2
+ 3

(
(1− a4)w2

+ 3a(1+ a2)
)
z

− 13a(1− a2)w2
+ 12a2.

Using the Schur–Cohn test it is not difficult to see that p̂(z, w) is nonzero for |z| = 1 and
|w| ≤ 1. Applying Lemma 4.6 (see also Remark 4.7) we see that (4.23) and (4.24) hold
with r = r1

= 1, s1 = 2(1−a2)
√

3(1+a2)
, s1

1 =
1−a2

4
√

3a
,

U1
= U =

[
0 1
1 0

]
, Ũ =

1
√

5

[
2 −1
−1 −2

]
.

Next we find 9̃1,2(z, w) in (4.10a) by computing

9̃1,2(z, w) = Ũ
†8̃1,2(z, w) =

√
5

10a

[
4azw2

− w2
− a2w2

+ z− a2z

−2azw2
− 2w2

− 2a2w2
+ 2z− 2a2z

]
.

We look for a unitary matrix Ṽ such that (4.10b) holds with n1 = n2 = 1. This uniquely
specifies Ṽ (except the first column, which can be multiplied by an arbitrary complex
number of modulus 1) as

Ṽ =


√

3a
√
c

√
d
√
c

0
2
√

3(1+a2)
√
d

√
cf

−
6a(1+a2)
√
f c

−

√
c
√
f

−

√
d
√
f

√
3a
√
f

−
2
√

3(1+a2)
√
f

 .

The first entry of the vector polynomial 9̃2,2(z, w) = Ṽ †8̃2,2(z, w) is
√

15
30a
√
d

E

p̂(z, w).

Thus, Lemma 4.4 shows that p(z,w) =
√

15
30a
√
d
p̂(z, w).

6.2. Splitting case

The second example we will consider illustrates Theorem 2.5. In this case we choose
u0,0 = 1, u−1,1 = a, u1,1 = b, u2,0 = ab = u0,2 and ui,j = 0 when (i, j) ∈
{(0, 1), (1, 0), (1, 2), (−1, 2), (2, 1), (−2, 1), (2, 2), (−2, 2)} where −1 < a < 1 and
−1 < b < 1. Using the algorithm given in [12] we find that
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K2,2 =

[
a 0
0 0

]
, 02,2 =

[
0
√

1− a2 0
0 0 1

]
= 0̃2,2,

K1
2,2 =

[
0 0
0 b

]
, 01

2,2 =

[
1 0 0
0
√

1− b2 0

]
= 0̃1

2,2.

It is easy to check that equations (2.17) are satisfied. Moreover, we find that

P(z,w)P̄ (1/z, 1/w) = 8̃2,2(z, w)
T 8̃2,2(1/z, 1/w)− 8̃1,2(z, w)

T 8̃1,2(1/z, 1/w)
(6.2)

where
P(z,w) =

(1− bzw)(z− aw)√
(1− a2)(1− b2)

is stable for |z| = 1 and |w| ≤ 1. It is easy to see that P(z,w) above is the unique
polynomial (up to a multiplicative constant of modulus 1) of degree at most (2, 2) which
is stable for |z| = 1 and |w| ≤ 1 and which satisfies (6.2). Finally, note that

P(z,w) = p(z,w)zq(1/z,w)

where
p(z,w) =

1− bzw
√

1− b2
, q(z,w) =

1− azw
√

1− a2

are stable polynomials. We can obtain all this also by following the steps of Example 1.
Indeed, we see that we can take U = Ũ = I2 the identity 2× 2 matrix and

Ṽ =

0 1 0
1 0 0
0 0 1

 .
The first entry of the vector polynomial 9̃2,2(z, w) = Ṽ †8̃2,2(z, w) is P(z,w). Note
that if a = 0 then K2,2 = 0 and the functional is in the stable case, while if b = 0 then
K1

2,2 = 0 and the functional is in the anti-stable case.
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