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Abstract. Investigated are continuous rational maps of nonsingular real algebraic varieties into
spheres. In some cases, necessary and sufficient conditions are given for a continuous map to be
approximable by continuous rational maps. In particular, each continuous map between unit spheres
can be approximated by continuous rational maps.
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1. Introduction and main results

Throughout this section, X ⊆ Rk and Y ⊆ Rl are nonsingular algebraic sets. A map
f : X→ Y is said to be continuous rational if it is continuous and there exist polynomials
P1, . . . , Pl,Q1, . . . ,Ql in R[T1, . . . , Tk] such that no Qi is identically equal to zero on
any irreducible component of X and

f (x) =

(
P1(x)

Q1(x)
, . . . ,

Pl(x)

Ql(x)

)
for all points x in X with Q1(x) 6= 0, . . . ,Ql(x) 6= 0. In other words, besides the
continuity of f , the existence of a Zariski open and dense subsetU ofX and a regular map
ϕ : U → Y with f |U = ϕ is required. Since U is dense in X in the Euclidean topology,
the map f is completely determined by ϕ. In particular, the graph of f is a semi-algebraic
set, being the closure of the graph of ϕ. Denote by P(f ) the indeterminacy locus of the
rational map from X into Y represented by ϕ. Thus P(f ) is the smallest algebraic subset
of X for which the restriction map f |X\P(f ) : X \ P(f ) → Y is regular. It is called the
irregularity locus of f . Maps with f (P (f )) 6= Y are said to be nice.

Maps with semi-algebraic graphs, called semi-algebraic maps, have been extensively
studied in real algebraic geometry (cf. [5]). In problems involving homotopy or approx-
imation, continuous semi-algebraic maps tend to behave like arbitrary continuous maps.
On the other hand, regular maps are often too rigid for such problems (cf. [5, 7, 8, 9, 11,
13, 14, 18, 19, 20, 27]). Continuous rational maps form a natural intermediate class be-
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tween regular and semi-algebraic maps, with many specific properties. Probably the first
paper in which they are studied in a systematic way is that of the author [26]. It demon-
strates that in many interesting cases homotopy classes can be represented by continuous
rational maps (cf. [26, Theorems 1.1, 1.2, 1.5, 2.4]). On the other hand, homotopy classes
representable by such maps cannot, in general, be represented by regular maps (cf. [5,
Sections 13.3, 13.4 and 13.5]). Any continuous rational map which is of class C∞ is au-
tomatically regular [26, Proposition 2.1]. There are continuous rational maps that are not
nice [26, Example 2.2]. Contributions of other mathematicians include [17, 24]. In [24],
Kollár deals with subtleties involving restrictions and extensions of continuous rational
real-valued functions. Interesting algebraic properties of the ring of such functions on Rn
are obtained by Fichou, Huisman, Mangolte and Monnier [17].

In the present paper approximation of continuous maps into spheres by continuous ra-
tional maps is investigated. The space C(X, Y ) of all continuous maps from X into Y will
always be endowed with the compact-open topology. There are the following inclusions:

C(X, Y ) ⊇ R0(X, Y ) ⊇ R0(X, Y ) ⊇ R(X, Y ),

where R0(X, Y ) is the set of all continuous rational maps, R0(X, Y ) consists of the nice
maps in R0(X, Y ), and R(X, Y ) is the set of all regular maps. By definition, a continuous
map from X into Y can be approximated by continuous rational maps if it belongs to the
closure of R0(X, Y ) in C(X, Y ). Approximation by maps of other types is defined in the
analogous way.

Assumption. In the rest of this section, the algebraic set X is assumed to be compact.

A continuous map h : X → Y is said to be transverse to a point y0 in Y if it is
smooth (of class C∞) in an open neighborhood U of h−1(y0) inX and the restriction map
h|U : U → Y is transverse to y0 in the usual sense. In that case, h−1(y0) is a smooth
submanifold of X. If h is transverse to y0 and h−1(y0) = Reg(V ) for some algebraic
subset V of X, then h is said to be adapted to y0. Furthermore, h is said to be adapted if
it is adapted to some point y in Y . Here Reg(V ) stands for the set of nonsingular points
of V . In particular, dim h−1(y0) = dimV and V \ Reg(V ) is an algebraic subset of X,
which is either empty or satisfies dim(V \ Reg(V )) < dimV . If the set h−1(y) is empty,
then h is adapted to y.

The notions just introduced are natural when nice continuous rational maps are con-
sidered.

Proposition 1.1. Any nice continuous rational map from X into Y is adapted.

Proof. Let f : X → Y be a nice continuous rational map. Since f (P (f )) is a proper
compact subset of Y , it follows from Sard’s theorem that the regular map f |X\P(f ) :
X \ P(f ) → Y is transverse to some point y0 in Y \ f (P (f )). Hence f−1(y0) is a
nonsingular Zariski closed subset of X \ P(f ). If V is the Zariski closure of f−1(y0)

in X, then V \ f−1(y0) is a Zariski closed subset of X contained in P(f ), with
dim(V \ f−1(y0)) < dim f−1(y0). Hence f−1(y0) = Reg(V ), the set f−1(y0) being
compact. Consequently, f is adapted to y0. ut
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It is convenient to relax the notion of “adapted” in a suitable way. This requires some
preparation. For any smooth manifolds N and P , let C∞(N, P ) denote the space of all
smooth maps from N into P endowed with the C∞ topology (cf. [22]). The source man-
ifold will always be assumed to be compact, and hence the weak C∞ topology coincides
with the strong one.

A compact smooth submanifold M of X is said to admit a weak algebraic approxi-
mation in X if each neighborhood of the inclusion map M ↪→ X in the space C∞(M,X)
contains a smooth embedding e : M → X with e(M) = Reg(V ) for some algebraic sub-
set V of X. A continuous map h : X→ Y is said to be weakly adapted to a point y0 in Y
if it is transverse to y0 and the smooth submanifold h−1(y0) ofX admits a weak algebraic
approximation in X. Furthermore, h is said to be weakly adapted if it is weakly adapted
to some point y in Y .

In what follows, mostly maps with values in the unit p-sphere

Sp := {(u1, . . . , up+1) ∈ Rp+1
| u2

1 + · · · + u
2
p+1 = 1}

are considered. The main result, whose proof is postponed until Section 2, is Theorem
1.2. Its significance is elaborated upon in the remainder of this section.

Theorem 1.2. For a continuous map h : X → Sp, the following conditions are equiva-
lent:
(a) h can be approximated by nice continuous rational maps with irregularity locus of

dimension at most dimX − p.
(b) h can be approximated by nice continuous rational maps.
(c) h can be approximated by adapted continuous maps.
(d) h can be approximated by adapted smooth maps.
(e) h can be approximated by weakly adapted continuous maps.
(f) h can be approximated by weakly adapted smooth maps.

Theorem 1.2 immediately implies the following:

Corollary 1.3. If dimX = p, then the set R0(X, Sp) is dense in C(X, Sp).
Proof. According to Sard’s theorem, each smooth map g : X→ Sp is transverse to some
point z0 in Sp. Since in the case under consideration the set g−1(z0) is finite, the map g
is adapted to z0. It suffices to apply Theorem 1.2. ut

In Corollary 1.3, the set R0(X,Sp) cannot be replaced by R(X, Sp). Indeed, a continuous
map from S1

× S1 into S2 can be approximated by regular maps if and only if it is null
homotopic (cf. [11, Proposition 2.2, Example 2.1]).

Corollary 1.4. If each compact smooth submanifold of X, of codimension p and with
trivial normal bundle, admits a weak algebraic approximation in X, then the set
R0(X,Sp) is dense in C(X,Sp).
Proof. By Sard’s theorem, each smooth map g : X → Sp is transverse to some point z0
in Sp. Hence the set g−1(z0) is either empty or it is a smooth submanifold of X of codi-
mension p and with trivial normal bundle. Consequently, g is weakly adapted to z0. The
proof is complete in view of Theorem 1.2. ut

Corollary 1.4 is crucial in the proof of the following result.
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Theorem 1.5. For any pair (n, p) of nonnegative integers, the set R0(Sn,Sp) is dense
in C(Sn,Sp).

Proof. Let M be a compact smooth submanifold of Sn with dimM < n. Let a be a point
in Sn\M and let ρ : Sn\{a} → Rn be the stereographic projection. Clearly, ρ is a biregular
isomorphism. According to [1, Theorem A] (cf. also [2, Theorem 2.10.5 and Corollary
2.10.6]), the smooth submanifold ρ(M) of Rn admits a weak algebraic approximation
in Rn, and hence M admits a weak algebraic approximation in Sn. In view of Corollary
1.4, the proof is complete for p ≥ 1. The case p = 0 is obvious. ut

A stronger result holds for pairs (n, p)with p equal to 1, 2 or 4, namely, the set R(Sn,Sp)
is dense in C(Sn,Sp) (cf. [6] or [5, Theorem 13.3.10]). If n < p, then R(Sn,Sp) is
dense in C(Sn,Sp) for simple reasons (cf. Lemma 2.3). No pair (n, p) is known with
R(Sn,Sp) dense in C(Sn, Sp), n ≥ p and p different from 0, 1, 2 and 4. According to
[26, Theorem 1.1], for any pair (n, p), each continuous map from Sn into Sp is homotopic
to a continuous rational map f : Sn → Sp with f (P (f )) containing at most one point.
Moreover, for any nonnegative integer r , such a map f can be chosen to be of class Cr .

In general R0(X,Sp) need not be dense in C(X,Sp). Simple obstructions can be ex-
pressed in terms of homology or cohomology classes representable by algebraic subsets.
This is made precise below.

A cohomology class in H c(X;Z/2) is said to be algebraic if it corresponds via the
Poincaré duality isomorphism to a homology class in Hd(X;Z/2) represented by a d-
dimensional algebraic subset of X with d = dimX − c (cf. [3, 5, 12, 15]). The set
H c

alg(X;Z/2) of all algebraic cohomology classes in H c(X;Z/2) forms a subgroup. The
groups H c

alg(−;Z/2) have the following functorial property: If also Y is compact and
f : X→ Y is a continuous rational map, then

f ∗(H c
alg(Y ;Z/2)) ⊆ H

c
alg(X;Z/2),

where f ∗ : H c(Y ;Z/2) → H c(X;Z/2) is the homomorphism induced by f (cf. [26,
Proposition 1.3]). If a continuous map h : X → Y can be approximated by continuous
rational maps, then it is homotopic to a continuous rational map, and hence the last inclu-
sion holds with f replaced by h. In some cases, the converse is true.

Let sp denote the unique generator of the group Hp

alg(S
p
;Z/2) = Hp(Sp;Z/2) ∼=

Z/2 if p ≥ 1, and one of the two generators if p = 0.

Example 1.6. For a continuous map h : X → S1, the following conditions are equiva-
lent:

(a) h is homotopic to a continuous rational map.
(b) h can be approximated by regular maps.
(c) h∗(s1) is in H 1

alg(X;Z/2).

The equivalence of (b) and (c) is proved in [6] (cf. also [5, Theorems 12.4.6, 13.3.1]). As
explained above, (a) implies (c). Clearly, (a) follows from (b). It is well known that (c)
imposes essential restrictions on h (cf. [9] or [5, pp. 354–356]).
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Theorem 1.7. If dimX = p + 1, then for a continuous map h : X → Sp, the following
conditions are equivalent:

(a) h can be approximated by nice continuous rational maps.
(b) h is homotopic to a continuous rational map.
(c) h∗(sp) is in Hp

alg(X;Z/2).
Proof. The case p = 0 is obvious. Indeed, in this case, each of the conditions (a), (b)
and (c) implies that h is constant on each irreducible component of X, and hence h is a
regular map. For p = 1, Theorem 1.7 is a special case of Example 1.6. Therefore in what
follows p ≥ 2.

Clearly, (a) implies (b), and (b) implies (c). Suppose that (c) is satisfied. In the proof
that (a) holds, the map h can be assumed to be smooth. Let B be an algebraic (possibly
singular) curve in X whose homology class in H1(X;Z/2) is Poincaré dual to the coho-
mology class h∗(sp). By Sard’s theorem, h is transverse to some point z0 in Sp\h(B). The
homology class inH1(X;Z/2) represented by the smooth curve h−1(z0) is Poincaré dual
to h∗(sp) (cf. [15, Proposition 2.15]). Consequently, B and h−1(z0) represent the same
homology class. This property implies that the smooth curve h−1(z0) admits a weak al-
gebraic approximation in X (cf. [26, proof of (c)⇒(a) in Theorem 1.5]), and hence the
map h is weakly adapted to z0. Condition (a) is satisfied in view of Theorem 1.2. ut

It is worthwhile to illustrate Theorem 1.7 with an example. Let Tn = S1
× · · · × S1 be

the n-fold product of S1.

Example 1.8. Since H l
alg(T

n
;Z/2) = H l(Tn;Z/2) for all l ≥ 0, according to Theo-

rem 1.7, the set R0(Tp+1,Sp) is dense in C(Tp+1,Sp). On the other hand, if n > p ≥ 1
and h : Tn → Sp is a continuous map with h∗(sp) 6= 0 in Hp(Tn;Z/2), then there exist
a nonsingular real algebraic set Z and a smooth diffeomorphism ϕ : Z → Tn such that
the map h ◦ ϕ : Z → Sp is not homotopic to a continuous rational map (cf. Theorem 2.8
in Section 2). Furthermore, if p is even, then h is not homotopic to a regular map, and
hence it cannot be approximated by regular maps. This last assertion can be justified as
follows. In [4], for any nonnegative integer k and any real algebraic set V, a subgroup
H 2k

C-alg(V ;Z) of the cohomology group H 2k(V ;Z) is defined. If f : V → W is a regular
map between real algebraic sets, then

f ∗(H 2k
C-alg(W ;Z)) ⊆ H

2k
C-alg(V ;Z).

According to [4, Proposition 4.8],H 2k
C-alg(S

2k
;Z) = H 2k(S2k

;Z). It follows directly from
the definition that H 2k

C-alg(T
n
;Z) = 0 for all k ≥ 1. Consequently, for any regular map

g : Tn→ S2k ,
g∗(H 2k(S2k

;Z)) = 0 in H 2k(Tn;Z)
for all k ≥ 1. If h : Tn → S2k is a continuous map with h∗(s2k) 6= 0 in H 2k(Tn;Z/2),
then h∗(H 2k(S2k

;Z))) 6= 0 inH 2k(Tn;Z), and hence h cannot be homotopic to a regular
map. The assertion is proved.

It remains an open problem whether or not the sets R0(Tn,Sp) and R0(Tn,Sp) are
dense in C(Tn,Sp) for all n and p.
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2. Proofs and further results

The language of real algebraic geometry, as in [5], is used throughout this section. The
term real algebraic variety designates a locally ringed space isomorphic to an algebraic
subset of Rn, for some n, endowed with the Zariski topology and the sheaf of real-valued
regular functions (such objects are called affine real algebraic varieties in [5]). The quasi-
projective real algebraic varieties are real algebraic varieties in this sense (cf. [5, Propo-
sition 3.2.10, Theorem 3.4.4]). Zariski closed subsets of a real algebraic variety are often
called algebraic subsets. Morphisms between real algebraic varieties are called regular
maps. Every real algebraic variety carries also the Euclidean topology, which is deter-
mined by the usual metric on R. Unless explicitly stated otherwise, all topological notions
relating to real algebraic varieties refer to the Euclidean topology.

For any real algebraic variety X, algebraic vector subbundles of the trivial R-vector
bundle εkX with total space X×Rk , for some k, are called algebraic vector bundles on X.
In other words, algebraic vector bundles on X correspond to finitely generated projective
modules over the ring of regular functions from X into R (cf. [5] for other equivalent
definitions).

Lemma 2.1. Let X be a compact real algebraic variety and let C be an algebraic subset
ofX. Let ξ be an algebraic vector bundle onX and let σ : X→ ξ be a continuous section
of ξ , whose restriction σ |C is an algebraic section. Let U be a neighborhood of σ in the
space of all continuous sections of ξ , endowed with the compact-open topology. Then
there exists an algebraic section s : X→ ξ that belongs to U and satisfies s|C = σ |C .

Proof. This is a special case of [10, Lemma 2.2]. It should be mentioned that algebraic
vector bundles in the sense of this paper are called strongly algebraic in [10]. ut

For any algebraic vector subbundle η of εkX, let η⊥ denote its orthogonal complement
in εkX, with respect to the standard scalar product on Rk . Then η⊥ is an algebraic sub-
bundle of εkX and

η ⊕ η⊥ = εkX.

Suppose that X is compact and nonsingular. A topological line bundle λ on X is
topologically isomorphic to an algebraic line bundle if and only if its first Stiefel–Whitney
class w1(λ) is in H 1

alg(X;Z/2) (cf. [5, Theorem 12.4.6]).
The following approximation result for maps with values in real projective n-space

Pn(R) will be very useful (it is a relative version of [5, Theorem 13.3.1] with m = n+ 1,
p = 1 and F = R).

Lemma 2.2. Let X be a compact nonsingular real algebraic variety and let A be an
algebraic subset of X. Let f : X → Pn(R) be a continuous map whose restriction
f |A : A→ Pn(R) is a regular map. Assume that

f ∗(H 1(Pn(R);Z/2)) ⊆ H 1
alg(X;Z/2).

Then each neighborhood of f in C(X,Pn(R)) contains a regular map g : X → Pn(R)
with g|A = f |A.
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Proof. Let γn denote the universal line bundle on Pn(R). Recall that

{(l, e) ∈ Pn(R)× Rn+1
| e ∈ l}

is the total space of γn. Here Pn(R) is regarded as the space of 1-dimensional vector
subspaces of Rn+1. In particular, γn is an algebraic vector subbundle of εn+1

Pn(R). By as-
sumption, the cohomology class w1(f

∗γn) = f
∗(w1(γn)) is in H 1

alg(X;Z/2), and hence
there exist an algebraic line bundle λ on X and a topological isomorphism ϕ : λ→ f ∗γn.
Let σ : X → Hom(λ, f ∗γn) be the continuous section defined by σ(x)(w) = ϕ(w) for
all x in X and all w in the fiber λx of λ over x. Regarding f ∗γn and f ∗γ⊥n as topological
subbundles of εn+1

X , one notes that the map

ψ : f ∗γn ⊕ f
∗γ⊥n → εn+1

X

defined by ψ(u, v) = u + v for all u in (f ∗γn)x and v in (f ∗γ⊥n )x with x in X is
an isomorphism of topological vector bundles, which becomes a biregular isomorphism
of algebraic vector bundles when the bundles are restricted to A (here the regularity
of f |A is used). Hence the map π : εn+1

X → f ∗γn determined by π(ψ(u, v)) = u

is a continuous homomorphism of vector bundles, which becomes a regular homomor-
phism when the bundles are restricted to A. Consider the continuous section τ : X →
Hom(λ, εn+1

X ) defined by τ(x)(w) = ψ(σ(x)(w), 0). Since Hom(λ, εn+1
X ) is an al-

gebraic vector bundle, according to Lemma 2.1 (with C = ∅), there exists an alge-
braic section t : X → Hom(λ, εn+1

X ) arbitrarily close to τ . Then the continuous section
σ1 : X → Hom(λ, f ∗γn) defined by σ1(x)(w) = π(t (x)(w)) is close to σ , and σ1|A is
an algebraic section of

Hom(λ, f ∗γn)|A = Hom(λ|A, (f |A)∗γn).

Define a continuous section τ1 : X→ Hom(λ, εn+1
X ) by τ1(x)(w) = ψ(σ1(x)(w), 0). By

construction, τ1 is close to τ , and τ1|A is an algebraic section of Hom(λ, εn+1
X )|A. Accord-

ing to Lemma 2.1 (with C = A), there exists an algebraic section s : X→ Hom(λ, εn+1
X )

close to τ1 and with s|A = τ1|A. SinceX is compact, one may assume that the linear trans-
formation s(x) : λx → (εn+1

X )x is injective for all points x in X. Define g : X → Pn(R)
by g(x) = ρ(s(x)(λx)) for x in X, where ρ : X×Rn+1

→ Rn+1 is the canonical projec-
tion. By [5, Proposition 3.4.7], g is a regular map. Moreover, g|A = f |A and g is close
to f . ut

It is convenient to state explicitly the following simple fact.

Lemma 2.3. Let Z be a compact real algebraic variety (not necessarily nonsingular)
and let h : Z→ Sp be a continuous map. If either h is not surjective or dimZ < p, then
h can be approximated by regular maps.

Proof. Suppose that h is not surjective and let a be a point in Sp \ h(Z). The stereo-
graphic projection ρ : Sp \ {a} → Rp is a biregular isomorphism, and hence h can be
approximated by regular maps in view of the Weierstrass approximation theorem.
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The case dimZ < p can readily be reduced to the previous one. First choose a contin-
uous semi-algebraic map g : Z→ Sp close to h. It suffices to note that dim g(Z) ≤ dimZ

(cf. [5, Theorem 2.8.8]), and hence g is not surjective. ut

Let N and P be smooth manifolds, and let A be a closed subset of N . A map f : A→ P

is said to be smooth if it has a smooth extension to an open neighborhood of A in N .
The next technical result is stated in the form sufficient for the purposes of this paper.

It could easily be generalized to maps between arbitrary smooth manifolds.

Lemma 2.4. LetX be a compact nonsingular real algebraic variety and let S be a closed
subset of X. Let h : X → Sp be a continuous map whose restriction h|S : S → Sp is a
smooth map. Let U be an open neighborhood of h in C(X, Sp). Assume that h is transverse
to a point z0 in Sp with h−1(z0) ∩ S = ∅. Then there exists a neighborhood V of h|S in
C(S, Sp) such that, for each smooth map r : S → Sp in V , one can find a smooth map
hr : X → Sp in U with h−1

r (z0) = h
−1(z0), hr = h in a neighborhood of h−1(z0) in X

and hr |S = r .

Proof. The set Rp+1
\ {0} together with radial projection onto Sp can be regarded as a

tubular neighborhood of Sp in Rp+1. This fact and the existence of smooth partitions of
unity imply that all the constructions described below are possible.

Let K be a compact neighborhood of S in X with h(K) ⊆ Sp \ {z0}. Choose an open
neighborhood U of h−1(z0) in X \ K in which the map h is smooth. Since h|S has a
smooth extension to an open neighborhood of S in X, by slightly modifying h on K \ S,
one obtains a continuous map g1 : X → Sp in U such that g1 = h on (X \ K) ∪ S,
g1(K) ⊆ Sp \ {z0} and g1 is smooth in an open neighborhood of S in X. Note that
g−1

1 (z0) = h−1(z0). Since U is contained in X \ K , the map g1 is smooth in U . In
view of the compactness of X, there exists a compact neighborhood L of z0 in Sp with
g−1

1 (L) ⊆ U . Let U1 be an open neighborhood of g−1
1 (z0) in X, contained in the interior

of g−1
1 (L). By slightly modifying g1 on X \ (g−1

1 (L) ∪ S), one obtains a smooth map g2

in U such that g2 = g1 on g−1
1 (L) ∪ S and g2(X \ U1) ⊆ Sp \ {z0}. Note that g−1

2 (z0) =

g−1
1 (z0) = h

−1(z0). Replacing h by g2, one may assume without loss of generality that
the map h is smooth.

If V is a sufficiently small neighborhood of h|S in C(S, Sp), then given a smooth
map r : S → Sp in V , one can slightly modify h on K and construct a smooth map
hr : X→ Sp in U with hr = h on X \K and hr(K) ⊆ Sp \ {z0}. Such a smooth map hr
satisfies all the requirements. ut

In the proof of the main result of this section, Theorem 2.5 below, blowups play a promi-
nent role. Let X be a nonsingular real algebraic variety and let Z be a nonsingular alge-
braic subset of X. The blowup of X at Z will be denoted by π(X,Z) : B(X,Z) → X.
Recall that π(X,Z) induces a biregular isomorphism from B(X,Z)\π(X,Z)−1(Z) onto
X \ Z. Moreover, π(X,Z)−1(Z) is the projectivization of the normal bundle to Z in X.

Let S be an algebraic (possibly singular) subset of X. Suppose there is a finite se-
quence of maps

Y = Xk
πk
−→ Xk−1

πk−1
−−→ · · ·

π2
−→ X1

π1
−→ X0 = X,
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where π1 is the blowup of X0 at a nonsingular algebraic subset of X0 contained in S
and πi+1 is the blowup of Xi at a nonsingular algebraic subset of Xi contained in
(π1 ◦ · · · ◦πi)

−1(S) for i = 1, . . . , k− 1. The composite map π = π1 ◦ · · · ◦πk : Y → X

will be called a multiblowup of X over S. Note that Y is a nonsingular real algebraic
variety and the restriction πS : Y \ π−1(S) → X \ S of π is a biregular isomorphism.
Furthermore, π is a proper map.

Theorem 2.5. LetX be a compact nonsingular real algebraic variety and let h : X→ Sp
be a continuous map. Assume that h is adapted to a point z0 in Sp and h−1(z0) = Reg(V )
for some algebraic subset V of X. If the restriction of h to the algebraic subset S :=
V \ Reg(V ) of X is a regular map, then each open neighborhood U of h in C(X,Sp)
contains a nice continuous rational map f : X→ Sp with P(f ) ⊆ V and f (V ) = h(V ).

Proof. Any regular map from S into Sp has a smooth extension to some open neighbor-
hood of S in X. Hence in view of Lemma 2.4, the map h can be assumed to be smooth.

By Hironaka’s resolution of singularities theorem [21] (cf. also [23] for a very read-
able exposition), there exists a multiblowup π : Y → X of X over S such that the Zariski
closure W of π−1(Reg(V )) in Y is nonsingular. Note that

W = π−1(Reg(V )) = π−1(h−1(z0)). (1)

Indeed, since W is nonsingular, the set π−1(Reg(V )) is dense in W in the Euclidean
topology. Hence the closedness of Reg(V ) in X implies the inclusion π(W) ⊆ Reg(V ),
from which (1) follows. In particular,

W ∩ π−1(S) = ∅. (2)

Since the restriction map πS : Y \ π−1(S) → X \ S of π is a biregular isomorphism,
the smooth map h ◦ π : Y → Sp is transverse to z0. Hence for each point y in W =
(h ◦π)−1(z0), the differential dy(h ◦π) : TyY → Tz0Sp is surjective and induces a linear
isomorphism from the normal space of W in Y at y onto the normal space of z0 in Sp.
Consequently, there exists a unique smooth map g : B(Y,W) → B(Sp, z0) satisfying
h ◦ π ◦ ρ = σ ◦ g, where

ρ = π(Y,W) : B(Y,W)→ Y and σ = π(Sp, z0) : B(Sp, z0)→ Sp

are the blowups (cf. [2, Lemma 2.5.9]). By construction, the diagram

g

h ◦π

ρ σ

B(Y,W) B(Sp, z0)

Y Sp-

-

? ?

6

?
π h

X X-id
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is commutative. The sets D := ρ−1(W) and E := σ−1(z0) are nonsingular algebraic
hypersurfaces in B(Y,W) and B(Sp, z0), respectively. Furthermore,

D = g−1(E) and g is transverse to E. (3)

Set C := ρ−1(π−1(S)). Since the restriction of h ◦ π : Y → Sp to π−1(S) is a regular
map, and the restriction ρW : B(Y,W) \ D → Y \W of ρ and the restriction of σ from
B(Sp, z0) \ E to Sp \ {z0} are biregular isomorphisms, in view of (2), it follows that

the restriction g|C : C → B(Sp, z0) is a regular map. (4)

Moreover,
C ∩D = ∅. (5)

Let u be the cohomology class in H 1(B(Y,W);Z/2) corresponding via the Poincaré
duality to the homology class in H∗(B(Y,W);Z/2) represented by D. By defini-
tion, u belongs to H 1

alg(B(Y,W);Z/2). Similarly, let v be the cohomology class in
H 1(B(Sp, z0);Z/2) Poincaré dual to the homology class in H∗(B(Sp, z0);Z/2) repre-
sented byE. Recall that B(Sp, z0) is biregularly isomorphic to Pp(R). In fact, there exists
a biregular isomorphism

ϕ : B(Sp, z0)→ Pp(R) with ϕ(E) = Pp−1(R), (6)

where Pp−1(R) is regarded as a subset of Pp(R). In particular, the group
H 1(B(Sp, z0);Z/2) ∼= Z/2 is generated by v. Condition (3) implies the equality

u = g∗(v)

(cf. [15, Proposition 2.15]), and hence

g∗(H 1(B(Sp, z0);Z/2)) ⊆ H 1
alg(B(Y,W);Z/2). (7)

Let i : D ↪→ B(Y,W) and j : E ↪→ B(Sp, z0) be the inclusion maps. The restriction
ḡ : D→ E of g satisfies g ◦ i = j ◦ ḡ, and hence

i∗(u) = i∗(g∗(v)) = ḡ∗(j∗(v)).

In view of (6), the cohomology group H 1(E;Z/2) is generated by j∗(v). Since the co-
homology class i∗(u) belongs to H 1

alg(D;Z/2), one gets

ḡ∗(H 1(E;Z/2)) ⊆ H 1
alg(D;Z/2). (8)

By (6), (8) and Lemma 2.2, there exists a regular map r : D → E arbitrarily close to
ḡ : D→ E in C(D,E).

In view of (5), there exists a smooth map G : B(Y,W)→ B(Sp, z0) with

G|C = g|C and G|D = j ◦ r. (9)
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Moreover, such a mapG can be chosen arbitrarily close to g, provided that r is sufficiently
close to ḡ. Note that

G(D) ⊆ E. (10)

Setting A := C ∪ D, in view of (4), (5) and (9), one concludes that the restriction
G|A : A → B(Sp, z0) is a regular map. Hence by (6), (7) and Lemma 2.2, there ex-
ists a regular map F : B(Y,W)→ B(Sp, z0) which is arbitrarily close to G and satisfies
F |A = G|A. In particular, according to (9),

F |C = g|C . (11)

Moreover, (10) implies the equality

(σ ◦ F)(D) = {z0}. (12)

It follows from (12) that there exists a unique continuous map F̄ : Y → Sp satisfying
F̄ ◦ ρ = σ ◦ F . Explicitly,

F̄ (y) =

{
σ(F (ρ−1

W (y))) for y in Y \W,
z0 for y in W .

(13)

According to (1), (h ◦π)(W) = {z0}. Since σ ◦F is close to σ ◦ g = h ◦π ◦ ρ, it follows
that F̄ is close to h ◦ π . Observe that

F̄ = h ◦ π on π−1(S). (14)

Indeed, in view of (1), π−1(S) ⊆ Y \W . If y is a point in π−1(S), then the point ρ−1
W (y)

is in ρ−1(π−1(S)) = C, and hence (11) and (13) imply

F̄ (y) = (σ ◦ g)(ρ−1
W (y)) = (h ◦ π ◦ ρ)(ρ−1

W (y)) = (h ◦ π)(y),

which proves (14).
Condition (14) implies that the map f : X→ Sp defined by

f (x) =

{
F̄ (π−1

S (x)) for x in X \ S,
h(x) for x in S,

(15)

is continuous. The map f is close to h since F̄ is close to h ◦ π . It can be assumed that f
is in U . By (1), if x is a point in Reg(V ) = h−1(z0), then the point π−1

S (x) is in W , and
hence (15) and (13) imply

f (x) = F̄ (π−1
S (x)) = z0 = h(x).

Since V = S∪Reg(V ), one gets f (V ) = h(V ). Finally, π−1(X\V ) ⊆ Y \W , and hence
(15) and (13) imply that

f |X\V = F̄ ◦ (π
−1
S |X\V ) = (σ ◦ F ◦ ρ

−1
W ) ◦ (π−1

S |X\V ),

where F̄ , %−1
W , F and σ are considered suitably restricted. It follows that f |X\V is a reg-

ular map. Consequently, f is a nice continuous rational map in U , with P(f ) ⊆ V and
f (V ) = h(V ) 6= Sp. ut
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Remark 2.6. With notation as in Theorem 2.5, one can estimate the size of P(f ) and
f (P (f )). Namely,

P(f ) ⊆ h−1(z0) ∪ S and f (P (f )) ⊆ {z0} ∪ h(S).

Furthermore, h(S) = f (S) is a semi-algebraic set (cf. [5, Proposition 2.2.7]) and

dimh(S) ≤ dim S < dimh−1(z0) = dimX − p

(cf. [5, Theorem 2.8.8] for the first inequality). In particular, if dimX = p, then the set
h−1(z0) is finite, and hence it can be assumed that V = h−1(z0) and S = ∅.

Proof of Theorem 1.2. In view of Proposition 1.1, condition (b) implies (c). By Lemma
2.4, (c) implies (d), and (e) implies (f). Clearly, (a) implies (b), (d) implies (c), (f) implies
(e), and (d) implies (f).

Suppose that (d) is satisfied. For the proof of (a), one may assume without loss of
generality that the map h is smooth and adapted to a point z in Sp with h−1(z) = Reg(V )
for some algebraic subset V of X. The set S := V \ Reg(V ) is an algebraic subset of X
with h(S) ⊆ Sp \ {z}. According to Lemma 2.3, the restriction map h|S : S → Sp can
be approximated in C(S, Sp) by regular maps. Such regular maps are smooth, and hence
in view of Lemma 2.4, the restriction map h|S : S → Sp may be assumed to be regular.
Applying Theorem 2.5, one concludes that condition (a) holds.

It remains to prove that (f) implies (d). Suppose that (f) is satisfied. For the proof
of (d), one may assume that the map h is weakly adapted to a point z0 in Sp. Hence the
smooth submanifold h−1(z0) ofX admits a weak algebraic approximation inX. It follows
that h−1(z0) is isotopic inX, via an arbitrarily small smooth isotopy, to Reg(W) for some
algebraic subset W of X. Such an isotopy can be extended to a smooth diffeotopy of X,
close to the identity map ofX in the space C∞(X,X) (cf. [22, pp. 179, 180]). In particular,
there exists a smooth diffeomorphism ϕ : X → X such that ϕ(h−1(z0)) = Reg(W) and
the composite map h ◦ ϕ−1 is close to h in the space C(X,Sp). By construction, the map
h ◦ ϕ−1 is smooth and transverse to z0, and (h ◦ ϕ−1)−1(z0) = Reg(V ). Consequently,
condition (d) holds, as required. ut

In view of Theorem 1.2 and Corollary 1.4, it is desirable to have a criterion for a smooth
submanifold to admit an almost algebraic approximation. It suffices to consider subman-
ifolds embedded with trivial normal bundle. If P is a smooth manifold with boundary, its
boundary will be denoted by ∂P .

Proposition 2.7. Let X be a compact nonsingular real algebraic variety and let M be a
compact smooth submanifold of X. Assume that there exists an algebraic subset A of X
such that M ∩ Reg(A) = ∅ and

M ∪ Reg(A) = ∂P,

where P is a compact smooth manifold with boundary, embedded inX with trivial normal
bundle and satisfying P ∩A = Reg(A). Then M admits a weak algebraic approximation
in X.
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Proof. There exists a multiblowup π : Y → X of X over S := A \ Reg(A) such that the
subset B = π−1(Reg(A)) of Y is Zariski closed and nonsingular (cf. the beginning of the
proof of Theorem 2.5). Set N :=π−1(M). Since the restriction πS : Y \ π−1(S)→X \ S

of π is a biregular isomorphism and P is disjoint from S, the set Q := π−1(P ) is a
compact smooth manifold with boundary ∂Q = N ∪ B, embedded in Y with trivial
normal bundle. It follows that there exists a smooth embedding ε : N → Y , arbitrarily
close to the inclusion map N ↪→ Y in the space C∞(N, Y ), with ε(N) ⊆ Y \π−1(S) and
ε(N) = W for some nonsingular algebraic subsetW of Y (cf. [25, Lemma 2.3]). The map
e : M → X defined by e(x) = π(ε(π−1

S (x))) for all x inM is a smooth embedding, close
to the inclusion map M ↪→ X in the space C∞(M,X). Furthermore, e(M) = π(W).
By construction, π(W) is a nonsingular Zariski closed subset of X \ S. Consequently,
π(W) = Reg(V ), where V is the Zariski closure of π(W) in X. The proof is complete.

ut

The next result is of a different nature, but closely related to theorems of Section 1. As
before, sp will stand for the unique generator of the cohomology group Hp(Sp;Z/2),
p ≥ 1. For any compact smooth manifold M of dimension n, let [M] denote its fun-
damental class in Hn(M;Z/2). If K is a compact smooth p-dimensional submanifold
of M , let [K]M denote the homology class in Hp(M;Z/2) represented by K .

Theorem 2.8. Let M be a compact smooth manifold and let p be an integer satis-
fying 0 < p < dimM . Assume that M is stably parallelizable and the homology
group Hp(M;Z/2) is generated by homology classes represented by compact smooth
p-dimensional submanifolds of M with trivial normal bundle. For any continuous map
h : M → Sp with h∗(sp) 6= 0 in Hp(M;Z/2), there exist a nonsingular irreducible
real algebraic variety X and a smooth diffeomorphism ϕ : X → M such that the map
h ◦ ϕ : X→ Sp is not homotopic to a continuous rational map.

Proof. Set v := h∗(sp). By assumption and the universal coefficient theorem,

〈v, [K]M 〉 6= 0 (i)

for some compact smooth p-dimensional submanifoldK ofM with trivial normal bundle.
Since M is stably parallelizable, the Stiefel–Whitney classes of K are all zero (cf. [28,
p. 41]). Hence by Thom’s theorem [29],K is the boundary of a compact smooth manifold
with boundary. These properties of K make it possible to apply [13, Proposition 2.5,
Theorem 2.6]. Therefore there exist a nonsingular irreducible real algebraic variety X
and a smooth diffeomorphism ϕ : X→ M such that the homology class [ϕ−1(K)]X in
Hp(X;Z/2) satisfies

〈u, [ϕ−1(K)]X〉 = 0 (ii)

for every cohomology class u in Hp

alg(X;Z/2). In view of (i), (ii) and the equalities

〈(h ◦ ϕ)∗(sp), [ϕ
−1(K)]X〉 = 〈ϕ

∗(h∗(sp)), [ϕ
−1(K)]X〉 = 〈h

∗(sp), ϕ∗([ϕ
−1(K)]X)〉

= 〈v, [K]M 〉,
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the cohomology class (h ◦ ϕ)∗(sp) is not in H
p

alg(X;Z/2). The functoriality of
H
p

alg(−;Z/2) implies that the map h ◦ ϕ cannot be homotopic to a continuous rational
map (cf. Section 1). ut

Corollary 2.9. Let M be a compact smooth manifold of dimension p + 1, where p ≥ 1.
Assume that M is stably parallelizable and the cohomology group H 2(M;Z) has no 2-
torsion. For any continuous map h : M → Sp with h∗(sp) 6= 0 in Hp(M;Z/2), there
exist a nonsingular irreducible real algebraic variety X and a smooth diffeomorphism
ϕ : X→ M such that the map h ◦ ϕ : X→ Sp is not homotopic to a continuous rational
map.

Proof. By Theorem 2.8, it suffices to prove that each homology class α in Hp(M;Z/2)
can be represented by a compact smooth p-dimensional submanifold of M with trivial
normal bundle. Let w be the cohomology class in H 1(M;Z/2) Poincaré dual to α. Since
the group H 2(M;Z) has no 2-torsion, by the universal coefficient theorem, the reduction
modulo 2 homomorphism r : H 1(M;Z)→ H 1(M;Z/2) is surjective. Let w̄ be a coho-
mology class in H 1(M;Z) with r(w̄) = w. There exists a continuous map g : M → S1

with w̄ = g∗(s̄1), where s̄1 is a generator of the group H 1(S1
;Z) ∼= Z (cf. [16, p. 492]).

In the case under consideration, the map g can be assumed to be smooth. By Sard’s the-
orem, g is transverse to a point z0 in S1. The normal bundle of the smooth submanifold
K := g−1(z0) of M is trivial. Furthermore, the homology class [K]M in Hp(M;Z/2) is
Poincaré dual to w (cf. [15, Proposition 2.15]), and hence α = [K]M . ut
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