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Abstract. We analyse the spectral phase diagram of Schrödinger operators T + λV on regular
tree graphs, with T the graph adjacency operator and V a random potential given by iid random
variables. The main result is a criterion for the emergence of absolutely continuous (ac) spectrum
due to fluctuation-enabled resonances between distant sites. Using it we prove that for unbounded
random potentials ac spectrum appears at arbitrarily weak disorder (λ � 1) in an energy regime
which extends beyond the spectrum of T . Incorporating considerations of the Green function’s
large deviations we obtain an extension of the criterion which indicates that, under a yet unproven
regularity condition of the large deviations’ ‘free energy function’, the regime of pure ac spectrum
is complementary to that of previously proven localization. For bounded potentials we disprove the
existence at weak disorder of a mobility edge beyond which the spectrum is localized.
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1. Introduction

1.1. The article’s topic

The subject of this work is the spectral properties of random self-adjoint operators in the
Hilbert space `2(T ) associated with the vertex set T of a regular rooted tree graph of a
fixed branching number K > 1. The operators take the form

Hλ(ω) = T + λV (ω), (1.1)

with T the adjacency matrix and V (ω) a random potential, i.e., a multiplication operator
which is specified by a collection of random variables indexed by T . For simplicity we fo-
cus on the case of independent identically distributed (iid) random variables of absolutely
continuous distribution, %(v) dv. The strength of the disorder is expressed through the
parameter λ ≥ 0. Some of the results presented below will be formulated for unbounded
random potentials, in which case the support of the distribution of V (x) is assumed to
be the full line. For other results we assume that the range of values of V (x) is the inter-
val [−1, 1].

It is well known that random Schrödinger operators, of which the above tree version
is a relatively more approachable example, exhibit regimes of spectral and dynamical
localization where the operator’s spectrum consists of a dense collection of eigenvalues
with localized eigenfunctions (cf. [14, 32, 36, 26]). However, it still remains an outstand-
ing mathematical challenge to elucidate the conditions for the occurrence of continuous
spectrum, and in particular absolutely continuous (henceforth called ac) spectrum, in the
presence of homogeneous disorder. The significance of the ac spectrum from the scatter-
ing perspective, or a schematic conduction experiment, is illustrated in Figure 1. In the
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Ψ(ξ) = eikξ + R e−ikξ

Fig. 1. A model setup for quantum conduction through the graph (after [30]): particles are sent at
energy E = k2

+ Uwire down a wire which is attached to the graph at x = 0. In the stationary
state the particles’ wave function is described along the wire by the combination of plane waves
eikEξ + REe

−ikEξ , and along the graph it is given by a decaying solution of the Schrödinger
equation. The natural matching conditions relate the reflection coefficientRE to the Green function,
and it is found that |RE | < 1 exactly if Im 〈δ0, (Hλ−E−i0)−1δ0〉 6= 0, which is also the condition
for E to be in the support of the ac spectrum of Hλ.

operator’s (E, λ) phase diagram, the boundary separating the regime of localization from
the regime of continuous spectrum, assuming such is found, is referred to as the mobility
edge [10].

The results presented here focus on a new resonance-driven mechanism by which ac
spectrum occurs for operators such as Hλ(ω) in the setup described above. Following is
a summary of the main points.

(i) A new sufficiency criterion is derived for ac spectrum on tree graphs in terms of a
related Lyapunov exponent.

The guiding observation for (i) is that localized modes join into extended states when their
energy differences are smaller than the corresponding tunneling amplitudes. The latter
decay exponentially in the distance at the rate whose typical value is given by the Lya-
punov exponent. Hence the probability of a mixing resonance between localized modes
at specified location is exponentially small. However, when the volume of the relevant
configuration space increases exponentially resonances will be found, and delocalization
prevails. This criterion is particularly applicable at weak and moderate disorder. It is ap-
plied here for two results, which apply separately for bounded and for unbounded random
potentials:

(ii) For unbounded potentials we show that ac spectrum appears ‘discontinuously’ at
arbitrarily weak disorder in regimes with very low density of states (of Lifshits tail
asymptotic falloff). This answers a puzzle which has been open since the earlier
works on the subject [1, 2] concerning the location of the mobility edge and the
nature of the continuous spectrum below it.

(iii) For bounded random potentials it is shown that at weak disorder there is no mobility
edge beyond which the states are localized. This has the surprising implication that
for this case the standard picture of the phase diagram needs to be corrected.
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In essence, (ii) and (iii) show that while in one dimension arbitrary weak level of disorder
yields localization, on trees the ac spectrum is quite robust.
(iv) Extending the analysis which yields the criterion (i) through considerations of the

Green function’s large deviations, we obtain an improved sufficiency criterion for
ac spectrum which appears to be complimentary to the previously derived criterion
for localization. To reduce technicalities, the derivation of the extended criterion is
limited to unbounded potentials with support in R.

The last point is an indication that the mechanism which is discussed here is in essence
the relevant one, in the tree setup.

A physics-oriented summary of the results (ii) and (iii) was given in [8] and [9] re-
spectively. Our purpose here is to provide a detailed derivation of the above statements.
In the proof we do not present the direct construction of extended states, but instead focus
on properties of the Green function which in essence convey the same information.

1.2. Past results and the questions settled here

1.2.1. The deterministic spectrum. By a simple calculation (cf. (3.6)),1

σ(T ) = [−2
√
K, 2
√
K]. (1.2)

For ergodic random potentials, a class which includes the iid case, the spectrum ofHλ(ω)
= T + λV (ω) is almost surely given by a non-random set, which under the present
assumptions is [14, 32, 26]

σ(Hλ) = σ(T )+ λ supp ρ. (1.3)

Thus, as the strength of the disorder is increased from λ = 0 upward:
• In the unbounded case, of potentials with supp % = R, the spectrum of Hλ(ω) changes

discontinuously from an interval to the full line.
• In the bounded case the spectrum changes continuously, spreading at a linear rate which

equals 1 if supp % = [−1, 1].
The determination of the nature of the spectral measures whose support spans σ(Hλ)
requires however a more detailed consideration. The spectral analysis proceeds through
the study of the corresponding Green function

Gλ(x, y; ζ, ω) := 〈δx, (Hλ(ω)− ζ )
−1δy〉, (1.4)

where ζ ∈ C+ := {ζ ∈ C | Im ζ > 0} and δx ∈ `2(T ) is the Kronecker function
localized at x ∈ T . In particular, the spectral measure µλ,δx (·;ω) associated with Hλ(ω)
and δx ∈ `2(T ) is related to the Green function through the Stieltjes transform:

Gλ(x, x; ζ, ω) =

∫
µλ,δx (du;ω)

u− ζ
. (1.5)

1 Even though the graph T is of constant degreeK+1, except at the root, the spectrum of T does
not extend to [−(K + 1),K + 1]. This is related to the graph’s exponential growth, more precisely
to the positivity of its Cheeger constant. Nevertheless, this larger set does describe the operator’s
`∞-spectrum.
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Of particular interest is the limiting value Gλ(x, x;E + i0, ω) := limη↓0Gλ(x, x;

E + iη, ω), which exists for almost every E ∈ R (by the general theory of the Stieltjes
transform [17, 14, 32]).

The different spectra of Hλ(ω) are associated with the Lebesgue decomposition of
the measures µλ,δx (·;ω) into their different components: pure point (pp), singular con-
tinuous (sc), and absolutely continuous (ac), not all of which need be present. Ergod-
icity, combined with the proof of equivalence of the local measures [24, 25], implies
that the supports of the different components of µλ,δx (du;ω) are also almost surely non-
random [14, 32, 26], and coincide for all x ∈ T .

The spectral characteristics are related to the dynamical properties of the unitary time
evolution generated by Hλ(ω) (cf. the RAGE theorem in [36, 26]) and to questions of
conduction.

The absolutely continuous component of µλ,δx (·;ω) is given by

µ
(ac)
λ,δx

(du;ω) = π−1 ImGλ(x, x; u+ i0, ω) du, (1.6)

which is not zero provided the non-negative function satisfies ImGλ(x, x;E+i0, ω) 6= 0
on a positive measure set of energies. As noted in [30, 7], this condition is also equivalent
to the statement that current which is injected coherently at energyE down a wire attached
at a site x will be conducted through the graph to infinity (see Figure 1).

Another possible behavior is localization:

Definition 1.1. The operator Hλ(ω) associated with a metric graph (not necessarily a
tree) is said to exhibit:

• spectral localization in an interval I ⊂ R if the spectral measures µλ,δx (·;ω) associ-
ated to δx ∈ `2(T ) are almost surely all of only pure point type in I ;
• exponential dynamical localization in I if for all x ∈ T and R > 0 sufficiently large,∑

y∈T
dist(x,y)=R

E
(

sup
t∈R
|〈δx, PI (Hλ)e

−itHλδy〉|
2
)
≤ Cλe

−µλ(I )R (1.7)

for some µλ(I ) > 0 and Cλ < ∞, with E[·] denoting the average with respect to the
underlying probability measure.

For a particle which is initially placed at x ∈ T the left side of (1.7) provides an
upper bound on the probability to be found a time t later at distance R from x, under
the quantum mechanical time evolution generated byHλ restricted to states with energies
in I . Dynamical localization is the stronger of the two statements. By known arguments
(i.e., the Wiener and RAGE theorem, cf. [26, 36]) it also implies the spectral localization.

1.2.2. Unbounded random potentials. The spectral ‘phase diagram’ of the operators con-
sidered here was studied already in the early works of Abou-Chacra, Anderson and Thou-
less [1, 2]. Arguments and numerical work presented in [2] led the authors to surmise that
for (centered) unbounded random potentials, the mobility edge, which separates the lo-
calization regime from that of continuous spectrum, exists at a location which roughly
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Fig. 2. A sketch of the previously known parts of the phase diagram for unbounded potentials. The
outer region is of proven localization, the smaller hatched region is of proven delocalization. The
new result extends the latter up to the outer curve, assuming ϕλ(1;E) = − logK holds only along
a line. The intersection of the curve with the energy axis is stated exactly, while in other details the
depiction is only schematic.

corresponds to the outer curve in Figure 2. Curiously, for λ ↓ 0 that line approaches
energies |E| = K + 1, which is not the edge of the spectrum of the limiting operator T .

Rigorous results for the above class of operators have established the existence of a
localization regime and of regions of ac spectrum, leaving however a gap in which neither
analysis applied. More specifically, the following was proven for the class of operators de-
scribed above (under assumptions which are somewhat more general than the conditions
A–D below):

Localization regime [4, 5]: For any unbounded random potential with supp ρ = R,
whose probability distribution also satisfies a mild regularity condition, there is a
regime of energies of the form |E| > γ (λ) with

lim
λ↓0

γ (λ) = K + 1, (1.8)

where with probability one, Hλ(ω) has only pure point spectrum, and where it also
exhibits dynamical localization.

Extended states / continuous spectrum [27, 28, 6, 20]: For energies |E| < 2
√
K and

at weak enough disorder, i.e. |λ| < λ̂(E) (with λ̂(E) ↓ 0 for |E| → 2
√
K), the

operator’s spectrum is almost surely (purely) absolutely continuous.

Thus, the previous results have covered two regimes whose boundaries, sketched in
Figure 2, do not connect. Particularly puzzling has been the region of weak disorder and

2
√
K < |E| < K + 1. (1.9)

At those energies the mean density of states vanishes to all orders in λ, for λ ↓ 0 [30].
Such rapid decay is characteristic of the so-called Lifshits tail spectral regime. In finite
dimensions it is known to lead to localization [32, 26]. On tree graphs, however, this
implication could not be established, and localization at weak disorder was successfully
proven [5] only for |E| > K + 1 (cf. Figure 2 and Proposition 2.6 below). For energies E
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in the range (1.9) the nature of the spectrum at weak disorder has been a puzzle even at the
level of heuristics [30]. The question is answered by the second of the results mentioned
above.

1.2.3. Bounded random potentials. It has been expected that for bounded random poten-
tials the phase diagram of the random operators (1.1) looks qualitatively as depicted in
Fig. 3 (cf. [2, 12]), the key points being:
• At weak and moderate disorder a mobility edge has been expected to occur, within

which the spectrum is absolutely continuous and beyond which it is pure point—
consisting there of a dense countable collection of eigenvalues with proper eigenfunc-
tions.
• The extended states disappear at strong enough disorder (λ > λsd(K)), where complete

localization prevails.
Significant parts of this picture have been supported by rigorous results, in particular com-
plete localization at strong disorder [4, 5], and the persistence of ac spectrum at weak dis-
order [27, 6, 20] (though some questions remain as to the precise asymptotics of λsd(K)

forK →∞). However, as stated in (iii) above, at weak and moderate disorder, for regular
trees this picture needs to be modified.

Localization 
(p.p. spectrum)

Extended states 
(a.c. spectrum)

λ

−2
√

K 2
√

KE

λmin

[
≥ (

√
K − 1)2

2

]

Fig. 3. Sketch of the previously expected phase diagram for the Anderson model on the Bethe
lattice (the solid line) and the correction presented here (dashed line). Our analysis suggests that
at weak disorder there is no localization and the spectrum is purely ac. While the proof of that is
incomplete, we prove that for λ ≤ (

√
K − 1)2/2 near the spectral edges the spectrum is purely

absolutely continuous.

Let us now turn to a more precise formulation of the statements listed above.

2. Statement of the main results

2.1. The setup

Our discussion will focus on operators of the form (1.1) in the Hilbert space `2(T ) of
complex-valued, square-summable functions on T , under the following assumptions:
A: T is the vertex set of a rooted tree graph with a fixed branching number K > 1 (the

root being denoted by 0 ∈ T ).
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B: T is the adjacency operator of the graph, i.e., (T ψ)(x) :=
∑

dist(x,y)=1 ψ(y) for all
ψ ∈ `2(T ).

C: {V (x;ω) | x ∈ T } form independent identically distributed (iid) random variables,
with a probability distribution %(v) dv with % ∈ L∞(R), which has a finite moment,
i.e., for some ς ∈ (0, 1), ∫

|v|ς%(v) dv <∞. (2.1)

D: The probability density % is bounded relative to its minimal function, which we de-
fine asM(v) := infν∈(0,1] (2ν)−1 ∫ 1|x−v|≤ν %(x) dx. That is, for Lebesgue-almost all
v ∈ R,

%(v) ≤ cM(v) (2.2)

with a finite constant c.

In case of unbounded potentials, we will mostly restrict our attention to those which
additionally satisfy the following assumption:

E: For all k <∞, inf|v|≤k %(v) > 0.

While condition D could be relaxed, let us note that it is satisfied by all probability dis-
tributions whose densities are bounded functions on R of finitely many humps (see Ap-
pendix A). This class includes finite linear combinations of Gaussian, Cauchy, and piece-
wise constant functions.

2.2. The Lyapunov exponent criterion for ac spectrum

For a criterion which is particularly useful at weak disorder (and, separately, also for high
values of K) let us introduce the Lyapunov exponent, which we define for the rooted tree
(with root at x = 0) as

Lλ(E) := −E(log |Gλ(0, 0;E + i0)|). (2.3)

Since Lyapunov exponents are usually associated with dynamical systems, let us just
comment that the relevance of such a perspective can be seen from the recursive structure
of the rooted tree, and the factorization of the Green function, which are discussed in
Proposition 3.1 below.

The first of the results listed in the introduction is:

Theorem 2.1. For the random operator Hλ(ω) as in (1.1), with λ > 0, satisfying As-
sumptions A–D, for Lebesgue-almost every E ∈ R with

Lλ(E) < logK, (2.4)

the operator’s Green function satisfies almost surely

ImGλ(0, 0;E + i0) > 0. (2.5)
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The proof of Theorem 2.1, which is the content of Section 4 below, reveals a mechanism
for the formation of extended states through rare fluctuation-enabled resonances between
distant sites.

For the full spectral implication of the condition (2.5), if satisfied throughout an in-
terval of energies, let us quote the following principle which Mira Shamis showed us to
follow directly by the arguments presented in Simon and Wolff [35].

Proposition 2.2. Assume that the distribution of V (0; ·) conditioned on the values of
the potential at all other sites is almost surely absolutely continuous. If for some interval
I ⊂ R, the condition (2.5) holds for almost everyE ∈ I then with probability one within I
the spectral measure µλ,δ0(du;ω) is absolutely continuous. If the analogous conditions
hold for all sites x, then the spectrum of Hλ(ω) is almost surely purely absolutely contin-
uous in I .

The proof combines the characterization (due to Aronszajn [11]) of the support of the
singular component of µλ,δ0(du;ω) as the set of energies where condition (2.5) fails,
with the spectral averaging principle which implies that if this set is of zero Lebesgue
measure then also the spectral measure of this set is zero for almost all realizations of
the potential. This argument applies as well to all other choices for the graph and for the
unperturbed operator T .

2.3. Implications for the phase diagram

A simple exact calculation (cf. Subsection 3.2) shows that for λ = 0 one has

L0(E) < logK if and only if |E| < K + 1. (2.6)

Curiously, the energy range defined by the above condition is strictly larger that the `2-
spectrum of T (cf. (1.2)).

It seems natural to expect Lλ(E) to be continuous in (λ,E), a fact which is easily
established for the Cauchy random potential, i.e., for %(v) = π−1(v2

+ 1)−1, in which
case Lλ(E) = − log |G0(0, 0;E + iλ)|. In such a situation, Theorem 2.1 together with
Proposition 2.2 carry the implication that for any closed energy interval I in the range
|E| < K + 1, at weak enough disorder the random operator Hλ(ω) has almost surely
purely absolutely continuous spectrum in I .

While we do not have a general proof of the continuity of Lλ(E), one can show that
its averages over intervals are continuous. Using this weaker continuity we arrive at the
following conclusion.

Corollary 2.3. For unbounded random potentials with supp % = R, under the assump-
tion of Theorem 2.1 in every closed interval I ⊂ (−K − 1,K + 1) there is absolutely
continuous spectrum at sufficiently low disorder, i.e. the condition (2.11) holds for a set
of positive measure of energies provided 0 < λ < λ̂(I ) for some λ̂(I ) > 0.
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The proof of Corollary 2.3 which is given below in Section 6.1 also yields an explicit
lower bound on the fraction of I occupied by ac spectrum.

For bounded potentials we prove, through other estimates of Lλ(E) which are pro-
vided in Section 6.2:

Corollary 2.4. For bounded random potentials with supp % = [−1, 1], under the as-
sumption of Theorem 2.1 for

λ < [
√
K − 1]2/2 (2.7)

with probability one Hλ(ω) has purely absolutely continuous spectrum at the spectral
edges, i.e. within a range of energies of the form

|Eλ| − δ(λ) ≤ |E| ≤ |Eλ| (2.8)

for some δ(λ) > 0, with Eλ = inf σ(Hλ) = −2
√
K − λ.

2.4. Large deviations and a complementary localization criterion

The criterion provided by Theorem 2.1 can be improved by taking into account large
deviation effects. The pertinent observation here is that while typically

log |Gλ(0, x;E + i0)|/|x| ≈ −Lλ(E) (2.9)

with |x| := dist(x, 0), there typically also are exponentially many sites to which the Green
function (which can be viewed as expressing the tunneling amplitude) exhibits a slower
decay rate. A notable feature of the resulting improved criterion is that it appears to be
complementary to the previously developed criterion for localization.

Information about large deviations can be recovered from a suitable free energy func-
tion, which we define for s ∈ [−ς, 1) by

ϕλ(s;E) := lim
|x|→∞

logE[|Gλ(0, x;E + i0)|s]
|x|

, (2.10)

and for s = 1 by ϕλ(1;E) := lims↑1 ϕλ(s;E).
The existence of the limit (for Lebesgue-almost all E ∈ R) is proven below in Sec-

tion 3.3. We also show there that the function s 7→ ϕλ(s;E), which is obviously convex,
is decreasing in s over [−ς, 1), and thus the limit at s = 1 is well-defined for almost
all E ∈ R.

Following is the improved version of Theorem 2.1. To avoid an additional complica-
tion in the derivation, we establish it here for potentials with supp % = R only.

Theorem 2.5. Under Assumptions A–E, for any λ > 0 and Lebesgue-almost all E ∈ R
for which

ϕλ(1;E) > − logK, (2.11)

the operator’s Green function satisfies almost surely

ImGλ(0, 0;E + i0) > 0. (2.12)
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By convexity arguments ϕλ(s;E) ≥ −sLλ(E) (cf. Section 3.3) and hence the condition
(2.4) of Theorem 2.1 is satisfied whenever (2.11) holds.

For a better appreciation of the criterion provided by the condition (2.11), let us note
that the opposite inequality implies localization. This is implied by the previously estab-
lished localization results [4, 5] which can be recast as follows (cf. [5, Thm. 1.2, and
Eqs. (2.10), (2.12)]).

Proposition 2.6. Under Assumptions A–C, if for an interval I and a specified λ > 0,

ess sup
E∈I

ϕλ(1;E) < − logK, (2.13)

then the operator Hλ(ω) exhibits exponential dynamical localization in I , in the sense
of (1.7) with some µλ(I ) > 0. Furthermore, the domain in which (2.13) holds includes
for each energy |E| > K + 1 an interval with a positive range of λ > 0.

The relation of the condition (2.13), which encodes information about the decay of the
Green function, to the time evolution operator is explained by the following bound:

E
(

sup
t∈R
|〈δx, PI (Hλ)e

−itHλδy〉|
2
)
≤ Cs,λ

∫
I

E(|G(x, y;E + i0)|s) dE, (2.14)

which holds for any s ∈ [0, 1) and λ > 0 for some constant Cs,λ < ∞. This inequality
is a reformulation of a result of [5] on the eigenfunction correlator, which was extended
in [33] so as to apply directly to infinite systems. (This relation holds in the broader
context of operators with a random potential on arbitrary graphs.)

One may add that if it is only known that for almost all E ∈ I ,

ϕλ(1;E) < − logK, (2.15)

then one may still conclude [4] that the operator has only pure point spectrum in I , though
not necessarily of uniform localization length. (The argument proceeds by establishing
lim infη↓0

∑
y∈T E[|Gλ(x, y;E + iη)|s] < ∞ for some s ∈ (0, 1) and all x ∈ T , and

then invoking the Simon–Wolff criterion [35] instead of (2.14)).

2.5. Further comments

• The spectral criteria provided by Theorems 2.1 and 2.5 for ac spectrum, and Proposi-
tion 2.6 for localization, extend to the corresponding operator on the fully regular tree
graph B, where every vertex has exactly K + 1 neighbors. The Green function of the
operator on B can be computed from the one on the rooted tree T with the help of the
recursion relation (3.3) below. In particular, this implies coincidence of the regimes of
ac spectra of the operator Hλ on T and B.
• At first sight the `1-nature of the condition (2.11) for ac spectrum may be surprising

since—ignoring fluctuations—the loss of square summability seems to correspond to
an `2-condition. The difference is due to the essential role played by extreme fluc-
tuations (cf. Section 4). The constructive effect of fluctuations here stands in curious
contrast to the fluctuation-reduction arguments which were employed to prove stability
under weak disorder of the ac spectrum for energies E ∈ σ(T ) [27, 6, 20].
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• The conditions (2.11) for ac spectrum and (2.15) for localization are not fully comple-
mentary since it was not yet proven that the equality ϕλ(1;E) = − logK holds in the
phase diagram only along a curve. Hence it will be good to see a proof that ϕλ(1;E) is
differentiable in (λ,E) with only isolated critical points, and that it is likewise regular
in E for each given λ. This could allow one to conclude that the phase diagram of Hλ
includes only regimes of localization and regimes of purely ac spectrum (i.e., no sc
spectrum), separated by a curve or curves, which are the mobility edge(s).
• The key observation that rare resonances, whose probabilities of occurrence decay ex-

ponentially in the distance, may actually be found to occur on all distance scales when
the volume is also growing exponentially fast, is not applicable to graphs of finite di-
mension. However, it may be of relevance for random operators on other hyperbolic
graphs which may include loops (examples of which were considered in [21, 22, 29]),
and also for the analogous random operators on the Poincaré disk. Another setup which
it will be of interest to see analyzed are random operators on hypercubes of increasing
dimension, which form the configuration spaces of a many-particle system.

3. Basic properties of the Green function on tree graphs

3.1. Notation

Analysis on trees, of this as well as of other problems, is aided by the observation that
upon the removal of any site x the tree graph splits into a collection of disconnected com-
ponents, which in case x is the root are isomorphic to the original graph. For different
problems on trees this leads to recursion relations in terms of suitably selected quanti-
ties. The following notation will facilitate the formulation of such relations in the present
context.

• For a collection of vertices v1, . . . , vn on a tree graph T we denote by Tv1,...,vn the
disconnected subgraph obtained by deleting this collection from T .
• We denote by HT ′ , with T ′ ⊂ T , the restriction of H to `2(T ′). E.g., HTv1,...vn is

the operator obtained by eliminating all the matrix elements of H involving any of the
removed sites.
• The Green function, GT ′(x, y; ζ ), for a subgraph T ′ as above, is the kernel of the

resolvent operator (HT ′
−ζ )−1, with ζ ∈ C+. This function vanishes if x and y belong

to different connected components of T ′, and otherwise it stands for the Green function
corresponding to the component which contains the two. In particular,GTu(x, y; ζ ) and
GTu,v (x, y; ζ ) are the Green functions for the subtree which is obtained by removing
u, respectively u and v, and all the vertices which are past the removed site(s) from the
perspective of x and y.
• Given an oriented simple path in T which passes through u 6= 0, we abbreviate (as-

suming the path itself is clear from the context)

0(u; ζ ) ≡ 0−(u; ζ ) := G
Tu− (u, u; ζ ), 0+(u; ζ ) = G

Tu+ (u, u; ζ ), (3.1)

where u− and u+ are the neighboring sites of u on that path. (The paths we shall en-
counter below typically start at the root of a rooted tree, and are oriented away from it.)
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For the root 0, we will also use the convention

0(0; ζ ) := G(0, 0; ζ ). (3.2)

• Any rooted tree T is partially ordered by the relation x ≺ y (resp. x � y) which means
that x lies on the unique path from the root to y (possibly coinciding with y).

In order to ease the notation, we will drop the superscript on the Green function of the
rooted regular tree, i.e., G(x, y; ζ ) = GT (x, y; ζ ). Moreover, we also drop the depen-
dence of various quantities on λ for simplicity.

3.2. Recursion and factorization

Proposition 3.1. Let T be the vertex set of a tree graph (not necessarily a regular and
rooted one). Then, for the complex energy parameter ζ ∈ C+, the Green function of the
operator (1.1) satisfies:

1. For any x ∈ T ,

G(x, x; ζ ) =
(
λV (x)− ζ −

∑
y∈Nx

GTx (y, y; ζ )
)−1

, (3.3)

where Nx := {y ∈ T | dist(x, y) = 1} denotes the set of neighbors of x.
2. For any pair of partially ordered sites, 0 ≺ x ≺ y,

G(x, y; ζ ) = G(x, x; ζ )
∏

x≺u�y

0−(u; ζ ) = G(y, y; ζ )
∏

x�u≺y

0+(u; ζ ), (3.4)

where the ± subscripts on 0 are defined relative to the root.

These relations are among the generally used tools for spectral analysis on trees. They
can be derived from the resolvent identity, or alternatively through a random walk repre-
sentation of the Green function (cf. [1, 27, 6, 20]). We will use the following implications
of the above.

• The relation (3.3) yields the recursion relation

0(0; ζ ) =
(
λV (0)− ζ −

∑
y∈N+0

0(y; ζ )
)−1

, (3.5)

where N+0 is the set of forward neighbors of the root 0 in T . In particular, the Green
function G0(0, 0; ζ ) of the adjacency operator T is given by the unique value of 0 in
C+ which satisfies the quadratic equation

K02
+ ζ0 + 1 = 0. (3.6)

From this, one can directly determine that T has the spectrum given by (1.2), and the
spectral measure µ0,δ0(dE) is ac with density

√
(4K − E2)+/(2πK).
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• As a special case of (3.4), the Green function G(0, x; ζ ) factorizes into a product of
the above variables, taken along the path from the root to x:

G(0, x; ζ ) :=
∏

0�u�x

0(u; ζ ). (3.7)

Moreover, denoting by x− the site preceding x on the path from the root, (3.4) also
implies

G(0, x; ζ ) = GTx (0, x−; ζ )G(x, x; ζ ). (3.8)

More generally, for any triplet of sites {x, u, y} ⊂ T such that the removal of u discon-
nects the other two,

G(x, y; ζ ) = GTu(x, u−; ζ )G(u, u; ζ )G
Tu(u+, y; ζ ) (3.9)

where u− and u+ are the neighboring sites of u, on the x and y sides, respectively.

3.3. Definition and properties of the free energy

To conclude qualitative information on the rate at which |Gλ(0, x;E + i0)| decays in x,
we shall now establish the existence, monotonicity (in s), and finite volume bounds for
the Green function’s free energy (2.10). It is more convenient to carry out the analysis first
for complex values of the energy parameter. Thus, we extend the domain of the function
to include also C+ = {z ∈ C | Im z > 0}, where the function is defined simply as

ϕλ(s; ζ ) := lim
|x|→∞

1
|x|

logE[|Gλ(0, x; ζ )|s] (3.10)

for all ζ ∈ C+. For the following statement, we recall that ς ∈ (0, 1) is a moment for
which it is assumed that E[|V (0)|ς ] <∞.

Theorem 3.2. 1. For any value of the energy parameter in the upper half-plane, ζ ∈ C+,
and for all s ∈ [−ς,∞), the limit in (3.10) exists and the function [−ς,∞) 3 s 7→
ϕλ(s; ζ ) has the following properties:

(a) ϕλ(s; ζ ) is convex and non-increasing in s ∈ [−ς,∞).
(b) For s ∈ [0, 2],

−sLλ(ζ ) ≤ ϕλ(s; ζ ) ≤ −s log
√
K, (3.11)

where Lλ(ζ ) := −E[log |Gλ(0, 0; ζ )|] is the Lyapunov exponent.
(c) For any s ∈ [−ς,∞) and x ∈ T ,

C±(s; ζ )
−2e|x|ϕλ(s;ζ ) ≤ E[|Gλ(0, x; ζ )|s] ≤ C±(s; ζ )2e|x|ϕλ(s;ζ ) (3.12)

with C±(s; ζ ) ∈ (0,∞), which for any fixed s ∈ [−ς, 1) are bounded uniformly
in ζ ∈ K + i(0, 1] for any compact K ⊂ R.

(d) The derivative at s = 0 is given by the (negative) Lyapunov exponent, i.e. for all
ζ ∈ C+,

∂ϕλ

∂s
(0; ζ ) = −Lλ(ζ ). (3.13)
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2. For Lebesgue-almost all real energies, E ∈ R, and all s ∈ [−ς, 1), the limit in (2.10)
exists and is finite. The function [−ς, 1) 3 s 7→ ϕλ(s;E) coincides with the limiting
value of ϕλ, i.e., for all s ∈ [−ς, 1) and all E ∈ R,

ϕλ(s;E) = lim
η↓0

ϕλ(s;E + iη) = lim
|x|→∞
η↓0

1
|x|

logE[|Gλ(0, x;E + iη)|s]. (3.14)

In particular, within the reduced range s ∈ [−ς, 1), the function ϕλ(s;E) shares the
properties listed in (a)–(c), and the Lyapunov exponent relation (3.13) also holds for
almost all real values of ζ (= E).

The relation (3.14) in particular asserts that for s ∈ [−ς, 1) the limits η ↓ 0 and |x| → ∞
commute. This does not generally extend to s ≥ 1, in which case the limit η ↓ 0 may
diverge if taken first (for E in the regime of pure point spectrum), while the quantity on
the left is finite and non-increasing in s for all s ≥ −ς . However, let us add that under
certain conditions the constraint s < 1 could be lifted. As should be clear from the proof
in Section 3.3.2, the relevant condition for the finite volume bounds (3.12) as well as
(3.14) is that for the given s and E = Re ζ the super- and submultiplicativity bounds
of Lemmas 3.3 and 3.4 hold with constants which are uniform in Im ζ . This condition
could be satisfied even at s ≥ 1 if, for instance, the s-moments of the Green function
factors which yield these constants stay finite as η ↘ 0 due to a smoothing effect of the
absolutely continuous spectrum.

3.3.1. Auxiliary results. Our proof of Theorem 3.2 is based on super- and submultiplica-
tivity in |x| of the Green function’s moments, properties which are related to the Green
function’s factorization.

Following is the essential statement.

Lemma 3.3. If either s ∈ [−ς,∞) and ζ ∈ C+, or s ∈ [−ς, 1) and ζ = E + i0, then
for any two vertices 0 ≺ u ≺ x (and u± and x− defined in (3.9))

C−(s; ζ )
−1
≤

E(|GTx (0, x−; ζ )|s)
E(|GTu(0, u−; ζ )|s)E(|GTu,x (u+, x−; ζ )|s)

≤ C+(s; ζ ) (3.15)

with some 0 < C+(s; ζ ), C−(s; ζ ) < ∞ which, for fixed s ∈ [−ς, 1), are uniformly
bounded in ζ ∈ K + i(0, 1] for any compact K ⊂ R. Furthermore, for fixed s and ζ
within the above range,

lim
s→0

C−(s; ζ ) = lim
s→0

C+(s; ζ ) = 1. (3.16)

Proof. Using the factorization representation (3.9) and the statistical independence of the
two factors which are in the denominator of (3.15), we may write

E(|GTx (0, x−; ζ )|s)
E(|GTu(0, u−; ζ )|s)E(|GTu,x (u+, x−; ζ )|s)

= Av(s)u (|G
Tx (u, u; ζ )|s) (3.17)
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where Av(s)u (·) represents the weighted probability average,

Av(s)u (Q) =
E(|GTu(0, u−; ζ )|s |GTu,x (u+, x−; ζ )|s ×Q)

E(|GTu(0, u−; ζ )|s)E(|GTu,x (u+, x−; ζ )|s)
. (3.18)

To estimate this quantity we note that by (3.3),

GTx (u, u; ζ ) =
(
λV (u)− ζ −

∑
v∈Nu

GTu,x (v, v; ζ )
)−1

. (3.19)

1. The upper bound: In case s ≥ 1, the operator-theoretic bound |GTx (u, u; ζ )| ≤
(Im ζ )−1 yields the upper bound in (3.15) with C+ := (Im ζ )−1.

In case s ∈ [0, 1), the expression (3.19) and (A.5) readily imply that

Av(s)u (|G
Tx (u, u; ζ )|s) ≤

2s‖%‖s∞
(1− s)λs

(=: C+). (3.20)

In case s ∈ [−ς, 0), the expression (3.19) together with the inequality (|a| + |b|)σ ≤
|a|σ + |b|σ for σ ∈ [0, 1] also implies

Av(s)u (|G
Tx (u, u; ζ )|s)

≤ λ−s E[|V (u)|−s] + |ζ |−s +
∑
v∈Nu

Av(s)u (|G
Tu,x (v, v; ζ )|−s). (3.21)

To bound the terms v 6∈ {u−, u+}, we use (3.20) to conclude that

Av(s)u (|G
Tu,x (v, v; ζ )|−s) ≤

λs

(1+ s)2s‖%‖s∞
. (3.22)

In the remaining cases v ∈ {u−, u+}, we use the factorization property (3.8), Jensen’s
inequality and (3.20) to conclude

Av(s)u (|G
Tu(u−, u−; ζ )|

−s) = [Av(s)u−(|G
Tu(u−, u−; ζ )|

s)]−1

≤ Av(s)u−(|G
Tu(u−, u−; ζ )|

−s) ≤
λs

(1+ s)2s‖%‖s∞
(=: C+), (3.23)

and similarly for u+. (Note that in case u− = 0, the definition of Av(s)u− extends naturally.)

2. The lower bound: First assume that s > 0. The expression (3.19) implies that for any
t > 0 and any ε ∈ (0,min{ς, s}],

Av(s)u (|G
Tx (u, u; ζ )|s) ≥ Av(s)u

(
1 [For all v ∈ Nu : |G

Tu,x (v, v; ζ )| ≤ t]

[λ|V (u)| + |ζ | + (K + 1)t]s

)
≥

∏
v∈Nu

Av
(s)
u (1 [|GTu,x (v, v; ζ )| ≤ t])

[λε E(|V (0)|ε)+ |ζ |ε + (K + 1)εtε]s/ε
. (3.24)
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The last inequality derives from the fact that the random variables appearing in the nu-
merator and V (u) are independent (even with respect to Av(s)u (·)), and Jensen’s inequal-
ity, which yields E[|Q|−s] ≥ E[|Q|−ε]s/ε ≥ E[|Q|ε]−s/ε. We now choose t ≡ t (s) large
enough so that Av(s)u (1 [|GTu,x (v, v; ζ )| ≤ t]) ≥ 1 − s. In case v 6∈ {u−, u+} this is
quantified in the estimate (A.6), and in case v ∈ {u−, u+} in (A.21).

If s ∈ [−ς, 0], we use the Jensen inequality together with (3.20) to conclude that

Av(s)u (|G
Tx (u, u; ζ )|s) ≥

1

Av
(s)
u (|G

Tx (u, u; ζ )|−s)
≥
(1+ s)λs

2s‖%‖s∞
(=: C−1

− ), (3.25)

which completes the proof of (3.15), and by inspection also of (3.16). ut

The above lemma concerns the Green function restricted to subgraphs. Arguments used
in the proof also imply that the full Green function may in fact be compared with its
restricted versions. Moreover, the effect of peeling off one vertex is bounded:

Lemma 3.4. Under the assumptions of Lemma 3.3, let x−− stand for the neighbor of x−
towards the root. Then

C−(s; ζ )
−1
≤

E(|GTx (0, x−; ζ )|s)

E(|GTx− (0, x−−; ζ )|s)
≤ C+(s; ζ ), (3.26)

[C+(s; ζ )C−(s; ζ )]
−1
≤

E(|G(0, x−; ζ )|s)
E(|GTx (0, x−; ζ )|s)

≤ C+(s; ζ )C−(s; ζ ). (3.27)

Proof. To prove (3.26) we use the factorization of the Green function,

GTx (0, x−; ζ ) = GTx− (0, x−−; ζ )GTx (x−, x−; ζ ). (3.28)

Since the last factor is of the form (3.19), the argument used in the proof of Lemma 3.3
yields (3.26).

To prove (3.27) we employ the factorization

G(0, x; ζ ) = GTx (0, x−; ζ )G(x, x; ζ ). (3.29)

Thus, by arguments as in the proof of Lemma 3.3, the quantity E(|G(0, x; ζ )|s) is
bounded from above and below in terms of E(|GTx (0, x−; ζ )|s). Since the latter lacks x,
we apply (3.26) to append this vertex. ut

3.3.2. Proof of Theorem 3.2 . We now turn to the main results on the free energy func-
tion. In this context, we recall that a supermultiplicative positive sequence is one sat-
isfying αm+n ≥ Bαmαn > 0. By Fekete’s lemma [19] for such sequences the limit
limn→∞ n

−1 logαn =: 9 exists and αm ≤ B−1em9 for every m ∈ N. For submultiplica-
tive sequences the reverse inequalities hold.

Proof of Theorem 3.2. In the following we pick a simple path in T to infinity, and label
its vertices by 0 =: x0, x1, x2, . . . . We first show that

αn(ζ ) := E[|GTxn+1 (x0, xn; ζ )|
s
] (3.30)
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is supermultiplicative in the two cases of interest: 1) s ∈ [−ς,∞) and ζ ∈ C+ and
2) s ∈ [−ς, 1) and ζ = E+ i0. In both cases, the factorization property (3.9), Lemma 3.3
and (3.26) imply that for all n,m ∈ N,

αn+m+1(ζ ) ≥ C
−1
− αn(ζ )αm(ζ ) ≥ (C+C−)

−1αn+1(ζ )αm(ζ ). (3.31)

By Fekete’s lemma [19], the limit 9(ζ) := limn→∞ n
−1 logαn(ζ ) exists.

An analogous reasoning using Lemma 3.3 and (3.26) also shows submultiplicativity,
i.e., for all n,m ∈ N,

αn+m+1(ζ ) ≤ C+αn(ζ )αm(ζ ) ≤ C+C−αn+1(ζ )αm(ζ ). (3.32)

By super- and submultiplicativity, the limit 9(ζ) provides both an upper and a lower
bound on αm(ζ ) for any m ∈ N:

(C+C−)
−1em9(ζ) ≤ αm(ζ ) ≤ C+C−e

m9(ζ). (3.33)

To establish the existence of the limits (3.10) and (2.10), we use (3.33) and (3.27), which
gives

C−1
± αn(ζ ) ≤ E[|G(x0, xn; ζ )|

s
] ≤ C±αn(ζ ) (3.34)

with C± := C+C−. Hence the limits (3.10) and (2.10) agree with 9(ζ) = ϕλ(s; ζ ) in
both cases: (i) s ∈ [−ς,∞) and ζ ∈ C+ and (ii) s ∈ [−ς, 1) and ζ = E + i0.

Since for any fixed s ∈ [−ς, 1) and E ∈ R the constants C+, C−, C± are bounded
uniformly in Im ζ ∈ (0, 1], the convergence (3.10) is also uniform with respect to Im ζ ∈

(0, 1], and the limits η ↓ 0 and |x| → ∞ can be taken in any order. This proves (3.14).
The finite-volume bounds (3.12) now follow from (3.33) and (3.34).
It remains to establish the properties listed in (a), (b) and (d). Since the prelimits are

convex functions of s, the limit is convex. Since for any ε ≥ 0,

E[|G(0, x; ζ )|s+ε] ≤ (Im ζ )−ε E[|G(0, x; ζ )|s], (3.35)

the limit (3.10) is non-increasing in s. This concludes the proof of (a).
The first inequality in (3.11) is a consequence of convexity and the factorization

property (3.7) of the Green function. In fact, if either 1) s ∈ [−ς,∞) and ζ ∈ C+ or
2) s ∈ [−ς, 1) and ζ = E + i0, then

logE[|G(0, x; ζ )|s] ≥ s E[log |G(0, x; ζ )|] = −s|x|L(ζ ). (3.36)

The second inequality in (3.11) relies on the following bound on the sums of squares of
Green functions:∑

|x|=n

|G(0, x; ζ )|2 ≤
∑
x∈T
|G(0, x; ζ )|2 =

ImG(0, 0; ζ )
Im ζ

≤
1

(Im ζ )2
. (3.37)
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From the finite-volume bounds (3.12), we conclude that for any n = dist(x, 0) ∈ N,

Knenϕ(2;ζ ) ≤ C2
±K

n E[|G(0, x; ζ )|2]

= C2
± E

[∑
|x|=n

|G(0, x; ζ )|2
]
≤

C2
±

(Im ζ )2
. (3.38)

The right side is independent of n, and thus ϕ(2; ζ ) + logK ≤ 0. Since ϕ(0; ζ ) = 0,
convexity implies ϕ(s; ζ ) ≤ −s log

√
K for all s ∈ [0, 2]. This concludes the proof

of (b).
Let us now turn to the differentiability property (d). If either s ∈ [−ς,∞) and ζ ∈ C+

or s ∈ [−ς, 1) and ζ = E + i0, the factorization property (3.7) of the Green function,
(3.11) and the finite-volume bounds (3.12) imply

0 ≤ ϕ(s; ζ )+ sL(ζ )

≤
1
|x|
(logE[|G(0, x; ζ )|s] − E[log |G(0, x; ζ )|s])+

logC2
±

|x|

≤
s2

2|x|
E[(log |G(0, x; ζ )|)2(|G(0, x; ζ )|s + 1)] +

logC2
±

|x|
. (3.39)

Here the last inequality follows from the two elementary bounds eα ≤ 1+α+α2(eα+1)/2
and 1+ β ≤ eβ valid for all α, β ∈ R. Using the fractional moment bounds (A.5) and the
factorization property of the Green function, it is easy to check that there is some constant
C < ∞ such that for all s ∈ (0, 1/4) and x ∈ T the first factor is bounded by Cs2

|x|.
Furthermore, since logC2

±(s; ζ ) = o(1) as s → 0 by (3.16), the claim (3.13) follows by
choosing |x| = bs−1(logC2

±)
1/2
c. ut

3.4. Green function’s typical decay rate, and its large deviations

The properties established in Theorem 3.2 for the free energy function ϕλ(s;E) allow one
to establish decay properties of the Green function which are important for the resonance
analysis which is presented below. The typical behavior is determined by the Lyapunov
exponent:

Theorem 3.5. For almost all E ∈ R and all ε > 0 there is some η0 > 0 such that for all
η ∈ (0, η0),

lim
|x|→∞

P
(
|G(0, x;E + iη)| ∈ e−L(E)|x|[e−ε|x|, eε|x|]

)
= 1. (3.40)

The same applies to GTx (0, x−;E + iη) (when substituting G(0, x;E + iη)).

The proof is presented in Appendix B, based on the general and more comprehensive
large deviation Theorem B.1. The latter is established through some standard arguments
for which enabling bounds are provided by Theorem 3.2.
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Other values of |x|−1 log |G(0, x;E + iη)| can also be observed, but these represent
large deviations for which the rate function is given by the Legendre transform:

I (γ ) := − inf
s∈[−ς,1)

[ϕλ(s;E)+ sγ ]. (3.41)

More explicitly, for any γ which is attainable as γ = −∂ϕλ(s;E)/∂s for s ∈ [−ς, 1),

P
(
|G(0, x;E + iη)| ∈ e−γ |x|[e−ε|x|, eε|x|]

)
≈ e−I (γ )]|x|, (3.42)

where≈means that the ratio of the two terms is of the order eo(|x|) for large |x|. A stronger
large deviation principle is presented in Theorem 5.2.

4. The Lyapunov exponent delocalization criterion

Our goal in this section is to prove Theorem 2.1. We start with some useful preparatory
observations.

4.1. A zero-one law and the relative tightness of Im0(0;E + iη)

Lemma 4.1. For Lebesgue-almost all E ∈ R, the probability that Im0(0;E + i0) = 0
is either 0 or 1.

Proof. Taking the imaginary part of (3.5) one gets

Im0(0;E + iη) = |G(0, 0;E + iη)|2
[
η +

∑
x∈N+0

Im0(x;E + iη)
]

≥ |G(0, 0;E + iη)|2
∑
x∈N+0

Im0(x;E + iη), (4.1)

with equality in case η = 0 for those E for which the boundary values exist, that is,
for Lebesgue-almost all E ∈ R. Let now q := P(Im0(0;E + i0) = 0). The factor
|G(0, 0;E + i0)| is almost surely non-zero, since, for example, E[|G(0, 0;E + i0)|−ς ]
< ∞, using the recursion relation (3.5), Assumption C and the finiteness of fractional
moments. Since the K different terms, Im0(x;E + i0), x ∈ N+0 , are independent vari-
ables of the same distribution as Im0(0;E+i0), and |G(0, 0;E+i0)| 6= 0 almost surely,
we may conclude that q = qK or q[1− qK−1

] = 0, and hence either q = 0 or q = 1. ut

In order to quantify the way the distribution of Im0(0; ζ ) settles on its limit as Im ζ ↓ 0,
we introduce the following quantity.

Definition 4.2. For ζ ∈ C+ and α ∈ (0, 1) the upper percentile ξ(α, ζ ) of the distribution
of Im0(0; ζ ) is the supremum of the values of t ≥ 0 for which

P(Im0(0; ζ ) ≥ t) ≥ α. (4.2)

Lemma 4.3. For ζ ∈ C+ and any α ∈ (0, 1) we have 0 < ξ(α, ζ ) <∞.
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Proof. For ζ ∈ C+ one has 0 < Im0(0; ζ ) ≤ (Im ζ )−1. Hence the claim derives from
the following observations: (i) The collection of strictly positive values of t for which
(4.2) holds is not empty, since otherwise Im0(0; ζ ) = 0 with probability one. (ii) The
above collection of values of t does not include any value above (Im ζ )−1. ut

Iterating (4.1) we conclude that for any n ∈ N and ζ ∈ C+,

Im0(0; ζ ) ≥
∑
x∈Sn
|G(0, x; ζ )|2

∑
y∈N+x

Im0(y; ζ ) (4.3)

where Sn := {x ∈ T | dist(0, x) = n}. As a first consequence of this important relation,
we note that the distribution of Im0(0; ζ ) does not broaden too fast as Im ζ ↓ 0. As a
measure of the (relative) width of the distribution we use the ratios ξ(α; ζ )/ξ(β; ζ ).

Lemma 4.4. For any E ∈ R the distribution of Im0(0;E + iη) remains relatively tight
in the limit η ↓ 0 in the sense that for any pair α, β ∈ (0, 1)

lim inf
η↓0

ξ(α;E + iη)

ξ(β;E + iη)
> 0. (4.4)

Proof. We fix α, β ∈ (0, 1) (by monotonicity it would suffice to consider the case α > β)
and pick an arbitrary 0 < ε < 1 − β. For a given x ∈ Sn, let us consider the event
Rx := {(|G(0, x;E + iη)| ≥ e−n`}, where ` > L(E) is fixed at an arbitrary value. We
now choose n ∈ N large enough and η0 > 0 small enough such that for all η ∈ (0, η0)

simultaneously

P(Rcx) ≤ α
(

1−

√
β

1− ε

)
and Knα

√
β

1− ε
≥
β

ε
, (4.5)

where c indicates the complementary event. While the second requirement is obviously
satisfied for n = |x| large enough, it follows from Theorem 3.5 that also the first re-
quirement can be met. In order to control the sum in (4.3) we also introduce the event
Ix :=

⋃
y∈N+x {Im0(y;E + iη) ≥ ξ(α;E + iη)}. From (4.3) and the Cauchy–Schwarz

inequality it then follows that

P
(
Im0(0; ζ ) ≥ e−2`nξ(α;E + iη)

)
≥ P(N ≥ 1) ≥

E[N ]2

E[N2]
, (4.6)

where N :=
∑
x∈Sn 1Rx∩Ix denotes the number of joint events Rx ∩ Ix on the sphere Sn.

The right side in (4.6) is estimated using the independence of the events Ix for all x ∈ Sn:

E[N2
] − E[N ] = E[N(N − 1)] ≤

∑
x,y∈Sn
x 6=y

P(Ix)P(Iy) ≤ K2n P(Ix)2. (4.7)

Together with the lower bound

E[N ] = Kn P(Rx ∩ Ix) ≥ Kn(P(Ix)− P(Rcx)) ≥ K
n(α − P(Rcx)) ≥ β/ε, (4.8)
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the inverse of the right side in (4.6) is bounded from above using (4.5):

E[N2
]

E[N ]2
≤

1
E[N ]

+

(
1−

P(Rcx)
α

)−2

≤
ε

β
+

1− ε
β
=

1
β
. (4.9)

From the definition of the upper percentile and (4.6) together with (4.9) it hence follows
that ξ(β;E + iη) ≥ e−2`nξ(α;E + iη). The proof is concluded by noting that the first
factor on the right side is independent of η and strictly positive. ut

4.2. A conditional proof of the criteria

We prove Theorems 2.1 and 2.5 by contradicting the following ‘no-ac’ hypothesis.

Definition 4.5. For a specified λ ≥ 0, we say that the no-ac hypothesis holds at E ∈ R if
almost surely ImG(0, 0;E + i0) = 0.

The relation (4.3) suggests that the no-ac hypothesis is false if with uniformly positive
probability there are sites x ∈ Sn with |G(0, x; ζ )| � 1, and a forward neighbor y with a
not particularly ‘atypical’ value of Im0(y;E + iη). A key step is:

Theorem 4.6. For almost all E ∈ σ(Hλ), if either

1. (Lyapunov exponent criterion) L(E) < logK , or
2. (large deviation criterion) ϕ(1;E) > − logK , and Assumption E is satisfied,

and the no-ac hypothesis holds true, then there are δ, p0 > 0 and n0 ≥ 0 such that for all
n ≥ n0,

lim inf
η↓0

P
(

max
x∈Sn
|G(0, x;E+iη)| 1max

y∈N+x
Im0(y;E+iη)≥ξ(α;E+iη) ≥ e

δn
)
≥ 2p0. (4.10)

A heuristic argument for the validity of Theorem 4.6 is given in Subsection 4.3 below. The
proof is split: the Lyapunov exponent criterion is established in Subsection 4.4, whereas
the proof of the large deviation criterion, which is a bit more involved, is given separately
in Section 5. First however let us show how Theorem 4.6 is used for the proof of our
main results.

Proof of Theorems 2.1 and 2.5 given Theorem 4.6. We will argue by contradiction. As-
sume the no-ac hypothesis for the given energy E ∈ σ(Hλ). From Lemma 4.6 and (4.3)
it then follows that there are α, δ, η0, p0 > 0 and n0 ≥ 0 such that for all η ∈ (0, η0) and
all n ≥ n0,

P
(
Im0(0;E + iη) ≥ e2δnξ(α;E + iη)

)
≥ P

(
max
x∈Sn
|G(0, x;E + iη)| 1max

y∈N+x
Im0(y;E+iη)≥ξ(α;E+iη) ≥ e

δn
)
≥ p0. (4.11)

As a consequence, ξ(p0;E+ iη) ≥ e
2δnξ(α;E+ iη), and since n can be taken arbitrarily

large,

lim
η↓0

ξ(α;E + iη)

ξ(p0;E + iη)
= 0. (4.12)

This however contradicts the relative tightness condition (4.4). ut
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4.3. Heuristics of the resonance mechanism

A possible mechanism for the rare events featured in (4.10) is the simultaneous occur-
rence of the following two events, for some common value of γ > 0:

|G(x, x;E + iη)| ≥ e(γ+δ)|x|, (4.13)

|GTx (0, x−;E + iη)| ≥ e−γ |x|. (4.14)

These two conditions imply |G(0, x;E + iη)| ≥ eδ|x| through the relation (3.8).
The first, (4.13), represents an extremely rare local resonance condition. It occurs

when the random potential at x falls very close to a value at which G(x, x;E + i0) di-
verges. By (3.3), such divergence is possible if GTx (y, y;E + i0) is real for all y ∈ Nx .
By (3.3) and the continuity of the probabilities in η, under the no-ac hypothesis the prob-
ability of (4.13) occurring at a given site x ∈ Sn is of the order e−(γ+δ)n for η sufficiently
small (depending on n).

The second condition, (4.14), represents

(i) a typical event in case γ = L(E) (cf. Theorem 3.5),
(ii) a large deviation event in case γ < L(E) (cf. (3.42)).

In the first case, the mean number of sites in the sphere Sn on which (4.13) and (4.14)
occur is E[N ] ≈ Kne−(L(E)+δ)n � 1 provided 0 < δ < logK − L(E). Unlike (4.13),
the conditions Im0(y;E + iη) ≥ ξ(α;E + iη) are not rare events, and their inclusion
does not modify significantly the above estimate.

In the second case, by a standard large deviation estimate as in (3.42), the probability
of the event (4.14) with γ ≈ − lims↑1

∂ϕ
∂s
(s;E) =: ϕ′−(1) is of the order e−nI (γ )+o(1) with

a rate function I (γ ) which is related to ϕ(s) ≡ ϕλ(s;E) through the Legendre transform.
The relevant mechanism for the occurrence of (4.14) is the systematic stretching of the
values of |GTx (0, u;E+ iη)| along the path 0 � u � x−. By the above line of reasoning,
and ignoring excessive correlations (a step which is justified under auxiliary conditions)
we arrive at the mean value estimate E[N ] ≈ Kn exp(−n[I (γ ) + γ + δ + o(1)]). This
value is much greater than 1 for some δ > 0, provided

sup
γ
[logK − (I (γ )+ γ )] > 0. (4.15)

That is, although the probabilities of the above two events are exponentially small, given
the exponential growth of |Sn| = Kn, under suitable assumptions E[N ] → ∞ for
n → ∞. To see what (4.15) entails, let us note that by the inverse of the Legendre
transform (3.41):,

ϕ(s;E) ≡ ϕ(s) = − inf
γ
[I (γ )+ sγ ]. (4.16)

Thus, (4.15) is the condition ϕ(1;E) > − logK , which is mentioned in Theorem 4.6 and
in Theorem 2.5.

The analysis which relates to the first condition (i) yields the Lyapunov exponent
criterion which we shall prove first. The proof of the more complete result, which uses
the condition (ii) is a bit more involved, and is therefore postponed to the next section.
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4.4. Resonances based on the Lyapunov behavior

The aim of this subsection is to prove the first criterion of Theorem 4.6. Thus, we fix
the disorder parameter λ > 0 and the energy E ∈ R, assuming that Lλ(E) < logK . In
view of the general bound Lλ(E) > log

√
K , for which the strict inequality was shown

in [6, Thm. 4.1] (the weak inequality is explained by (3.11)), the assumption is equivalent
to

4δ := logK − Lλ(E) ∈ (0, log
√
K). (4.17)

In accordance with the above heuristics, we consider the following three events.

Definition 4.7. To each x ∈ Sn and η > 0 we associate the following events:

• The extreme deviation event, at blow-up parameter τ := e(L(E)+2δ)n:

Ex := {|G(x, x;E + iη)| ≥ τ }.

• The regular decay event, at decay rate ` := L(E)+ δ:

Rx := {|G
Tx (0, x−;E + iη)| ≥ e−`n}.

• The α-marginality event, at probability α ∈ (0, 1):

Ix :=
⋃
y∈N+x

{Im0(y;E + iη) ≥ ξ(α;E + iη)}.

We will suppress the dependence of these events on α, η > 0. The parameter τ is
chosen such that (i) τ−1Kn

= e2δn and (ii) in the event Ex ∩ Rx ,

|G(0, x;E + iη)| = |GTx (0, x−;E + iη)| |G(x, x;E + iη)| ≥ eδn, (4.18)

by the factorization (3.8) of the Green function. The decay rate ` is chosen so that the
event Rx occurs asymptotically as n→∞ with probability one (cf. Theorem 3.5).

We will monitor the number of simultaneous occurrences of the three events listed
above, which is given by the random number

N :=
∑
x∈Sn

1Ex∩Rx∩Ix . (4.19)

Even the divergence, for n → ∞, of the expectation value E[N ] does not on its own
imply that the probability of N > 1 has a positive limit. However, such a conclusion can
be drawn from suitable information on the first two moments, e.g. using the following
consequence of the Cauchy–Schwarz inequality:

P(N ≥ 1) ≥
E[N ]2

E[N2]
. (4.20)

We shall next derive bounds on the first two moments which will enable the proof that the
above probability is bounded below.
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4.5. Lower bound on the mean number of resonant sites

Our lower bound on E[N ] is based on a relation of the probability of extreme deviation
events to the mean (local) density of states D(E) associated with fully regular Cayley
tree B in which every vertex has exactly K + 1 neighbors. This density of states is given,
for almost all E ∈ R, by [30, 3]

D(E) := lim
η↓0

1
π
E[ImGB(x, x;E + iη)]. (4.21)

Since ζ 7→ E[G(x, x; ζ )] is a Herglotz function, the limit exists for almost all E ∈ R.
Moreover, due to homogeneity it is independent of x ∈ B. The following property is well
known (cf. [3, 14]), but very important for us.

Proposition 4.8. The support of D coincides with the almost-sure spectrum, i.e., for
Lebesgue-almost all E ∈ σ(Hλ) one has D(E) > 0.

Varying the potential at x is a rank-one perturbation of the operator Hλ(ω), and the re-
sponse of the corresponding Green function’s diagonal element is particularly simple:

GB(x, x; ζ ) = (λV (x)− σx(ζ ))
−1, σx(ζ ) := ζ +

∑
y∈Nx

GBx (y, y; ζ ) (4.22)

(which is a special case of (3.3)). This allows us to relate the aforementioned probabil-
ity of extreme deviation events to the density of states D(E). It is at this point that the
regularity Assumption D plays a helpful role.

Lemma 4.9. For Lebesgue-almost all E ∈ R, under the no-ac hypothesis the following
holds for all x ∈ B:

1. Im σx(E + i0) = 0 almost surely.
2. D(E) = E[%(λ−1σx(E + i0))]/λ.
3. For any τ̂ ≥ λ−1 and any event Zx which is independent of V (x),

D(E) ≤
cτ̂

2
P({|GB(x, x;E + i0)| ≥ τ̂ } ∩ Zx)+

‖%‖∞

λ
P(Zcx), (4.23)

where c ∈ (0,∞) is the constant from Assumption D.

Proof. The proof of the first assertion is based on the observation that, under the no-
ac hypothesis, ImGBx (y, y;E + i0, ω) = 0 for P-almost all ω, all x ∈ T and all
y ∈ Nx . This follows from the fact that the Green functions GBx (y, y;E + i0) asso-
ciated with the neighbors y ∈ Nx are identically distributed to 0(0;E + i0) and hence
ImGBx (y, y;E + i0, ω) = 0 for Lebesgue× P-almost all (E, ω).

The proof of the representation in item 2 is based on (4.22). We first condition on the
sigma-algebra Ax generated by the random variables V (y), y 6= x, and write

E[ImGB(x, x;E + iη) | Ax] =

∫
%(v) Im (λv − σx(E + iη))

−1dv. (4.24)
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Since limη↓0 σx(E + iη) = σx(E + i0) for almost all E ∈ R and the distribution of
σx(E+ i0) is continuous, Lebesgue’s differentiation theorem implies that for Lebesgue×
P-almost all (E, ω),

lim
η↓0

1
π

∫
%(v) Im (λv − σx(E + iη;ω))

−1dv =
%(λ−1σx(E + i0;ω))

λ
. (4.25)

This together with the dominated convergence theorem, which is based on the Wegner
bound

E[ImGB(x, x;E + iη) | Ax] ≤ π‖%‖∞/λ, (4.26)

concludes the proof of the representation 2.
We may now refine this representation by first inserting an indicator function of any

event Zx which is independent of V (x) and its complement Zcx . The equalities (4.24) and
(4.25) together with (4.26) then imply

D(E) ≤ λ−1 E[%(λ−1σx(E + i0;ω)) 1Zx ] +
‖%‖∞

λ
P(Zcx). (4.27)

Using Assumption D, the first term on the right side is now seen to relate to the probability
of extreme deviation events. More precisely, for any τ̂ ≥ λ−1, almost surely,

λ−1%(λ−1σx(E + i0;ω)) ≤
cτ̂

2

∫
%(v) 1|λv−σx (E+i0;ω)|≤τ̂−1 dv

=
cτ̂

2
P(|GB(x, x;E + i0)| ≥ τ̂ | Ax). (4.28)

This concludes the proof of (4.23). ut

Based on the above estimates, we may now provide a lower bound on E[N ].

Corollary 4.10. For Lebesgue-almost everyE ∈ σ(Hλ) under the no-ac hypothesis there
are α ∈ (0, 1), C, η0 ∈ (0,∞) and n0 ≥ 1 such that for all n ≥ n0 and η ∈ (0, η0),

E[N ] = Kn P(Rx ∩ Ex ∩ Ix) ≥ KnD(E)

Cτ
≥
D(E)

C
> 0. (4.29)

Proof. The continuity

lim
η↓0

P({|GB(x, x;E + iη)| ≥ 2τ } ∩ Zx) = P({|GB(x, x;E + i0)| ≥ 2τ } ∩ Zx) (4.30)

for almost every E ∈ R guarantees the validity of (4.23) with 2c replaced by c and all η
small enough. To extend this estimate to the Green function associated with the regular
rooted tree T , we naturally embed `2(T ) into `2(B) and use perturbation theory, the
general recursion relation (3.3) and the multiplicativity (3.4):

|GB(x, x; ζ )−1
−GT (x, x; ζ )−1

| ≤ |0Bx (x−; ζ )− 0
Tx (x−; ζ )|

≤ |GBx (0−, x−; ζ )| |GTx (0, x−; ζ )|

= |GBx (0−, 0−; ζ )| |GTx (0, x−; ζ )|2. (4.31)
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For all E ∈ R such that D(E) > 0 there exists t > 0 such that according to (A.6) the
event B̂x := {|GBx (0−, 0−;E + iη)| ≤ t} has for all η > 0 a probability of at least

P(B̂x) ≥ 1−
λD(E)

8‖%‖∞
> 0. (4.32)

Moreover, according to Theorem 3.5 and since e−2δnτ−1
= K−n > e−2nL(E), there are

n0 ≥ 1 and η0 ∈ (0,∞) such that for all n ≥ n0 and η ∈ (0, η0) the event R̂x :=
{|GTx (0, x−;E + iη)| ≤

√
e−2δnτ−1} has a probability of at least

P(R̂x) ≥ 1−
λD(E)

8‖%‖∞
> 0. (4.33)

Summarizing the above estimates, we conclude that there are n0 ≥ 1 and η0 ∈ (0,∞)
such that for all n ≥ n0 and η ∈ (0, η0) and any event Zx which is independent of V (x),

D(E) ≤ cλτ P({|GB(x, x;E + iη)−1
| ≤ (2τ)−1

} ∩ B̂x ∩ R̂x ∩ Zx)

+
‖%‖∞

λ
P(B̂cx ∪ R̂

c
x ∪ Z

c
x)

≤ cλτ P(Ex ∩ Zx)+
‖%‖∞

λ
P(Zcx)+

1
4
D(E). (4.34)

We apply this bound to Zx = Rx ∩ Ix and use P(Rcx ∪ I cx ) ≤ P(Rcx)+ P(I cx ) ≤ P(Rcx)+
1 − α. By Theorem 3.5, there are n1 ≥ n0 and η1 ∈ (0, η0] such that for all n ≥ n1 and
η ∈ (0, η1),

P(Rx) ≥ 1−
λD(E)

8‖%‖∞
> 0. (4.35)

Choosing α := 1− λD(E)/(8‖%‖∞) completes the proof of (4.29). ut

4.6. The enabling second moment upper bound

The mere fact that the mean number of events diverges as n→∞ (cf. (4.29)) does not yet
imply that such events do occur with uniformly positive probability. The alternative is that
the divergence reflects an increasingly rare but also increasingly correlated occurrence
of these events. To prove that the resonances do occur regularly, on sufficiently large
spheres Sn, we use the second-moment method which is based on the following estimate.

Lemma 4.11. Assuming L(E) < logK , there is C ∈ (0,∞) such that for all n ≥ 1, all
η > 0 and all α ∈ (0, 1),

E[N(N − 1)] ≤ Cτ−2K2n. (4.36)

Proof. Throughout the proof, constants C ∈ (0,∞) will be independent of n, η and α.
We start from the observation that

E[N(N − 1)] =
∑
x,y∈Sn
x 6=y

P(Rx ∩ Ex ∩ Ix ∩ Ry ∩ Ey ∩ Iy) ≤
∑
x,y∈Sn
x 6=y

P(Ex ∩ Ey).

(4.37)
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The probability on the right side is estimated using the weak-L1 bound for pairs of Green
functions in Theorem A.2 below. Denoting by Axy the sigma-algebra generated by the
random variables V (u), u 6∈ {x, y}, we obtain

P(Ex ∩ Ey) = E[P(Ex ∩ Ey | Axy)]

≤
C

τ

(
1
τ
+ E[min{1, |GTx,y (x−, y−;E + iη)|}]

)
, (4.38)

with some constant C ∈ (0,∞). The first term is already of the desired form since the
number of terms in the sum in (4.37) is bounded by K2n. To estimate the second term we
use min{1, |x|} ≤ |x|s valid for any s ∈ [0, 1]. Choosing

s :=
L(E)+ 2δ

logK
∈ (0, 1), (4.39)

we estimate the fractional moment with the help of the finite-volume bounds (3.12) and
the upper bound in (3.11):

E[|GTx,y (x−, y−;E + iη)|
s
] ≤ CK−

s
2 dist(x,y) (4.40)

with some constant C ∈ (0,∞). The corresponding sum contributing to (4.37) is esti-
mated by fixing x ∈ Sn and summing over the distance of the least common ancestor of
x and y to the root:∑

x,y∈Sn
x 6=y

E[|GTx,y (x−, y−;E + iη)|
s
] ≤ CKn

n−1∑
j=0

Kn−jK−s(n−j)

≤ CK(2−s)n
= Cτ−1K2n, (4.41)

where the last inequality is based on (4.39). ut

We are now ready for the proof of the main result of this section.
Proof of Theorem 4.6: the Lyapunov exponent criterion. By Corollary 4.10 and Lem-
ma 4.11, there are α ∈ (0, 1) (which is one of the parameters in the definition of N ),
C, η0 ∈ (0,∞) and n0 ≥ 0 such that for all n ≥ n0 and η ∈ (0, η0),

E[N2
]

E[N ]2
=

1
E[N ]

+
E[N(N − 1)]

E[N ]2
≤ C. (4.42)

Hence, the second-moment bound (4.20) allows us to conclude that P(N ≥ 1) ≥ C−1

uniformly in n > n0 and η ∈ (0, η0).
However, when N ≥ 1 one may conclude that the quantity which appears on the left

side of (4.10) satisfies

max
x∈Sn
|G(0, x;E + iη)| 1max

y∈N+x
Im0(y;E+iη)≥ξ(α;E+iη) ≥ e

δn. (4.43)

Taken together, (4.43) and the above probability estimate directly imply the part of The-
orem 4.6 which relates to the Lyapunov exponent criterion, with 2p0 = C

−1. ut

As was shown in Section 4.6, the above result implies the Lyapunov exponent criterion
which is stated in Theorem 2.1.
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5. Resonances enhanced by large deviations

As explained in the introduction, while the Lyapunov exponent criterion is very useful
it does not yet cover the full regime of extended states. Our next aim is to establish an
extended version of this criterion, improved through the incorporation in the argument
of large deviation considerations. The result is stated above as the second part of The-
orem 4.6. We now turn to its proof, following the outline which is given in Section 4.3.
The strategy has much in common with the derivation of the Lyapunov exponent criterion;
however, the proof involves some additional technicalities. Since the applications which
are discussed in the introduction rely on just the Lyapunov exponent criterion, only the
more dedicated reader may wish to follow this section.

5.1. Selection of auxiliary parameters

For the remainder of this subsection, we fix the disorder parameter λ > 0 and an energy
E ∈ R such that ϕ(t) ≡ ϕ(t;E) = limη↓0 ϕ(t;E + iη) exists for all t ∈ [−ς, 1)
and (2.11) holds, i.e.,

1 := logK + ϕ(1;E) ∈
(
0, 1

2 logK
)
. (5.1)

Due to the convexity of ϕ(s) and (3.11), under the assumption (5.1) the left derivative of
ϕ satisfies (see Figure 4)

0 < −ϕ′−(1) ≤ 1. (5.2)

Fig. 4. Sketch of the free energy function in case
ϕλ(1;E) > − logK . Regardless of this assump-
tion the curve does not enter the shaded region.
The parameter γ is the negative slope of the tan-
gent at s and the value of the rate function I (γ ) =
−ϕλ(s;E) − sγ can be read off as the negative
value at the intersection of that tangent with the
vertical axis.

We proceed by associating to the given λ and E certain parameters (γ , β, κ , ε, and τ )
which will also be kept fixed for the remainder of this section. These parameters feature
in the definition of the resonance events which will be associated with vertices on the
sphere Sn of radius n ∈ N. To control the correlations among such events we restrict to
vertices on the thinned sphere Sκn ⊂ Sn associated with the parameter κ which we pick
in the range

κ ∈
(
0,min

{
1

16` ,
1
4

})
, (5.3)
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Fig. 5. The geometry of the resonance-boosted large deviation event.

where ` > L(E) is fixed (largely arbitrary). The thinned sphere Sκn , whose radius shall
be larger than 4dκ−1

e, is characterized by the length scales nκ := 2bκn/2c ∈ 2N and
Nκ := n− nκ . The first one is only a fraction of the second length scale, i.e.

1
2κn ≤ nκ ≤ κn, nκ ≤

κ
1−κNκ ≤

4
3κNκ . (5.4)

Then Sκn is uniquely determined by havingKNκ vertices with 2nκ + 1 vertices separating
them (cf. Figure 5).

We now pick a value s ∈ (0, 1) at which the free energy function t 7→ ϕ(t) is differ-
entiable, and such that

(a) the derivative at s satisfies

γ := −ϕ′(s) ≥ 1 > 0, (5.5)

(b) the following condition holds:

I (γ )+ γ = −[ϕ(s)+ (1− s)ϕ′(s)] ≤ logK − 7
81, (5.6)

(c) addition (1− s) < 1/16 and ϕ(s) < − 1
2 logK .

In view of (5.1) and (5.2), and the convexity of ϕ, the above conditions are satisfied for a
dense collection of values of s approaching 1 from below (see Figure 4). (Condition (c)
is only imposed to simplify some of the estimates.)

The parameter γ will be used as a target value for the decay of the Green function in
the large deviation events Lx defined below. For any site x ∈ Sn we label the vertices of
the unique path from the root to x as x0 = 0, x1, . . . , xn = x, and we denote by

T̂x := Txnκ−1,x (5.7)
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the tree truncated beyond the segment of length Nκ whose end points are {xnκ−1, x}

(cf. Figure 5). Associated with this segment there are two collections of variables
{0+(j ; η)}

Nκ
j=1 and {0−(j ; η)}

Nκ
j=1:

0+(j ; η) := G
Txn−j−1,x (xn−j , xn−j ;E + iη),

0−(j ; η) := G
Txnκ−1,xnκ+j (xnκ−1+j , xnκ−1+j ;E + iη), (5.8)

such that by (3.4),

GT̂x (xnκ , xn−1;E + iη) =

Nκ∏
j=1

0+(j ; η) =

Nκ∏
j=1

0−(j ; η). (5.9)

Definition 5.1. We refer to the following as the large deviation events associated with
sites x ∈ Sn and η, ε > 0:

Lx := L
(bc)
x ∩

Nκ⋂
k=nκ/2

(L(k,+)x ∩ L(k,−)x ), (5.10)

where for any k ∈ {1, . . . , Nκ},

L(k,±)x :=

{ k∏
j=1

|0±(j ; η)| ∈ e
−γ k
[e−εk, eεk]

}
,

L(bc)
x := {|0+(Nκ ; η)| ≤ b/2} ∩ {|0−(Nκ ; η)| ≤ b/2}.

We will suppress the dependence on η and ε (whose value is fixed below).
The boundary events L(bc)

x play a role in the following context: (i) the lower bound
on the probability of Rx given below in Lemma 5.7, and (ii) the estimate (5.28) on the
size of the self-energy at x are derived only under the condition L(bc)

x . The parameter b is
fixed at a value large enough so that

(a) b ≥ (2‖%‖∞/λ)max{16, (1− (3/4)K)−1
}, and

(b) Ps(L(bc)
x ) ≥ 7/8 (cf. (B.5)),

the latter being possible thanks to (A.21). (The numbers are largely arbitrary.)
To fix the parameter ε, we invoke the following large deviation statement which is

derived in Appendix B.

Theorem 5.2. For any ε > 0 there are η0 > 0 and n0 > 0 such that for all η ∈ (0, η0)

and all n = dist(x, 0) ≥ k ≥ n0,

P(Lx(η; ε)) ≥ e−Nκ (I (γ )+2ε), (5.11)

P(L(k,±)x (η; ε)) ≤ e−(I (γ )−2ε)k. (5.12)
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We now fix ε with
2ε ∈

(
0,min

{
1
24 ,

κ1
4

})
. (5.13)

This parameter will be used in controlling the probabilities of various large deviation
events.

Before turning to the main definitions, we introduce yet another event which refers
to the behavior of the Green function between x0 and xnκ−1, for which we require the
(largely arbitrary) minimal decay rate ` > L(E) combined with a condition at an end
point.

Definition 5.3. We refer to the following as the regular events associated with sites x ∈
Sn and η > 0:

Rx := R
(bc)
x ∩ {|GTx (0, xnκ−1;E + iη)| ∈ [e

−nκ`, 1]} (5.14)

where R(bc)
x := {|GTx (xnκ−1, xnκ−1;E + iη)| ≤ b/2}.

This event is regular in the sense that it occurs with a probability of order one, which
is independent of n (cf. Theorem 3.5). The reason for its inclusion in the paper is mainly
of technical origin: in the subsequent proof of a second-moment bound (Theorem 5.8
below), we cannot allow the large deviation event Lx to extend down to the root, but we
nevertheless need some control on the Green function on this segment.

Having fixed the basic parameters, we now turn to the precise definition of the events.

Definition 5.4. For each x ∈ Sn and η > 0 we define

(ii) the resonance-boosted large deviation event,

Dx := Ex ∩ Lx ∩ Rx, (5.15)

which consists of the following three events:

(a) extreme deviation event with blow-up scale τ := exp
((
γ + 3

41
)
Nκ
)
:

Ex := {|G(x, x;E + iη)| ≥ τ },

(b) large deviation event Lx (cf. Definition 5.1),
(c) regular event Rx (cf. Definition 5.3),

(i) the α-marginality event at probability α ∈ (0, 1):

Ix :=
⋃
y∈N+x

{Im0(y;E + iη) ≥ ξ(α;E + iη)}.

The joint event Dx ∩ Ix will be referred to as a resonance event at x.

Several remarks are in order:
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• The resonance-boosted large deviation events are tailored so that in the event Dx the
Green function associated with the root and x exhibits an exponential blow-up. Namely,
by the factorization property of the Green function,

G(0, x; ζ ) = GTx (0, xn−1; ζ )G(x, x; ζ )

= GTx (0, xnκ−1; ζ )G
T̂x (xnκ , xn−1; ζ )G(x, x; ζ ). (5.16)

For ζ = E+iη, the first term is controlled byRx . The large deviation eventLx controls
the second factor, and the extreme fluctuation event Ex compensates for the decay of
the first two terms. Using (5.4), (5.3), and (5.13), we hence arrive at the estimate

|G(0, x;E + iη)| ≥ e−nκ`e−(γ+ε)Nκ τ ≥ exp
(
Nκ
( 3

41− ε −
4
3κ`

))
≥ exp

( 1
21Nκ

)
≥ exp

( 3
81n

)
. (5.17)

• The choice of the blow-up scale τ is tailored to (i) compensate the decay of the Green
function on the segment preceeding x (cf. (5.17)), and (ii) ensure that for n large enough
and η small enough,

τ−1KNκ P(Lx) ≥ exp
(
Nκ
(
logK − (γ + I (γ ))− 2ε − 3

41
))

≥ exp
(
Nκ

1
16

)
, (5.18)

by (5.11), (5.6) and (5.13). The fact that this term can be made large as n→∞ will be
essential in the subsequent argument.
• We recall from Definition 4.2 that the value ξ(α;E + iη) ensures that P(Ix) ≥ α.

5.2. The strategy

Postponing the proof of the occurrence of the above resonance events, the proof of our
key statement, the large deviations criterion of Theorem 4.6, is along the same lines as in
the Lyapunov regime.

Proof of Theorem 4.6: the large deviation criterion. We monitor the number

N :=
∑
x∈Sκn

1Dx∩Ix (5.19)

of resonances on the thinned sphere and note that the event N ≥ 1 implies the event on
the right side of (4.10) for δ = 3

81 > 0 using (5.17).
According to Theorems 5.6 and 5.8, there are α ∈ (0, 1), C, η0 ∈ (0,∞) and n0 ≥ 0

such that for all n ≥ n0 and η ∈ (0, η0),

E[N2
]

E[N ]2
=

1
E[N ]

+
E[N(N − 1)]

E[N ]2
≤ C. (5.20)

Together with (4.20), this concludes the proof. ut

The second-moment method on which the above proof is based requires a lower bound
on the mean number of events as well as an upper bound on their second moment. These
will be the topics of the remaining subsections.
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5.3. The mean number of resonant sites

The main idea behind a lower bound on the average number of resonances is that the
probability of the occurrence of the extreme fluctuation Ex is of order τ−1. Rewriting this
event

Ex = {|λV (x)− σx(E + iη)| ≤ τ
−1
}, (5.21)

thereby exposing the dependence of G(x, x; ζ ) on the potential at x and on

σx(E + iη) := E + iη +
∑
y∈Nx

GTx (y, y; ζ ), (5.22)

one realizes that if the latter has a non-zero imaginary part, the Green function stays
bounded and no resonance mechanism kicks in. On the other hand, in the event Sx ∩ Tx ,
where

Sx :=
⋂
y∈Nx

Sx(y) with Sx(y) := {|G
Tx (y, y; ζ )| ≤ b},

Tx := {Im σx(E + iη) ≤ (2τ)−1
}, (5.23)

the imaginary part of the term on the right side of (5.21) is bounded by (2τ)−1 and the
real part is bounded by (K + 1)b. As a consequence, we may estimate the conditional
probability ofEx conditioned on the sigma-algebra Ax generated by the random variables
V (y), y 6= x:

P(Ex | Ax) ≥ 1Sx∩Tx P
(
|λV (x)− E − Re σx(E + iη)| ≤ 1

2τ

∣∣ Ax

)
≥ 1Sx∩Tx inf

|σ |≤(K+1)b
P
(
|λV (x)− E − σ | ≤ 1

2τ

∣∣ Ax

)
≥ %bτ

−1 1Sx∩Tx . (5.24)

where the last estimate relied on Assumption D and we introduced

%b := inf
v∈(K+1)[−b,b]

(cλ)−1%

(
v + E

λ

)
> 0. (5.25)

Now, Sx is a regular event, i.e., it occurs with positive probability independent of n. Under
the no-ac hypothesis the probability of the event Tx is (arbitrarily) close to 1.

Lemma 5.5. Under the no-ac hypothesis, Im σx(E + i0, ω) = 0 for P-almost all ω and
all x ∈ T .

Proof. Recall that σx coincides with the sum (5.22) of the Green functions associated
with the neighbors of x. The Green functions associated with the forward neighbors,
y 6= x−, are identically distributed to 0(0;E+i0) and hence ImGTx (y, y;E+i0, ω) = 0
for Lebesgue × P-almost all (E, ω). This argument does not apply to the Green func-
tion at the backward neighbor x−. However, the difference in its distribution and that
of 0(0;E + iη) can be removed through a finite rank perturbation (the surgery which
links 0 with the root of another tree graph, thereby producing a regular rooted tree, which
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is rooted at x−). Since finite-rank perturbations do not change the ac spectrum, we also
conclude ImGTx (x−, x−;E + i0, ω) = 0 for Lebesgue× P-almost all (E, ω). ut

The bound (5.24) quantifies the essence of the resonance mechanism and leads to the
following

Theorem 5.6. Under the no-ac hypothesis, for every n large enough there exists η0 > 0
such that for all η ∈ (0, η0), α ∈ [1/2, 1) and x ∈ Sn,

E[N ] = KNκ P(Dx ∩ Ix) ≥ 1
16%bτ

−1KNκ P(Lx). (5.26)

The right side can be made arbitrarily large by choosing n sufficiently large.

Proof. In order to estimate the probability of the joint occurrence of the eventsDx and Ix ,
we first condition on the sigma-algebra Ax and use (5.24) to obtain,

P(Dx ∩ Ix) = E[1Rx∩Lx∩Ix P(Ex | Ax)]

≥ %bτ
−1 P(Rx ∩ Lx ∩ Ix ∩ Sx ∩ Tx)

≥ %bτ
−1
[P(Rx ∩ Lx ∩ Ix ∩ Sx)− (1− P(Tx))]

= %bτ
−1
[P(Rx ∩ Lx ∩ S−x )P(Ix ∩ S

+
x )+ P(Tx)− 1], (5.27)

where we abbreviated S−x := Sx(x−) and S+x :=
⋂
y∈N+x Sx(y). The first term simplifies

using:

• The inclusionRx∩Lx ⊂ S−x . This derives from second order perturbation theory. More
precisely, in the event Rx ∩Lx the term corresponding to the backward neighbor x− of
x is bounded according to

|GTx (x−, x−;E + iη)| ≤ |G
T̂x (x−, x−;E + iη)|

+ |GTx (xnκ−1, xnκ−1;E + iη)||G
T̂x (xnκ , x−;E + iη)|

2

≤ b/2+ b/2 = b. (5.28)

• The estimate P(Ix ∩S+x ) ≥ P(Ix)+P(S+x )− 1 ≥ α+ (1−‖%‖∞(λb)−1)K − 1 ≥ 1/4.
Here the last inequality used α ≥ 1/2 and the particular choice of b.

To proceed with our estimate of the right side in (5.27), we use Lemma 5.7 below which
guarantees that for some η0 > 0 and n0 ∈ N and all η ∈ (0, η0) and n ≥ n0,

P(Rx ∩ Lx ∩ S−x ) = P(Rx ∩ Lx) ≥ 1
2 P(Lx). (5.29)

We now use Lemma 5.5 which implies that under the no-ac hypothesis, for any x ∈ T
and ε > 0,

lim
η↓0

P(Im σx(E + iη) > ε) = 0. (5.30)

Since infη∈(0,1] P(Lx(η)) > 0 by (5.11), we conclude that there is some η1(n) ∈ (0, η0]

such that for all η ∈ (0, η1(n)),

1− P(Tx) ≤ 1
16 P(Lx). (5.31)
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This concludes the proof of (5.26). The exponential estimate (5.18) finally shows that the
right side in (5.26) is arbitrarily large if n is chosen large. ut

It remains to prove the following lemma.

Lemma 5.7. There are η0 > 0 and n0 > 0 such that for all η ∈ (0, η0) and all n =
dist(x, 0) ≥ n0,

P(Rx ∩ Lx) ≥ 1
2 P(Lx). (5.32)

Proof. The idea is to control the conditional probability conditioned on the sigma-algebra
A generated by the random variables V (y) with xnκ � y. The assertion follows from
the fact that there are η0 > 0 and n0 > 0 such that for all η ∈ (0, η0) and all n =
dist(x, 0) ≥ n0,

P(Rx | A ) 1
L
(bc)
x
≥

1
2 1

L
(bc)
x
. (5.33)

As a preparation, we expose the influence the conditioning on A has on the Green func-
tion using its factorization property:

G(η) := GTx (xnκ−1, xnκ−1;E + iη),

Ĝ(η) := G
Txnκ−1 (0, xnκ−2;E + iη) = G

Tx (0, xnκ−1;E + iη)
/
G(η). (5.34)

By the choice of the parameter b, one has P(R(bc)
x | A ) ≥ 7/8 and hence

P(Rx | A ) ≥ P(|Ĝ(η)G(η)| ∈ [e−`nκ , 1] | A )− 1/8

≥ P(|Ĝ(η)| ∈ [Be−`nκ , b−1
])+ P(|G(η)| ∈ [B−1, b] | A )− 1/8,

≥ P(|Ĝ(η)| ∈ [Be−`nκ , b−1
])+ P(|G(η)| ≥ B−1

| A )− 1/4, (5.35)

where the last inequalities hold for any B ∈ [1,∞). By Theorem 3.5 the first term con-
verges to 1 as nκ →∞. The event in the second term takes the form

∣∣∣λV (xnκ−1)− E − iη −
∑

y∈Nxnκ−1

GT̂x (y, y;E + iη)
∣∣∣ ≤ B.

In the event L(bc)
x , there is B > 0 (which is independent of n and η) such that for all

η ∈ (0, 1],

P(|G(η)| < B−1
| A ) 1

L
(bc)
x
≤

1
8 1

L
(bc)
x
. (5.36)

This completes the proof. ut
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5.4. Establishing the events’ occurrence

Our aim in this subsection is to provide a uniform upper bound on E[N2
]/E[N ]2 for

N =
∑
x∈Sκn

1Dx∩Ix , which counts the number of resonance events on the thinned sphere.

Theorem 5.8. Under the no-ac hypothesis, there exists some constant C < ∞ such that
for all n sufficiently large there is η0 ≡ η0(n) such that for all η ∈ (0, η0) and α ∈
[1/2, 1),

E[N(N − 1)]
E[N ]2

≤ C <∞. (5.37)

Proof. Throughout the proof we will suppress the dependence on n, η and α for conve-
nience. Constants c, C will be independent of n, η and α. We write

E[N(N − 1)] =
∑

x,y∈Sκn
x 6=y

P(Dx ∩Dy ∩ Ix ∩ Iy)

= |Sκn |
∑

y∈Sκn \{x}
P(Dx ∩Dy ∩ Ix ∩ Iy). (5.38)

The last equality holds for arbitrary x ∈ Sκn which we will fix in the following. By
symmetry, the joint probability P(Dx ∩Dy ∩ Ix ∩ Iy) depends only on the distance of the
last common ancestor x ∧ y to the root. It is therefore useful to introduce the ratio

P(Dx ∩Dy ∩ Ix ∩ Iy)
P(Dx ∩ Ix)P(Dy ∩ Iy)

=: r(j)δdist(x∧y,0),j . (5.39)

The sum in (5.38) may then be organized in terms of the last common ancestor x ∧ y
on the path P0,x = {x0, . . . , xn} connecting the root to x. In fact, since Sκn is thinned,
x ∧ y belongs to the shortened path Pκ0,x := {u ∈ P0,x | dist(u, 0) < Nκ}. Moreover, for
a given x ∧ y ∈ Pκ0,x , the number of vertices y ∈ Sκn which for fixed x have the same
common ancestor, is |Sκn |K

− dist(x∧y,0) so that

E[N(N − 1)]
E[N ]2

=

Nκ−1∑
j=0

r(j)

Kj
. (5.40)

In order to estimate the sum on the right side of (5.40), we always drop the condition Rx
in the definition of Dx :

r(j) ≤
P(Lx ∩ Ly ∩ Ex ∩ Ey ∩ Ix ∩ Iy)

P(Dx ∩ Ix)P(Dy ∩ Iy)
δdist(x∧y,0),j . (5.41)

To estimate the numerator on the right side, we first focus on the extreme fluctuation
events and aim to integrate out the random variable associated with x and y using The-
orem A.2 in the Appendix. In general, what stands in the way of this procedure is the
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dependence of Lx on V (y) and Ly on V (x), respectively. We therefore relax the condi-
tions in the large deviation events and pick suitable

L̂x,j ⊃ Lx (and hence L̂y,j ⊃ Ly) (5.42)

such that L̂x,j and L̂y,j are independent of both V (x) and V (y). Postponing the details of
these choices which will depend on j , we bound the numerator on the right side in (5.41)
using Theorem A.2 in the Appendix:

P(Lx ∩ Ly ∩ Ex ∩ Ey ∩ Ix ∩ Iy) ≤ E[1L̂x,j∩L̂y,j P(Ex ∩ Ey | Ax,y)]

≤ C
(
τ−2 P(L̂x,j ∩ L̂y,j )+ τ−1 E[1L̂x,j∩L̂y,j min{|Ĝx,y |, 1}]

)
, (5.43)

where Ax,y is the sigma-algebra generated by the variables V (ξ), ξ 6∈ {x, y}, and

Ĝx,y := G
Tx,y (xn−1, yn−1;E + iη). (5.44)

This quantity measures the strength of the interaction of the events Ex and Ey .
Under the assumptions of Theorem 5.6, the denominator on the right side of (5.41)

is bounded from below by cτ−2 P(Lx)P(Ly) provided n is sufficiently large and η is
sufficiently small. The terms on the right side in (5.43) hence give rise to two terms,
r(j) ≤ r1(j)+ r2(j), which for fixed j = dist(x ∧ y, 0) are defined by

r1(j) := C
P(L̂x,j ∩ L̂y,j )
P(Lx)P(Ly)

, (5.45)

r2(j) :=
Cτ

P(Lx)P(Ly)
E[1L̂x,j∩L̂y,j min{|Ĝx,y |, 1}] (5.46)

For the precise definition of the events L̂x,j and L̂y,j we distinguish three cases:

Case 0 ≤ j < nκ : The events Lx and Ly are already independent of the potential at x
and y. Therefore we choose

L̂x,j = Lx . (5.47)

As a consequence, the corresponding sum involving r1(j) is seen to be uniformly bounded
in n and η:

nκ−1∑
j=0

r1(j)

Kj
≤ C

∞∑
j=0

1
Kj

. (5.48)

To estimate r2(j), we drop the indicator function on the right side of (5.46) and use
the fact that min{|x|, 1} ≤ |x|σ for any σ ∈ [0, 1); in particular, for σ = s,

r2(j) ≤
Cτ

P(Lx)P(Ly)
E[|Ĝx,y |s] ≤

Cτ

P(Lx)P(Ly)
e2(n−j)ϕ(s). (5.49)
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Here the second inequality derives from the finite-volume estimates (3.12). Since ϕ(s) <
−

1
2 logK by the assumption on s, the geometric sum in the following chain of inequalities

is dominated by its last term:

nκ−1∑
j=0

r2(j)

Kj
≤

Cτ

P(Lx)P(Ly)

nκ−1∑
j=0

e2(n−j)ϕ(s)

Kj
≤

Cτ

P(Lx)P(Ly)
e2Nκϕ(s)

Knκ
. (5.50)

Using the large deviation result (Theorem 5.2), and the fact that −ϕ(s) = I (γ )+ γ s, we
estimate

τ

P(Lx)P(Ly)
e2Nκϕ(s) ≤ e4Nκετe−2Nκγ s ≤ eNκ ((7/4−2s))1+4ε)

≤ eNκ (15/8−2s)1
≤ C, (5.51)

since 2s > 15/8.

Case nκ ≤ j ≤ 3
2nκ : We choose

L̂x,j = L
(Nκ−nκ/2−1,+)
x , (5.52)

which is independent of L̂y,j = L
(Nκ−nκ/2−1,+)
y . An estimate on r1(j) hence requires to

bound the ratio

P(L̂x)
P(Lx)

≤ C
e−(n−3nκ/2−2)(I (γ )−2ε)

e−Nκ (I (γ )+2ε) ≤ Ce4Nκεe(nκ/2)I (γ ) ≤ CKnκ/2. (5.53)

Here the first inequality follows from the large deviation result (Theorem 5.2), and holds
for n large enough and η sufficiently small. In this situation, the third inequality also
applies since I (γ ) ≤ logK − 15

8 1 by (5.6) and (5.5), and 4Nκε ≤ 1κNκ/4 ≤ 1nκ/2.
As a consequence, the sum corresponding to r1(j) is bounded uniformly in n:

3nκ/2∑
j=nκ

r1(j)

Kj
≤ CKnκ

∞∑
j=nκ

1
Kj
≤ C

∞∑
j=0

1
Kj

. (5.54)

To estimate the sum corresponding to r2(j) we use (5.49) again, which yields

3nκ/2∑
j=nκ

r2(j)

Kj
≤

Cτ

P(Lx)P(Ly)
e(2Nκ−nκ )ϕ(s)

K3nκ/2
≤

Cτ

P(Lx)P(Ly)
e2Nκϕ(s)

Knκ/2
≤ C (5.55)

by (5.51).

Case 3
2nκ < j < Nκ : In this main case, we pick

L̂x,j = L
(j−nκ−1,−)
x ∩ L

(Nκ+nκ−j−1,+)
x . (5.56)

Note that L(j−nκ−1,−)
x = L

(j−nκ−1,−)
y and L(Nκ+nκ−j−1,+)

x and L(Nκ+nκ−j−1,+)
y are in-

dependent. We may hence estimate the numerator in the definition of r1(j) using the
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large deviation result (Theorem 5.2) to conclude that for all n sufficiently large and η
sufficiently small,

P(L̂x,j ∩ L̂y,j ) ≤ P(L(j−nκ−1,−)
x )P(L(Nκ+nκ−j−1,+)

x )P(L(Nκ+nκ−j−1,+)
y )

≤ Ce−(I (γ )−2ε)(2n−j−nκ ) ≤ C P(Lx)P(Ly)e8Nκεe−I (γ )(nκ−j). (5.57)

Since I (γ ) < logK , the corresponding sum is hence uniformly bounded in n:

Nκ−1∑
j=3nκ/2+1

r1(j)

Kj
≤ Ce8Nκε

Nκ∑
j=3nκ/2

e−I (γ )(nκ−j)

Kj

≤ Ce8Nκε e
(nκ/2)I (γ )

K3nκ/2
≤ C

e8Nκε

Knκ
≤ C (5.58)

(cf. (5.53)).
To estimate r2(j) we drop conditions in the indicator function and use min{|x|, 1}

≤ |x|s again:

r2(j) ≤ Cτ
E[1

L
(nκ ,j−1)
x

|Ĝx,y |
s
]

P(Lx)P(Ly)
. (5.59)

The Green function in the numerator is a product of three terms, Ĝx,y = Gj ĜxĜy , with

Gj := G
Tx,y (xj , yj ), (5.60)

Ĝx := G
Txj ,x (xj+1, xn−1), Ĝy := G

Tyj ,y (yj+1, yn−1),

of which only the first one depends on V (xj ). Since L(nκ ,j−1)
x is independent of V (xj j)

we may hence condition on the potential elsewhere and make use of the uniform bound
E[|Gj |s | Axj ] ≤ C to estimate the numerator in (5.59):

E[1
L
(nκ ,j−1)
x

|Ĝx,y |
s
] ≤ C E[1

L
(nκ ,j−1)
x

|ĜxĜy |
s
] = C P(L(nκ ,j−1)

x )E[|Ĝx |s]E[|Ĝy |s]

≤ Ce−(j−nκ )(I (γ )−2ε)e2(n−j)ϕ(s). (5.61)

Summing over j with a weightK−j we again obtain a geometric sum which is in this case
bounded by the number of terms times the maximum of its first and last term. Therefore
we conclude that

Nκ−1∑
j=3nκ/2+1

r2(j)

Kj
≤

Nκ−1∑
j=nκ

r2(j)

Kj

≤ Nκ
Cτ

P(Lx)P(Ly)
max

{
e−(Nκ−nκ )(I (γ )−2ε)e2nκϕ(s)

KNκ
,
e2Nκϕ(s)

Knκ

}
. (5.62)
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In the first case, we use ϕ(s) < −I (γ ) and Corollary 5.2 to conclude that the term is
uniformly bounded in n:

Nκ
Cτ

P(Lx)P(Ly)
e−Nκ (I (γ )−2ε)

KNκ
≤ Nκ

CeNκ (I (γ )+γ+31/4+6ε)

KNκ

≤ CNκe
−Nκ (1/8−6ε)

≤ C, (5.63)

since ε < 1/48. In the second case, we use (5.51) to conclude that the term is uniformly
bounded in n:

Nκ
Cτ

P(Lx)P(Ly)
e2Nκϕ(s)

Knκ
≤ CNκe

Nκ (15/8−2s)
≤ C, (5.64)

since 2s > 15/8.
This concludes the proof of (5.37). ut

6. Semicontinuity bounds for the Lyapunov exponent

As we saw in Section 2.3, the applications of the conditions which are derived here for
absolutely continuous spectrum still require some additional information on the function
ϕλ(1;E), or at least on the Lyapunov exponent Lλ(E). While we do not have useful
independent bounds on ϕλ(1;E), in this section we present some partial continuity results
for Lλ(E) which enable the derivation of the main conclusions which were drawn in
Corollaries 2.3 and 2.4 on the spectral phase diagram.

Let us start with some general observations:

• The Lyapunov exponent is the negative real part of the Herglotz function (cf. [17, 32])
given by Wλ(ζ ) := E[log0λ(0; ζ )]. Hence, its boundary values limη↓0 Lλ(E + iη)

exist for Lebesgue-almost all E ∈ R. The latter coincides with Lλ(E) defined in (2.3),
as is seen using a variant of Vitali’s convergence theorem whose use is based on the
fact that the fractional moments of 0λ(0;E + iη) with positive and negative power are
uniformly bounded in η.
• In the absence of disorder, the Lyapunov exponent is easy to compute, L0(ζ ) =

− log |00(ζ )|, where 00(ζ ) is the unique solution of K02
+ ζ0 + 1 = 0 in C+, and

one finds

L0(E)

= log
√
K, |E| ≤ 2

√
K,

∈ (log
√
K, logK), 2

√
K < |E| < K + 1,

≥ logK, |E| ≥ K + 1.
(6.1)

• In general, Lλ(ζ ) is related to the free energy function ϕλ(s; ζ ) through the rela-
tion (3.13) and the inequality (3.11) from which one concludes the bound Lλ(ζ ) ≥
log
√
K , which is saturated if and only if λ = 0 and |E| ≤ 2

√
K .
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6.1. Continuity of energy averages

Thanks to the (weak) continuity of the harmonic measure associated with Lλ, energy
averages turn out to be continuous in the disorder parameter λ ≥ 0.

Theorem 6.1. For any bounded interval I ⊂ R the function [0,∞) 3 λ 7→
∫
I
Lλ(E) dE

is continuous, and in particular

lim
λ↓0

∫
I

Lλ(E) dE =

∫
I

L0(E) dE. (6.2)

Proof. Since the harmonic measure σλ(I ) :=
∫
I
Lλ(E) dE associated with Lλ(ζ ) =

π−1 ∫ Im(E−ζ )−1 σλ(dE) is absolutely continuous, the asserted continuity follows from
the vague continuity of σλ, which in turn follows from the (weak) resolvent convergence
Gλ(0, 0; ζ, ω)→ Gλ0(0, 0; ζ, ω) as λ→ λ0 for all ζ ∈ C+ and all ω. ut

In particular, Theorem 6.1 ensures that the mean value of the Lyapunov exponent over
any bounded, non-empty interval I ,

Mλ(I ) :=
1
|I |

∫
I

Lλ(E) dE, (6.3)

is continuous in λ ≥ 0. This immediately implies Corollary 2.3, namely that the condition
Lλ(E) < logK holds on a positive fraction of every interval I ⊂ (−(K + 1),K + 1).

Poof of Corollary 2.3. Since Lλ(E) ≥ log
√
K , we may employ the Chebyshev inequal-

ity to control the Lebesgue measure of that subset of I on which (2.4) is violated:

|{E ∈ I | Lλ(E) ≥ logK}| ≤
∫
I

Lλ(E)− log
√
K

log
√
K

dE = |I |
Mλ(I )− log

√
K

log
√
K

. (6.4)

The assertion thus follows by computation from the continuity (6.2) and the fact that
log
√
K ≤ M0(I ) < logK for all closed intervals I ⊂ (−K − 1,K + 1) (cf. (6.1)). ut

Note that M0(I ) = log
√
K for all I ⊂ (−2

√
K, 2
√
K). Hence, in this case the measure

in (6.4) tends to 0 as λ ↓ 0.

6.2. The case of bounded random potentials

Let us now turn to the proof of Corollary 2.4. Accordingly, for the remainder of this sec-
tion, we will assume that supp %=[−1, 1] such that almost surely σ(Hλ)=[−|Eλ|, |Eλ|]
with Eλ = −2

√
K − λ.

The main ideas behind the conditions in Corollary 2.4 are:

• At the (lower) spectral edge the Lyapunov exponent is bounded according to

Lλ(Eλ) ≤ L0(Eλ − λ). (6.5)

(An analogous bound applies to the upper edge.) This inequality derives from the oper-
ator monotonicity of the function (0,∞) 3 x 7→ x−1 and the estimate 0 ≤ Hλ−Eλ ≤
T + 2

√
K + 2λ, which implies 0λ(0;Eλ) ≥ 00(Eλ − λ).
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• Using the explicit formula for the Lyapunov exponent in case λ = 0 (cf. (6.1)), we
conclude that the conditionL0(Eλ−λ) < logK holds if and only ifEλ−λ > −(K+1)
or equivalently if (2.7) holds.

The following theorem extends the bound (6.5) to energies nearEλ in the spectrum. Anal-
ogous arguments yield an upper bound near −Eλ.

Theorem 6.2. For a random potential satisfying Assumptions A–D with supp % =
[−1, 1], for all λ > 0,

lim sup
E↓Eλ

Lλ(E) ≤ L0(Eλ − λ). (6.6)

Following the arguments above, this theorem in particular implies Corollary 2.4.

Proof of Corollary 2.4. Without loss of generality, we restrict the discussion to the region
near the lower edge Eλ of σ(Hλ). For fixed λ < (

√
K − 1)2/2 we may pick ε(λ) :=

logK−L0(Eλ−λ)which is strictly positive if and only if (2.7) holds. We hence conclude
from Theorem 6.2 that there is δ(λ) > 0 such thatLλ(E) < logK for anyE ≤ Eλ+δ(λ).

ut

6.2.1. Proof of Theorem 6.2. In the proof, we consider the finite-volume restriction of
the operator to the Hilbert space over BR := {x ∈ T | dist(0, x) < R}, i.e.,

H
(R)
λ := 1BR Hλ 1BR on `2(BR). (6.7)

The relation between the Green function and its finite-volume counterpart is controlled
by standard perturbation theory, i.e., for almost every E ∈ R,

|0λ(0;E+i0)−0
(R)
λ (0;E)| ≤

∑
x∈SR
|G

(R)
λ (0, x−;E)| |Gλ(0, x;E)| =: S

(R)
λ (E). (6.8)

The idea of the proof is to choose R such that:

• The following event has a good probability:

Z1 := {Eλ +1 ≤ inf σ(H (R)
λ )}. (6.9)

In this event and for any E ∈ [Eλ, Eλ +1) one can use the operator monotonicity of
(0,∞) 3 x 7→ x−1 together with the bound 0 ≤ H (R)

λ − E ≤ H
(R)
0 + λ − E, which

implies

0
(R)
λ (0;E) ≥ 0(R)0 (0;E − λ) ≥ 0(R)0 (0;Eλ − λ) ≥ 00(0;Eλ − λ)− S

(R)
0 (Eλ − λ)

≥ 00(0;Eλ − λ)(1−KRe−2RL0(Eλ−λ)). (6.10)

Here, the second inequality holds for all Eλ ≤ E < inf σ(H (R)
λ ), the third is a special

case of (6.8), and the last inequality follows from the fact that

0 ≤ 0(R)0 (x;E) ≤ 00(x;E), (6.11)

which, using the factorization property of the Green function, implies S(R)0 (E) ≤

KRe−2RL0(E) 00(0;E) for any E ∈ R.
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• The error terms on the right side of (6.8) and (6.10) are small compared to 00(0;Eλ−λ)
≥ 0 in the sense that also the event

Z2 := {S
(R)
λ (E) ≤ 00(0;Eλ − λ)K−δR/2} (6.12)

occurs with a good probability. For reasons which will become clear in the next sub-
section, we will choose

δ :=
log
(
1+ λ

2
√
K

)
64‖%‖∞K2 logK

. (6.13)

The probability of failure of the first event Z1 is bounded with the help of the following
lemma. Due to Lifshits tailing, this estimate is far from optimal and one expects the prob-
ability in (6.14) to be exponentially small (see [13] and references therein for a precise
conjecture).

Lemma 6.3. There is some C > 0 such that for all R > 0 and 1 > 0,

P(inf σ(H (R)
λ ) < Eλ +1) ≤ CK

R13/2. (6.14)

Proof. By Chebyshev’s inequality the left side is bounded from above by

E[tr 1(−∞,E)(H
(R)
λ )] ≤ tr 1(−∞,E+λ)(H

(R)
0 ) ≤ et (E+λ) tr e−tH

(R)
0

≤ et (E+λ) tr 1BR e
−tH0 1BR ≤ CK

Ret1t−3/2, (6.15)

where E := Eλ +1 and the last inequality stems form the explicitly known form of the
kernel of the (infinite-volume) semigroup. Taking t = 1−1 yields the result. ut

Bounds on the probability of failure of the second eventZ2 are more involved. Postponing
the details of this probabilistic estimate, which will be the topic of the next subsection,
the proof of Theorem 6.2 proceeds as follows:

Proof of Theorem 6.2. Abbreviating Z := Z1 ∩ Z2, we write

Lλ(E) = −E[1Z log |0λ(0;E + i0)|] − E[1Zc log |0λ(0;E + i0)|]. (6.16)

In the event Z and assuming E ∈ [Eλ, Eλ+1), one may use (6.8) and (6.10) to estimate

|0λ(0;E + i0)| ≥ 0
(R)
0 (x;E)− S

(R)
λ (E)

≥ 00(0;Eλ − λ)(1−KRe−2RL0(Eλ−λ) −K−δR/2). (6.17)

The right side is strictly positive for any λ > 0 provided R is large enough. In this case,
the above bound and the monotonicity of the logarithm yield the following bound on the
first term on the right in (6.16):

−E[1Z log |0λ(0;E+i0)|] ≤ L0(Eλ−λ)−log(1−KRe−2RL0(Eλ−λ)−K−δR/2). (6.18)

The second term in (6.16) is estimated using the Cauchy–Schwarz inequality

−E[1Zc log |0λ(0;E + i0)|] ≤
√
P(Zc)

√
E
[∣∣log |0λ(0;E + i0)|

∣∣2]. (6.19)
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Since
∣∣log |x|

∣∣ ≤ 2(|x|1/2 + |x|−1/2), the second factor is bounded with the help of
fractional-moment estimates and (3.3) by a constant which only depends on λ. The prob-
ability of failure of the event Z is estimated using Lemmas 6.3 and 6.4, which prove that
under the condition (6.21) below,

P(Zc) ≤ P(Zc2 | Z1)+ P(Zc1)

≤ C(λ)K−
δ2

4+4δR + 2−R + CKR13/2. (6.20)

We pick 1 := (E − Eλ)/c(λ) with c(λ) from (6.21) and R :=
⌈ log1−1

logK

⌉
. The proof is

completed by noting that for any λ > 0, (i) 1 → 0 as E → Eλ and (ii) R → ∞ as
1→ 0. ut

6.2.2. Auxiliary results. The remaining task is to estimate the error in (6.8). We will
prove

Lemma 6.4. For every λ > 0 there exists a finite C(λ) such that if

E ≤ Eλ +1

[
1− exp

(
−

log
(
1+ λ

2
√
K

)
64‖%‖∞K2 logK

)]
[=: Eλ + c(λ)1], (6.21)

then P(Zc2 | Z1) ≤ C(λ)K
−

δ2
4+4δR + 2−R .

To prove this auxiliary estimate, we need to control the first factor on the right side of (6.8)
in case E < inf σ(H (R)

λ ). This is done with the help of the following lemma, which might
be of independent interest.

Lemma 6.5. 1. Assume a ≤ b < inf σ(H (R)
λ ). Then

0
(R)
λ (x; a) ≤ 0

(R)
λ (x; b) ≤

(
1+

b − a

inf σ(H (R)
λ )− b

)
0
(R)
λ (x; a). (6.22)

2. Assume a ≤ −2
√
K and x ∈ BR . Then

0
(R)
λ (x; a − λ) ≤ 0

(R)
0 (x; a)

(
1+

λ
√
K − a

2

)−1/2(V (x)+1)

. (6.23)

Proof. Inequalities (6.22) follow from the spectral representation
∫
(u − ζ )−1µ

(R)
λ,δx

(du)

= 0
(R)
λ (x; ζ ) and elementary inequalities for the integrand.
The second claim is based on the observation that a − λ ≤ inf σ(Hλ) ≤ inf σ(H (R)

λ )

for any R > 0. Hence, for any λ ≥ 0,

−
d0

(R)
λ (x; a − λ)

dλ
≥ (V (x)+ 1)0(R)λ (x; a − λ)2. (6.24)
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One of the last factors is estimated by 0(R)λ (y, y; a − λ)−1
≤ 〈δy, (H

(R)
λ + λ − a)δy〉 ≤

2
√
K + 2λ− a. Integrating the resulting inequality yields (6.23). ut

In the following, we suppose Eλ +1 := inf σ(H (R)
λ ) > E > Eλ such that

ξλ(E) :=
E − Eλ

inf σ(H (R)
λ )− E

∈ (0,∞). (6.25)

Then Lemma 6.5 and the factorization property (3.7) of the Green function imply that for
all x ∈ SR ,

0 ≤ G(R)λ

(
0, x−;E

)
≤ (1+ ξλ(E))RG

(R)
λ (0, x−;Eλ)

≤
(1+ ξλ(E))R

KR/2

(
1+

λ

2
√
K

)− 1
2σ(x)

, (6.26)

where σ(x) :=
∑

0�y≺x(V (y) + 1) ≥ 0. To further estimate the right side, we will
consider the event

Z0 :=

{
min
x∈SR

σ(x) ≥
2δ logK + 2 log(1+ ξλ(E))

log
(
1+ λ

2
√
K

) R

}
(6.27)

with δ > 0 from (6.13). This event is tailored so that G(R)λ

(
0, x−;E

)
≤ K−R(δ+1/2) and

hence

E[|S(R)λ (E)|
2+δ
2+2δ | Z0 ∩ Z1] ≤ K

R E[|G(R)λ (0, x−;E)Gλ(0, x;E)|
2+δ

2+2δ | Z0 ∩ Z1]

≤ C2
±K
−δR/2, (6.28)

where the last inequality is based on (3.12) and the upper bound in (3.11). The constants
C+, C− depend (also through δ) on λ. Chebyshev’s inequality hence leads to

P(Zc2 | Z0 ∩ Z1) ≤ C(λ)K
−

δ2
4+4δR (6.29)

with a finite constant C(λ) which only depends on λ. For an estimate on the probability
of the event Z0 we use

Lemma 6.6. For any 0 < α ≤ (8‖%‖∞K2)−1,

P
(

min
x∈SR

σ(x) < αR
)
≤ KR

(
2
√

2‖%‖∞α
)R
. (6.30)

Proof. Since there are KR vertices with dist(0, x) = R, to prove (6.30) it suffices to fix
x and estimate

P(σ (x) < αR) ≤ (eαt E[e−t (V (0)+1)
])R (6.31)

for any t > 0, where we employed the Chebyshev inequality and the fact that the random
variables V (y) are iid. Inserting indicator functions on the set {V (0) + 1 ≥ 2α} and
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its complement, we further bound eαt E[e−t (V (0)+1)
] ≤ e−tα + 2α‖%‖∞etα . Choosing

t = −(2α)−1 log(4α‖%‖∞) > 0 yields the result. ut

We may now finally give

Proof of Lemma 6.4. The choice of δ in (6.13) and the condition (6.21) together with
Lemma 6.6 imply that P(Zc0) ≤ 2−R . We have thus established that

P(Zc2 | Z1) ≤ P(Zc2 | Z0 ∩ Z1)+ P(Zc0) ≤ C(λ)K
−

δ2
4+4δR + 2−R. (6.32)

ut

Appendix

A. Fractional-moment bounds

The aim of this appendix is to present some basic weak-L1 bounds on Green functions of
random operators, and related fractional moment estimates. Theorem A.2, which presents
such bounds for pairs of Green functions, is a new result which is needed here in the proof
of our criteria, and which may also be of independent interest. In the last subsection we
discuss the related implications of the regularity Assumption D.

The discussion in this appendix is carried out within the somewhat broader context of
operators of the form

Hλ(ω) = H0 + λV (ω), (A.1)
acting in the Hilbert space `2(G), with λ ≥ 0 the disorder-strength parameter and:

I. G the vertex set of some metric graph,
II. H0 a self-adjoint operator in `2(G), and

III. V (ω) a random potential such that the random variables {V (x) | x ∈ G} are iid with
a probability distribution whose density is (essentially) bounded, % ∈ L∞(R).

A.1. Weak-L1 bounds

We recall that according to the Krein formula, the Green function of Hλ(ω) restricted to
the sites x, y is in its dependence on V (x) and V (y) of the form(

Gλ(x, x; ζ ) Gλ(x, y; ζ )

Gλ(y, x; ζ ) Gλ(y, y; ζ )

)
=

[(
λV (x) 0

0 λV (y)

)
+ Aλ(ζ )

]−1

, (A.2)

where Aλ(ζ ) is given by the inverse of the left side for V (x) = V (y) = 0. In particular,
Gλ(x, x; ζ ) = (λV (x)− a)

−1 with some a ∈ C which is independent of V (x).
The assumed boundedness of the density % of the distribution of V (x) trivially implies

bounds on probabilities of weak-L1-type:

sup
a∈C

∫
1|v−a|<1/t %(v) dv ≤

2‖%‖∞
t

. (A.3)

Since the dependence of the Green function Gλ(x, x; ζ ) on V (x) is of the above form,
this implies the following well-known weak-L1 bound, and hence the boundedness of
fractional moments (cf. [4]).
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Proposition A.1. For a random operator Hλ(ω) = H0 + λV (ω) on `2(G) satisfying
assumptions I–III, for any complex energy parameter ζ ∈ C+ and for any t > 0 and
s ∈ (0, 1), the Green function satisfies

P(|Gλ(x, x; ζ )| > t | Ax) ≤
2‖%‖∞
λt

, (A.4)

E[|Gλ(x, x; ζ )|s | Ax] ≤
2s‖%‖s∞
(1− s)λs

, (A.5)

where Ax denotes the sigma-algebra generated by V (y), y 6= x.

One trivial but useful consequence of (A.4) is that for any p ∈ (0, 1) and t ≥ 2‖%‖∞
λ(1−p) ,

P(|Gλ(x, x; ζ )| ≤ t | Ax) ≥ p. (A.6)

Our new result, which is vital in our second-moment analysis in Lemma 4.11 and
Theorem 5.8, concerns the joint conditional probability of events as in (A.4) associated
with two (distinct) sites:

Theorem A.2. In the situation of Proposition A.1, consider two sites x 6= y in a graph.
Then for any t > 0 and ζ ∈ C+,

P
(
|Gλ(x, x; ζ )| > t and |Gλ(y, y; ζ )| > t

∣∣ Axy

)
≤

2‖%‖∞
λ2t

min
{
4‖%‖∞

(√
|Aλ(x, y; ζ )| |Aλ(y, x; ζ )| + t

−1), 1
}
, (A.7)

where Aλ(x, y; ζ ) are the off-diagonal matrix elements of Aλ(ζ ) in (A.2), and Axy is the
sigma-algebra generated by V (ξ), ξ 6∈ {x, y}.

In the case of a tree graph, G = T , the off-diagonal matrix elements of Aλ(ζ ) simplify:

Aλ(x, y; ζ ) =
Gλ(x, y; ζ )

Gλ(x, x; ζ )Gλ(y, y; ζ )−Gλ(x, y; ζ )Gλ(y, x; ζ )
= G

Tx,y
λ (x−, y−; ζ ).

(A.8)
This is most easily proven by noting that the ratio does not depend on V (x) and V (y) so
that we may take them to be infinity. In this limit the ratio

Gλ(x, y; ζ )/[Gλ(x, x; ζ )Gλ(y, y; ζ )]

tends to G
Tx,y
λ (x−, y−; ζ ) and its numerator vanishes.

Proof of Theorem A.2. Let Aλ(x, y; ζ ) denote the matrix elements of Aλ(ζ ) in the rank-
two Krein formula (A.2) and abbreviate

u := λV (x)+ Aλ(x, x; ζ ), v := λV (y)+ Aλ(y, y; ζ ),
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and α := Aλ(x, y; ζ ), β := Aλ(y, x; ζ ). The lower bounds on |Gλ(x, x; ζ ) and
|Gλ(y, y; ζ )| translate to ∣∣∣∣u− αβv

∣∣∣∣ ≤ 1
t
, (A.9)∣∣∣∣v − αβu

∣∣∣∣ ≤ 1
t
. (A.10)

The claim will be proven on the basis of the following two observations:

1. For any set of specified values of {α, β,A(x, x; ζ ), A(y, y, ; ζ )}, and of v, the set of
Re u for which (A.9) holds is an interval of length at most 2/t , and a similar statement
holds for v and u interchanged and (A.9) replaced by (A.10).

2. For any solution of (A.9) and (A.10)

min{|u|, |v|} ≤
√
|α| |β| + t−1. (A.11)

The first statement is fairly obvious once one focuses on the condition on the real part
in (A.9). To prove the second assertion, let

w :=
√
|u| |v| ≥ min{|u|, |v|}. (A.12)

Assuming (A.9) and (A.10) we have

|u| |v| − |α| |β| ≤ |uv − αβ| ≤ min{|u|, |v|}/t ≤
√
|u| |v|/t (A.13)

where the first relation is by the triangle inequality, and the second by (A.9) and (A.10).
Hence, under the assumed condition, the real quantity w =

√
|u| |v| satisfies

w2
− |α| |β| ≤ w/t. (A.14)

Solving the quadratic equation we find

w ≤
1
2t
+

√
1

(2t)2
+ |α| |β| ≤

1
2t
+

(
1
2t
+
√
|α| |β|

)
, (A.15)

which implies (A.11).
To bound the probability in (A.7), let us consider the set of values of V (x) and V (y)

for which the event occurs, at specified values of the 2× 2 matrix Aλ(ζ ). Let S ⊂ R2 be
the corresponding range of values of {Re u,Re v}. Then by item 2, S is contained within
the union of two strips, one parallel to the Re v axis and the other to the Re u axis. To
bound the measure of its intersection with the first one, we note that the relevant values of
Re u are contained in an interval of length at most 2(1/t +

√
|α| |β|), and for each value

of u the range of Re v is of Lebesgue measure not exceeding 2/t (by item 1). Hence the
measure of the intersection of S with this strip is at most (4/t)(1/t +

√
|α| |β|), and a

similar bound applies to the intersection of S with the second one. Adding the two, one
gets the bound claimed in (A.7). ut
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A.2. The regularity assumption D

The class of probability densities satisfying Assumption D (see (2.2)) includes those %
which have a single hump. More precisely, suppose there is some m ∈ R such that %
is increasing for v < m and decreasing for v > m. If one picks ν0 > 0 such that
%(m)/min{%(m − ν0), %(m + ν0)} =: c0 < ∞, then (2.2) is satisfied for all v ∈ R and
c = 2 max{1, c0/ν0}. Examples of single-hump probability densities are Gaussian and
Cauchy densities. Similarly one sees that any finite linear combination of single-hump
functions also leads to a probability density which satisfies (2.2).

Our next goal is to illuminate some of the consequences of (2.2). Clearly, if % satis-
fies (2.2), then % ∈ L∞(R) and (A.3) applies. In fact, the assumption is tailored to provide
the following extension of (A.3).

Lemma A.3. If % ≥ 0 satisfies (2.2) (with constant c > 0), then for any s ∈ (0, 1), a ∈ C
and t ≥ 1, ∫

1|v−a|<1/t
%(v) dv

|v − a|s
≤

c

(1− s)t1−s

∫
%(v) dv

|v − a|s
. (A.16)

Proof. We start by estimating the left side:∫
1|v−a|<1/t

%(v) dv

|v − a|s
≤ sup
|v−a|≤1/t

%(v)

∫
1|v−a|<1/t

dv

|v − a|s

=
2

(1− s)t1−s
sup

|v−a|<1/t
%(v). (A.17)

Using (2.2) we then conclude that the last factor on the right side is bounded from below
by ∫

%(v) dv

|v − a|s
≥

∫
1|v−a|≤1 %(v) dv ≥

2
c

sup
|v−a|≤1

%(v). (A.18)

The above two estimates imply the assertion. ut

In view of (A.2) this lemma has the following consequences for weighted averages of the
type

E(x,y)s [Q] :=
E[|Gλ(x, y; ζ )|sQ]
E[|Gλ(x, y; ζ )|s]

, (A.19)

where x, y ∈ G, ζ ∈ C+ and s ∈ (0, 1). We denote by P(x,y)s the corresponding probabil-
ity measure.

Proposition A.4. In the situation of Proposition A.1, assume additionally that % satis-
fies (2.2) (with constant c > 0). Then, for any complex energy parameter ζ ∈ C+ and for
any s ∈ (0, 1) and t ≥ λ−1, the Green function satisfies

P(x,y)s (|Gλ(x, x; ζ )| > t | Ax) ≤
c

(1− s)(λt)1−s
, (A.20)

where Ax denotes the sigma-algebra generated by V (y), y 6= x.
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Analogously to (A.6), we conclude from (A.20) that for any p ∈ (0, 1) and all t ≥
λ−1(c/[(1− s)(1− p)]1/(1−s),

P(x,y)s (|Gλ(x, x; ζ )| ≤ t | Ax) ≥ p, (A.21)

uniformly in y ∈ G, the choice of the graph G and ζ ∈ C+.

B. A large deviation principle for triangular arrays

In our analysis of the Green function’s large deviations we make use of a large deviation
principle. The statement and its proof are similar to large deviation theorems which are
familiar in statistical mechanics and probability theory [15, 16, 18]. However since a close
enough reference could not be located we enclose the proof here.

B.1. A general large deviation theorem

The following should be regarded as a stand-alone statement. It is intended to be read
disregarding the fact that the symbols which appear in it (0 and η) were assigned a specific
meaning elsewhere in the paper. The similarity does however indicate the application of
this theory to the main discussion of this work.

Theorem B.1. Let {0(N)j (η)}Nj=1 with N ∈ N be a family of a triangular arrays of ran-
dom variables indexed by η ≥ 0, satisfying the following two conditions, for some r1 < r2
and C <∞:
(a) The functions

ΨN (t; η) :=
1
N

logE
( N∏
j=1

|0
(N)
j (η)|t

)
(B.1)

converge pointwise in [r1, r2] ⊂ (−1, 1):

Ψ (t) := lim
N→∞
η↓0

ΨN (t; η). (B.2)

(b) For all 1 ≤ k < N and t1, t2 ∈ [r1, r2],

E
( k∏
i=1

|0
(N)
i (η)|t1

N∏
j=k+1

|0
(N)
j (η)|t2

)
≤ Ce(N−k)[ΨN (t1,η)−ΨN (t2,η)] E

( N∏
i=1

|0
(N)
i (η)|t2

)
. (B.3)

Then for every γ which coincides with −Ψ ′(s) at a point s ≡ s(γ ) ∈ (r1, r2) where the
function Ψ (s) is differentiable, and for any ε > 0, there are N̂ ≡ N̂(ε, γ ) < ∞ and
η̂ ≡ η̂(ε, γ ) > 0 such that for all N ≥ N̂ and 0 < η < η̂ the following estimates hold:

1. Given the rate function I (γ ) := − inft∈[r1,r2][Ψ (t)+ tγ ] one has

P
( N∏
j=1

|0
(N)
j (η)| ≥ e−(γ+ε)N

)
≤ e−I (γ )Ne2εN . (B.4)



1218 Michael Aizenman, Simone Warzel

2. With respect to the s-tilted probability average defined by

Ps(Q) =
E(IQ ×

∏N
j=1 |0

(N)
j (η)|s)

E(
∏N
j=1 |0

(N)
j (η)|s)

, (B.5)

for any ` ∈ {0, . . . , N} we have

Ps
(∏̀
j=1

|0
(N)
j (η)| ≥ e−(γ−ε)`

)
≤ Ce−κ(ε,γ )`/3, (B.6)

Ps
(∏̀
j=1

|0
(N)
j (η)| ≤ e−(γ+ε)`

)
≤ Ce−κ(ε,γ )`/3, (B.7)

where κ(ε, γ ) := min{κ−(ε, γ ), κ+(ε, γ )} > 0 and

κ±(ε, γ ) := sup
sgn1=±

r1<s+1<r2

[Ψ (s)+ (Ψ ′(s)± ε)|1| − Ψ (s +1)]. (B.8)

3. For any event Q,

P(Q) ≥ e−I (γ )Ne−2εN
[Ps(Q)− Ce−κ(ε,γ )N/3]. (B.9)

Several remarks are in order:

• The function Ψ is convex, assuming the limit (B.2) exists, and therefore the above
value of I (γ ) can also be presented as

I (γ ) = −[Ψ (s)+ γ s]. (B.10)

The error margins κ±(ε, γ ) defined in (B.8) are strictly positive for any ε > 0 due to
convexity of Ψ .
• The proof of Theorem B.1 follows a standard procedure for such bounds: what is a

large deviation for the value of (1/N)
∑N
j=1 log0(N)j with respect to the initial prob-

ability measure becomes a regular occurrence once the measure is suitably tilted, i.e.
modified by the factor

∏N
j=1 |0

(N)
j |

s with a suitable s. The statement is then derived by
relating the original and the tilted probabilities. In Theorem B.1 we add to this standard
procedure the observation that under the condition (B.3) the global tilt of the measure
shifts the typical values of the sample mean of log0j for all the partial sums, to values
in the vicinity of −γ .

In the proof we make use of the following fact on convergence of convex functions.

Lemma B.2. Under the condition (B.2), one has the uniform convergence

lim
N→∞

η↓0

sup
s∈[r1,r2]

|ΨN (s; η)− Ψ (s)| = 0. (B.11)
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Proof. This follows from the fact that if a family of convex functions converges pointwise
over an open interval, then the convergence is uniform on compact subsets (cf. [34]). ut

Proof of Theorem B.1. Since the superscript of 0(N)j is somewhat redundant it will be
occasionally omitted (it takes a common value for all terms within each statement).

We will choose N̂ ≡ N̂(ε, γ ) <∞ and η̂ ≡ η̂(ε, γ ) > 0 using Lemma B.2 such that
for all N ≥ N̂(ε, γ ) and 0 < η < η̂(ε, γ ),

RN (η) := sup
s∈[r1,r2]

|ΨN (s; η)− Ψ (s)| < min
{
ε, 1

3κ(ε, γ )
}
, (B.12)

The proof of (B.4) relies on an elementary Chebyshev estimate with s ∈ (r1, r2):

P
( N∏
j=1

|0j (η)| ≥ e
−(γ+ε)N

)
≤ eN [s(γ+ε)+ΨN (s;η)]

= eεsNe−NI (γ )eN [ΨN (s;η)−Ψ (s)] ≤ e2εNe−NI (γ ) (B.13)

for any N ≥ N̂ and 0 < η < η̂ by (B.12).
To prove (B.6) we again employ the Chebyshev inequality and (B.3) to conclude that

for any 1 such that s +1 ∈ (r1, r2),

Ps
(∏̀
j=1

|0j (η)| ≥ e
−(γ−ε)`

)
≤ Es

[∏̀
j=1

|0j (η)|
1
]
e1(γ−ε)`

≤ Ce[ΨN (s+1;η)−ΨN (s;η)]`e1(γ−ε)`. (B.14)

Infimizing over 1, we hence conclude that the left side in (B.14) is bounded by

Ce−κ+(ε,γ )`e2`RN (η) ≤ Ce−κ+(ε,γ )`/3 (B.15)

for any N ≥ N̂ and 0 < η < η̂ by (B.12).
The proof of (B.7) proceeds similarly. It starts from the observation that

Ps
(∏̀
j=1

|0j (η)| ≤ e
−(γ+ε)`

)
≤ Es

[ N∏
j=`+1

|0j (η)|
−1
]
e−1(γ+ε)`

≤ Ce[ΨN (s−1;η)−ΨN (s;η)]`e−1(γ+ε)` (B.16)

for any 1 such that s −1 ∈ (r1, r2). Infimizing over this parameter, we hence conclude
that the left side in (B.16) is bounded by Ce−κ−(ε,γ )`e2`RN (η) ≤ Ce−κ−(ε,γ )`/3 by (B.12).

To prove (B.9) we estimate the regular probability in terms of the one defined via the
tilted measure:

P(Q) ≥ eNΨN (s;η)es(γ−ε)N Ps
(
Q and

N∏
j=1

|0j (η)| ≤ e
−(γ−ε)N

)

≥ eNΨN (s;η)es(γ−ε)N
(
Ps(Q)− Ps

( N∏
j=1

|0j (η)| ≥ e
−(γ−ε)N

))
. (B.17)
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The first terms are estimated from below as in (B.13) by e−I (γ )e−2εN . The second term
in the brackets is bounded by Ce−κ(ε,γ )N/3 for any N ≥ N̂ and 0 < η < η̂ according
to (B.6). ut

B.2. Applications to Green function’s large deviations

The aim of this subsection is to establish the two main large deviation statements which
are used in this paper, stated in Theorems 3.5 and 5.2. We start with the latter.

Proof of Theorem 5.2. We first check the applicability of Theorem B.1. By construction,
the variables {0±(j ; η)}

Nκ
j=1, defined in (5.8), are two families of triangular arrays. They

satisfy the consistency condition (5.9). As a consequence, the quantity defined in (B.1)
agrees for both cases:

ΨNκ (s; η) =
1
Nκ

logE[|GT̂x (xnκ , xN−1;E + iη)|
s
]. (B.18)

Lemma 3.4 and Theorem 3.2 imply that for any t ∈ (−ς, 1),

ϕ(t;E) ≡ ϕ(t) = lim
Nκ→∞
η↓0

ΨNκ (t; η). (B.19)

Moreover, these bound yield (B.3) with r1 = −ς and arbitrary r2 ∈ (0, 1). To prove this,
one integrates out the random variable associated with the first vertex on which t2 occurs
(cf. (3.15)).

The upper bound (5.12) is hence a consequence of (B.4). To prove the lower
bound (5.11) we employ (B.9). We first note that the choice of b is tailored to en-
sure Ps(L(bc)

x ) ≥ 7/8. Furthermore, using (B.6) and (B.7) we conclude that there are
N̂ ≡ N̂(ε, γ ) and η̂ ≡ η̂(ε, γ ) such that for all Nκ ≥ N̂ and η ∈ (0, η̂),

1− Ps
( Nκ⋂
k=nκ/2

L(k,±)x (η; ε)
)

≤

Nκ∑
k=nκ/2

[
Ps
( k∏
j=1

|0±(j ; η)| ≥ e
−(γ−ε)`

)
+ Ps

( k∏
j=1

|0±(j ; η)| ≤ e
−(γ+ε)`

)]

≤ 2C
Nκ∑

k=nκ/2

e−κ(ε,γ )k/3 ≤
6C

κ(ε, γ )
e−κ(ε,γ )nκ/6. (B.20)

By choosing nκ sufficiently large, this term can be made arbitrarily small, as κ(ε, γ ) > 0.
As a consequence, there are n0 and η0 such that for all |x| ≥ n0 and η ∈ (0, η0),

Ps(Lx(η; ε)) ≥ 1/2. (B.21)

Using this estimate in (B.9) concludes the proof of (5.12), since the second term in (B.9)
is seen to be arbitrarily small for n large enough and any factor may be absorbed for
sufficiently large Nκ by decreasing the prefactor e−Nk(I (γ )+2ε) in (B.9). ut
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Proof of Theorem 3.5. As in the proof of Theorem 5.2, the assertion follows from Theo-
rem B.1 in the special case of s = 0. This choice is admissible since, according to (3.13),
the free energy function ϕ(s;E), which emerges in the limit (B.19), is differentiable at
s = 0 with derivative given by the negative Lyapunov exponent. ut
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