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Abstract. This article addresses regularity of optimal transport maps for cost = “squared dis-
tance” on Riemannian manifolds that are products of arbitrarily many round spheres with arbitrary
sizes and dimensions. Such manifolds are known to be non-negatively cross-curved [KM2]. Under
boundedness and non-vanishing assumptions on the transfered source and target densities we show
that optimal maps stay away from the cut-locus (where the cost exhibits singularity), and obtain
injectivity and continuity of optimal maps. Together with the result of Liu, Trudinger and Wang
[LTW] this also implies higher regularity (C1,α/C∞) of optimal maps for smoother (Cα/C∞)
densities. These are the first global regularity results which we are aware of concerning optimal
maps on Riemannian manifolds which possess some vanishing sectional curvatures, beside the to-
tally flat case of Rn [Ca3] and its quotients [Co]. Moreover, such product manifolds have potential
relevance in statistics (see [S]) and in statistical mechanics (where the state of a system consisting
of many spins is classically modeled by a point in the phase space obtained by taking many prod-
ucts of spheres). For the proof we apply and extend the method developed in [FKM1], where we
showed injectivity and continuity of optimal maps on domains in Rn for smooth non-negatively
cross-curved cost. The major obstacle in the present paper is to deal with the non-trivial cut-locus
and the presence of flat directions.
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1. Introduction

Let M and M̄ be n-dimensional complete Riemannian manifolds, and let µ = ρ volM
and ν = ρ̄ volM̄ be two probability measures whose densities ρ and ρ̄ are bounded away
from zero and infinity. Given a cost function c : M × M̄ → R, the optimal transport
problem with cost c(x, y) consists in finding a transport map T : M → M̄ which sends
µ onto ν and minimizes the transportation cost∫

M

c(x, T (x)) dµ(x).

As shown by McCann [M] extending the result of Brenier [Br] on Rn, if M = M̄ and
c = dist2 /2 then the optimal transport map (or simply optimal map) exists and is unique.
More generally, the same result holds if the cost is semiconcave and satisfies the twist
condition in Assumption 2.1 below (see for instance [V, Chapter 10]).

The optimal map T is uniquely characterized by the relation T (x) ∈ ∂cφ(x), where φ
is a c-convex function (called potential) and ∂cφ denotes its c-subdifferential (see Section
2 for the definitions). Furthermore, the fact that ρ and ρ̄ are bounded away from zero and
infinity ensures the existence of a constant λ > 0 such that the following Monge–Ampère
type equation holds:

λ|�| ≤ |∂cφ(�)| ≤
1
λ
|�| ∀� ⊂ M Borel,

where ∂cφ(�) =
⋃
x∈� ∂

cφ(x). (See for instance [FKM1, Lemma 3.1].)
The aim of this paper is to investigate the regularity of optimal maps whenM = M̄ are

a multiple product of spheres, i.e.,M = M̄ = Sn1
r1 ×· · ·×S

nk
rk , and c(x, y) = f (dist(x, y))

for some function f , including the case f (t) = t2/2 of distance squared cost. For k = 1
and f (t) = t2/2, smoothness of optimal maps has been proved by Loeper [L2]. However,
if k > 1 the structure of the cut-locus (the singular set of the cost function) becomes more
complicated, and due to the product structure, the manifold has both flat and positively
curved directions, thus making the regularity issue much more delicate. Especially, the
powerful Hölder regularity estimate of Loeper [L1] (see also [Li]) as well as the a priori
estimates of Ma, Trudinger and Wang [MTW], which are successfully applied to posi-
tively curved manifolds as in [L2, KM2, LV, FR, DG, FRV], are not available any more
in our setting. Our main results (Theorem 5.1 and Corollary 5.3) give the first global reg-
ularity results which we are aware of concerning optimal maps on non-flat Riemannian
manifolds which allow vanishing sectional curvature. For completely flat manifolds (with
c = dist2 /2) the regularity of optimal maps is known as it reduces to the regularity theory
of the classical Monge–Ampère equation [D1, Ca1, Ca2, Ca3, U, Ca4, Co, D2, G].

To describe our result more precisely, first recall that in [MTW] Ma, Trudinger and
Wang discovered a condition (A3) on the cost function, whose weaker variant (A3w)
[TW] turned out to be both necessary [L1] and sufficient [TW] for regularity when the
solution φ is known to be strictly c-convex and the cost function is smooth. When M =
M̄ = Snr , the particular structure of the cut-locus (for every point x, its cut-locus Cut(x)
consists of its antipodal point) allowed Delanoë and Loeper [DL] to deduce that optimal
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maps stay away from the cut-locus, namely, ∂cφ(x)∩Cut(x) = ∅ for all x ∈ M (see [L2,
DG, KM1, KM1a] for alternative approaches). Loeper [L2] combined this observation
with the fact that c = dist2 /2 satisfies (A3) to show regularity of optimal maps; for
a simpler approach to continuity, see [KM1, KM1a]. His result has been extended to a
variety of positively curved manifolds including the complex projective space [KM2] and
perturbation of the real projective space [LV] and of the sphere [FR, DG, FRV]. In each
of these cases (A3) holds, thus the strong Hölder regularity estimate of [L1] as well as
the a priori estimate of [MTW] applies. Note that (A3) (resp. (A3w)) forces the sectional
curvature to be positive (resp. non-negative) [L1], though the converse does not hold [K].

On multiple products of spheres, taking c = dist2 /2 leads to two main issues:
first, only a degenerate strengthening of the weak Ma–Trudinger–Wang condition holds
(the so-called non-negative cross-curvature condition in [KM1, KM2]), which although
stronger than (A3w) is not as useful as (A3) for proving regularity due to lack of powerful
estimates (neither non-negative cross-curvature nor (A3) implies the other, though either
one separately implies (A3w)). Moreover, the cut-locus now has a non-trivial structure,
which makes it much more difficult to understand whether the stay-away property holds.
In [FKM1] we showed strict c-convexity and C1 regularity of φ, or equivalently, injec-
tivity and continuity of T , when the cost is smooth and (A3w) holds. Hence the only
question left is whether ∂cφ avoids the cut-locus or not.

In this paper we answer this question positively: by taking advantage of the fact that
the cut-locus is given by the union of certain subproducts of spheres we prove in Theo-
rem 5.1 the stay-away property that ∂cφ(x)∩Cut(x) = ∅ for all x ∈ M . By compactness,
these two sets are separated by a uniform distance that depends on λ, but is independent
of the particular choice of φ and x (see Corollary 5.2). Once stay-away property is shown,
one can localize the argument of [FKM1] to obtain injectivity and continuity of the opti-
mal map; then higher regularity (C2,α/C∞) of φ, thus C1,α/C∞-regularity of T , follows
from [LTW] when the densities are smooth (Cα/C∞) (see Corollary 5.3).

The multiple products of spheres is a model case for more general manifolds on which
the cost c satisfies the necessary conditions [L1, FRV] for regularity of optimal transport
maps. The method we develop in this paper demonstrates one approach to handling com-
plex singularities of the cost, especially the stay-away property of optimal maps. More-
over, a general Alexandrov type estimate (Lemma 4.1) is obtained which has applications
beyond the products of spheres.

Our regularity result has potential relevance to statistics and statistical mechanics.
For instance, recently T. Sei applied optimal transport theory for c = dist2 to directional
statistics on the sphere. In his main result [S, Theorem 1], he needed the optimal map not
to touch the cut-locus. Now, our stay-away property on multiple products of spheres M
(Theorem 5.1) states that all optimal maps, obtained by transporting densities bounded
away from zero and infinity onto each other, satisfy this assumption. Hence, this provides
a large family of c-convex potentials that could be used to create log-concave likelihood
functions as in [S, Subsection 3.2], extending his theory to multiple products of spheres.
Namely, as a direct consequence of [KM2, FKM2, S], on multiple products of spheres
a convex combination φ =

∑k
i=1 siφi , si ≥ 0,

∑
si = 1, of c-convex functions φi is

again c-convex, thus a crucial requirement in Sei’s theory is satisfied. If each φi is the
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c-potential of an optimal map between densities bounded away from zero and infinity,
by Theorem 5.1 one sees ∂cφi stay away from the cut-locus. One can then show that
∂cφ also avoids the cut-locus, thus applying [S, Theorem 1] one obtains the log-concave
Jacobian inequality for this convex combination. To see this, for example, observe that
in the product of spheres the “domain of exponential map” is convex,1 and ∂cφ satisfies
∂cφ(x) = expx ∂φ(x) = expx[

∑
i ∂φi(x)] for x ∈ M (see Lemma 2.7). Since each ∂cφi

stays away from the cut-locus, ∂φi(x) belongs to the domain of the exponential map,
hence so does ∂φ(x), showing ∂cφ(x) ∩ Cut(x) = ∅.

Concerning statistical mechanics, let us recall that the state of a spin system is clas-
sically modeled as a point in the phase space M obtained by taking many products of
spheres. In such contexts, optimal transport may provide a useful change of variables.
More precisely, if µ and ν are two smooth densities and T denotes the optimal transport
map from µ to ν, then ∫

G(y) dν(y) =

∫
G(T (x)) dµ(x),

for all bounded measurable functions G : M → R. Then, if µ is a “nice” measure for
which many statistical quantities are easily computable, one may hope to exploit some
qualitative/quantitative properties of T in order to estimate the integral

∫
G(y) dν(y) by

studying
∫
G(T (x)) dµ(x). We expect that regularity of optimal maps may play a cru-

cial role in this direction. For instance, in Euclidean spaces this is already the case, as
Caffarelli [Ca5] used regularity of optimal maps to show that suitable monotonicity and
log-concavity properties of the densities imply monotonicity and contraction properties
for the optimal map, from which correlation and momentum inequalities may be deduced.

Organization of the paper. Section 2 sets up the notation and assumptions used through-
out the paper. In Section 3, a few useful preliminary results regarding convex sets and c-
convex functions are listed. Section 4 is devoted to an Alexandrov type inequality which
is one of the main tools in the proof of our main theorem. Until Section 4, we present
the theory under rather general assumptions. However, from Section 5 we restrict to the
multiple products of spheres. In Section 5 we state our main result about the stay-away
property of optimal maps, and give a sketch of the proof. Moreover we explain how one
can deduce regularity of optimal maps combining this theorem with the results in [FKM1]
and [LTW]. Finally, the details of the proof of the stay-away property are given in Sec-
tion 6.

2. Notation and assumptions

In this section and the next we recall notation and results which will be useful later.
Many of these results originated in or were inspired by the work of Ma, Trudinger, Wang
[MTW] and Loeper [L1]. Though the present paper mainly concerns the Riemannian

1 Here and below, we use “domain of exponential map” as a synonym for “injectivity domain”
(see Section 2).
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distance squared cost c = dist2 /2 on the product of round spheres, we will present our
work in a rather general framework. This requires only a small additional effort and may
prove useful for further development and applications of the theory.

LetM , M̄ be n-dimensional complete Riemannian manifolds, and let c(x, x̄) denote a
cost function c : M × M̄ → R. We will assume throughout that c is semiconcave in both
variables, i.e., in coordinate charts it can be written as the sum of a concave and a smooth
function. Let us remark that since dist2(x, y) is semiconcave onM ×M (see for example
[FF, Appendix B]), the above assumption is satisfied for instance by any cost function of
the form f (dist(x, y)) on M ×M , with f : R → R smooth, even, and strongly convex
(meaning f (d) = f (−d) and f ′′(d) > 0 for all d ≥ 0). Here and below, “smooth” is
synonymous with C∞ (though C4 would be enough for all our purposes).

As for x̄ and M̄ , we use the “bar” notation to specify the second variable of the cost
function. Also we write c̄(x̄, x) := c(x, x̄). We denote by Dx and Dx̄ the differentials
with respect to the x and x̄ variable respectively. (For instance,DxDx̄c(x0, x̄0) denotes the
mixed partial derivative of c at (x0, x̄0).) Let c-Cut(x̄) denote the c-cut-locus of x̄ ∈ M̄ ,
that is,

c-Cut(x̄) := {x ∈ M | c is not smooth in a neighborhood of (x, x̄)},

and letM(x̄) denote the c-injectivity locusM\c-Cut(x̄). Define c̄-Cut(x), M̄(x) similarly.
These sets are open.

Assumption 2.1 (twist). For each (x, x̄) ∈ M × M̄ , the maps −Dxc(x, ·) : M̄(x) →
T ∗xM and −Dx̄c(·, x̄) : M(x̄)→ T ∗x̄ M̄ are smooth embeddings (thus injective).

We remark that the above hypothesis from Levin [L] is equivalent to condition (A1) in
[MTW, L1, KM1], which together with the semiconcavity of the cost ensures existence
and uniqueness of optimal maps when the source measure is absolutely continuous with
respect to the volume measure (see for instance [L, FF, F] or [V, Chapter 10]).

The domain of the c-exponential M̄∗(x̄) in T ∗x̄ M̄ is defined as the image of M(x̄)
under the map −Dx̄c(x, ·), i.e.,

M̄∗(x̄) := −Dx̄c(M(x̄), x̄) ⊂ T
∗

x̄ M̄.

Define M∗(x) similarly.
As in [MTW, L1], we define the c-exponential maps c-Expx : M

∗(x) ⊂ T ∗xM → M̄

and c̄-Expx̄ : M̄
∗(x̄) ⊂ T ∗x̄ M̄ → M as the inverse maps of −Dxc(x, ·) and −Dx̄c(·, x̄)

respectively, i.e.,

p = −Dxc(x, c-Expxp) for p ∈ M∗(x), p̄ = −Dx̄c(c̄-Expx̄ p̄, x̄) for p̄ ∈ M̄∗(x̄).

Given a set X, we denote by cl(X) its closure. Define the subdifferential of a semi-
convex funciton α : M → R at x ∈ M by

∂α(x) := {p ∈ T ∗xM | α(expx v)− α(x) ≥ 〈p, v〉 + o(|v|x) as v→ 0 in TxM}

(This is non-empty at every point.) Here 〈·, ·〉 denotes the paring of covectors and vectors.
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Assumption 2.2. For each (x, x̄) ∈ M × M̄ the map c-Expx (resp. c̄-Expx̄) extends to
a smooth map from cl(M∗(x)) (resp. cl(M̄∗(x̄))) onto M̄ (resp. M). If we abuse notation
and use c-Expx , c̄-Expx̄ also for these extensions, then they satisfy

c-Expxp = c-Expx
(
∂x(−c(x, c-Expxp))

)
, ∀p ∈ cl(M∗(x));

c̄-Expx̄ p̄ = c̄-Expx̄
(
∂x̄(−c(c-Expx̄ p̄, x̄))

)
, ∀p̄ ∈ cl(M̄∗(x̄)).

Here, ∂x , ∂x̄ denote the subdifferentials with respect to the variables x, x̄, respectively.

Note that the above assumptions hold for instance whenM = M̄ and c = dist2 /2 (so that
c-Expx coincides with the Riemannian exponential map expx). However, the following
three assumptions are much more restrictive, and not true for c = dist2 /2 in general
[MTW, L1, KM1, LV]. They are all crucial in this paper.

Assumption 2.3 (convexity of domains of c-exponentials). For each (x, x̄) ∈ M × M̄
the domains M∗(x), M̄∗(x̄) are convex.

As shown in [FRV], the above assumption is necessary for continuity of optimal transport
maps when the cost function is given by the squared distance.

A c-segment {x̄(t)}0≤t≤1 with respect to x is the c-exponential image of a line segment
in cl(M∗(x)), i.e.,

x̄(t) := c-Expx((1− t)p0 + tp1) for some p0, p1 ∈ T
∗
xM.

Define similarly a c̄-segment {x(t)}0≤t≤1 with respect to x̄. The notions of c- and c̄-
segments, due to Ma, Trudinger and Wang, induce a natural extension of the notion of
convexity on sets in M , M̄ , called c-convexity in [MTW]. Let U ⊂ M and x̄ ∈ M̄ . The
set U is said to be c̄-convex with respect to x̄ if any two points in U are connected by
a c̄-segment with respect to x̄ entirely contained inside U . Similarly we define c-convex
sets in M̄ . It is helpful to notice that c, c̄-convex sets (with respect to x, x̄, respectively)
are images of convex sets under c-Expx , c̄-Expx̄ , respectively.

Regarding c, c̄-segments, here comes a key assumption in this paper:

Assumption 2.4 (convex DASM). For every (x, x̄)∈M×M̄ , let {x̄(t)}0≤t≤1, {x(t)}0≤t≤1
be c, c̄-segments with respect to x, x̄, respectively. Define the functions

mt (·) := −c(·, x̄(t))+ c(x, x̄(t)), m̄t (·) := −c(x(t), ·)+ c(x(t), ·), 0 ≤ t ≤ 1.

Then

mt ≤ (1− t)m0 + tm1, m̄t ≤ (1− t)m̄0 + tm̄1, 0 ≤ t ≤ 1. (2.1)

When, instead of (2.1), onlymt ≤ max[m0, m1] and m̄t ≤ max[m̄0, m̄1] are required, this
property played a key role in the work of Loeper [L1]. In [KM1] we called it Loeper’s
maximum principle (DASM), the acronym (DASM) standing for “Double Mountain
Above Sliding Mountain”, a mnemonic which describes how the graphs of the functions
mt , m̄t behave as t is varied. For convenience we use this acronym in various places in
the present paper. The stronger property (convex DASM) was proved in [KM2] to be a
consequence of the so-called non-negative cross-curvature condition on the cost c.

We will also need a strict version of Loeper’s maximum principle (DASM):
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Assumption 2.5 (DASM+). With the same notation as in Assumption 2.4,

mt (y) ≤ max[m0(y),m1(y)] ∀y ∈ M, m̄t (ȳ) ≤ max[m̄0(ȳ), m̄1(ȳ)] ∀ȳ ∈ M̄.

Moreover, when the c̄-(resp. c-)segment in the definition ofmt (resp. m̄t ) is non-constant,
equality holds if and only if y = x (resp. ȳ = x̄).

Assumptions 2.4 and 2.5 correspond to a “global” version of the non-negative cross curva-
ture assumption and of the (A3) condition on the cost function c, respectively: see [KM1]
and [MTW] for the definition of non-negative cross curvature and (A3), respectively. Al-
though the equivalence between (convex DASM) and non-negative cross curvature (resp.
(DASM+) and (A3)) is not known in general, it holds true for the squared distance cost
function on a Riemannian manifold, as shown in [FV, FRV]. Moreover, Loeper’s maxi-
mum principle (DASM) is a necessary condition for regularity: this is originally shown
[L1] on domains in Rn and later extended to the manifold case [FRV].

Given two functions φ : M → R and φ̄ : M̄ → R, we say that they are c-convex and
dual with respect to each other if

φ(x) = sup
x̄∈M̄

{−c(x, x̄)− φ̄(x̄)}, (2.2)

φ̄(x̄) = sup
x∈M

{−c(x, x̄)− φ(x)} = sup
x∈M

{−c̄(x̄, x)− φ(x)}.

Since by assumption c is semiconcave, both functions above are semiconvex (see for
instance [FF, Appendix A]). This implies in particular that their subdifferentials ∂φ(x),
∂φ̄(x̄) are non-empty at every point.

We define the c-subdifferential ∂cφ at a point x as follows:

∂cφ(x) := {x̄ ∈ M̄ | φ(y)− φ(x) ≥ −c(y, x̄)+ c(x, x̄), ∀y ∈ M}. (2.3)

Analogously, we define ∂ c̄φ̄ at every point x̄. (Recall that c̄ denotes the function defined
as c̄(x̄, x) := c(x, x̄).) The following well-known reciprocity holds:

Lemma 2.6 (Reciprocity). For c-convex functions φ, φ̄ dual to each other as in (2.2),

x̄ ∈ ∂cφ(x) ⇔ φ(x)+ φ̄(x̄) = −c(x, x̄) ⇔ x ∈ ∂ c̄φ̄(x̄). (2.4)

Proof. Suppose x̄ ∈ ∂cφ(x). Then, by rearranging the inequality in (2.3) we get

−φ(x) ≥ c(x, x̄)+ sup
y∈M

{−c(y, x̄)− φ(y)},

and the supremum on the right hand side is exactly φ̄(x̄). On the other hand, from the
definition of φ and φ̄ we have

φ̄(ȳ)+ c(x, ȳ) ≥ −φ(x) ∀ȳ ∈ M̄,

so that combining these two inequalities leads to φ(x) + φ̄(x̄) = −c(x, x̄), and x ∈
∂ c̄φ̄(x̄). The opposite implication follows by symmetry. ut

Loeper [L1] deduced the following fundamental relation to be a consequence of his max-
imum principle (DASM).
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Lemma 2.7 (Loeper’s maximum principle (DASM)). Let Assumptions 2.1–2.3 hold.
Suppose Loeper’s maximum principle (DASM) holds. Let φ, φ̄ be c-convex functions
dual to each other as in (2.2). Then for all x ∈ M, x̄ ∈ M̄ ,

c-Expx(∂φ(x)) = ∂
cφ(x), c̄-Expx̄(∂φ̄(x̄)) = ∂

c̄φ̄(x̄).

Proof. The inclusions c-Expx(∂φ(x)) ⊂ ∂
cφ(x), c̄-Expx̄(∂φ̄(x̄)) ⊂ ∂

c̄φ̄(x̄) follow from
the convexity of ∂φ(x) and the definition of Loeper’s maximum principle (DASM). The
other inclusions hold in general without Loeper’s maximum principle. Details can be
found in [L1]. ut

In the following, we refer to the conclusion of this lemma also as Loeper’s maximum
principle (DASM).

For a set � ⊂ M , the image ∂cφ(�) is defined as

∂cφ(�) :=
⋃
x∈�

∂cφ(x).

For a c-convex function φ and an open set U ⊂ M with x0 ∈ U , we define

[∂cφ(U)]x0 := {x̄ ∈ M̄ | φ(x)− φ(x0) ≥ −c(x, x̄)+ c(x0, x̄) for all x ∈ ∂U}.

Trivially, ∂cφ(x0) ⊂ [∂
cφ(U)]x0 . This definition is justified by the following lemma,

which is also very useful in later discussions.

Lemma 2.8. Let Assumptions 2.1–2.3 hold. Suppose Loeper’s maximum principle
(DASM) holds. Let φ be a c-convex function on M . Let U ⊂ M be an open set, and
let x0 ∈ U . Then:

(1) [∂cφ(U)]x0 is c-convex with respect to x0.
(2) [∂cφ(U)]x0 ⊂ ∂

cφ(U).
(3) If U → {x0}, then both ∂cφ(U), [∂cφ(U)]x0 → ∂cφ(x0).

Proof. Assertion (1) follows directly from the definitions of Loeper’s maximum principle
(DASM) and of the set [∂cφ(U)]x0 .

To prove (2), fix x̄ ∈ [∂cφ(U)]x0 , and move first the graph of the function −c(·, x̄)
down so that it lies below φ inside U , and then lift it up until it touches the graph of φ
inside cl(U). Thanks to the assumption x̄ ∈ [∂cφ(U)]x0 there exists at least one touching
point x′ which belongs to U (indeed, if there is a touching point on ∂U , then x0 is another
touching point), and Lemma 2.7 ensures that x̄ ∈ ∂cφ(x′).

For (3), the convergence ∂cφ(U) → ∂cφ(x0) follows by continuity, and [∂cφ(U)]x0

→ ∂cφ(x0) then comes from (2). ut

For x̄ ∈ M̄ , let S(x̄) be the contact set

S(x̄) := {x ∈ M | x̄ ∈ ∂cφ(x)} = ∂ c̄φ̄(x̄).

(The last identity follows from reciprocity, see Lemma 2.6.) For any x0 ∈ S(x̄) one can
write

S(x̄) = {x ∈ M | φ(x)− φ(x0) = −c(x, x̄)+ c(x0, x̄)}.
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A set Z in M is called a c-section of φ with respect to x̄ if there is λx̄ ∈ R such that

Z := {z ∈ M | φ(z) ≤ −c(z, x̄)+ λx̄}.

The following simple observation is very useful for studying regularity of c-convex
functions. It was originally made (implicitly) in [FKM1] and independently by Liu [Li].

Lemma 2.9 (c-convex c-sections). Let Assumptions 2.1–2.3 hold. Suppose Loeper’s
maximum principle (DASM) holds. Let φ be a c-convex function on M , and fix x̄ ∈ M̄ .
Every c-section Z of φ with respect to x̄ is c̄-convex with respect to x̄.
Proof. This follows from the definition of c-convex functions and of Loeper’s maximum
principle (DASM). ut

Given Borel sets V ⊂ M and V̄ ⊂ M̄ , we denote by |V | and |V̄ | their volumes (computed
with respect to the given Riemannian metric onM and M̄ , respectively). The following is
our last assumption. As we already remarked in the introduction, it is satisfied whenever φ
is the potential associated to an optimal transport map and the densities are both bounded
away from zero and infinity.

Assumption 2.10 (bounds on c-Monge–Ampère measure of φ). There exists λ > 0 such
that

λ|�| ≤ |∂cφ(�)| ≤
1
λ
|�| for all Borel sets � ⊂ M.

We sometimes abbreviate this condition on φ simply by writing |∂cφ| ∈ [λ, 1/λ].

3. Preliminary results

In this section, we list some preliminary results we require later. The first subsection deals
with general convex sets and the second subsection considers the properties of the cost
function under suitable assumptions.

3.1. Convex sets

We first list two properties of convex sets that will be useful later.

Lemma 3.1 (John’s lemma [J]). For a compact convex set S ⊂ Rn, there exists an affine
transformation L : Rn→ Rn such that B1 ⊂ L

−1(S) ⊂ Bn. Here, B1 and Bn denote the
balls of radius 1 and n, respectively, centered at 0.

Lemma 3.2 ([FKM1, Lemma 6.11]). Let S be a convex set in Rn = Rn′ × Rn′′ , and
denote by π ′, π ′′ the canonical projections onto Rn′ and Rn′′ , respectively. Let S′ be a
slice orthogonal to the second component, that is,

S′ = (π ′′)−1(x̄′′) ∩ S for some x̄′′ ∈ π ′′(S).

Then there exists a constant C(n), depending only on n = n′ + n′′, such that

C(n)|S| ≥H n′(S′)H n′′(π ′′(S)),

where H d denotes the d-dimensional Hausdorff measure.
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The following lemma is important in the last step (Section 6.6) of the proof of the main
theorem.

Lemma 3.3. Let X = X1
× · · · × Xk , with Xi = Rni , i = 1, . . . , k, and write a point

x ∈ X as x = (x1, . . . , xk), xi ∈ Xi . For each i = 1, . . . , k, let U i be a subset of Xi ,
and let si = (s1

i , . . . , s
k
i ) ∈ X with sii ∈ U

i . Define Si ⊂ X as

Si := {s
1
i } × · · · × {s

i−1
i } × Ui × {s

i+1
i } × · · · × {s

k
i },

and consider the convex hull co(S1, . . . , Sk) of the sets S1, . . . , Sk . Then there exists a
constant C(n, k), depending only on n := n1 + · · · + nk and k, such that

C(n, k)|co(S1, . . . , Sk)| ≥

k∏
i=1

H ni (Si).

Proof. First consider the barycenter b of the set {s1, . . . , sk}, that is,

b :=
1
k
(s1 + · · · + sk).

We will construct sets Sbi each of which contains b and has Hausdorff measure compar-
able with Si . In addition, these sets are mutually orthogonal. We will finish the proof by
considering the volume of the convex hull of these sets Sb1 , . . . , S

b
k .

For each i, let bi be the barycenter of the set {s1, . . . , sk} \ {si}, i.e.,

bi :=
1

k − 1
(s1 + · · · + si−1 + si+1 + · · · + sk).

Consider the cone co(bi, Si) ⊂ co(S1, . . . , Sk) and let

Sbi := co(bi, Si) ∩ {x ∈ X | xj = bj for j 6= i}.

Note that b ∈ Sbi and these sets Sb1 , . . . , S
b
k are mutually orthogonal, in the sense that, for

each x ∈ Sbi and y ∈ Sbj with i 6= j , we have (x − b) · (y − b) = 0. Now, consider the
convex hull co(Sb1 , . . . , S

b
k ) ⊂ co(S1, . . . , Sk). The previous orthogonality implies

C(n)|co(Sb1 , . . . , S
b
k )| ≥

k∏
i=1

H ni (Sbi )

for some constant C(n) depending only on n1+ · · · + nk . (This inequality is obtained for
instance by iteratively applying Lemma 3.2.) To conclude the proof simply observe that
b = 1

k
si +

k−1
k
bi , and so

H ni (Sbi ) ≥
1
kni

H ni (Si). ut

3.2. Coordinate change

In this subsection we briefly recall the coordinate change introduced in [FKM1, Section 4]
that transforms c-convex functions into convex functions under the condition (convex
DASM), referring to [FKM1, Section 4] for more details. Throughout this subsection we
let Assumptions 2.1–2.3 hold.
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Let ȳ0 be an arbitrary point in M̄ . Then the map x ∈ M(ȳ0) 7→ q ∈ T ∗ȳ0
M̄ given by

q(x) = −Dx̄c(x, ȳ0) is an embedding thanks to Assumption 2.1. Recall that M̄∗(ȳ0) ⊂

T ∗ȳ0
M̄ denotes the image of this map, that this map is by definition the inverse c-exponen-

tial map (c-Expȳ0
)−1, and the c-exponential map is a diffeomorphism up to the boundary

of M̄∗(ȳ0) (see Assumption 2.2). Denote

c̃(q, x̄) := c(x(q), x̄)− c(x(q), ȳ0).

Then the c-convex function φ is transformed to a c̃-convex function ϕ defined as

ϕ(q) := φ(x(q))+ c(x(q), ȳ0).

If Loeper’s maximum principle (DASM) holds, then Lemma 2.9 shows that c̃-sections
of ϕ are convex. This property was observed independently by Liu [Li], who used it to
derive an optimal Hölder exponent for optimal maps under the strict condition (A3) on
the cost, sharpening the Hölder continuity result of Loeper [L1]. Furthermore, if (convex
DASM) holds then −c̃(q, x̄) is convex in q for any x̄ ∈ M̄ , which then implies convexity
of ϕ in q (see [FKM1, Theorem 4.3] for more details). One can easily check that c̄-
segments with respect to x̄ are transformed via this coordinate change to ˜̄c-segments with
respect to x̄, and c-segments with respect to x(q) are transformed to c̃-segments with
respect to q. Therefore, Loeper’s maximum principle (DASM) or (convex DASM) for c
implies the same for c̃.

3.2.1. Relation between cotangent vectors in two different coordinates. Here we give
an explicit relation between covectors in the new coordinate variable q (as introduced
above) and the original coordinate variable x. Fix arbitrary ȳ0 ∈ M , x0 ∈ M(ȳ0), and let
q0 = −Dx̄c(x0, ȳ0) ∈ T

∗

ȳ0
M̄ . For each z̄ ∈ M̄(x0), consider the maps

z̄ 7→ η(z̄) := −Dxc(x0, z̄) ∈ T
∗
x0
M,

z̄ 7→ p(z̄) := −Dq c̃(q0, z̄) ∈ T
∗
q0
(T ∗ȳ0

M̄).
(3.1)

where c̃(q, x̄) := c(x(q), x̄)−c(x(q), ȳ0) and the variables x and q are related as q(x) =
−Dx̄c(x, ȳ0). Denote by M∗(x0), M̃∗(q0) the embedding of M̄(x0) under the mappings
z̄ 7→ η(z̄), z̄ 7→ p(z̄), respectively. These sets are related by an affine map as we see in
the following lemma. In particular, from Assumption 2.3 both sets are convex in T ∗x0

M ,
T ∗q0
(T ∗ȳ0

M), respectively.

Lemma 3.4. Let Assumptions 2.1 and 2.2 hold. Let η(p) : M̃∗(q0)→ M∗(x0) associate
p(z̄) to η(z̄) as in (3.1), and let η0 = −Dxc(x0, ȳ0) ∈ M∗(x0) ⊂ T ∗x0

M . Fix local
coordinates. Then for all p ∈ M̃∗(q0), η(p) = (η(p)1, . . . , η(p)n) is given as

η(p)i = pj (−DxiDx̄j c(x0, ȳ0))+ η
i
0.

This formula allows the affine function p 7→ η(p) to be extended to a global map η :
T ∗q0
(T ∗ȳ0

M̄)→ T ∗x0
M .
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Proof. Observe that

ηi = −Dxi c(x0, z̄) = Dxi |x=x0 [−c(x, z̄)+ c(x, ȳ0)− c(x, ȳ0)]

= −Dqj |q=q0 [c(x(q), z̄)− c(x(q), ȳ0)](Dxi |x=x0q
j )+ ηi0 = p

j (Dxi |x=x0q
j )+ ηi0.

From the relation qj = −Dx̄j c(x(q), ȳ0) we see that

Dxi |x=x0q = −DxiDx̄j c(x0, ȳ0),

and the assertion follows. ut

3.2.2. An estimate on the first derivatives of c. In Section 6.5 we will use the following
simple estimate.

Lemma 3.5 ([FKM1, Lemma 6.3]). Given convex sets �,3 ⊂ Rn, assume that the
function (q, y) ∈ �×3 7→ c(q, y) ∈ R is smooth. Then for all q, q̃ ∈ � and y ∈ 3,

|−Dqc(q, y)+Dqc(q̃, y)| ≤ C|q − q̃| |Dqc(q̃, y)|, (3.2)

where the constant C depends only on ‖c‖C3(�×3) and ‖(D2
qyc)

−1
‖L∞(�×3).

4. An Alexandrov estimate: lower bound

In this section we show a key Alexandrov type estimate (4.1) which bounds from below
the “oscillation” of φ inside a c-section by the measure of the section. (An estimate that
compares the oscillation of the function with the measure of the section is said to be
of Alexandrov type.) This result is of its own interest, especially because it is proven
under rather general assumptions, and does not rely on the special structure of products
of spheres. In later sections, a companion inequality showing the upper bound will be
obtained for a special choice of a c-section in the particular case of products of spheres
(see Theorem 6.4).

Lemma 4.1 (Alexandrov lower bound). Let M , M̄ be complete n-dimensional Rieman-
nian manifolds. Suppose the cost c : M × M̄ → R satisfies Assumptions 2.1–2.4. Let
φ be a c-convex function on M and assume 0 < λ ≤ |∂cφ| for a fixed λ ∈ R. Fix
(x0, x̄0) ∈ M × M̄ such that x̄0 ∈ ∂

cφ(x0), and for h > 0 consider the c-section Zh
defined as

Zh := {x ∈ M | φ(x)− φ(x0) ≤ −c(x, x̄0)+ c(x0, x̄0)+ h}.

Assume that−c(·, x̄0) is smooth onZh, so that the function c̄-Exp−1
x̄0

is defined and smooth
on Zh, or equivalently Zh ⊂ M(x̄0). Then

λ|Zh|
2
≤ C(n)

[
maxx∈Zh |det(−DxDx̄c(x, x̄0))|

minx∈Zh |det(−DxDx̄c(x, x̄0))|

]2[
sup
x∈Zh

sup
p′∈M∗(x)

|dc-Expx |p=p′ |
]
hn

(4.1)
with the constant C(n) = (4n)n|B1|

2, where |B1| denotes the measure of the unit ball
in Rn.
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Remark 4.2. In the statement of Lemma 4.1 and its proof, it is important to notice that
by the assumption that −c(·, x̄0) is smooth on clZh and by Assumptions 2.1 and 2.2,
the derivatives of c̄-Expx̄0

and its inverse (on Zh), i.e., −DxDx̄c(x, x̄0), x ∈ Zh, are all
nonsingular.

Remark 4.3. For c = dist2 /2, Loeper’s maximum principle (DASM) (and so also (con-
vex DASM)) implies thatM = M̄ has non-negative sectional curvature (see [L1]). There-
fore in this case c-Expy is a contraction, that is,

sup
p′∈M∗(x)

|dc-Expx |p=p′ | ≤ 1.

We do not know if this contraction property holds for general non-negatively cross-curved
cost functions.

Remark 4.4. As in [FKM1], for our main results we will later follow the strategy de-
veloped in [Ca1] by using renormalization techniques, but only after a suitable change
of coordinates. The main feature of our Alexandrov estimate with respect to the ones in
[Ca1, FKM1] is that the only “possibly bad” dependence on the cost function comes from
the term maxx∈Zh |det(−DxDx̄c(x, x̄0))|/minx∈Zh |det(−DxDx̄c(x, x̄0))|, which can be
made as close to 1 as desired, provided one can ensure that the section Zh converges to a
point as h→ 0. This will play a crucial role in the proof of Theorem 5.1, as it will allow
us to apply this estimate near points arbitrarily close to the cut-locus.

Proof. For globally smooth cost functions (on the products of two bounded domains) a
similar result was proved in [FKM1, Theorem 6.4]. In the present case where the cost
function has singularities, the previous proof does not work any more and we require the
following subtle argument.

Consider the coordinate change x ∈ Zh 7→ q = −Dx̄c(x(q), x̄0) ∈ W̄h ⊂ M̄
∗(x̄0) ⊂

T ∗x̄0
M̄ , i.e., x = c-Expx̄0

q and Zh = c-Expx̄0
(W̄h), and let

mx̄(·) := −c(·, x̄)+ c(·, x̄0).

As explained in Section 3.2, in these new coordinates the functions

q 7→ mx̄(x(q)) and q 7→ ϕ(q) = φ(x(q))+ c(x(q), x̄0)

are convex. Moreover the set W̄h is convex, as

W̄h = {q ∈ T
∗

x̄0
M̄ | ϕ(q)− ϕ(q0) ≤ h},

where q0 is the point corresponding to x0 in the new coordinates, i.e., c-Expx̄0
q0 = x0.

It is also important to notice that x̄0 ∈ ∂
cφ(x0) implies ϕ(q) − ϕ(q0) ≥ 0. We now use

Lemma 3.1 to find an affine map A : T ∗x̄0
M̄ ' Rn 7→ T ∗x̄0

M̄ ' Rn such that A(Ŵh) = W̄h

with B1 ⊂ Ŵh ⊂ Bn. Denote qb = A(0) and xb = c-Expx̄0
qb. Define the renormalized

function ϕ̂(q̂) := ϕ(Aq̂) for each q̂ ∈ Ŵh, and denote 1
2W̄h := A( 1

2Ŵh) and 1
2Zh :=
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c̄-Expx̄0
( 1

2W̄h), where 1
2Ŵh denotes the dilation of Ŵh by a factor 1/2 with respect to the

origin. This 1/2-dilation (any factor in (0, 1) works) will be important in this proof.
Consider the reciprocal expression

∂cφ( 1
2Zh) = c-Expxb (−Dxc(xb, x̄0)+ V)

where

V := {Dxmx̄(xb) | x̄ ∈ ∂cφ( 1
2Zh)} ⊂ T

∗
xb
M.

HereDxmx̄ denotes the differential whenmx̄ is differentiable, otherwise it means an arbi-
trary covector in the subdifferential ∂mx̄(x). Notice that−Dxc(xb, x̄0)+V ⊂ cl(M∗(xb)),
and thus

|∂cφ( 1
2Zh)| ≤

(
sup

p′∈M∗(xb)

|dc-Expxb |p=p′ |
)
|V|. (4.2)

Now, the left-hand side is bounded from below as

|∂cφ( 1
2Zh)| ≥ λ|

1
2Zh| (by the assumption |∂cφ| ≥ λ)

≥ λ
[

min
w∈Wh

|det(dc̄-Expx̄0
|q=w)|

]
( 1

2 )
n
|Wh| (since 1

2Zh = c̄-Expx̄0
( 1

2Wh))

≥ λ
minw∈Wh |det(dc̄-Expx̄0

|q=w)|

maxw∈Wh |det(dc̄-Expx̄0
|q=w)|

( 1
2 )
n
|Zh|

≥ λ
minx∈Zh |det(−DxDx̄c(x, x̄0))|

maxx∈Zh |det(−DxDx̄c(x, x̄0))|
( 1

2 )
n
|Zh| (since Dx̄c(·, x̄0) = c̄-Exp−1

x̄0
). (4.3)

In the following we will bound |V| from above by

maxx∈Zh |det(−DxDx̄c(x, x̄0))|

minx∈Zh |det(−DxDx̄c(x, x̄0))|

hn

|Zh|
,

which will finish the proof; here the dilation 1
2Zh plays a crucial role (see (4.5)). Fix

x̄ ∈ ∂cφ( 1
2Zh), and let q̂x̄ ∈ 1

2Ŵh be such that x̄ ∈ ∂ ĉϕ̂(q̂x̄). Here, ĉ is the cost function
modified accordingly with the coordinate changes:

ĉ(q̂, ȳ) := c(c̄-Expx̄0
(Aq̂), ȳ)− c(c̄-Expx̄0

(Aq̂), x̄0).

Consider the function

m̂x̄(q̂) := mx̄(c̄-Expx̄0
(Aq̂)) = −ĉ(q̂, x̄). (4.4)

Then

m̂x̄(q̂)− m̂x̄(q̂x̄)+ ϕ̂(q̂x̄) ≤ ϕ̂(q̂) for q̂ ∈ Ŵh.

We observe that m̂x̄(·) − m̂x̄(q̂x̄) is a convex function on Ŵh which vanishes at q̂x̄ ∈
1
2Ŵh, and m̂x̄(·) − m̂x̄(q̂x̄) ≤ h on ∂Ŵh. Since B1 ⊂ Ŵh ⊂ Bn this easily implies that
m̂x̄(0)− m̂x̄(q̂x̄) ≥ −h, which by convexity gives

|Dq̂m̂x̄(0)| ≤ 2h. (4.5)
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To get information on Dxmx̄ , observe that from (4.4),

(dc̄-Expx̄0
|q=qbA)

∗Dxmx̄(xb) = Dq̂m̂x̄(0), (4.6)

where (dc̄-Expx̄0
|q=qbA)

∗
: T ∗xbM → T ∗0 (T

∗

x̄0
M̄) is the dual map of the derivative map

dc̄-Expx̄0
A : T0(T

∗

x̄0
M̄) → TxbM . Here we abuse the notation and A denotes both the

affine map and its derivative. Moreover we use the canonical identification T ∗0 (T
∗

x̄0
M̄) ≈

T0(T
∗

x̄0
M̄) ≈ T ∗x̄0

M̄ . Hence (4.5) and (4.6) imply the key inclusion

V ⊂ (dc-Expx̄0
|
∗
q=qb

)−1(A∗)−1B2h,

so that

|V| ≤ |det(dc̄-Expx̄0
|
∗
q=qb

)−1
| |det(A∗)−1

| |B1|2nhn

= |det(dc̄-Expx̄0
|q=q0)|

−1
|detA|−1

|B1|2nhn

(by the identification between vectors and covectors)

≤ |det(dc̄-Expx̄0
|q=q0)|

−1
|B1|

2(2n)n
hn

|Wh|
(since |Wh| = |detA||Ŵh| ≤ |detA| |B1|n

n)

≤
maxw∈Wh |det(dc̄-Expx̄0

|q=w)|

|det(dc̄-Expx̄0
|q=q0)|

|B1|
2(2n)n

hn

|Zh|

(since |Zh| ≤ maxw∈Wh |det(dc̄-Expx̄0
|q=w)| |Wh| )

≤
maxx∈Zh |det(−DxDx̄c(x, x̄0))|)

minx∈Zh |det(−DxDx̄c(x, x̄0))|
|B1|

2(2n)n
hn

|Zh|
(since Dx̄c(·, x̄0) = c̄-Exp−1

x̄0
).

Together with (4.2) and (4.3), this concludes the proof. ut

5. Stay-away property on multiple products of spheres

From now on we restrict our attention to the case M = M̄ = M1
× · · · × Mk , where

for each i = 1, . . . , k, M i
= Sniri is a round sphere of constant sectional curvature r−2

i .
Though M = M̄ , we sometimes keep the bar notation to emphasize the distinction be-
tween the source and the target domain of the transportation. Let x = (x1, . . . , xk) and
x̄ = (x̄1, . . . , x̄k) denote points in M1

× · · · ×Mk , with xi, x̄i ∈ M i , i = 1, . . . , k. As-
sume that the transportation cost c on M is the tensor product of the costs ci on each M i ,
defined as

c(x, x̄) :=

k∑
i=1

ci(xi, x̄i). (5.1)

Assume moreover that each ci is of the form f i(disti) (disti being the distance onM i) for
some smooth strongly convex even function f i : R→ R, normalized so that f i(0) = 0.
(This normalization assumption can be made with no loss of generality, as one can always
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add an arbitrary constant to the cost function.) Moreover we suppose that each ci satisfies
Assumptions 2.1–2.5 in Section 2. As shown in [KM2], under these assumptions the
tensor product cost c also satisfies Assumptions 2.1–2.4 (but not necessarily 2.5). The
reader should have in mind that our model example is c = dist2 /2, which as shown in
[KM2] satisfies all the assumptions above. However we prefer to give a proof of the result
with general f i since this will not cost further effort in the proof, and we believe it may
be of interest for future applications.

Let us observe that for any point x̄ we have M(x̄) = M1(x̄1) × · · · × Mk(x̄k)

and M̄∗(x̄) = M̄∗(x̄1) × · · · × M̄∗(x̄k). Moreover, since the distance squared func-
tion on a round sphere is smooth except for antipodal pairs, for each xi ∈ M i we
have Cut(xi) = {−xi}, where −xi denotes the antipodal point of xi . (We also write
−x = (−x1, . . . ,−xk).) This implies easily that c-Cut(x) = Cut(x), so that M i(xi) =

M i
\ {−xi} and c-Cut(x) is a union of (totally geodesic) submanifolds, each of which is

an embedding of a product M i1 × · · · ×M il , l < k.
The goal of the rest of the paper is to show a stay-away property of optimal transport

maps on products of spheres:

Theorem 5.1 (Stay-away from cut-locus). Let M = M̄ = M1
× · · · ×Mk , where for

each i = 1, . . . , k, M i
= Sniri is a round sphere of constant sectional curvature r−2

i . Let
c be the cost given in (5.1) with ci of the form f i(disti), where f i : R→ R are smooth
strongly convex even functions such that f i(0) = 0. Assume further that each ci satisfies
Assumptions 2.1–2.5, and let φ be a c-convex function satisfying Assumption 2.10. Then

∂cφ(x) ∩ c-Cut(x) = ∅ ∀x ∈ M.

Equivalently, for every x̄ ∈ M̄ the contact set S(x̄) = ∂ c̄φ̄(x̄) satisfies

S(x̄) ∩ c̄-Cut(x̄) = ∅.

Before sketching the proof of this result, let us first see its consequences:

Corollary 5.2 (Uniformly stay-away from cut-locus). Under the notation and assump-
tions as in Theorem 5.1, there exists a positive constant C depending only on λ (see
Assumption 2.10) and ni , ri , f i , for i = 1, . . . , k, such that

dist
(
∂cφ(x), c-Cut(x)

)
≥ C ∀x ∈ M.

where dist denotes the Riemannian distance of M .

Proof. The result follows by compactness. Indeed, suppose for a contradiction that there
exists a sequence of c-convex functions φl satisfying Assumption 2.10, and xl ∈ M , such
that

dist
(
∂cφl(xl), c-Cut(xl)

)
→ 0 as l→∞.

Up to adding a constant, we can also assume that φl(xl) = 0. Then, since M is compact
and the functions φl are uniformly semiconvex (and so uniformly Lipschitz), applying
Arzelà–Ascoli’s Theorem, up to a subsequence there exists a c-convex function φ∞ and
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x∞ ∈ M such that φl → φ∞ uniformly and xl → x∞. We now observe that also
φ∞ satisfies Assumption 2.10 (see for instance [FKM1, Lemma 3.1]). Moreover, by the
definition of c-subdifferential we easily obtain

yl ∈ ∂
cφl(xl), yl → y∞ ⇒ y∞ ∈ ∂

cφ∞(x∞).

This implies dist
(
∂cφ∞(x∞), c-Cut(x∞)

)
= 0, which contradicts Theorem 5.1, and com-

pletes the proof. ut

Corollary 5.3 (Regularity of optimal maps). LetM, M̄, c be as in Theorem 5.1. Assume
that µ and ν are two probability measures absolutely continuous with respect to the vol-
ume measure, and whose densities are bounded away from zero and infinity. Then the
unique optimal map T from µ to ν is injective and continuous. Furthermore, if both den-
sities are Cα/C∞, then T is C1,α/C∞.

Remark 5.4. The C1,α-regularity result (C2,α for the potential φ) in this corollary is a
direct consequence of the injectivity and continuity of T applied to the theory of Liu,
Trudinger and Wang [LTW]. The higher regularity C∞ follows from Schauder estimates.

Proof of Corollary 5.3. We recall that, under the assumption that µ and ν have densities
bounded away from zero and infinity, there exists a c-convex function φ such that T (x) =
c-Expx(∇φ(x)) a.e., and φ satisfies Assumption 2.10 (see for instance [MTW] or [FKM1,
Lemma 3.1]). Hence it suffices to prove that φ is C1 and strictly c-convex, in the sense
that S(x̄) = ∂ c̄φ̄(x̄) is a singleton for every x̄ ∈ ∂cφ(M) = M .

To this end, we observe that once we know that φ is strictly c-convex, then we can
localize the proof of the C1 regularity in [FKM1] to obtain the desired result. Thus we
only need to show the strict c-convexity of φ.

Fix x̄ ∈ M . By Theorem 5.1 we know that S(x̄) ⊂ M(x̄), so that in a neighborhood of
S(x̄) we can consider the change of coordinates x 7→ q = −D̄c(x, x̄) ∈ T ∗x̄ M̄ . As shown
in [FKM1, Theorem 4.3], thanks to Loeper’s maximum principle (DASM) the set S(x̄) is
convex in these coordinates. Moreover, since now the cost is smooth in a neighborhood of
S(x̄), by [FKM1, Theorem 7.1 and Remark 7.2] the compact convex set S(x̄) in the new
coordinates has no exposed points on the support of |∂cφ|.2 Since in our case the support
of |∂cφ| is the wholeM , the only possibility left is that S(x̄) is a singleton, as desired. ut

Sketch of the proof of Theorem 5.1. For a contradiction, assume there exists a point x̄0
such that the contact set S(x̄0) intersects Cut(x̄0). First, we find a cut-exposed point x0
in S(x̄0) ∩ Cut(x̄0). More precisely we split M as M· × M·· so that x̄0 = (x̄·0, x̄

··
0 ),

x0 = (x·0, x
··
0 ), where x·0 = −x̄

·
0 ∈ Cut(x̄·0), x

··
0 stays away from the cut-locus of x̄··0 ,

and x··0 is an exposed point in the set S·· = {y·· ∈ M·· | (−x̄·0, y
··) ∈ S(x̄0)} (see

Section 6.1). Near x̄0, for ε ∈ (0, 1) and δ ∈ [0, 1] we construct a family of points
x̄ε,δ = (x̄

·
ε, x̄
··
δ ) such that d(x̄0, x̄ε,δ) ≈ ε + δ, so that for δ small we have x̄ε,δ ∈ M̄∗(x0),

or equivalently x0 ∈ M
∗(x̄ε,δ). By suitably choosing the point x̄··δ in order to exploit the

fact that x··0 is an exposed point for S··, we can ensure that, if Zε,δ,h denotes a section

2 Recall that, given a compact convex set Z ⊂ Rn, z ∈ ∂Z is an exposed point if there exists a
hyperplane 5 ⊂ Rn such that Z ∩5 = {z}.
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_ xε
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n/ε~~

h

ε~~

_ dist (., xε)
_

2

_ dist (., x )
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Fig. 1. On the sphere, the squared distance function from a point x̄ looks like a cone near −x̄. So,
if dist(x̄, x̄ε) = dist(−x̄,−x̄ε) ≈ ε, the section obtained by cutting its graph with − dist2(·, x̄ε) at
height h has measure ≈ hn/ε.

obtained by cutting the graph φ with −c(·, x̄ε,δ) at height h above x0, then for any fixed
ε ∈ (0, 1) we have Zε,δ,h → {x0} as δ, h/δ → 0 (see Section 6.2). In particular, for
ε > 0 fixed we have Zε,δ,h ⊂ M∗(x̄ε,δ) for δ, h/δ small (equivalently, the function
c(·, x̄ε,δ) is smooth inside Zε,δ,h). Now we take advantage of the choice of x̄·ε: on the
sphere Sn the function − dist2(·, x̄) looks like a cone near the antipodal point −x̄, and if
dist(x̄, x̄ε) ≈ ε then the measure of a section obtained by cutting the graph of− dist2(·, x̄)
with − dist2(·, x̄ε) at height h above −x̄ has measure ≈ hn/ε (see Proposition 6.7). In
our case, since x·0 = −x̄

·
0, the function φ behaves like −c(·, x̄0) ≈ − dist(·, x̄0) along M·

(see Lemma 6.6). Hence by the argument above we have an improvement of a factor 1/ε
in the measure of Zε,δ,h (see Proposition 6.7), which allows us to show the following
Alexandrov type inequality:

hdimM . ε|Zε,δ,h| |∂
cφ(Zε,δ,h)| for δ and h/δ sufficiently small,

where . is independent of ε, δ and h (see Theorem 6.4).3 Thanks to Assumption 2.10,
the above inequality implies

hdimM .
ε

λ
|Zε,δ,h|

2 for δ and h/δ sufficiently small. (5.2)

On the other hand, since Zε,δ,h ⊂ M∗(x̄ε,δ) for δ and h/δ small enough, we can apply
Lemma 4.1 to Zε,δ,h and have

λ|Zε,δ,h|
2

≤C(n)

[
maxx∈Zε,δ,h |det(−DxDx̄c(x, x̄ε,δ))|
minx∈Zε,δ,h |det(−DxDx̄c(x, x̄ε,δ))|

]2[
sup

x∈Zε,δ,h

sup
p′∈M∗(x)

|dc-Expx |p=p′ |
]
hdimM .

3 Although this is the informal idea, the actual proof is much more involved. In particular, for
technical reasons, we will also need to splitM asM ′×M ′′ so that ∂cφ(x0)∩

(
{−x′0}×M

′′
)
6= ∅ (M ′

corresponds to the “cut-locus components”) and ∂cφ(x0)∩
(
M ′×{−x′′0 }

)
= ∅ (M ′′ corresponds to

the “regular components”); see Section 6.1. Observe that M· ⊂ M ′. Then, to prove Theorem 6.4,
a different argument has to be used depending on the kind of components (see Sections 6.4 and 6.5
respectively).
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The convergence Zε,δ,h→ {x0} as δ, h/δ→ 0 further reduces this inequality to

λ|Zε,δ,h|
2 . hdimM for δ and h/δ sufficiently small,

which contradicts (5.2) as ε→ 0 and completes the proof. ut

The rest of the paper is devoted to fleshing out the details of the above proof.

6. Proof of Theorem 5.1

6.1. Cut-exposed points of contact sets

Assume for a contradiction that there exists x̄0 = (x̄
1
0 , . . . , x̄

k
0 ) ∈ M̄ = M = M

1
× · · ·

×Mk such that S(x̄0)∩ c-Cut(x̄0) 6= ∅. To prove Theorem 5.1 a first step is to find a cut-
exposed point of the contact set in the intersection with the cut-locus, which we define in
the present section.

Let y ∈ S(x̄0)∩ c-Cut(x̄0), and note that one of the components of y = (y1, . . . , yk),
say yj , satisfies yj = −x̄j0 . Moreover we cannot have y = −x̄0. Indeed, it is not difficult
to see that, if x̄0 ∈ ∂

cφ(−x̄0), then ∂cφ(−x̄0) = M (see for instance Lemma 6.6(1)
below), which contradicts Assumption 2.10.

Among all points y ∈ S(x̄0)∩c-Cut(x̄0), choose one such that the number a0 of its an-
tipodal (or cut-locus) components is maximal, and denote the point by y0. By rearranging
the product M1

× · · · ×Mk , we may write without loss of generality that

y0 = (−x̄
1
0 , . . . ,−x̄

a0
0 , y

a0+1
0 , . . . , yk0 ), y

j

0 6∈ c-Cut(x̄j0 ) ∀j = a0+1, . . . , k. (6.1)

For convenience, write

M· = M̄· = M1
× · · · ×Ma0 , M·· = M̄·· = Ma0+1

× · · · ×Mk.

The expressions A·, A·· will be used to denote things defined for elements in M·, M··,
respectively. For example,

y· = (y1, . . . , ya0), y·· = (ya0+1, . . . , yk),

c·(y·, ȳ·) =

a0∑
i=1

ci(yi, ȳi), c··(y··, ȳ··) =

k∑
i=a0+1

ci(yi, ȳi).

Consider the set

S·· = {y·· ∈ M·· | (−x̄·0, y
··) ∈ S(x̄0)}.

Notice that due to maximality of a0, S·· ⊂ M··(x̄··0 ) and it is embedded to M̄··∗(x̄··0 )
through the map y·· 7→ q··(y··) = −Dx̄··c

··(y··, x̄··0 ). Observe that since S·· is compact,
the resulting set, say S̃··, is compact too. Moreover S̃·· is convex since it is the restriction
of the convex set S̃(x̄0) to M··∗(x̄··0 ), where S̃(x̄0) is the image of S(x̄0) under the map
x 7→ −Dx̄c(x, x̄0). (More precisely, this set S̃(x̄0) is defined as the closure of the image
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of S(x̄0) \ c-Cut(x̄0).) This compact convexity ensures the existence of an exposed point
q··0 for S̃··, that is, there exists an affine function L on T ∗

x̄··0
M̄·· such that

L(q··0 ) = 0, and L(q··) < 0 ∀q·· ∈ S̃·· \ {q··0 }. (6.2)

(In case S̃·· = {q··0 } let L ≡ 0.) Note that if L is such an affine function, then so is tL for
any t > 0. Let x0 ∈ S(x̄0) be the point corresponding to q··0 in M , that is,

x0 = (−x̄
·
0, x
··
0 ), where q··0 = −Dx̄··c

··(x··0 , x̄
··
0 ). (6.3)

We call x0 a cut-exposed point of S(x̄0), since its components are either cut-locus type or
exposed.

M
..

S
..

M
.

S(x0)
_

x
0

_
_ .

y0

x0

Fig. 2. Starting from a point y0 ∈ S(x̄0) such that the number of its antipodal (or cut-locus)
components is maximal, we choose x0 = (y

·
0, x
··
0 ) = (−x̄

·
0, x
··
0 ) ∈ M

·
×M·· = M so that x··0 is

an exposed point for S·· (in some suitable system of coordinates).

One can assume with a further rearrangement of the productM·· = Ma0+1
×· · ·×Mk

that there exists b0 ∈ {a0, . . . , k} with the following two properties:

1. For each i1 ∈ {a0 + 1, . . . , b0}, there exists ȳi1 ∈ ∂
cφ(x0) with

ȳ
i1
i1
= −x

i1
0 . (6.4)

2. For every ȳ ∈ ∂cφ(x0),

ȳj 6= −x
j

0 (or equivalently ȳj /∈ c̄-Cut(xj0 ) = Cut(xj0 )) for j = b0 + 1, . . . , k.
(6.5)

(If b0 = a0, {a0 + 1, . . . , b0} = ∅.)

After this rearrangement, define

M ′ = M̄ ′ = M1
× · · · ×Mb0 , M ′′ = M̄ ′′ = Mb0+1

× · · · ×Mk.

The expressions A′, A′′ will be used to denote things defined for elements in M ′, M ′′,
respectively. For example,

y = (y′, y′′), ȳ = (ȳ′, ȳ′′) ∈ M = M ′ ×M ′′ = M̄ ′ × M̄ ′′,

c(y, ȳ) = c′(y′, ȳ′)+ c′′(y′′, ȳ′′),
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and we have the identification

T ∗x̄0
M̄ = T ∗

x̄′0
M̄ ′ × T ∗

x̄′′0
M̄ ′′, M̄∗(x̄0) = M̄

′∗(x̄′0)× M̄
′′∗(x̄′′0 ).

In the following, n′ = dimM ′, n′′ = dimM ′′ and π ′, π ′′ denote the canonical projections
from M to M ′, M ′′, respectively. This splitting of M as M ′ ×M ′′ will be important later,
as in the proof of Theorem 6.4 we will need different arguments on M ′ and M ′′ (see
Sections 6.4 and 6.5).

6.2. Analysis near the cut-exposed point

In this subsection we construct a family of c-sections Zε,δ,h of φ near the cut-exposed
point x0 defined in (6.3). Regarding these c-sections, two important results (Proposi-
tions 6.2 and 6.3) are obtained. In later subsections we will show an Alexandrov type
inequality for Zε,δ,h, which will be paired with the other Alexandrov type inequality (4.1)
to yield a contradiction to the existence of such x0, thus finishing the proof of Theo-
rem 5.1.

Recall the affine function L on T ∗
x̄··0
M̄·· given in (6.2). After modifying L by multi-

plying it by an appropriate positive constant, there exists a geodesic curve [0, 1] 3 δ 7→
x̄··δ ∈ M̄

··(x··0 ) starting from x̄··0 such that for the linear map ∇L on T ∗
x̄··
M̄··,

∇L(q·· − q··0 ) =

〈
∂

∂t

∣∣∣∣
t=0
x̄··t , q

··
− q··0

〉
. (6.6)

Consider a c·-segment [0, 1] 3 ε 7→ x̄·ε ∈ M̄
· with respect to x·0 connecting the point x̄·0

to its antipodal point x̄·1/2 = x·0 and then to x̄·1 = x̄·0. (x̄ε is nothing else than a closed
geodesic starting from x̄·0 and passing through x·0 = −x̄

·
0 at ε = 1/2.) Define

x̄ε,δ := (x̄
·
ε, x̄
··
δ ) ∈ M = M

·
×M··. (6.7)

Obviously x̄0,0 = x̄0. Two important properties follow:

(a) Since x̄·ε ∈ M̄
·(x·0) for ε ∈ (0, 1) and x̄··0 ∈ M̄

··(x··0 ) we have

x0 ∈ M(x̄ε,δ) = M
·(x̄·ε)×M

··(x̄··δ ) ∀0 < ε < 1, δ ≥ 0 small.

(b) Since x̄·ε,δ = x̄
·
ε 6= x̄

·
0 for ε ∈ (0, 1), x̄·1 = x̄

·
0, and x̄·0 = −x

·
0, for every ε ∈ (0, 1) and

δ ∈ [0, 1] we have from Assumption 2.5, for each ci ,

−c·(x·, x̄·ε,δ)+ c
·(x·0, x̄

·
ε,δ) ≤ −c

·(x·, x̄·0)+ c
·(x·0, x̄

·
0) ∀x· ∈ M·, (6.8)

with equality only when x· = x·0. (See for instance Lemma 6.5 below.)

Consider now the c-section Zε,δ,h obtained by cutting the graph of φ by the graph of
−c(·, x̄ε,δ)+ c(x0, x̄ε,δ)+ h, that is,

Zε,δ,h := {x ∈ M | φ(x)− φ(x0)+ c(x, x̄ε,δ)− c(x0, x̄ε,δ) ≤ h}. (6.9)
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As can be easily seen by moving down the graph of −c(·, x̄ε,δ) and lifting it up until it
touches the graph of φ, x̄ε,δ ∈ ∂φ(Zε,δ,h). Hence, thanks to Loeper’s maximum principle
(DASM) we have

x̄ε,δ ∈ ∂
cφ(Zε,δ,h). (6.10)

Proposition 6.1. The following equality holds:

Zε,0,0 = S(x̄ε,0) = S(x̄0) ∩ ({x
·
0} ×M

··). (6.11)

Proof. From (6.8),

φ(x)− φ(x0)+ c(x, x̄ε,0)− c(x0, x̄ε,0)

= φ(x)− φ(x0)+ c
·(x·, x̄·ε,0)− c

·(x·0, x̄
·
ε,0)+ c

··(x··, x̄··0 )− c
··(x··0 , x̄

··
0 )

≥ φ(x)− φ(x0)+ c
·(x·, x̄·0)− c

·(x·0, x̄
·
0)+ c

··(x··, x̄··0 )− c
··(x··0 , x̄

··
0 )

= φ(x)− φ(x0)+ c(x, x̄0)− c(x0, x̄0) ≥ 0.

This, together with the equality case for (6.8), yields (6.11). ut

The following two propositions are essential in our proof of Theorem 5.1.
Our first result shows that, for fixed ε, the sections Zε,δ,h converge to the point x0 (in

the sense of Kuratowski) as δ, h/δ→ 0.

Proposition 6.2. Fix 0 < ε < 1. Then, for any sequences δi, hi → 0 with hi/δi → 0,

Zε,δi ,hi → {x0} as i →∞.

Proof. Fix arbitrary sequences δi, hi/δi → 0, and denote

Z∞ = lim
i→∞

Zε,δi ,hi = {z∞ ∈ M | there exists a sequence zi ∈ Zε,δi ,hi

with zi → z∞ ∈ M}.

By continuity, z∞ ∈ Zε,0,0 for each z∞ ∈ Z∞, and thus by (6.11), z·∞ = x
·
0.

To show z··∞ = x··0 , we first let δ > 0 be sufficiently small and fix a small (closed)
neighborhood, say U , of x0 so that all the derivatives (up to the second order) of the func-
tion U × [0, 1] 3 (x, t) 7→ c(x, x̄ε,tδ) are uniformly bounded. Then, for x ∈ Zε,δ,h ∩ U
the following inequalities hold:

h ≥ φ(x)− φ(x0)+ c
·(x·, x̄·ε)− c

·(x·0, x̄
·
ε)+ c

··(x··, x̄··δ )− c
··(x··0 , x̄

··
δ )

≥ −c·(x·, x̄·0)+ c
·(x·0, x̄

·
0)− c

··(x··, x̄··0 )+ c
··(x··0 , x̄

··
0 )

+ c·(x·, x̄·ε)− c
·(x·0, x̄

·
ε)+ c

··(x··, x̄··δ )− c
··(x··0 , x̄

··
δ ) (since x̄0 ∈ ∂

cφ(x0))

≥ −c··(x··, x̄··0 )+ c
··(x··0 , x̄

··
0 )+ c

··(x··, x̄··δ )− c
··(x··0 , x̄

··
δ ) (by (6.8))

≥

〈
Dx̄c
··(x··, x̄··0 )−Dx̄c

··(x··0 , x̄
··
0 ),

∂

∂t

∣∣∣∣
t=0
x̄tδ

〉
+O(δ2)

= δ∇L(Dx̄c
··(x··, x̄··0 )−Dx̄c

··(x··0 , x̄
··
0 ))+O(δ

2) (by (6.6)).



Regularity of optimal transport maps 1153

Use the coordinate q··(x··) = −Dx̄··c··(x··, x̄··0 ) to rewrite this as

∇L(q·· − q··0 ) ≥ −h/δ −O(δ).

Since L(q··0 ) = 0 this gives

L(q·· − q··0 ) ≥ −h/δ −O(δ).

Consider now the sequences δi, hi/δi → 0, and any convergent subsequence of zi ∈
Zε,δi ,hi ∩ U . For the limit z∞, let q·· = −Dx̄··c(z··∞, x̄

··
0 ). Then q··∞ ∈ S̃

·· (since z∞ ∈
Zε,0,0 ⊂ S(x̄0) by (6.11)), and from the above inequality we get

L(q··∞ − q
··
0 ) ≥ 0,

which forces q··∞ = q··0 by (6.2). This shows z··∞ = x··0 , and thus Z∞ ∩ U = {x0}.
To finish the proof notice that each Zε,δ,h is connected, and so is the limit Z∞. (The
connectedness can be seen by noticing that the set Zε,δ,h is convex in the coordinates
q(x) = −Dx̄c(x, x̄ε,δ) ∈ T

∗

x̄ε,δ
M̄ .) Therefore Z∞ = {x0}, as desired. ut

Proposition 6.3. There exists δ0 = δ0(ε) > 0 such that, if 0 ≤ δ ≤ δ0, 0 ≤ h ≤ δ2,
then for each ȳ = (ȳ′, ȳ′′) ∈ ∂cφ(Zε,δ,h) the component ȳ′′ stays away from the cut-
locus of the component z′′ of z (i.e., ȳ′′ ∈ M̄ ′′(z′′)) for every z ∈ Zε,δ,h. Equivalently
π̄ ′′(∂cφ(Zε,δ,h)) ⊂

⋂
z∈Zε,δ,h

M̄ ′′(z′′).

Proof. Suppose the statement is false along some sequence δi, hi → 0 with hi ≤ δ2
i , and

let xi, zi ∈ Zε,δ,h, ȳi ∈ ∂cφ(xi) be such that ȳ′′i ∈ Cut(z′′i ). Since Zε,δi ,hi → {x0}, both
xi, zi tend to x0. Moreover if ȳ∞ is a cluster point for {ȳi}i∈N, then ȳ∞ ∈ ∂cφ(x0) and
ȳ′′∞ ∈ Cut(x′′0 ). This contradicts the choice ofM ′′ (see (6.5)) and concludes the proof. ut

6.3. An Alexandrov type estimate near the cut-exposed point

We state the main theorem to be proved in the rest of the paper.

Theorem 6.4 (Alexandrov upper bound near cut-exposed point). Fix 0 < ε < 1, and let
Zε,δ,h be as in (6.9). There exists δ1 = δ1(ε) > 0 so that, if 0 < δ ≤ δ1, then there exists
h1 = h1(ε, δ) such that

hdimM . εa0 |Zε,δ,h| |∂
cφ(Zε,δ,h)| ∀0 < h ≤ h1(ε, δ), (6.12)

where . is independent of ε, δ and h.

This result concludes the proof of Theorem 5.1, since for ε > 0 small enough and
δ, h/δ → 0 we have Zε,δ,h → {x0} (by Proposition 6.2), and (6.12) is in contradiction
with (4.1).

The following subsections are devoted to the proof of Theorem 6.4, which we divide
into three parts. First, in Section 6.4 we get Alexandrov type estimates for the sets ob-
tained by the intersection ofZε,δ,h with the cut-locus components of x0. In Section 6.5, we
analyze the projection π ′′(Zε,δ,h) ofZε,δ,h onto the regular componentM ′′ of x0. We con-
struct a suitable convex set, say C̃, which has size comparable to the image ∂cφ(Zε,δ,h),
and we get a version of the estimate (6.12) involving C̃ and π ′′(Zε,δ,h) (see Proposi-
tion 6.8(3)). Finally in Section 6.6 we combine these results and conclude the proof.
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6.4. Proof of Theorem 6.4: analysis in the cut-locus component M ′

The main result of this section is Proposition 6.7 that gives an Alexandrov type estimate
for the intersection of Zε,δ,h with the cut-locus components of x0.

We start with a few elementary results.

Lemma 6.5. Let Sn be the standard round sphere, and c(x, x̄) = f (dist(x, x̄)) for
(x, x̄) ∈ Sn × Sn, where f is a smooth strictly increasing function f : R+ → R+.
Assume that c satisfies Assumption 2.5. Then, for every x, x̄ ∈ Sn,

−c(−x̄, ȳ)+ c(−x̄, x̄) ≥ −c(x, ȳ)+ c(x, x̄) ∀ȳ ∈ Sn,

where −x̄ denotes the antipodal point of x̄. Moreover equality holds if and only if ȳ = x̄.

Proof. For any x, x̄ ∈ Sn, one can find a c-segment x(s) with respect to x̄ such that
x(0) = x(1) = −x̄ and x(s0) = x for some s0 ∈ [0, 1]. The inequality (together with
the characterization of the equality case) then follows from (DASM+) for the function
m̄s(·) = −c(x(s), ·)+ c(x(s), x̄). ut

For each 1 ≤ i ≤ k and z ∈ M , let M i
z denote the ith slice of M through z, that is,

M i
z := {x ∈ M | x

j
= zj for j 6= i}.

The following lemma generalizes the fact that on M = M̄ = Sn with c = dist2 /2, if
x ∈ Sn and −x ∈ ∂cφ(x), then ∂cφ(x) = Sn.

Lemma 6.6. Let M, M̄, c be as in Theorem 5.1. Let φ be a c-convex function on M . Fix
z = (z1, . . . , zk) ∈ M = M1

×· · ·×Mk and an open setU with z ∈ U . Fix i ∈ {1, . . . , k},
and let z̄ ∈ M with z̄i = −zi . The following holds:

(1) If z̄ ∈ [∂cφ(U)]z (resp. z̄ ∈ ∂cφ(z)), then M i
z̄ ⊂ [∂

cφ(U)]z (resp. M i
z̄ ⊂ ∂

cφ(z)).
(2) Suppose z̄ ∈ ∂cφ(z). Then, for each x ∈ M i

z, φ(x) − φ(z) = −c
i(xi,−zi) +

ci(zi,−zi).

Proof. To prove (1) it is enough to observe that for x̄ ∈ M i
z̄ and x ∈ M ,

− c(x, x̄)+ c(z, x̄) = −ci(xi, x̄i)+ c(zi, x̄i)+
∑
j 6=i

[−cj (xj , z̄j )+ cj (xj , z̄j )]

≤ −ci(xi,−zi)+ c(zi,−zi)+
∑
j 6=i

[−cj (xj , z̄j )+ cj (zj , z̄j )] (by Lemma 6.5)

= −c(x, z̄)+ c(z, z̄) (since z̄i = −zi).

The last line is bounded from above by φ(x)− φ(z) either if x ∈ ∂U or if z̄ ∈ ∂cφ(z).
Let us prove (2). Suppose z̄ ∈ ∂cφ(z). By duality (Lemma 2.6), z ∈ ∂ c̄φ̄(z̄) for

the dual c̄-convex function φ̄. Applying (1) to φ̄ we get M i
z ∈ ∂

c̄φ̄(z̄), or equivalently
M i
z ⊂ S(z̄). Therefore for all x ∈ M i

z we have

φ(x)− φ(z) = −c(x, z̄)+ c(z, z̄)

= −ci(xi,−zi)+ ci(zi,−zi) (since xj = zj for j 6= i). ut
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Let i ∈ {1, . . . , b0}, i.e.,M i is a component ofM ′. Recall that x0 is the cut-exposed point
defined in (6.3). By definition of b0 in (6.4) and (6.5), there exists ȳi ∈ ∂cφ(x0) such that
ȳii = −x

i
0. (If i ≤ a0 then one can choose ȳi = x̄0.) Let Ziε,δ,h := π

i(Zε,δ,h ∩M
i
x0
) for

the canonical projection π i : M → M i . Then Lemma 6.6(2) implies

Ziε,δ,h = {x
i
∈ M i

| −ci(xi,−xi0)+ c
i(xi0,−x

i
0)+ c

i(xi, x̄iε,δ)− c
i(xi0, x̄

i
ε,δ) ≤ h}.

(6.13)
Here comes the main result of this section.

Proposition 6.7. There exist δ2 = δ2(ε) > 0 such that, if 0 < δ ≤ δ2, then there exists
h2 = h2(ε, δ) such that the set Ziε,δ,h satisfies the following estimates for 0 < h ≤ h2:

hdimM i

. ε|Ziε,δ,h| if 1 ≤ i ≤ a0,

hdimM i

. |Ziε,δ,h| if a0 + 1 ≤ i ≤ b0,

where . is independent of ε, δ and h, and |Ziε,δ,h| denotes the Riemannian volume in the
submanifold M i .

Proof. From (6.13) and Lemma 6.5 we have Ziε,δ,h → {x
i
0} as h → 0. Thus for suffi-

ciently small h we can embed Ziε,δ,h into ∈ T ∗
xi0
M i by xi 7→ qi(xi) = −Dx̄i c

i(xi, xi0).

Let W i
h be its image. Then

|W i
h| ≤

(
max
xi∈Ziε,δ,h

∣∣−DxiDx̄i ci(xi, xi0)∣∣) |Ziε,δ,h| . |Ziε,δ,h|
for h sufficiently small. In the following we bound |W i

h| from below.
Without loss of generality, assume M i is the unit sphere. Let qi0 = q

i(xi0). By abuse
of notation use ci(qi, x̄i) to denote ci(xi(qi), x̄i), and renormalize this cost function as

cih(q
i, x̄i) =

1
h
[ci(hqi + qi0, x̄

i)− ci(qi0, x̄
i)].

Then (6.13) implies W i
h = hŴ

i
h + q

i
0, where

Ŵ i
h := {q

i
∈ T ∗

xi0
M i
| −cih(q

i,−xi0)+ c
i
h(q

i, x̄iε,δ) ≤ 1}.

Recall ci = f i(disti) for some smooth non-negative uniformly convex function f i :
R+ → R+ such that f i(0) = 0 and df i

dt
(0) = 0. Thus, as h → 0 the renormalized cost

−cih(q
i,−xi0) converges to the conical function

qi 7→
df i

dt
(π)|qi | for qi ∈ T ∗

xi0
M i .

(Here, we used disti(xi0,−x
i
0) = π .)

Case I: If 1 ≤ i ≤ a0, then x̄iε,δ = x̄
· i
ε , and so cih(q, x̄

i
ε,δ) converges to the linear function

qi 7→ Dqc
i(qi0, x̄

· i
ε ) · q

i
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1 < i < a0
_ _ a0 < i < b0

_

ε

1 1

> 1/ε∼ > 1∼

ch(., xi   )+1i
ε,δ

_ _

ch(.,  xi )i_ _
0 ch(.,  xi )i_ _

0

ch(., xi   )+1i
ε,δ

_ _

i
Wh

i
Wh

~~

Fig. 3. If 1 ≤ i ≤ a0 then −xi0 = x̄i0 and disti(−xi0, x̄
i
ε,δ) ≈ ε, so the size of the section is of

order 1/ε (see also Figure 1). On the other hand, if a0 < i ≤ b0 then−xi0 6= x̄
i
0, which implies that

disti(−xi0, x̄
i
ε,δ) is uniformly bounded away from 0, and the size of the section is of order 1.

where

|Dqc
i(qi0, x̄

· i
ε )| =

df i

dt
(π − 2πε) ≥

df i

dt
(π)− Cε

for some constant C > 0. (Here, we used dist(xi0, x̄
· i
ε ) = π − 2πε.) Therefore one can

easily check that
lim
h→0
|Ŵ i

h| & 1/ε,

and thus for h > 0 sufficiently small,

|W i
h| = h

dimM i

|Ŵ i
h| & hdimM i

/ε.

Case II: If a0 < i ≤ b0, then x̄iε,δ = x̄·· iδ . Similarly to the above case, cih(q, x̄
i
ε,δ)

converges to the linear function

qi 7→ Dqc
i(qi0, x̄

·· i
δ ) · qi .

Since x̄··δ ∈ M̄
··(x··0 ) for δ > 0 small enough, there exist positive constants C,C0 such

that

|Dqc
i(qi0, x̄

·· i
δ )| ≤

df i

dt
(π − C) ≤

df i

dt
(π)− C0,

where for the last inequality we used the uniform convexity of f . From this one can check
that limh→0 |Ŵ

i
h| & 1, and thus for sufficiently small h > 0,

|W i
h| & hdimM i

. ut

6.5. Proof of Theorem 6.4: analysis in the regular component M ′′

The main result of this subsection is Proposition 6.8. Fix 0 < ε < 1, and assume that
δ and h/δ are sufficiently small so that, as in Proposition 6.3, the set Zε,δ,h is close to
the cut-exposed point x0, and so in particular Zε,δ,h ⊂ M(x̄ε,δ). Consider the change of
coordinates q ∈ T ∗x̄ε,δM̄ 7→ x(q) ∈ M(x̄ε,δ) induced by the relation

q = −Dx̄c(x(q), x̄ε,δ), (6.14)
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and let Z̃ε,δ,h ∈ T ∗x̄ε,δM̄ be the set Zε,δ,h in this chart. The function φ and the cost c are
transformed to

ϕ(q) = φ(x(q))+ c(x(q), x̄ε,δ),

c̃(q, ȳ) = c(x(q), ȳ)− c(x(q), x̄ε,δ) for (q, ȳ) ∈ T ∗x̄ε,δM̄ × M̄.

Notice that c̃(q, x̄ε,δ) ≡ 0, and ϕ is a c̃-convex function on T ∗x̄ε,δM̄ . Moreover

Z̃ε,δ,h = {q ∈ T
∗

x̄ε,δ
M̄ | ϕ(q)− ϕ(q0) ≤ h}

where q0 is the point corresponding to x0 in this new chart. It is important to recall that,
thanks to Assumption 2.4 (convex DASM), c̃ and ϕ are convex. (See Section 3.2.)

We have the natural decomposition (with obvious notation)

q = (q ′, q ′′) = (−Dx̄′c
′(x′(q ′), x̄′ε,δ),−Dx̄′′c

′′(x′′(q ′′), x̄′′ε,δ))

∈ T ∗x̄ε,δM̄ = T
∗

x̄′ε,δ
M̄ ′ × T ∗

x̄′′ε,δ
M̄ ′′. (6.15)

(Here, one should keep in mind that, by the definition of x̄ε,δ , the component x̄′′ε,δ in M ′′

does not depend on ε.) The modified cost c̃(q, ȳ) has the decomposition

c̃(q, ȳ) = c̃′(q ′, ȳ′)+ c̃′′(q ′′, ȳ′′)

where

c̃′(q ′, ȳ′) = c′(x′(q ′), ȳ′)− c′(x′(q ′), x̄′ε,δ) for q ′ ∈ T ∗
x̄′ε,δ
M̄ ′,

c̃′′(q ′′, ȳ′′) = c′(x′′(q ′′), ȳ′′)− c′′(x′′(q ′′), x̄′′ε,δ) for q ′′ ∈ T ∗
x̄′′ε,δ
M̄ ′′.

Let π̃ ′, π̃ ′′ denote the canonical projection from T ∗x̄ε,δM̄ onto T ∗
x̄′ε,δ
M̄ ′ and T ∗

x̄′′ε,δ
M̄ ′′, re-

spectively.
Now, let us construct a convex set C̃ ⊂ T ∗q0

(T ∗x̄ε,δM̄) that we will use later to estimate
|∂cφ(Zε,δ,h)| from below (see Proposition 6.9). The strategy of the proof follows the lines
of the one of [FKM1, Proposition 6.10].

Proposition 6.8. Fix 0 < ε < 1, and assume that 0 < δ ≤ δ0 and 0 < h ≤ δ2, with δ0
as in Proposition 6.3. Then there exists a convex set C̃ ∈ T ∗q0

(T ∗x̄ε,δM̄) with the following
properties:

(1) C̃ ⊂ {0} × T ∗
q ′′0
(T ∗
x̄′′ε,δ
M̄ ′′) ⊂ T ∗

q ′0
(T ∗
x̄′ε,δ
M̄ ′)× T ∗

q ′′0
(T ∗
x̄′′ε,δ
M̄ ′′);

(2) c̃-Expq0
C̃ = {z̄ ∈ M | −∂q c̃(q0, z̄) ∩ C̃ 6= ∅} ⊂ [∂

cφ(Zε,δ,h)]x0 ⊂ ∂cφ(Zε,δ,h),

where ∂q denotes the subdifferential with respect to the q variable;
(3) H n′′(C̃)H n′′(π̃ ′′(Z̃ε,δ,h)) & hn

′′

, where & is independent of h, δ, ε.

Proof. In the following, we first construct such a set C̃ and then we show the desired
properties. The set C̃ will be given as the convex hull of certain covectors p̂1, . . . , p̂n′′

(see (6.22)). We go through several steps.
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First we find some auxiliary covectors p1, . . . , pn′′ . From Lemma 3.1 applied to the
convex set π̃ ′′(Z̃ε,δ,h), there is an ellipsoid Ẽ such that

Ẽ ⊂ π̃ ′′(Z̃ε,δ,h) ⊂ n
′′Ẽ (6.16)

where the scaling n′′Ẽ is with respect to the barycenter of the ellipsoid. Let p′′i , 1 ≤
i ≤ n′′, denote the unit orthogonal covectors parallel to the axes of the ellipsoid Ẽ, and
denote by ai the length of the i-th principal axis of Ẽ. Find hyperplanes 5′′i ⊂ T

∗

x̄′′ε,δ
M̄ ′′

that are orthogonal to p′′i and touch tangentially the boundary of π̃ ′′(Z̃ε,δ,h) at points q ′′i ,
1 ≤ i ≤ n′′. Let q ′′0 be the point in T ∗

x̄′′ε,δ
M̄ ′′ corresponding to x0, and denote by `i the

distance from q ′′0 to 5′′i . Then, thanks to (6.16) we have

n′′∏
i

`i ≤

n′′∏
i

(2n′′ai) . H n′′(π̃ ′′(Z̃ε,δ,h)). (6.17)

For each q ′′i , there exists q ′i ∈ T
∗

x̄′ε,δ
M̄ ′ such that the hyperplane 5i := T ∗x̄′ε,δ

M̄ ′ × 5′′i ⊂

T ∗x̄ε,δM̄ tangentially touches the boundary ∂Z̃ε,δ,h at the point qi = (q ′i, q
′′

i ). Let xi =

c̄-Expx̄ε,δqi . Since pi = (0, p′′i ) is orthogonal to 5i and Z̃ε,δ,h is a sublevel set of the
convex function ϕ, there exists a scalar multiple ti ∈ R+ such that tipi ∈ ∂ϕ(qi). By
Assumption 2.2 and Loeper’s maximum principle (DASM) (Lemma 2.7), the point z̄i =
c̃-Expqi tipi satisfies z̄i ∈ ∂ c̃ϕ(qi) = ∂cφ(xi). Note that in fact,

z̄i = c̃-Expqi tipi = c-Expxiη(tipi)

where η is the affine map given by Lemma 3.4 (in whose statement we replace x0, q0 and
ȳ0 with xi , qi and x̄ε,δ , respectively). Moreover, using the decomposition

pi = (0, p′′i ) ∈ T
∗

q ′i
(T ∗
x̄′ε,δ
M̄ ′)× T ∗

q ′′i
(T ∗
x̄′′ε,δ
M̄ ′′),

we see that the c̃-segment (with respect to qi)

[0, 1] 3 t 7→ z̄i(t) = c̃-Expqi ((1− t)tipi) = c-Expxi ((1− t)η(tipi)),

from z̄i(0) = z̄i to z̄i(1) = x̄ε,δ , is of the form

z̄i(t) = (x̄
′
ε,δ, z̄

′′

i (t)) ∈ M̄
′
× M̄ ′′.

Observe that by Proposition 6.3 and Assumption 2.3, we have

z̄′′i (t) ∈ M̄
′′(x′′), ∀t ∈ [0, 1], ∀x ∈ Zε,δ,h. (6.18)

We use these c̃-segments z̄i(t) to define the points p̂i , i = 1, . . . , n′′. Define the
function

mz̄i (t)(q) := −c̃(q, z̄i(t))+ c̃(qi, z̄i(t))+ ϕ(qi).
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mzi( τi )

mzi(1)

mzi(0)

q0

pi

ϕ

qi

_

_

_

Fig. 4. The supporting functionmz̄i (0) = mz̄i touches ϕ at qi from below. By interpolating between
mz̄i = mz̄i (0) and mx̄ε,δ = mz̄i (1) along the c̃-segment with respect to qi , we can find τi ∈ [0, 1)
such that mz̄i (τi )(q0) = ϕ(q0). Then the covector p̂i used to construct C̃ is defined as p̂i :=
(0,−Dq ′′ c̃′′(q ′′0 , z̄

′′
i
(τi)) ∈ ∂mz̄i (τi )(q0).

Clearly,mz̄i (0) ≤ ϕ andmz̄i (1) ≡ ϕ(qi) = h+ϕ(q0). By continuity there exists τi ∈ [0, 1)
such that

mz̄i (τi )(q0) = ϕ(q0).

Also, Loeper’s maximum principle (DASM) implies

mz̄i (τi ) ≤ max[h+ ϕ(q0), ϕ],

so that in particular mz̄i (τi ) ≤ ϕ on ∂Z̃ε,δ,h, hence, by the definition of [∂cφ(Zε,δ,h)]x0 ,

z̄i(τi) ∈ [∂
c̃ϕ(Z̃ε,δ,h)]q0 = [∂

cφ(Zε,δ,h)]x0 for every i = 1, . . . , n′′. (6.19)

For later use, consider the non-zero vectors

pi(τi) = (1− τi)tipi = (0, (1− τi)tip′′i )

=
(
0,−Dq ′′ c̃′′(q ′′i , z̄

′′

i (τi))
)
∈ T ∗

q ′i
(T ∗
x̄′ε,δ
M̄ ′)× T ∗

q ′′i
(T ∗
x̄′′ε,δ
M̄ ′′), i = 1, . . . , n′′.

(6.20)

Clearly these vectors are all mutually orthogonal. Moreover, because

pi(τi) ∈ ∂mz̄i (τi )(qi), i = 1, . . . , n′′,

by the convexity of mz̄i (τi ) we have

|pi(τi)| ≥
ϕ(qi)− ϕ(q0)

dist(q0,5i)
=
h

`i
. (6.21)

To finish the construction of C̃, let

p̂i := (0,−Dq ′′ c̃′′(q ′′0 , z̄
′′

i (τi)) ∈ T
∗

q ′0
(T ∗
x̄′ε,δ
M̄ ′)× T ∗

q ′′0
(T ∗
x̄′′ε,δ
M̄ ′′), i = 1, . . . , n′′.

(6.22)

Notice that z̄i(τi) = (x′ε,δ, z̄i(τi)
′′) = c̃-Expq0

p̂i . Let C̃ = co(p̂1, . . . , p̂n′′) be the convex
hull of p̂1, . . . , p̂n′′ . We will see that C̃ has the desired properties (1)–(3). First, (1) follows
immediately from (6.22), while (2) is a direct consequence of (6.19) and Lemma 2.8.
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Now, let us show (3). By (6.18) each z̄i(τi)′′ stays uniformly away (for small δ, h)
from the cut-locus of π ′′(Zε,δ,h). Hence we can apply Lemma 3.5 to (6.20) and (6.22)
to see that p̂i is close to pi(τi) when we use the canonical identification T ∗qi (T

∗
xε,δ
M̄) ≈

T ∗q0
(T ∗xε,δM̄); more precisely,

|p̂i − pi(τi)| ≤ oh(1)|p̂i |,

where oh(1) is a quantity which goes to 0 as h → 0. Since the vectors {pi(τi)}i=1,...,n′′

are all mutually orthogonal, p̂i are almost mutually orthogonal covectors, which by (6.21)
satisfy

|p̂i | = |p̂
′′

i | & |pi(τi)| ≥ h/`i .

(Here, for sufficiently small δ and h/δ, the inequality & and the almost orthogonality are
independent of δ, h and ε.) This gives

H n′′(C̃) &
n′′∏
i=1

h

`i
.

This estimate combined with (6.17) shows (3), which completes the proof. ut

6.6. Proof of Theorem 6.4: final argument

In this section we finish the proof of Theorem 6.4. Let 0 < ε < 1, and fix 0 < δ ≤

δ1(ε) := min{δ0(ε), δ2(ε)} and 0 < h ≤ h1(ε, δ) := min{δ2, h2(ε, δ)}, with δ0(ε) and
δ2(ε), h2(ε, δ) as in Propositions 6.3 and 6.7 respectively. The estimates ., &, ≈ in this
section are all independent of ε, δ and h.

To make use of the previous results, we need the following comparison result:

Proposition 6.9. The set C̃ constructed in Proposition 6.8 satisfies

H n′′(C̃) . |∂cφ(Zε,δ,h)|.

Note that even with Proposition 6.8(2), this estimate is not obvious because n′′ < dimM .

Proof. For each ε, δ, h as in Proposition 6.8, we will find an auxiliary set A = Aε,δ,h ⊂

D in a fixed (thus independent of ε, δ, h) compact set D ⊂ M∗(x0) ⊂ T
∗
x0
M such that

c-Expx0
(A) ⊂ [∂cφ(Zε,δ,h)]x0 ⊂ ∂

cφ(Zε,δ,h), (6.23)

|A| & H n′′(C̃). (6.24)

Once such a set is constructed, the desired estimate follows from

|∂cφ(Zε,δ,h)| ≥ |c-Expx0
(A)| & |A| (since A ⊂ D).
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The construction of A goes through several steps. First, apply to the set C̃ the (extended)
map p ∈ T ∗q0

(T ∗x̄ε,δM̄) 7→ η(p) ∈ T ∗x0
M as in Lemma 3.4 (with ȳ0 = x̄ε,δ), and let

η(C̃) ⊂ T ∗x0
M denote its image. Notice that by Proposition 6.8(2),

c-Expx0
(η(C̃)) = c̃-Expq0

C̃ ⊂ [∂cφ(Zε,δ,h)]x0 .

Let us compare H n′′(η(C̃)) with H n′′(C̃). For each p = (0, p′′) ∈ C̃, Lemma 3.4
applies as

η(p) =
(
η′ε,δ , p

′′(−Dx′′Dx̄′′c
′′(x′′0 , x̄

′′
ε,δ))+ η

′′
ε,δ

)
,

where ηε,δ = −Dxc(x0, x̄ε,δ) (thus, c-Expx0
(ηε,δ) = x̄ε,δ). Therefore

η(C̃) ⊂ {η′ε,δ} × T
∗

x′′0
M

and

H n′′(η(C̃)) = |detDx′′Dx̄′′c′′(x′′0 , x̄
′′
ε,δ)|H

n′′(C̃) ≈H n′′(C̃).

Notice that x̄′′ε,δ is independent of ε (see (6.7)) and stays uniformly away from Cut(x′′0 ),
so that the above estimate is independent of ε, δ and h.

We now use a convexity argument to construct A. We will first construct some suitable
sets C1, . . . , Cb0 , and C̃0, inside a fixed compact set (independent of ε, δ, h) in M∗(x0),
which have the properties of the sets Si in Lemma 3.3. These sets will also satisfy:

c-Expx0
(C1) ∪ · · · ∪ c-Expx0

(Cb0) ∪ c-Expx0
(C̃0) ⊂ [∂

cφ(Zε,δ,h)]x0 ,

H ni (Ci) & 1, i = 1, . . . , b0,

H n′′(C̃0) & H n′′(η(C̃)).

Then A will be given as the convex hull co(C1, . . . , Cb0 , C̃0). By convexity of M∗(x0),
A will be in a fixed compact set, say D, independent of ε, δ, h, and the c-convexity of
[∂cφ(Zε,δ,h)]x0 (see Lemma 2.8) will imply c-Expx0

(A) ⊂ [∂cφ(Zε,δ,h)]x0 , showing
(6.23). We will then apply Lemma 3.3 to get

|A| & H n′′(η(C̃)) ≈H n′′(C̃),

which gives (6.24). Hence we are led to construct C1, . . . , Cb0 , C̃0.
To construct C1, . . . , Cb0 , recall that M ′ = M1

× · · · × Mb0 , and for every i ∈
{1, . . . , b0} there exists ȳi ∈ ∂cφ(x0) with ȳii = −x

i
0. Moreover M i

ȳi
⊂ ∂cφ(x0) by

Lemma 6.6. We further observe that the same inclusion holds for all the components yli
of yi that satisfy yli = −x

l
0. Hence, once ȳi has a cut-locus component with x0, one can

change that component arbitrarily, and the resulting point still remains inside ∂cφ(x0).
Combining this fact with Loeper’s maximum principle (DASM) we can find a covector
vi and a set Ci ⊂ ∂φ(x0) ⊂ T

∗
x0
M , with vi ∈ Ci whose components are either vli = 0 or

vli ∈ M
l∗(xl0), and

Ci = {q ∈ T ∗x0
M | 2qi ∈ M i∗(xi0), and q l = vli for l 6= i}.
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Clearly, Ci is compact and Ci ⊂ M∗(x0). Moreover c-Expx0
Ci ⊂ ∂cφ(x0) ⊂

[∂cφ(x0)]x0 and H ni (Ci) & 1. Also, observe that the construction of C1, . . . , Cb0 is
independent of ε, δ, h.

Let us now construct the set C̃0. From Propositions 6.2 and 6.3 we see that for δ and
h/δ sufficiently small there exists a compact set C′′ ⊂ M̄ ′′(x′′0 ) (independent of ε, δ, h)
with π ′′(∂cφ(Zε,δ,h)) ⊂ C′′. Recall the definition of a0, b0, x̄ε,δ = (x̄·ε, x̄

··
δ ), and that

x̄··δ ∈ M̄
··(x··0 ). Then we write ηε,δ = (η·ε, η

··
δ ) ∈ T

∗

x·0
M· × T ∗

x··0
M·· and we observe that

η··δ is uniformly away from the boundary ofM··∗(x··0 ). These facts imply that there exists
a compact set C··2 ⊂ M

··∗(x··0 ) (independent of ε, δ, h) such that

η(C̃) ⊂ {η·ε} × C
··
2 .

However, η·ε → ∂M·∗(x·0) as ε → 0, thus η(C̃) is not kept in a fixed compact set in
M∗(x0). In particular, we cannot take η(C̃) for C̃0, and this motivates the following: Since
x̄·ε = −x

·
0 and x̄ε,δ ∈ [∂cφ(Zε,δ,h)]x0 , applying Lemma 6.6 as in the previous paragraph

we see that the set M· × {x̄··δ }, in particular (x·0, x̄
··
δ ), belongs to [∂cφ(Zε,δ,h)]x0 . The

point (x·0, x̄
··
δ ) corresponds to the covector (0, η··δ ). Consider the cone co((0, η··δ ), η(C̃)),

and define

C̃0 := co((0, η··δ ), η(C̃)) ∩ {(η
·
ε/2, q

··) ∈ T ∗x0
M | q·· ∈ T ∗

x··0
M··}.

By a simple geometric argument

H n′′(C̃0) & H n′′(η(C̃)),

and moreover, since η·ε/2 ∈
1
2M
·∗(x·0), the set C̃0 is contained in a fixed compact set in

M∗(x0) independently of ε, δ, h. By c-convexity of [∂cφ(Zε,δ,h)]x0 ,

c-Expx0
(C̃0) ⊂ [∂

cφ(Zε,δ,h)]x0 .

Note that by construction this set C̃0, together withC1, . . . , Cb0 , have the properties of the
sets Si in Lemma 3.3. Furthermore they are in a fixed compact set inM∗(x0) independent
of ε, δ, h. This completes the proof. ut

Combining Propositions 6.9 and 6.8(3) we obtain

hn
′′

. H n′′(π ′′(Z̃ε,δ,h))|∂
cφ(Zε,δ,h)|. (6.25)

We will finish the proof by applying Proposition 6.7. First, we need some preliminary
steps. Using the notation of Section 6.5, let Z′ε,δ,h be the slice of Zε,δ,h inM ′× {x′′0 }, that
is,

Z′ε,δ,h := {x
′
∈ M ′ | (x′, x′′0 ) ∈ Zε,δ,h}.

Then Z′ε,δ,h is embedded via x′ 7→ −Dx̄′c′(x′, x̄′ε,δ) into Z̃′ε,δ,h ⊂ M̄
′∗(x̄′ε,δ), where

Z̃′ε,δ,h := {q
′
∈ M̄ ′∗(x̄′ε,δ) | (q

′, q ′′0 ) ∈ Z̃ε,δ,h}.

Embed in the same way each Ziε,δ,h (see (6.13)), i = 1, . . . , b0, into Z̃iε,δ,h ⊂ M̄
i∗(x̄iε,δ).
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Proposition 6.10. Assume that 0 < δ ≤ δ0 and 0 < h ≤ δ2, with δ0 as in Proposition 6.3.
Then(

min
x′∈Z′ε,δ,h

|det(Dx′Dx̄′c′(x′, x̄′ε,δ))|
)
|Z′ε,δ,h| ≤ |Z̃

′

ε,δ,h|

≤

(
max

x′∈Z′ε,δ,h

|det(Dx′Dx̄′c′(x′, x̄′ε,δ))|
)
|Z′ε,δ,h|,(

min
xi∈Ziε,δ,h

|det(DxiDx̄i c
i(xi, x̄iε,δ))|

)
|Ziε,δ,h| ≤ |Z̃

i
ε,δ,h|

≤

(
max

xi∈Ziε,δ,h

|det(DxiDx̄i c
i(xi, x̄iε,δ))|

)
|Ziε,δ,h|,

where | · | denotes the Riemannian volume (in the appropriate submanifold).

Proof. From (6.14),
Dx′q

′
= −Dx′Dx̄′c

′(x′(q ′), x̄′ε,δ),

and so the first inequality follows from

|Z̃′ε,δ,h| =

∫
Z′ε,δ,h

|detDx′q ′| dx′.

The proof of the second inequality is analogous. ut

By convexity and Lemma 3.3 one has

H n′(Z̃′ε,δ,h) &
b0∏
i=1

H ni (Z̃iε,δ,h),

while Propositions 6.10 and 6.7 imply

b0∏
i=1

H ni (Z̃iε,δ,h) ≥

b0∏
i=1

(
min

xi∈Ziε,δ,h

|det(DxiDx̄i c
i(xi, x̄iε,δ))|

)
|Ziε,δ,h|

&
[ b0∏
i=1

(
min

xi∈Ziε,δ,h

|det(DxiDx̄i c
i(xi, x̄iε,δ))|

)]hn′
εa0

Combining these estimates with (6.25) we get

hn
′
+n′′ . εa0

[ b0∏
i=1

min
xi∈Ziε,δ,h

|det(DxiDx̄i c
i(xi, x̄iε,δ))|

]−1

H n′(Z̃′ε,δ,h)H
n′′(π ′′(Z̃ε,δ,h))|∂

cφ(Zε,δ,h)|

. εa0
[ b0∏
i=1

min
xi∈Ziε,δ,h

|det(DxiDx̄i c
i(xi, x̄iε,δ))|

]−1
|Z̃ε,δ,h| |∂

cφ(Zε,δ,h)| (by Lemma 3.2)

. εa0 |Zε,δ,h| |∂
cφ(Zε,δ,h)|,
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where the last inequality follows from

|Z̃ε,δ,h| .
(

max
x∈Zε,δ,h

det(DxDx̄c(x, x̄ε,δ))
)∣∣∣Zε,δ,h|

(see Proposition 6.10) and

maxx′∈Z′ε,δ,h det(Dx′Dx̄′c′(x′, x̄′ε,δ))∏b0
i=1 minxi∈Ziε,δ,h |det(DxiDx̄i ci(xi, x̄

i
ε,δ))|

. 1 as δ, h/δ→ 0

(see Propositions 6.2 and 6.3). This concludes the proof of Theorem 6.4, and Theorem 5.1
is proved.
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