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Abstract. We prove a sharp bilinear estimate for the wave equation from which we obtain the sharp
constant in the Strichartz estimate which controls the L4

t,x(R5+1) norm of the solution in terms of
the energy. We also characterise the maximisers.
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1. Introduction

For d ≥ 2, we consider the wave equation ∂t tu = 1u on Rd+1. Strichartz [29] proved
that

‖u‖Lpt,x (Rd+1) ≤ C
(
‖u(0)‖2

Ḣ 1/2(Rd ) + ‖∂tu(0)‖
2
Ḣ−1/2(Rd )

)1/2
, p =

2(d + 1)
d − 1

. (1.1)

Here, Ḣ s(Rd) denotes the homogeneous Sobolev space with norm

‖f ‖Ḣ s (Rd ) = ‖(−1)
s/2f ‖L2(Rd ),

where (−1̂)s/2f (ξ) = |ξ |s f̂ (ξ), and ̂ is the Fourier transform defined by

f̂ (ξ) =

∫
Rd
f (x) exp(−ix · ξ) dx.

Foschi [13] found the sharp constant in (1.1) for d = 3 and a characterisation of the data
(u(0), ∂tu(0)) for which the constant is attained. That such data exist in higher dimensions
is due to Ramos [25].

For d ≥ 3, by interpolation and Sobolev embedding, (1.1) yields

‖u‖Lpt,x (Rd+1) ≤ C
(
‖∇u(0)‖2

L2(Rd ) + ‖∂tu(0)‖
2
L2(Rd )

)1/2
, p =

2(d + 1)
d − 2

. (1.2)

This estimate has found a great deal of application in the nonlinear theory. Indeed, the
standard blow-up criterion for the focussing energy-critical equation is written in terms
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of the Lpt,x(Rd+1) norm with p = 2(d + 1)/(d − 2) (see for example [17]). Thus, it
seems of interest to know the data which maximise (1.2). That such data exist is due to
Bulut [6] (see also [1]).

In this article we prove a sharp bilinear inequality for the one-sided wave propagator
eit
√
−1 given by

eit
√
−1f (x) =

1
(2π)d

∫
Rd
f̂ (ξ) exp(i(x · ξ + t |ξ |)) dξ.

The solution to the wave equation can be written as u = u+ + u−, where

u+(t) = e
it
√
−1f+ and u−(t) = e

−it
√
−1f−,

and1

u(0) = f+ + f− and ∂tu(0) = i
√
−1(f+ − f−).

From this bilinear inequality, we will deduce the sharp constant in the energy-Strichartz
estimate (1.2) for d = 5, and characterise the maximising data.

Theorem 1.1. Let d ≥ 2. Then the inequality

‖eit
√
−1f1e

it
√
−1f2‖

2
L2
t,x (Rd+1)

≤W(d, 2)
∫
R2d
|f̂1(ξ1)|

2
|f̂2(ξ2)|

2
|ξ1|

(d−1)/2
|ξ2|

(d−1)/2
(

1−
ξ1 · ξ2

|ξ1| |ξ2|

)(d−3)/2

dξ1 dξ2

(1.3)

holds with constant given by

W(d, 2) = 2−(d−1)/2(2π)−3d+1
|Sd−1

|.

For d ≥ 3, the constant is sharp and is attained if and only if

|ξ |f̂j (ξ) = exp(a|ξ | + b · ξ + cj ),

where a, c1, c2 ∈ C, b ∈ Cd , Re(a) < 0 and |Re(b)| < −Re(a).

In particular, the constant is attained when
√
−1fj (x) = (1+|x|2)−(d+1)/2 for j = 1, 2.

In Sections 3 and 4 we prove a k-linear generalisation of Theorem 1.1 with sharp constant
W(d, k) for (d, k) 6= (2, 2).

Estimates which are similar in spirit, but with different ‘null’ weights, were proven
by Klainerman and Machedon [18, 19, 20], among others. They also conjectured that
estimates, for functions with separated angular Fourier supports and with the L2 norm
on the left-hand side replaced by an Lp norm, should hold. For the optimal range of p
(modulo the endpoint) this problem was resolved in the remarkable article of Wolff [31]
(see Tao [30] for the endpoint), following the pioneering work of Bourgain [5]. The L2-
version of the null-form conjecture was resolved in [14] and the Lp-version (modulo the
endpoint) in [30, 23, 22].

1 In [13] the functions f± are defined slightly differently.
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When d = 2, the power of the angular weight is negative, and this estimate was
implicit in the work of Barceló [2]. One can calculate that the integral on the right-hand
side of (1.3) is unbounded for integrable f1 = λf2 6= 0.

The power of the angular weight is zero when d = 3, and in this case the sharp
inequality and characterisation of maximisers is due to Foschi [13]. The sharp constant
in the Strichartz estimate (1.1) and the characterisation of maximisers follow from this
(see [13]).

In contrast with the two-dimensional case, when d ≥ 4 the estimate (1.3) improves
if the interacting waves have overlapping angular Fourier support. In particular, when
d = 5, we will see that Theorem 1.1 is stronger than the sharp energy-Strichartz estimate,
which we obtain as a consequence.

Corollary 1.2. Suppose that ∂t tu = 1u on R5+1. Then2

‖u‖L4(R5+1) ≤
1

(8π)1/2
(
‖∇u(0)‖2

L2(R5)
+ ‖∂tu(0)‖2L2(R5)

)1/2
.

The constant is sharp and is attained if and only if

(u(0), ∂tu(0)) = (0, (1+ | · |2)−(d+1)/2), (1.4)

with d = 5, modulo the action of the group generated by
(W1) u(t, x) 7→ u(t + t0, x + x0) with t0 ∈ R, x0 ∈ Rd ,
(W2) u(t, x) 7→ λ1u(λ2t, λ2x) with λ1, λ2 > 0,
(W3) u(t, x) 7→ eiθ+u+(t, x)+ e

iθ−u−(t, x) with θ+, θ− ∈ R.

As this is a corollary of Theorem 1.1, the proof relies heavily on the Fourier transform,
however the Fourier transform makes no appearance in the final inequality. Indeed the
wave equation is often considered as a real equation, and it would be interesting to know
if (1.2) could be proven without the use of the complex numbers.

By the conservation of energy, if the initial data is a maximising pair, then
(u(t), ∂tu(t)) must also be a maximising pair. Thus the evolution of the initial data (1.4)
can be described in terms (W1)–(W3).

Other well-known symmetries for the wave equation are spatial rotations and Lorentz-
ian boosts:
(W4) u(t, x) 7→ u(t, Rx) with R ∈ SO(d),
(W5) u(t, x) 7→ u(cosh(a)t + sinh(a)x1, cosh(a)x1 + sinh(a)t, x′) with a ∈ R.
In [13, Theorem 1.7], it is shown that the maximisers for (1.1) with d = 3 can be obtained
from the action of the group generated by (W1)–(W5) on the pair (1.4). Thus, the class of
maximisers is larger than that of Corollary 1.2. This is explained by the fact that(

‖u(0)‖2
Ḣ 1/2(Rd ) + ‖∂tu(0)‖

2
Ḣ−1/2(Rd )

)1/2
is invariant under (W5) whereas the energy is not.

We now dedicate some words to the recent history of the problem and the structure
of the article. In order to do so, we will need to discuss the closely related Schrödinger

2 As usual, the initial data must belong to the energy space which is defined to be the completion
of the Schwartz class with respect to the energy norm.
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evolution operator eit1 given by

eit1f (x) =
1

(2π)d

∫
Rd
f̂ (ξ) exp(i(x · ξ − t |ξ |2)) dξ.

Analogously to (1.1), Strichartz [29] proved that

‖eit1f ‖Lpt,x (Rd+1) ≤ C‖f ‖L2(Rd ), p =
2(d + 2)

d
, (1.5)

which followed work of Stein and Tomas on the Fourier extension problem on the unit
sphere Sd−1.

Some decades later, Kunze [21] proved the existence of maximisers for (1.5) with
d = 1, and Foschi [13] found the maximisers when d = 1, 2. This was reproved via
different techniques by Hundertmark–Zharnitsky [16] (see also Bennett et al. [4] for an
alternative derivation of the sharp constant when d = 1, 2, using heat-flow methods).
Carneiro [7] then developed the ideas of Hundertmark–Zharnitsky in order to prove re-
sults analogous to our forthcoming Theorem 2.1 for the Schrödinger operator. That max-
imisers for (1.5) exist in higher dimensions is due to Shao [26] (see also [24], [10], [3]).

More recently, Duyckaerts, Merle and Roudenko [11] proved that the Lpt,x(Rd+1)

norm, with p = 2(d + 2)/d , of the solution to the L2-critical nonlinear Schrödinger
equation is maximised over data with fixed (small) L2(Rd) norm. For d = 1, 2, they used
the result of Foschi to calculate the size of the maximum norm with some precision. In
particular, they showed that the Strichartz norm for the focussing equation with small data
is larger than in the linear case. They remark that parts of their proof should be flexible
enough to treat the energy-critical Schrödinger and wave equations, and Corollary 1.2 is
a step in that direction.

Finally, Christ and Shao [8, 9] proved the existence of maximisers for the original
Stein–Tomas extension inequality on the two-dimensional sphere, and that the maximisers
f are necessarily smooth and satisfy |f (x)| = |f (−x)|. For general compact surfaces
and dimensions, Fanelli, Vega and Visciglia [12] obtained the existence of maximisers
for the associated extension inequalities up to the endpoint (at which it is also shown
that existence is not guaranteed in general). In particular, the result in [12] holds for
p > 2(d + 2)/d when extending on Sd−1.

In Section 2, we state our results for the wave propagator in multilinear form and
prove Corollary 1.2 and some further corollaries for d = 2, 3. In Section 3, we prove
the sharp multilinear inequality, and we characterise the maximisers for this inequality in
Section 4. Finally, in Section 5, we revisit the result of Carneiro [7] for the Schrödinger
evolution operator.

2. Main results

We state our result in full generality (in terms of the multilinearity). In order to write
down an expression for the sharp constant W(d, k) we need the beta function B given by

B(x, y) =
∫ 1

0
sx−1(1− s)y−1 ds for x, y > 0.
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Theorem 2.1. Suppose that d, k ≥ 2 and let α(k) = (d − 1)(k − 1)/2 − 1. Let K :
(Rd)k → [0,∞) be given by

K(η) =
( ∑

1≤i<j≤k

(|ηi | |ηj | − ηi · ηj )
)1/2

for η = (η1, . . . , ηk) ∈ (Rd)k . Then the inequality∥∥∥ k∏
j=1

eit
√
−1fj

∥∥∥2

L2
t,x (Rd+1)

≤W(d, k)

∫
Rkd

k∏
j=1

|f̂j (ηj )|
2
|ηj |K(η)

2α(k) dη (2.1)

holds with constant given by

W(d, k) = 2−(d−1)/2(2π)−3d+1
|Sd−1

|

if k = 2, and

W(d, k) = 2−(d−1)(k−1)/2(2π)−d(2k−1)+1
|Sd−1

|
k−1

k−1∏
j=2

B(d − 1, α(j)+ 1)

if k ≥ 3. Whenever (d, k) 6= (2, 2) the constant W(d, k) is sharp and is attained if and
only if

|ξ |f̂j (ξ) = exp(a|ξ | + b · ξ + cj ),
where a, c1, . . . , ck ∈ C, b ∈ Cd , Re(a) < 0 and |Re(b)| < −Re(a).

Theorem 2.1 was proven by Foschi in the cases where α(k) = 0. This occurs if and only
if (d, k) is either (2, 3) or (3, 2) and yields the sharp Strichartz estimates for the one-sided
operator when d = 2, 3 and a characterisation of the maximisers.

The cases where α(k) = 1 are also special and this occurs if and only if (d, k) is
(2, 5), (3, 3) or (5, 2). We employ a basic yet very useful observation of Carneiro [7] to
deduce the following estimates.

Corollary 2.2. In two spatial dimensions,

‖eit
√
−1f ‖L10

t,x (R2+1) ≤

(
5

12π3

)1/10

‖f ‖
3/5
Ḣ 1/2(R2)

‖f ‖
2/5
Ḣ 1(R2)

.

In three spatial dimensions,

‖eit
√
−1f ‖L6

t,x (R3+1) ≤

(
3

16π3

)1/6

‖f ‖
1/3
Ḣ 1/2(R3)

‖f ‖
2/3
Ḣ 1(R3)

.

In five spatial dimensions,

‖eit
√
−1f ‖L4

t,x (R5+1) ≤

(
1

24π2

)1/4

‖f ‖Ḣ 1(R5).

The constants are sharp and are attained if and only if

|ξ |f̂ (ξ) = exp(a|ξ | + ib · ξ + c),

where a, c ∈ C, b ∈ Rd and Re(a) < 0.
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Proof of Corollary 2.2. We have α(k) = 1. For f1 = · · · = fk = f , the integral on the
right-hand side of (2.1) can be written as∫

Rkd

k∏
`=1

|f̂ (η`)|
2
|η`|K(η)

2α(k) dη = I− II,

where

I =
∑

1≤i<j≤k

∫
Rkd

k∏
`=1

|f̂ (η`)|
2
|η`| |ηi | |ηj | dη =

k(k−1)
2

(2π)kd ‖f ‖2(k−2)
Ḣ 1/2(Rd )‖f ‖

4
Ḣ 1(Rd ),

II =
∑

1≤i<j≤k

∫
Rkd

k∏
`=1

|f̂ (η`)|
2
|η`| ηi · ηj dη.

As in [7], by writing ξ = (ξ1, . . . , ξd), we have∫
R2d
|f̂ (ηi)|

2
|ηi | |f̂ (ηj )|

2
|ηj |ηi · ηj dηidηj =

d∑
m=1

(∫
Rd
|f̂ (ξ)|2|ξ | ξm dξ

)2

≥ 0, (2.2)

so that by Theorem 2.1,

‖eit
√
−1f ‖2k

L2k
t,x (Rd+1)

≤W(d, k)(I− II)

≤

[
k(k − 1)

2
(2π)kdW(d, k)

]
‖f ‖

2(k−2)
Ḣ 1/2(Rd )‖f ‖

4
Ḣ 1(Rd )

with equality at each inequality for the functions with radial modulus given by

f̂ (ξ) = |ξ |−1 exp(a|ξ | + b · ξ + c),

where a, c ∈ C, b ∈ Cd and Re(b) = 0.
It remains to characterise the maximisers, that is, to prove that when b ∈ Cd with

Re(b) 6= 0, the quantity II is nonzero. By a rotation we can suppose that

f̂ (ξ) = |ξ |−1 exp(a|ξ | + b · ξ + c),

where a, c ∈ C, b ∈ Cd , Re(a) < 0, Re(b) = (b1, 0, . . . , 0) and b1 > 0. By (2.2), it
suffices to prove that (∫

Rd
|f̂ (ξ)|2|ξ |ξ1 dξ

)2

> 0,

which is the same thing as proving(∫
Rd
|ξ |−1 exp

(
2 Re(a)|ξ | + 2b1ξ1 + 2 Re(c)

)
ξ1 dξ

)2

> 0.
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Writing Rd+ = {ξ ∈ Rd : ξ1 ≥ 0}, the left-hand side of this inequality is equal to(∫
Rd+
|ξ |−1 exp

(
2 Re(a)|ξ | + 2 Re(c)

)(
exp(2b1ξ1)− exp(−2b1ξ1)

)
ξ1 dξ

)2

,

which is positive, and so we are done. ut

We conclude this section by showing how Corollary 1.2 can be deduced from Corollary
2.2 following Foschi [13].

Proof of Corollary 1.2. By Corollary 2.2, we have the sharp inequality

‖u+‖L4
t,x (R5+1) ≤ (24π2)−1/4

‖∇f+‖L2(R5) (2.3)

with equality if |ξ |f̂+(ξ) = exp(−|ξ |), and by the same argument we also have

‖u−‖L4
t,x (R5+1) ≤ (24π2)−1/4

‖∇f−‖L2(R5) (2.4)

with equality if |ξ |f̂−(ξ) = exp(−|ξ |).
The space-time Fourier transforms of u2

+, u2
− and u+u− have disjoint supports and

therefore

‖u‖4
L4
t,x (R5+1)

= ‖u2
+ + u

2
− + 2u+u−‖2L2

t,x (R5+1)

= ‖u+‖
4
L4
t,x (R5+1)

+ ‖u−‖
4
L4
t,x (R5+1)

+ 4‖u+u−‖2L2
t,x (R5+1)

. (2.5)

By the Cauchy–Schwarz inequality,

‖u+u−‖
2
L2
t,x (R5+1)

≤ ‖u+‖
2
L4
t,x (R5+1)

‖u−‖
2
L4
t,x (R5+1)

with equality if and only if |u+| = λ|u−| for some λ > 0. We now apply the elementary
inequality

2(X2
+ Y 2

+ 4XY) ≤ 3(X + Y )2,

which holds for all real numbers X and Y , with equality if and only if X = Y , to obtain

‖u‖4
L4
t,x (R5+1)

≤
3
2

(
‖u+‖

2
L4
t,x (R5+1)

+ ‖u−‖
2
L4
t,x (R5+1)

)2
.

Combining this with (2.3) and (2.4), it follows that

‖u‖4
L4
t,x (R5+1)

≤
1

16π2

(
‖∇f+‖

2
L2(R5)

+ ‖∇f−‖
2
L2(R5)

)2
.

By the parallelogram law,

‖∇f+‖
2
L2(R5)

+ ‖∇f−‖
2
L2(R5)

=
1
2

(
‖∇u(0)‖2

L2(R5)
+ ‖∂tu(0)‖2L2(R5)

)
, (2.6)

so that
‖u‖4

L4
t,x (R5+1)

≤
1

64π2

(
‖∇u(0)‖2

L2(R5)
+ ‖∂tu(0)‖2L2(R5)

)2
, (2.7)
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with equality when (u(0), ∂tu(0)) is such that |ξ |f̂+(ξ) = |ξ |f̂−(ξ) = exp(−|ξ |) (be-
cause then |u+| = |u−|).

It remains to characterise the maximisers. It follows from Corollary 2.2 and the above
argument that we have equality in (2.7) if and only if

|ξ |f̂+(ξ) = exp(a+|ξ | + ib+ · ξ + c+), |ξ |f̂−(ξ) = exp(a−|ξ | + ib− · ξ + c−),

and
|u+(t, x)| = |u−(t, x)| for almost every (t, x) ∈ R× R5, (2.8)

where a+, a−, c+, c− ∈ C, b+, b− ∈ R5 and Re(a+),Re(a−) < 0. We will see that this
is true if and only if a+ = a−, b+ = b− and Re(c+) = Re(c−).

To this end we define 3a,b,c by

3a,b,c(t, x) =
1

(2π)5

∣∣∣∣exp(c)
∫
R5

exp(i(b + x) · ξ + (a + it)|ξ |)
dξ

|ξ |

∣∣∣∣.
As |u+| = 3a+,b+,c+ and |u−| = |u−| = 3a−,b−,c− , and these functions are continuous,
we see by (2.8) that

3a+,b+,c+(t, x) = 3a−,b−,c−(t, x) for each (t, x) ∈ R× R5. (2.9)

As in [13], we claim that knowledge of3a,b,c uniquely determines a, b and Re(c). Given
(2.9), it would then follow that a+ = a−, b+ = b− and Re(c+) = Re(c−).

Firstly, we note that

3a,b,c(t, x) ≤
exp(Re(c))
(2π)5

∫
R5

exp(Re(a)|ξ |)
dξ

|ξ |
= 3a,b,c(−Im(a),−b),

so we see that3a,b,c attains its maximum at (−Im(a),−b) and nowhere else. Thus, Im(a)
and b are uniquely determined. Secondly,

3a,b,c(t − Im(a),−b) =
exp(Re(c))
(2π)5

∣∣∣∣∫
R5

exp((Re(a)+ it)|ξ |)
dξ

|ξ |

∣∣∣∣ = C0
exp(Re(c))
|Re(a)+ it |4

where C0 is an absolute constant. Thus,

C03a,b,c(t − Im(a),−b)−1
= exp(−Re(c))(Re(a)2 + t2)2,

which is a polynomial in t . Since the coefficient of t4 is exp(−Re(c)) we have deter-
mined Re(c), and since the constant term is exp(−Re(c)) Re(a)4 we have then deter-
mined Re(a).

It remains to prove that these maximisers can be obtained from

(u(0, x), ∂tu(0, x)) = (0, (1+ |x|2)−3) (2.10)

under the action of (W1)–(W3) as defined in the introduction. It is easy to calculate that
the ratio

‖u‖L4
t,x (R5+1)

(
‖∇u(0)‖2

L2(R5)
+ ‖∂tu(0)‖2L2(R5)

)−1/2
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is preserved under the action of (W1) and (W2). Appealing to (2.5) and (2.6) we see that
the ratio is also preserved under (W3). We remark that this final invariance does not hold
in general for Strichartz inequalities.

Taking Fourier transforms of the data in (2.10) we obtain

(û(0)(ξ), ∂̂tu(0)(ξ)) = (0, c0 exp(−|ξ |))

for some c0 > 0 (see for example [27, p. 61]). Consequently,

(|ξ |f̂+(ξ), |ξ |f̂−(ξ)) =
( 1

2i c0 exp(−|ξ |),− 1
2i c0 exp(−|ξ |)

)
. (2.11)

In general, the data f̂±(ξ) transforms to

exp(±it0|ξ | + ix0 · ξ)f̂±(ξ), λ1λ
−5
2 f̂±(λ

−1
2 ξ), exp(iθ±)f̂±(ξ)

under the action of (W1), (W2), (W3), respectively. It is now straightforward to check
that the pair (2.11) transforms under the action of (W1)–(W3) to

(|ξ |f̂+(ξ), |ξ |f̂−(ξ)) =
(
exp(a|ξ | + ib · ξ + c+), exp(a|ξ | + ib · ξ + c−)

)
,

where Re(c+) = Re(c−), and so we are done. ut

Remark 2.3. Foschi [13] combined similar arguments with his sharp estimate for the
one-sided operator,

‖eit
√
−1f ‖L6

t,x (R2+1) ≤

(
1

2π

)1/6

‖f ‖Ḣ 1/2(R2),

to prove that solutions to the wave equation satisfy

‖u‖L6
t,x (R2+1) ≤

(
25

64π

)1/6(
‖u(0)‖2

Ḣ 1/2(R2)
+ ‖∂tu(0)‖2Ḣ−1/2(R2)

)1/2
. (2.12)

He also claimed that the constant in (2.12) is attained by the initial data

(u(0, x), ∂tu(0, x)) = ((1+ |x|2)−1/2, 0),

modulo the action of a group of symmetries, but this appears to be false. In the proof of
(2.12), the inequality

|〈u3
+, u

2
+u−〉t,x | ≤ ‖u

3
+‖L2

t,x (R2+1)‖u
2
+u−‖L2

t,x (R2+1)

is used and it is a strict inequality for such data.
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3. Proof of Theorem 2.1—the sharp inequality

Define the Fourier transform ˜ in space and time by

f̃ (τ, ξ) =

∫
Rd+1

f (t, x) exp(−i(tτ + x · ξ)) dt dx.

Writing

uk(t, x) =

k∏
j=1

eit
√
−1fj (x),

by Plancherel’s theorem we have∥∥∥ k∏
j=1

eit
√
−1fj

∥∥∥∥2

L2
t,x (Rd+1)

= (2π)−(d+1)
‖ũk‖

2
L2
τ,ξ (Rd+1)

.

It is easy to see that

(eit
√
−1fj )

∼(τ, ξ) = 2πδ(τ − |ξ |)f̂j (ξ),

so that defining F by F̂ (η) =
∏k
j=1 |ηj |

1/2f̂j (ηj ), where η = (η1, . . . , ηk), we have

ũk(τ, ξ) =
1

(2π)d(k−1)−1

∫
Rkd

F̂ (η)∏k
j=1 |ηj |

1/2
δ
(
τ −

k∑
j=1

|ηj |
)
δ
(
ξ −

k∑
j=1

ηj

)
dη.

By the Cauchy–Schwarz inequality, this implies that

|̃uk(τ, ξ)|
2
≤

Ik(τ, ξ)

(2π)2d(k−1)−2

∫
Rkd
|F̂ (η)|2K(η)2α(k)δ

(
τ −

k∑
j=1

|ηj |
)
δ
(
ξ −

k∑
j=1

ηj

)
dη,

(3.1)
where α(k) = (d − 1)(k − 1)/2− 1 and

Ik(τ, ξ) =

∫
Rkd

1

K(η)2α(k)
∏k
j=1 |ηj |

δ
(
τ −

k∑
j=1

|ηj |
)
δ
(
ξ −

k∑
j=1

ηj

)
dη.

Crucially, on the intersection of the supports of the delta measures we have

2K(η)2 =
( k∑
j=1

|ηj |
)2
−

∣∣∣ k∑
j=1

ηj

∣∣∣2 = τ 2
− |ξ |2

and therefore
Ik(τ, ξ) = 2α(k)(τ 2

− |ξ |2)−α(k)Ĩk(τ, ξ), (3.2)

where

Ĩk(τ, ξ) =

∫
Rkd

1∏k
j=1 |ηj |

δ
(
τ −

k∑
j=1

|ηj |
)
δ
(
ξ −

k∑
j=1

ηj

)
dη.

The following lemma was proven by Foschi in the cases (d, k) = (2, 3) and (3, 2).
We generalise his argument by induction.
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Lemma 3.1. For each (τ, ξ) with |ξ | < τ , we have

Ĩ2(τ, ξ) = (τ
2
− |ξ |2)α(2)

|Sd−1
|

2d−2 ,

and for k ≥ 3,

Ĩk(τ, ξ) = (τ
2
− |ξ |2)α(k)

|Sd−1
|
k−1

22α(k)+1

(k−1∏
j=2

B(d − 1, α(j)+ 1)
)
.

Proof. We begin by recording certain invariances of Ĩk . Note that Ĩk is the k-fold convo-
lution of µ, where

µ(τ, ξ) = |ξ |−1δ(τ − |ξ |) = 2δ(%(τ, ξ))χτ>0

and % : Rd → R is the Minkowski form given by %(τ, ξ) = τ 2
− |ξ |2. This is invariant

under Lorentz transformations:

%(Tv(τ, ξ)) = %(τ, ξ)

where the Lorentz transformation Tv is given by

Tv

[
τ

ξ

]
=

[
γ −γ vt

−γ v Id +
γ−1
|v|2

vvt

][
τ

ξ

]
=

[
γ (τ − v · ξ)

ξ +
( γ−1
|v|2

v · ξ − γ τ
)
v

]
for v ∈ Rd such that |v| < 1, and γ = (1 − |v|2)−1/2. Since |det Tv| = 1 it follows that
the k-fold convolution of µ is also invariant under each Tv . Taking v = −ξ/τ , as we may,
we have γ = (τ 2

− |ξ |2)−1/2τ , and

Tv

[
(τ 2
− |ξ |2)1/2

0

]
=

[
τ

−τv

]
=

[
τ

ξ

]
,

so that
Ĩk(τ, ξ) = Ĩk((τ

2
− |ξ |2)1/2, 0). (3.3)

Furthermore, by a simple change of variables and homogeneity, for each λ > 0,

Ĩk(λτ, λξ) = λ
2α(k)Ĩk(τ, ξ),

where α(k) = (d − 1)(k − 1)/2− 1, which combined with (3.3) yields

Ĩk(τ, ξ) = (τ
2
− |ξ |2)α(k)Ĩk(1, 0). (3.4)

Now we are able to compute the desired expression for Ĩ2(τ, ξ) by a direct computa-
tion. By (3.4) we get

Ĩ2(τ, ξ) = (τ
2
− |ξ |2)α(2)Ĩ2(1, 0)

= (τ 2
− |ξ |2)α(2)

∫
R2d

δ(1− |η1| − |η2|)δ(−η1 − η2)
dη1 dη2

|η1| |η2|

= (τ 2
− |ξ |2)α(2)

∫
Rd
δ(1− 2|η1|)

dη1

|η1|2
,
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and hence, by integration in polar coordinates,

Ĩ2(τ, ξ) = (τ
2
− |ξ |2)α(2)

|Sd−1
|

2d−2 , (3.5)

as required.
Using (3.4), for k ≥ 3, observe that

Ĩk(τ, ξ) = (τ
2
− |ξ |2)α(k)Ĩk(1, 0)

= (τ 2
− |ξ |2)α(k)

∫
Rd

(∫
R(k−1)d

δ
(

1−
k∑

j=1

|ηj |
)
δ
(
−

k∑
j=1

ηj

)dη2 · · · dηk

|η2| · · · |ηk|

)
dη1

|η1|

and therefore

Ĩk(τ, ξ) = (τ
2
− |ξ |2)α(k)

∫
|η1|≤1/2

Ĩk−1(1− |η1|,−η1)
dη1

|η1|
. (3.6)

Using (3.5) and (3.6) it follows that

Ĩ3(τ, ξ) = (τ
2
− |ξ |2)α(3)

|Sd−1
|

2d−2

∫
|η|≤1/2

(1− 2|η1|)
α(2) dη1

|η1|

= (τ 2
− |ξ |2)α(3)

|Sd−1
|
2

2d−2

∫ 1/2

0
(1− 2r)α(2)rd−2 dr.

From this, (3.6) and induction it follows that

Ĩk(τ, ξ) = (τ
2
− |ξ |2)α(k)

|Sd−1
|
k−1

2d−2

k−1∏
j=2

(∫ 1/2

0
(1− 2r)α(j)rd−2 dr

)
,

which gives the desired formula for Ĩk(τ, ξ) by a simple change of variables. ut

Combining Lemma 3.1 with (3.2) we obtain

I2(τ, ξ) = 2−(d−1)/2
|Sd−1

|

and

Ik(τ, ξ) = 2−(α(k)+1)
|Sd−1

|
k−1

k−1∏
j=2

B(d − 1, α(j)+ 1)

if k ≥ 3. Substituting into (3.1), integrating over (τ, ξ), and applying Fubini and
Plancherel’s theorems, we get

‖uk‖
2
L2
t,x (Rd+1)

= (2π)−(d+1)
‖ũk‖

2
L2
τ,ξ (Rd+1)

≤W(d, k)

∫
Rkd
|F̂ (η)|2K(η)2α(k) dη,

as required.
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We note that if |ηj |f̂j (ηj ) = exp(a|ηj |+b ·ηj +cj ), where a, c1, . . . , ck ∈ C, b ∈ Cd
with Re(a) < 0 and |Re(b)| < −Re(a), it follows that

F̂ (η) = exp
(
aτ + b · ξ +

k∑
j=1

cj

) 1∏k
j=1 |ηj |

1/2

on the support of the delta measures. Hence, for such fj there is equality in (3.1) and so
the constant W(d, k) is sharp whenever (d, k) 6= (2, 2). In the next section we show that
there are no further maximisers, following the approach of Foschi [13].

4. Proof of Theorem 2.1—characterisation of the maximisers

There is equality in (3.1) if and only if there exists a scalar function 3 such that

K(η)α(k)F̂ (η) = 3(τ, ξ)K(η)−α(k)
k∏

j=1

|ηj |
−1/2 (4.1)

almost everywhere on the intersection of the supports of the delta measures. Write
gj (ηj ) = |ηj |f̂j (ηj ) for all j = 1, . . . , k and G(τ, ξ) = (τ 2

− |ξ |2)−α(k)3(τ, ξ). Then
(4.1) implies that

k∏
j=1

gj (ηj ) = G
( k∑
j=1

|ηj |,

k∑
j=1

ηj

)
for almost every (η1, . . . , ηk) ∈ (Rd)k . (4.2)

Since the right-hand side of (4.2) is symmetric in ηj and η` it follows that gj = λg` for
some λ ∈ C. By normalising, we can thus assume that g1 = · · · = gk = g.

Note that when f1 = · · · = fk = f and (d, k) 6= (2, 2) the right-hand side of (2.1) is
comparable to

‖f ‖
2(k−2)
Ḣ 1/2(Rd )

∫
Rd

∫
Rd
|f̂ (η1)|

2
|f̂ (η2)|

2
|η1|

α(k)+1
|η2|

α(k)+1(1−η′1·η
′

2)
α(k) dη1 dη2, (4.3)

where η′j = |ηj |
−1ηj . We claim that when this quantity is finite then g and G satisfying

(4.2) are continuous, where g(η) = |η|f̂ (η). To see this, first note that the finiteness of
(4.3) implies that g is locally integrable. Indeed, if k = 2 and B is any euclidean ball
centred at the origin then, by the Cauchy–Schwarz inequality and the finiteness of (4.3),(∫

B

|g(η)| dη

)2

=

∫
B

∫
B

|g(η1)| |g(η2)| dη1 dη2

≤ C

(∫
B

∫
B

|η1|
(5−d)/2

|η2|
(5−d)/2(1− η′1 · η

′

2)
(3−d)/2 dη1 dη2

)1/2

<∞.

When k ≥ 3, we see that f ∈ Ḣ 1/2(Rd), and by a similar argument using the Cauchy–
Schwarz inequality, we conclude that g is locally integrable.
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Now, since (4.2) holds for g and G we have

g(η1)g(η2) = G̃(|η1| + |η2|, η1 + η2)

for almost every (η1, η2) ∈ Rd × Rd , where G̃ is equal to G modulo composition with
certain translations and multiplication by nonzero scalars (depending on g). The continu-
ity of g and G now follows from Lemma 7.20 (which in fact holds for all d ≥ 2) and
Proposition 7.5 of [13].

Hence, it suffices to characterise all solutions to the functional equation

g(η1)g(η2) = G(|η1| + |η2|, η1 + η2) for each (η1, η2) ∈ Rd × Rd , (4.4)

where g and G are continuous. In this case, we may assume g(0) 6= 0. Otherwise (4.4)
gives

G(|η|, η) = g(η)g(0) = 0

for all η ∈ Rd , which, combined with (4.4) again, implies that

g(η)2 = G(2|η|, 2η) = G(|2η|, 2η) = 0

for all η ∈ Rd , and this is the trivial case.
Noting that G(0, 0) = g(0)2 6= 0, we can rewrite (4.4) as

H(|η1|, η1)H(|η2|, η2) = H(|η1| + |η2|, η1 + η2) for each (η1, η2) ∈ Rd × Rd ,

whereH(τ, ξ) = G(0, 0)−1G(τ, ξ). By algebraic properties of the cone (see [13, Lemma
7.18]), this implies

H(X)H(Y ) = H(X + Y ) for all X, Y ∈ {(τ, ξ) ∈ Rd+1
: τ > |ξ |}.

Thus, by [13, Lemma 7.1], there exist a ∈ C and b ∈ Cd such that

H(τ, ξ) = exp(aτ + b · ξ)

for (τ, ξ) in the solid cone. Choosing c ∈ C such that exp(2c) = G(0, 0), we obtain
G(τ, ξ) = exp(aτ + b · ξ + 2c), so that g(ξ) = exp(a|ξ | + b · ξ + c). Thus, the Fourier
transforms of the maximisers f take the form

f̂ (ξ) = |ξ |−1 exp(a|ξ | + b · ξ + c).

It remains to check under which conditions on a and b the right-hand side of (2.1), or
equivalently the quantity (4.3), is finite. It is easy to see that Re(a) < 0 is necessary and
c ∈ Cd has no effect on such considerations. So we assume Re(a) < 0 and c = 0 from
now on, and consider the cases α(k) = 0 and α(k) > 0 separately.

When α(k) = 0 the quantity (4.3) is equal to the kth power of

‖f ‖2
Ḣ 1/2(Rd ) =

∫
Rd

exp(2 Re(a)|ξ | + 2 Re(b) · ξ)
dξ

|ξ |
.
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In polar coordinates this is equal to a constant multiple of∫ 1

−1

∫
∞

0
exp

(
(2 Re(a)+ 2|Re(b)|u)r

)
rd−2(1− u2)(d−3)/2 dr du,

which is finite if and only if |Re(b)| < −Re(a).
When α(k) > 0, the quantity (4.3) is bounded above by

‖f ‖
2(k−2)
Ḣ 1/2(Rd )‖f ‖

4
Ḣ (α(k)+1)/2(Rd )

and using polar coordinates as above it is easy to check that if |Re(b)| < −Re(a) then
‖f ‖Ḣ s (Rd ) <∞ for any s ≥ 1/2. Also, we have shown above that if |Re(b)| ≥ −Re(a)
then ‖f ‖Ḣ 1/2(Rd ) is not finite, and therefore the quantity (4.3) is not finite if k ≥ 3. Hence
it remains to show that for k = 2, d ≥ 4 and |Re(b)| ≥ −Re(a) the quantity (4.3) is not
finite. In this case, (4.3) is equal to∫

Rd

∫
Rd

exp(2 Re(a)|η1| + 2 Re(b) · η1) exp(2 Re(a)|η2| + 2 Re(b) · η2)

· |η1|
(d−5)/2

|η2|
(d−5)/2(1− η′1 · η

′

2)
(d−3)/2 dη1 dη2. (4.5)

Let � ⊂ Sd−1 be a closed cap centred at Re(b)′ so that Re(b)′ · η′2 ≥ 1 − ε for each
η′2 ∈ �. Then, for each η1 with η′1 ∈ �

⊥, we see that the dη2-integral in (4.5) is bounded
below by a constant multiple of∫

�

∫
∞

0
exp

(
(2 Re(a)+ 2 Re(b) · η′2)r

)
r(3d−7)/2 dr dσ(η′2),

which is not finite when |Re(b)| ≥ −Re(a), and hence neither is (4.3). This completes
the proof Theorem 2.1.

5. The Schrödinger equation: Carneiro’s inequality revisited

The following theorem is the natural analogue of Theorem 1.1 for the Schrödinger evolu-
tion operator and is due to Carneiro [7].

Theorem 5.1. Let d ≥ 2. Then the inequality

‖eit1f1e
it1f2‖

2
L2
t,x (Rd+1)

≤ S(d, 2)
∫
R2d
|f̂1(ξ1)|

2
|f̂2(ξ2)|

2
|ξ1 − ξ2|

d−2 dξ1 dξ2

holds with sharp constant given by

S(d, 2) = 2−d(2π)−3d+1
|Sd−1

|

which is attained if and only if

f̂j (ξ) = exp(a|ξ |2 + b · ξ + cj ),

where a, c1, c2 ∈ C, b ∈ Cd and Re(a) < 0.
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The case d = 1 is special because, for f1 and f2 with separated Fourier support, we have
the identity3

‖eit1f1 e
it1f2‖

2
L2
t,x (R1+1)

=
1

2(2π)2

∫
R2
|f̂1(ξ1)|

2
|f̂2(ξ2)|

2 dξ1dξ2

|ξ1 − ξ2|
, (5.1)

which follows easily by changes of variables and Plancherel’s theorem. This is evident
from the calculation in [15, Theorem 1.2] or [28, p. 412] (see also [14, Section 17] for
an analogous inequality for the extension operator on S1). The interaction weight is too
singular for the right-hand side of (5.1) to be finite for integrable f1 = λf2 6= 0. A
manifestation of this is that S(1, 2) = (2π)−2 is equal to twice the constant arising in the
identity (5.1).

With d = 2, the power of the interaction weight is zero, and so the estimate reduces
to the sharp version of the Strichartz estimate (1.5) due to Foschi [13].

For the case d = 4, Carneiro deduced the following corollary from Theorem 5.1 in
the same way that the inequality of Corollary 2.2 was deduced from Theorem 2.1.

Corollary 5.2. Let d = 4. Then

‖eit1f ‖L4(R4+1) ≤ (32π)−1/4
‖f ‖

1/2
L2(R4)

‖∇f ‖
1/2
L2(R4)

. (5.2)

The constant is sharp and is attained if and only if

f̂ (ξ) = exp(a|ξ |2 + ib · ξ + c),

where a, c ∈ C, b ∈ Rd and Re(a) < 0.

Note that the class of maximisers is smaller than that of Theorem 5.1 (although in [7] it
was suggested otherwise). The maximisers can be obtained from u(0, x) = exp(−|x|2)
under the action of the group generated by:

(S1) u(t, x) 7→ u(t + t0, x + x0) with t0 ∈ R, x0 ∈ Rd ,
(S2) u(t, x) 7→ λ1u(λ

2
2t, λ2x) with λ1, λ2 > 0.

(S3) u(t, x) 7→ eiθu(t, x) with θ ∈ R.

Another well-known symmetry for the Schrödinger equation is the Galilean transfor-
mation:

(S4) u(t, x) 7→ exp
(
−i(x · v + |v|2t)

)
u(t, x + 2v) with v ∈ Rd .

Foschi [13] proved that the maximisers for (1.5) with d = 1, 2 are given by

f̂ (ξ) = exp(a|ξ |2 + b · ξ + c),

where a, c ∈ C, b ∈ Cd and Re(a) < 0, which is a larger class than that of Corollary 5.2.
This is explained by the fact that

‖eit1f ‖Lpt,x (Rd+1)‖f ‖
−1
L2(Rd )

3 The authors thank Luis Vega for bringing this to their attention.
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is invariant under the action of (S4), whereas

‖eit1f ‖Lpt,x (Rd+1)‖f ‖
−1/2
L2(Rd )‖∇f ‖

−1/2
L2(Rd )

is not.
To conclude we present a k-linear generalisation of Theorem 5.1 which is analogous

to Theorem 2.1.

Theorem 5.3. Suppose that d, k ≥ 2 and let β(k) = d(k − 1)/2 − 1. Let K : (Rd)k →
[0,∞) be given by

K(η) =
( ∑

1≤i<j≤k

|ηi − ηj |
2
)1/2

for η = (η1, . . . , ηk) ∈ (Rd)k . Then the inequality∥∥∥ k∏
j=1

eit1fj

∥∥∥2

L2
t,x (Rd+1)

≤ S(d, k)
∫
Rkd

k∏
j=1

|f̂j (ηj )|
2K(η)2β(k) dη (5.3)

holds with sharp constant given by

S(d, k) = π(2π)−d(2k−1)k−dk/2+1
|S(k−1)d−1

|

which is attained if and only if

|ξ |f̂j (ξ) = exp(a|ξ | + b · ξ + cj ),

where a, c1, . . . , ck ∈ C, b ∈ Cd , Re(a) < 0 and |Re(b)| < −Re(a).

Theorem 5.3 was proven by Carneiro in [7] following the argument of Hundertmark–
Zharnitsky [16]. We remark that it can also be proven by following the proof of
Foschi [13].
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