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Abstract. For 0 < p − 1 < q and either ε = 1 or ε = −1, we prove the existence of solutions of
−1pu = εu

q in a cone CS , with vertex 0 and opening S, vanishing on ∂CS , of the form u(x) =

|x|−βω(x/|x|). The problem reduces to a quasilinear elliptic equation on S and the existence proof
is based upon degree theory and homotopy methods. We also obtain a nonexistence result in some
critical case by making use of an integral type identity.
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1. Introduction

It is well established that the description of the boundary behavior of positive singular
solutions of Lane–Emden equations

−1u = εuq (1.1)

with q > 1 in a domain� ⊂ RN is greatly facilitated by using specific separable solutions
of this equation. This was shown in 1991 by Gmira–Véron [7] in the case ε = −1 and
more recently by Bidaut-Véron–Ponce–Véron [3] in the case ε = 1. If the domain is
assumed to be a cone CS = {x ∈ RN \ {0} : x/|x| ∈ S} with vertex 0 and opening
S ( SN−1 (the unit sphere in RN ), separable solutions of (1.1) vanishing on ∂CS \ {0}
are of the form

u(x) = |x|−2/(q−1)ω(x/|x|), (1.2)

with ω satisfying

−1′ω − `q,Nω − εω
q
= 0 in S, (1.3)
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vanishing on ∂S and where `q,N = 2
q−1

2q
q−1−N and1′ is the Laplace–Beltrami operator

on SN−1. To this equation is associated the functional

J (φ) :=

∫
S

(
1
2
|∇
′φ|2 −

`q,N

2
φ2
−

ε

q + 1
|φ|q+1

)
dvg, (1.4)

where ∇ ′ is the covariant derivative on SN−1. In the case ε = 1, nonexistence of a non-
trivial positive solution of (1.3) when `q,N ≥ λS (the first eigenvalue of−1′ inW 1,2

0 (S))
follows by multiplying the equation by the first eigenfunction and integrating over S; ex-
istence holds when `q,N < λS and q < (N+1)/(N−3) by classical variational methods,
and again nonexistence holds when q ≥ (N + 1)/(N − 3) and S ⊂ SN−1

+ is starshaped
by using an integral identity [3, Th. 2.1, Cor. 2.1]. When ε = −1, nonexistence of a non-
trivial solution of (1.3) when `q,N ≤ λS is obtained by multiplying the equation by ω
and integrating over S, while existence when `q,N > λS follows by minimizing J over
W

1,2
0 (S) ∩ Lq+1(S).

In this paper we investigate similar questions for the quasilinear Lane–Emden equa-
tions

− div(|∇u|p−2
∇u) = εuq in CS, (1.5)

where S is a smooth subset of SN−1, q > p−1 > 0 and ε = ±1, and we look for positive
solutions u, vanishing on ∂CS \ {0}, of the separable form

u(x) = |x|−βω(x/|x|). (1.6)

It is straightforward to check that u is a solution of (1.5) provided

β = βq :=
p

q + 1− p
(1.7)

and ω is a positive solution of

− div((β2
qω

2
+ |∇

′ω|2)(p−2)/2
∇
′ω)− βqλ(βq)(β

2
qω

2
+ |∇

′ω|2)(p−2)/2ω = εωq (1.8)

in S vanishing on ∂S, where div(·) is the divergence operator defined according to the
intrinsic metric g and where we have set

λ(β) = β(p − 1)+ p −N. (1.9)

If ε = 0, it is now well-known that positive p-harmonic functions in CS vanishing on
∂CS exist in the form (1.6), and either they are regular at 0 and β = −β̃S < 0, or they
are singular and β = βS > 0, where the values of β̃S , βS are unique. In this case ω = ω̃S
or ωS is a solution of

− div((β2ω2
+ |∇

′ω|2)(p−2)/2
∇
′ω)− βλ(β)(β2ω2

+ |∇
′ω|2)(p−2)/2ω = 0 (1.10)

in S, where β = β̃S or βS . The existence of (β̃S, ω̃S) is due to Tolksdorf in a pioneering
work [18]. Tolksdorf’s method has been adapted by Véron [20] in order to prove the
existence of (βS, ωS). Later on Porretta and Véron [13] obtained a more general proof
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of the existence of such couples. Notice that βS (as well as β̃S) is uniquely determined
while ω is unique up to homothety. In both cases the proofs rely on the strong maximum
principle.

When p 6= 2, existence of a nontrivial solution in the case ε = 1 is obtained
in [2] when N = 2 and βq < βS by a dynamical system approach; while if ε = −1
and βq > βS , the existence is proved in [20] by a suitable adaptation of Tolksdorf’s
construction. Notice that no functional can be associated to (1.8), except in the case
q = q∗ = Np/(N − p) − 1. In that case, (1.8) is the Euler–Lagrange equation for
the functional

Jq(φ) :=

∫
S

(
1
p
(β2
q∗φ

2
+ |∇

′φ|2)p/2 −
ε

q∗ + 1
|φ|q

∗
+1
)
dvg, (1.11)

and existence of a nontrivial solution of (1.8) with ε = 1 is derived from the mountain
pass theorem. In all the other cases variational techniques cannot be used and have to be
replaced by topological methods based upon Leray–Schauder degree. Define qc by

qc = qc,p =


(N − 1)p
N − 1− p

− 1 if p < N − 1,

∞ if p ≥ N − 1.

Then we prove the following results:

I. Let ε = 1. Assume p > 1, q < qc and βq < βS . Then (1.8) admits a positive
solution in S vanishing on ∂S.

II. Let ε = −1. Assume p > 1 and βq > βS . Then (1.8) admits a unique positive
solution in S vanishing on ∂S.

The result I is based upon sharp Liouville theorems for solutions of (1.5) in RN or RN+
respectively due to Serrin–Zou [17] and Zou [23]. In the case of II, the existence part is
already known, but we give here a simpler form than the one in [20], using a topological
deformation acting on the exponent p. In the case ε = 1, the result is optimal in the case
q = qc; indeed, using an integral identity, we also prove

III. Let ε = 1, S ( SN−1
+ be a starshaped domain and 1 < p < N − 1. If q = qc, then

(1.8) admits no positive solution in S vanishing on ∂S.

Notice that when p = 2 an integral identity was used in [3] to prove nonexistence for
all q ≥ qc,2. The form which is derived in the case p 6= 2 is much more complicated and
we prove nonexistence only in the case q = qc,p.

Finally, the constraint βq < βS in I (respectively, βq > βS in II) is sharp. When ε = 1,
the nonexistence of positive solutions of (1.8) when βq ≥ βS has been proved in [2].
The method is based upon the strong maximum principle. When ε = −1 a somewhat
similar method is used in [22] and yields nonexistence results when βq ≤ βS . Notice that
obtaining such results when p = 2 is straightforward.
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2. Nonexistence for the reaction problem

Let S be a bounded C2 subdomain of SN−1. We consider positive solutions in S of

− div((β2ω2
+ |∇

′ω|2)(p−2)/2
∇
′ω)− βλ(β)(β2ω2

+ |∇
′ω|2)(p−2)/2ω = ωq (2.1)

vanishing on ∂S. Recall that λ(β) is given by (1.9) and that, in connection with problem
(1.5), we are interested in the special case where β = βq is given by (1.7). The following
Pohozaev type identity, which is valid for any β, is the key to nonexistence. We denote
by SN−1

+ the half-sphere.

Proposition 2.1. Let S ( SN−1 be a C2 domain and φ the first eigenfunction of −1′ in
W

1,2
0 (SN−1

+ ). If ω ∈ W 1,p
0 (S) ∩ C(S) is a positive solution of (2.1) in S, and if we set

� = (β2ω2
+ |∇

′ω|2)1/2, then(
1−

1
p

)∫
∂S

|ων |
pφν dS = A

∫
S

ωq+1φ dσ +B

∫
S

�p−2
|∇
′ω|2φ dσ +C

∫
S

�p−2ω2φ dσ

(2.2)
with

A = A(β) := −
N − 1
q + 1

− β(pβ + p −N), (2.3)

B = B(β) :=
N − 1− p

p
+ β(pβ + p −N), (2.4)

C = C(β) := β2
(
N − 1
p
− (pβ + p −N)λ(β)

)
. (2.5)

In order to prove Proposition 2.1, we start with the following lemma.

Lemma 2.1. Let S ⊂ SN−1 be a C2 domain and φ ∈ C2(S). If ω ∈ W 1,p
0 (S) ∩ C(S) is

a positive solution of (2.1) in S, then(
1−

1
p

)∫
∂S

|ων |
pφν dS =

∫
S

(
1′φ

q + 1
− β(pβ + p−N)φ

)
ωq+1 dσ −

1
p

∫
S

�p1′φ dσ

+

∫
S

�p−2D2φ(∇ ′ω,∇ ′ω) dσ + β(pβ + p −N)

∫
S

�p−2
|∇
′ω|2φ dσ

− β2(pβ + p −N)λ(β)

∫
S

�p−2ω2φ dσ. (2.6)

Proof. By the regularity theory of p-Laplace type equations (see e.g. [6], [19] and Ap-
pendix in [13]) it turns out that ω ∈ C1,γ (S) for some γ ∈ (0, 1), and since β2ω2

+

|∇
′ω|2 > 0 in the interior, by elliptic regularity we have ω ∈ C2(S). Let φ ∈ C2(S)

be a given function and ζ ∈ C1
c (S); since ζ is compactly supported we can multiply
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(2.1) by the test function 〈∇ ′ω,∇ ′φ〉ζ . Integrating by parts we get (using the notation
� := (β2ω2

+ |∇
′ω|2)1/2)∫

S

�p−2
(

1
2
〈∇
′
|∇
′ω|2,∇ ′φ〉 +D2φ(∇ ′ω,∇ ′ω)

)
ζ dσ

+

∫
S

�p−2
〈∇
′ω,∇ζ 〉 〈∇ ′ω,∇ ′φ〉 dσ

= βλ(β)

∫
S

�p−2ω〈∇ ′ω,∇ ′φ〉 ζ dσ +
1

q + 1

∫
S

〈∇
′ωq+1,∇ ′φ〉 ζ dσ.

Since
�p−2 1

2
〈∇
′
|∇
′ω|2,∇ ′φ〉 =

1
p
〈∇
′�p,∇φ〉 − β2�p−2ω〈∇ ′ω,∇ ′φ〉

we obtain, due to (1.9),

1
p

∫
S

〈∇
′�p,∇ ′φ〉ζ dσ +

∫
S

�p−2D2φ(∇ ′ω,∇ ′ω) ζ dσ

+

∫
S

�p−2
〈∇
′ω,∇ ′ζ 〉〈∇ ′ω,∇ ′φ〉 dσ

= β(pβ + p −N)

∫
S

�p−2ω〈∇ ′ω,∇ ′φ〉 ζ dσ +
1

q + 1

∫
S

〈∇
′ωq+1,∇ ′φ〉 ζ dσ.

Integrating by parts the first and the last terms we get

−
1
p

∫
S

�p〈∇ ′φ,∇ ′ζ 〉 dσ +
1

q + 1

∫
S

ωq+1
〈∇
′φ,∇ ′ζ 〉 dσ +

∫
S

(
ωq+1

q + 1
−
�p

p

)
1′φ ζ dσ

+

∫
S

�p−2D2φ(∇ ′ω,∇ ′ω) ζ dσ +

∫
S

�p−2
〈∇
′ω,∇ ′ζ 〉 〈∇ ′ω,∇ ′φ〉 dσ

= β(pβ + p −N)

∫
S

�p−2ω〈∇ ′ω,∇ ′φ〉 ζ dσ. (2.7)

Now we choose ζ = ζδ , where ζδ is a sequence of compactly supported C1 functions
such that ζδ(σ )→ 1 for every σ ∈ S and |∇ ′ζδ| is bounded in L1(S). It is easy to see by
integration by parts that for every continuous vector field F ∈ C(S) we have∫

S

〈F,∇ ′ζδ〉 dσ →−

∫
∂S

〈F, ν(σ )〉 dσ

where ν is the outward unit normal on ∂S. We take ζ = ζδ in (2.7) and we let δ → 0.
Using that ω ∈ C1(S) and that, by the Hopf lemma, ων := 〈∇ ′ω, ν(σ )〉 < 0 we can
actually pass to the limit in the integrals containing ∇ ′ζδ . Recalling that ω = 0 and
∇
′ω = −|ων |ν on ∂S we obtain(
1−

1
p

)∫
∂S

|ων |
pφν dS =

∫
S

(
ωq+1

q + 1
−
�p

p

)
1′φ dσ +

∫
S

�p−2D2φ(∇ ′ω,∇ ′ω) dσ

− β(pβ + p −N)

∫
S

�p−2ω〈∇ ′ω,∇ ′φ〉 dσ. (2.8)
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Multiplying (2.1) by ωφ we derive∫
S

�p−2ω〈∇ ′ω,∇ ′φ〉 dσ

= −

∫
S

�p−2
|∇
′ω|2φ dσ + βλ(β)

∫
S

�p−2ω2φ dσ +

∫
S

ωq+1φ dσ,

so that (2.8) becomes, replacing its last term,(
1−

1
p

)∫
∂S

|ων |
pφν dS =

∫
S

(
ωq+1

q + 1
−
�p

p

)
1′φ dσ +

∫
S

�p−2D2φ(∇ ′ω,∇ ′ω) dσ

− β(pβ + p −N)

∫
S

ωq+1 φ dσ + β(pβ + p −N)

∫
S

�p−2
|∇
′ω|2φ dσ

− β2(pβ + p −N)λ(β)

∫
S

�p−2ω2φ dσ,

which is (2.6). ut

Proof of Proposition 2.1. We use Lemma 2.1 choosing in (2.6) φ to be the first eigen-
function of −1′ in W 1,2

0 (SN−1
+ ). Since 1′φ = (1−N)φ and D2φ = −φg0, we get(

1−
1
p

)∫
∂S

|ων |
pφν dS = −

∫
S

(
N − 1
q + 1

+ β(pβ + p −N)

)
ωq+1φ dσ

+
N − 1
p

∫
S

�pφ dσ −

∫
S

�p−2
|∇
′ω|2 φ dσ

+ β(pβ + p −N)

∫
S

�p−2
|∇
′ω|2φ dσ

− β2(pβ + p −N)λ(β)

∫
S

�p−2ω2φ dσ. (2.9)

Then, using also the definition of �, (2.2) follows, with A, B and C given by (2.3)-(2.5).
ut

We shall say that aC2 domain S ⊂ SN−1
+ is starshaped if there exists a spherical harmonic

φ of degree 1 such that φ > 0 on S and for any a ∈ ∂S,

〈∇φ, νa〉 ≤ 0 (2.10)

where νa is the unit outward normal vector to ∂S at a in the tangent plane Ta to SN−1.
It also means that there exists some x0 ∈ S such that the geodesic connecting x0 and a
remains inside S.

Theorem 2.1. Assume that 1 < p < N − 1, q = qc and S ⊂ SN−1
+ is starshaped. Then

(2.1) admits no positive solution in S vanishing on ∂S.
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Proof. Recall that in (1.8) we have βq = p/(q − (p − 1)), hence different values of q
are in one-to-one correspondence with different values of β. We first notice that if q = qc
then the corresponding critical β is given by

βc :=
p

qc − (p − 1)
=
N − 1− p

p
. (2.11)

We now use Proposition 2.1 with β = βq and we analyze the values of the coefficients A,
B, C given by (2.3)–(2.5) as functions of β. First of all, since q + 1 = p(1+ β)/β, we
have

A = −
(N − 1)β
p(1+ β)

− β(pβ + p −N) = −
β

β + 1

(
N − 1
p
+ p(β + 1)2 −N(β + 1)

)
,

and since from (2.11) we have βc + 1 = N−1
p

, we deduce

A = −
β

β + 1
p

(
β + 1−

1
p

)
(β − βc).

Still using (2.11), we also get

B = βc + β(p(β − βc)− 1) = (β − βc)(βp − 1).

Finally, using (1.9) and (2.11) we have

C = β2
(
N − 1
p
− (pβ + p −N)((p − 1)β + p −N)

)
= β2(βc + 1− (p(β − βc)− 1)(p(β − βc)− (β + 1)))

= β2(β − βc)(1− p)
(
pβ − 1−

p(N − p)

p − 1

)
. (2.12)

Therefore A ≥ 0, B ≥ 0 and C ≥ 0 can be obtained only if q = qc, i.e. β = βc, in
which case A = B = C = 0. Since φν ≤ 0 because S is starshaped, we deduce from
(2.2) that |ων |pφν = 0 on ∂S. Unless ω is identically zero, we have ων < 0 by the Hopf
lemma. Then φν ≡ 0, and using the equation satisfied by φ and the Gauss formula, we
derive

λS

∫
S

φ dσ = 0, so φ ≡ 0 in S,

which is impossible since φ > 0 in SN−1
+ . This proves the first assertion. ut

Remark. If p = 2, it is proved in [3] that the nonexistence result of Theorem 2.1 holds
for every q ≥ qc, which suggests that our result above is not optimal. The proof in [3] can-
not be applied here since the term

∫
S
�p−2ω〈∇ ′ω,∇ ′φ〉 dσ is completely integrable only

if p = 2. However, we conjecture that, even when p 6= 2, the conclusion of Theorem 2.1
holds under the more general condition q ≥ qc.
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Remark. If we assume that p 6= 2, the proof of Theorem 2.1 relies on the existence of a
positive function φ in S, satisfying (2.10) on ∂S and

1′φ

(q + 1)φ
− β(pβ + p −N) ≥ 0, (2.13)

pD2φ(ξ, ξ)−1′φ

pφ
+ β(pβ + p −N) ≥ 0 ∀ξ ∈ SN−1, (2.14)

−
1′φ

pφ
− (pβ + p −N)((p − 1)β + p −N) ≥ 0. (2.15)

Remark 2.1. For completeness, we recall the nonexistence result obtained in [2, Th. 1]:

Let ε = 1 and 0 < p − 1 < q. If βq ≥ βS , then there exists no positive solution of
(1.8) in S which vanishes on ∂S.

3. Existence for the reaction problem

Concerning the problem with reaction we consider a more general statement than Theo-
rem I, replacing the sphere by a complete d-dimensional Riemannian manifold (M, g)
and supposing that S is a relatively compact smooth open domain of M . We denote
by ∇ := ∇g the gradient of a function identified with its covariant derivatives, and by
div := divg the intrinsic divergence operator acting on vector fields. The following result
is proved in [13].

Theorem 3.1. For any β > 0 there exists a unique 3β > 0 and a unique (up to
homothety) positive function ωβ ∈ C2(S) ∩ C1(S) satisfying{
− div((β2ω2

β+|∇ωβ |
2)(p−2)/2

∇ωβ) = β3β(β
2ω2

β+|∇ωβ |
2)(p−2)/2ωβ in S,

ωβ = 0 on ∂S.
(3.1)

The mapping β 7→ 3β is continuous and decreasing, and the spectral exponent βS is the
unique β > 0 such that 3βS = βS(p − 1)+ p − d − 1.

Remark 3.1. Let us notice that the monotonicity character of β 7→ 3β implies that

0 < β < βS ⇔ 3β − β(p − 1) > 3βS − βS(p − 1) = p − d − 1.

Therefore, if we set λ(β) = β(p − 1)+ p − d − 1, we deduce that

0 < β < βS ⇔ 3β > λ(β). (3.2)

Let us now prove the existence of solutions for the reaction problem.

Theorem 3.2. Assume 1 < p < d and p − 1 < q < qc := pd/(d − p) − 1. Then for
any 0 < β < βS , there exists a positive function ω ∈ C(S) ∩ C2(S) satisfying{
− div((β2ω2

+|∇ω|2)p/2−1
∇ω) = βλ(β)(β2ω2

+|∇ω|2)p/2−1ω+ωq in S,
ω = 0 on ∂S,

(3.3)

where λ(β) = β(p − 1)+ p − d − 1.
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In order to prove Theorem 3.2, we use topological arguments as is often needed in a
nonvariational setting. In particular, following a strategy similar to [15], our proof is based
upon the following fixed point theorem which is a consequence of the Leray–Schauder
degree theory to compute the fixed point index of compact mappings. Such results were
developed mostly by Krasnosel’skiı̆ [9]; we refer to Proposition 2.1 and Remark 2.1 in
[5] for the statement below.

Theorem 3.3. Let X be a Banach space and K ⊂ X a closed cone with non-empty
interior. Let F : K × R+ → K be a compact mapping, and let 8(u) = F(u, 0) (a com-
pact mapping from K into K). Assume that there exist R1 < R2 and T > 0 such that

(i) u 6= s8(u) for every s ∈ [0, 1] and every u with ‖u‖ = R1.
(ii) F(u, t) 6= u for every (u, t) with ‖u‖ ≤ R2 and t ≥ T .

(iii) F(u, t) 6= u for every u with ‖u‖ = R2 and every t ≥ 0.

Then the mapping 8 has a fixed point u such that R1 < ‖u‖ < R2.

We also recall the following nonexistence results respectively due to Serrin and Zou [17]
and Zou [23].

Theorem 3.4. Assume 1 < p < d and p− 1 < q < qc. Then there exists no positive C1

solution of
−1pu = u

q (3.4)

in Rd .

Theorem 3.5. Assume 1 < p < d and p− 1 < q < qc. Then there exists no positive C1

solution of
−1pu = u

q (3.5)

in Rd+ := {x = (x1, . . . , xd) : xd > 0} vanishing on ∂Rd+ := {x = (x1, . . . , xd) :

xd = 0}.

Proof of Theorem 3.2. Define the operator A in W 1,p
0 (S) as

A(ω) := − divg((β2ω2
+ |∇ω|2)p/2−1

∇ω)+ β2 ω(β2ω2
+ |∇ω|2)p/2−1.

Note that A is the derivative of the functional

J (w) =
1
p

∫
S

(β2ω2
+ |∇ω|2)p/2 dvg.

Since J is strictly convex, A is a strictly monotone operator from W
1,p
0 (S) into

W−1,p′(S), hence its inverse is well defined and continuous [12]. In order to apply Theo-
rem 3.3, we denote by X = C1

0(S) the closure of C1
0(S) in C1(S). Clearly X ⊂ W 1,p

0 (S),
with continuous imbedding, if it is endowed with its natural norm ‖ · ‖X := ‖ · ‖C1(S).

Furthermore, since ∂S is C2, C1(S)∩W
1,p
0 (S) = C1

0(S). If K is the cone of nonnegative
functions in S, it has a nonempty interior. For t > 0, we set

F(ω, t) := A−1(β(λ(β)+ β + t)ω(β2ω2
+ |∇ω|2)p/2−1

+ (ω + t)q
)
.
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Note that

8(ω) := F(ω, 0) = A−1(β(λ(β)+ β)ω(β2ω2
+ |∇ω|2)p/2−1

+ ωq
)
;

hence any nontrivial fixed point for 8 would solve problem (3.3).
We have to verify the assumptions of Theorem 3.3. First of all, the compactness of

F(ω, t): If we set F(ω, t) = φ, then it means that φ ∈ W 1,p
0 (S) satisfies

− divg((β2φ2
+ |∇φ|2)p/2−1

∇φ)+ β2 φ(β2φ2
+ |∇φ|2)p/2−1

=
(
β(λ(β)+ β + t)ω(β2ω2

+ |∇ω|2)p/2−1
+ (ω + t)q

)
. (3.6)

Thus, if we assume that ω belongs to a bounded set in K ∩X, the right-hand side of (3.6)
is bounded in C(S). Hence, by standard regularity estimates up to the boundary for p-
Laplace type operators (see [13, Appendix] and [6], [19]), φ remains bounded in C1,α(S)

and therefore relatively compact in C1(S). It remains to show that conditions (i)–(iii) of
Theorem 3.3 hold.

Step 1: Condition (i) holds. Suppose for contradiction that there exists a sequence {sn}
in [0, 1] such that for any n ∈ N the problem

− divg((β2ω2
+ |∇ω|2)p/2−1

∇ω)+ β2(β2ω2
+ |∇ω|2)p/2−1ω

= sp−1β(λ(β)+ β)(β2ω2
+ |∇ω|2)p/2−1ω + s

p−1
n ωq in S,

ω = 0 on ∂S,
(3.7)

admits a positive solution ωn, and that

‖ωn‖X → 0 as n→∞.

Set wn = ωn/‖ωn‖; then wn solves
− divg((β2w2

n + |∇wn|
2)p/2−1

∇wn)+ β
2wn(β

2w2
n + |∇wn|

2)p/2−1

= s
p−1
n β(λ(β)+ β)(β2w2

n + |∇wn|
2)p/2−1wn + s

p−1
n w

q
n ‖wn‖

q−(p−1)
X in S,

wn = 0 on ∂S.

Up to subsequences, we assume that sn → s for some s ∈ [0, 1]. Using compactness
arguments we deduce that wn will converge strongly in C1(S) to some positive function
w such that ‖w‖X = 1 and− divg((β2w2

+ |∇w|2)p/2−1
∇w)

= β(sp−1λ(β)+ (sp−1
− 1)β)(β2w2

+ |∇w|2)p/2−1w in S,
w = 0 on ∂S.

(3.8)

Using Theorem 3.1, we derive 3β = sp−1λ(β) + (sp−1
− 1)β. Since β < βS , we have

λ(β) < 3β by (3.2). Therefore, as s ≤ 1, we get

sp−1λ(β)+ (sp−1
− 1)β ≤ sp−1λ(β) < 3β ,
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which is a contradiction. Consequently, there exists R1 > 0 such that for any s ∈ [0, 1],
we have ω 6= s8(ω) for any ω such that ‖ω‖X = R1.

Step 2: Condition (ii) holds. Consider the first eigenvalue λ1,β associated with the oper-
ator A, i.e.

λ1,β = min
{∫

S

(β2ω2
+ |∇ω|2)p/2 dvg : ω ∈ W

1,p
0 (S),

∫
S

|ω|p dvg = 1
}
. (3.9)

Note that for t large enough, we have λ(β)+ β + t ≥ 0, hence, using that q > p− 1, we
can find T > 0 such that

β(λ(β)+ β + t)ω(β2ω2
+ |∇ω|2)p/2−1

+ (ω+ t)q ≥ (λ1+ δ)ω
p−1

∀t ≥ T , ∀ω ≥ 0.

Therefore, if t ≥ T and F(ω, t) = ω we deduce that ω 6= 0 and satisfies{
− divg((β2ω2

+|∇ω|2)p/2−1
∇ω)+β2ω(β2ω2

+|∇ω|2)p/2−1
≥ (λ1,β+δ)ω

p−1 in S,
ω = 0 on ∂S.

The existence of a positive supersolution with λ1,β+δ would make it possible to construct
a positive solution as well. But since λ1,β is an isolated eigenvalue (see Appendix) this
yields a contradiction. Therefore, for t ≥ T the equation F(ω, t) = ω has no solution at
all. Note that T only depends on λ1, β.

Step 3: Condition (iii) holds. Since we proved that (ii) holds independently of the choice
of R2, it is enough to show that (iii) holds for every t ≤ T .

This is done if we have the existence of universal a priori estimates, i.e. if we can
prove the existence of a constant R2 such that for any t ≤ T every positive solution of− divg((β2ω2

+ |∇ω|2)p/2−1
∇ω)+ β2ω(β2ω2

+ |∇ω|2)p/2−1

= β(λ(β)+ β + t)(β2ω2
+ |∇ω|2)p/2−1ω + (ω + t)q in S,

ω = 0 on ∂S,

satisfies ‖ω‖ < R2.
The crucial step is to prove that there exist universal a priori estimates for the L∞-

norm (a bound for theW 1,p
0 -norm would follow immediately, and then a bound inX from

regularity theory). A standard procedure is to reach this result reasoning by contradiction
and using a blow-up argument. Indeed, if a universal bound does not exist, there exist a
sequence of solutions ωn and tn ≤ T such that

‖ωn‖∞→∞.

Let σn be the (local coordinates of) maximum points of ωn; up to subsequences, we have
σn→ σ0 ∈ S. Setting Mn = ‖ωn‖

−(q−(p−1))/p
∞ , define

vn(y) =
ωn(σn +Mny)

‖ωn‖∞
= M

p/(q−(p−1))
n ωn(σn +Mny).
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Then vn is a sequence of uniformly bounded solutions, which will be locally compact in
the C1-topology. Rescaling the equation and passing to the limit in nwe find that the limit
function v is positive and satisfies the equation

−1pv = c0v
q

for some constant c0 (coming from the local expression of the Laplace–Beltrami opera-
tor). Depending on whether σ0 ∈ S or σ0 ∈ ∂S, the equation holds either in Rd or in the
half-space Rd+, where d = N−1, in which case v vanishes on ∂Rd+. Since p−1 < q < qc,
this contradicts either Theorem 3.4, or Theorem 3.5, because, by construction, we have
v(0) = 1. ut

Remark. In the case p = 2, existence is proved in [3] using a standard variational
method. It is also proved that, if (M, g) = (Sd , g0) (the standard sphere), and if S is
a spherical cap with center a, then any positive solution of{

1′ω + β(β + 1− d))ω + ωq = 0 in S,
ω = 0 on ∂S, (3.10)

depends only on the angle θ from a. Furthermore, uniqueness is proved by a delicate
analysis of the nonautonomous second order O.D.E. satisfied by ω. In the case p 6= 2 and
assuming always that S is a spherical cap of (Sd , g0), it is still possible to construct a radial
(i.e. depending only on θ ) positive solution of (3.3): it suffices to restrict the functional
analysis framework to radial functions. However, there are two interesting open questions
the answer to which would be important:

(i) Are all positive solutions of (3.3) radial?
(ii) Is there uniqueness of positive radial solutions of (3.3)?

4. Existence for the absorption problem

Let us now consider the absorption problem, i.e. (1.8) with ε = −1. We give an existence
result which extends the previous ones obtained in [20], with a simpler proof.

Theorem 4.1. Assume 0 < p − 1 < q. Then for any β > βS , there exists a unique
positive function ω ∈ C(S) ∩ C2(S) satisfying{
− divg((β2ω2

+|∇ω|2)p/2−1
∇ω) = βλ(β)(β2ω2

+|∇ω|2)p/2−1ω−ωq in S,
ω = 0 on ∂S,

(4.1)
where λ(β) = β(p − 1)+ p − d − 1.

To prove Theorem 4.1, we will need the following lemma.

Lemma 4.1. For β > 0 and p > 1, let 3β and βS be defined by Theorem 3.1. Then both
3β and βS are continuous functions of p, varying in (1,∞).
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Proof. By Theorem 3.1, 3β is uniquely defined for any fixed p > 1. To emphasize
the dependence of 3β on p, let us denote it now by 3β,p. The continuity of 3β,p with
respect to p can be proved in the same way as we proved (see Proposition 2.4 in [13]) the
continuity of 3β,p with respect to β. Thus, we only sketch the argument, which relies on
the construction itself of3β,p. Indeed, we proved in [13] that3β,p is the unique constant
such that there exists a function v ∈ C2(S) satisfying−1gv − (p − 2)

D2v∇v.∇v

1+ |∇v|2
+ β(p − 1)|∇v|2 = −3β,p in S,

lim
σ→∂S

v(σ ) = ∞.
(4.2)

If we normalize v by setting, for example, v(σ0) = 0 for some σ0 ∈ S, then v is unique.
Moreover v ∈ C2(S) and v satisfies estimates in W 1,∞

loc (S) which are uniform as β ∈
(0,∞) and p ∈ (1,∞) vary in compact sets. It is also easy to check (see [13]) that
3β,p remains bounded whenever β varies in a compact subset of (0,∞) and p vary in
a compact subset of (1,∞). The estimates obtained on v and ∇v imply that, whenever
βn or pn are convergent sequences, the sequence of the corresponding solutions vn of
(4.2) (such that vn(σ0) = 0) is relatively compact (locally uniformly in C1). The equation
(4.2) turns out then to be stable (including the boundary estimates); finally, the uniqueness
property of 3β,p, and of the associated (normalized) solution v, implies the continuity of
3β,p with respect to both β and p.

Let now βS,p be the spectral exponent defined by the equation

3β,p = β(p − 1)+ p − d − 1. (4.3)

First of all note that when p lies in a compact set in (1,∞), then necessarily βS,p is
bounded. Indeed, since 3β,p ≤ 31,p whenever β ≥ 1, we have

βS(p − 1)+ p − d − 1 ≤ 31,p if βS ≥ 1,

so that
βS ≤ 1+

1
p − 1

(31,p − (p − d − 1)).

Therefore, if p belongs to a compact set in (1,∞), then βS remains also in a bounded set.
Now, if pn→ p0, setting βn = βS,pn , we see that βn is bounded and, up to subsequences,
it is convergent to some β0. From (4.3), we deduce that3βn,pn is bounded, which implies
that βn cannot converge to zero, hence β0 > 0. Then, using the continuity of 3β,p, we
can pass to the limit in (4.3) and we deduce that β0 is the spectral exponent with p = p0,
i.e. β0 = βS,p0 . This proves that βS,p is continuous with respect to p. ut

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1

Step 1: construction of a solution. We use similar ideas to the proof of Theorem 3.2, i.e. a
topological degree argument. On the Banach space X = C1

0(S) (endowed with its natural
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norm) with positive cone K , we set

B(ω) = − divg((β2ω2
+ |∇ω|2)p/2−1

∇ω)+ β2(β2ω2
+ |∇ω|2)p/2−1ω + |ω|q−1ω,

9(ω) = B−1(β(λ(β)+ β)(β2ω2
+ |∇ω|2)p/2−1ω+

)
.

Clearly, 9(w) = w implies that w ≥ 0 and solves (4.1). Then, it is enough to prove
the existence of a nontrivial fixed point for 9. Observe that, as in Theorem 3.2, 9 is a
continuous compact operator in X thanks to the C1,α estimates for p-Laplace operators,
and 9(K) ⊂ K .

We now wish to compute the degree of I − 9. First of all we consider, if R is suffi-
ciently large, deg(I − 9,B+R , 0) where B+R = BR ∩K for t ∈ [0, 1]. To this end, define
9∗(ω, t) = t9(ω). Then 9∗ is a compact map on X × [0, 1] and if 9∗(ω, t) = ω, we
have

− divg((β2ω2
+ |∇ω|2)p/2−1

∇ω)+ β2(β2ω2
+ |∇ω|2)p/2−1ω +

1
tq−(p−1)ω

q

= tp−1β(λ(β)+ β)(β2ω2
+ |∇ω|2)p/2−1ω. (4.4)

We get, by the maximum principle,∥∥∥∥ωt
∥∥∥∥q−(p−1)

∞

≤ tp−1βp−1(λ(β)+ β) ≤ βp−1(λ(β)+ β).

Since t ≤ 1, we deduce in particular that ‖ω‖∞ is bounded independently of t . Then, we
have

1
tq−(p−1)ω

q
≤

∥∥∥∥ωt
∥∥∥∥q−(p−1)

∞

‖ω‖
p−1
∞ ≤ C‖ω‖

p−1
∞ ≤ C.

Multiplying by ω we obtain a similar bound for ‖ω‖
W

1,p
0 (S)

, and the regularity theory
for p-Laplace type equations yields a further estimate on ‖∇ω‖∞. Therefore, we con-
clude that there exists a constant M , independent of t ∈ [0, 1], such that t9(ω) = ω

implies ‖ω‖X ≤ M . As a consequence, if R is sufficiently large we have t9(ω) 6= ω on
∂BR . We deduce that deg(I − t9, B+R , 0) is constant. Therefore

deg(I −9,B+R , 0) = deg(I − t9, B+R , 0) = deg(I, B+R , 0) = 1.

Next, we compute deg(I −9,B+r , 0) for small r . We set

Bt (ω) = − divg((β2ω2
+ |∇ω|2)p/2−1

∇ω)+ β2(β2ω2
+ |∇ω|2)p/2−1ω + t |ω|q−1ω,

F(ω, t) = Bt
−1(β(λ(β)+ β)ω+(β2ω2

+ |∇ω|2)p/2−1).
Again, we have 9(·) = F(·, 1). We claim that there exists a small r > 0 such that
F(ω, t) 6= ω for every t ∈ [0, 1] and ω ∈ ∂Br . Indeed, if this were not true there would
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exist a nonnegative sequence ωn such that 0 6= ‖ωn‖ → 0, and tn ∈ [0, 1] such that
F(ωn, tn) = ωn, which means that

− divg((β2ω2
n + |∇ωn|

2)p/2−1
∇ωn)+ β

2(β2ω2
n + |∇ωn|

2)p/2−1ωn + tnω
q
n

= β(λ(β)+ β)ωn(β
2ω2

n + |∇ωn|
2)p/2−1.

Dividing by ‖ωn‖p−1 and letting n→∞, we find that ωn/‖ωn‖ would converge to some
function ω̂ such that ω̂ ≥ 0, ‖ω̂‖ = 1 and

− divg((β2ω̂2
+ |∇ω̂|2)p/2−1

∇ω̂)+ β2(β2ω̂2
+ |∇ω̂|2)p/2−1ω̂

= β(λ(β)+ β)ω̂(β2ω̂2
+ |∇ω̂|2)p/2−1.

By Theorem 3.1 this means that λ(β) = 3β , which is not possible since λ(β) > 3β
because β > βS (see Remark 3.1). We conclude that F(ω, t) 6= ω for every t ∈ [0, 1]
and ω ∈ ∂Br provided r is sufficiently small. We deduce that deg(I − F(·, t), Br , 0) is
constant and in particular

deg(I −9,B+r , 0) = deg(I − F(·, 0), B+r , 0).

In order to compute this degree, we perform a homotopy acting on p and β by setting
pt = 2t + (1 − t)p and by taking βt so that t 7→ βt is continuous on [0, 1], β0 = β,
βt > βS,pt for every t ∈ [0, 1] (where βS,pt is the spectral exponent for S with p = pt )
and β1 > 0 is large enough. It follows from Lemma 4.1 that βS,pt is a continuous function
of t and remains bounded as t ∈ [0, 1]. Therefore, a similar choice of a function βt is
possible. In the space C1

0(S) we define the mapping Ct by

Ct (ω) = − divg((β2
t ω

2
+ |∇ω|2)pt/2−1

∇ω)+ β2
t (β

2
t ω

2
+ |∇ω|2)pt/2−1ω.

We set
F̃ (ω, t) = C−1

t

(
βt (λ(βt )+ βt )(β

2
t ω

2
+ |∇ω|2)pt/2−1ω

)
.

Combining Tolksdorf’s construction [19] which shows the uniformity with respect to
pt of the C1,α estimates (with α = αt ∈ (0, 1)), with the perturbation method of [13,
Th. A1], we deduce that (ω, t) 7→ F̃ (ω, t) is compact in C1

0(S)×[0, 1]. Since βt > βS,pt ,
clearly I − F̃ (·, t) does not vanish on ‖ω‖X = r for any r > 0, which implies that

deg(I −9,B+r , 0) = deg(I − F̃ (·, 0), B+r , 0) = deg(I − F̃ (·, 1), B+r , 0).

But
I − F̃ (·, 1) = I − β1(λ(β1)+ β1)(−1g + β

2
1 )
−1.

Since−1g has only one eigenvalue in S with positive eigenfunction and multiplicity one,
choosing β1 so large that λ(β1)β1 > λ1(S) it follows that

deg(I − F̃ (·, 1), B+r , 0) = −1 = deg(I −9,B+r , 0).
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To conclude, since

deg(I −9,B+R \ B
+

r , 0) = deg(I −9,B+R , 0)− deg(I −9,B+r , 0) 6= 0

we deduce the existence of some ω such that r < ‖ω‖ < R which is a solution of (4.1).

Step 2: uniqueness. If ω is any positive solution, then β2ω2
+|∇ω2

| is positive in S. This
is obvious in S and it is a consequence of the Hopf boundary lemma on ∂S. Let ω and ω
be two positive solutions. Either the two functions are ordered or their graphs intersect.
Since all the solutions are positive in S and satisfy the Hopf boundary lemma, we can
define

θ := inf{s ≥ 1 : sω ≥ ω},

and denote ω∗ := θω. Either the graphs of ω and ω∗ := θω are tangent at some interior
point α ∈ S, or ω∗ > ω in S and there exists α ∈ ∂S such that ων(α) = ω∗ν(α) < 0.
We put w = ω − ω∗ and use local coordinates (σ1, . . . , σd) on M near α. We denote by
g = (gij ) the metric tensor on M and gjk its contravariant components. Then, for any
ϕ ∈ C1(S),

|∇ϕ|2 =
∑
j,k

gjk
∂ϕ

∂σj

∂ϕ

∂σk
= 〈∇ϕ,∇ϕ〉g.

If X = (X1, . . . , Xd) ∈ C1(TM) is a vector field, if we lower indices by setting
X` =

∑
i g
`iXi , then

divg X =
1
√
|g|

∑
`

∂

∂σ`
(
√
|g|X`) =

1
√
|g|

∑
`,i

∂

∂σ`
(
√
|g|g`iXi).

By the mean value theorem applied to

t 7→ 8(t) = (β2(ω∗ + tw)
2
+ |∇(ω∗ + tw)|2)p/2−1(ω∗ + tw), t ∈ [0, 1],

we have, for some t ∈ (0, 1),

(β2ω2
+ |∇ω|2)p/2−1ω − (β2ω∗

2
+ |∇ω∗|2)p/2−1ω∗ =

∑
j

aj
∂w

∂σj
+ bw,

where

b =
(
β2(ω∗ + tw)

2
+ |∇(ω∗ + tw)|2

)p/2−2(
(p − 1)β2(ω∗ + tw)2 + |∇(ω∗ + tw)|2

)
and

aj = (p − 2)(β2(ω∗ + tw)
2
+ |∇(ω∗ + tw)|2)p/2−2(ω∗ + tw)

∑
k

gjk
∂(ω∗ + tw)

∂σk
.

Considering now

t 7→ 8i(t) = (β
2(ω∗ + tw)

2
+ |∇(ω∗ + tw)|2)p/2−1 ∂(ω

∗
+ tw)

∂σi
, t ∈ [0, 1],
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we see that there exists some ti ∈ (0, 1) such that

(β2ω2
+ |∇ω|2)p/2−1 ∂ω

∂σi
− (β2ω∗

2
+ |∇ω∗|2)p/2−1 ∂ω

∗

∂σi
=

∑
j

aij
∂w

∂σj
+ biw,

where

bi = (p − 2)(β2(ω∗ + tiw)
2
+ |∇(ω∗ + tiw)|

2
)p/2−2β2(ω∗ + tiw)

∂(ω∗ + tiw)

∂σi

and

aij = (p − 2)(β2(ω∗ + tiw)
2
+ |∇(ω∗ + tiw)|

2
)p/2−2 ∂(ω

∗
+ tiw)

∂σi

∑
k

gjk
∂(ω∗ + tiw)

∂σk

+ δ
j
i (β

2(ω∗ + tiw)
2
+ |∇(ω∗ + tiw)|

2
)p/2−1.

Set P = ω∗(α) = ω(α) and Q = ∇ω∗(α) = ∇ω(α). Then P 2
+ |Q|2 > 0 and

bi(α) = (p − 2)(β2P 2
+ |Q|2)p/2−2β2 PQi,

and

aij (α) = (β
2P 2
+ |Q|2)p/2−2

(
δ
j
i (β

2P 2
+ |Q|2)+ (p − 2)Qi

∑
k

gjkQk

)
.

Because ω∗ is a supersolution for (4.1), the function w satisfies

−
1
√
|g|

∑
`,j

∂

∂σ`

(
Aj`

∂w

∂σj

)
+

∑
i

Ci
∂w

∂σi
+Dw ≤ 0 (4.5)

where the Ci and D are continuous functions and

Aj` =
√
|g|
∑
i

g`iaij .

The matrix (aij )(α) is symmetric and positive definite since it is the Hessian of

x = (x1, . . . , xd) =
1
p
(P 2
+ |x|2)p/2 =

1
p

(
P 2
+

∑
j,k

gjkxjxk

)p/2
.

Therefore the matrix (Aj`) keeps the same property in a neighborhood of a. Since w is
nonpositive and vanishes at some a ∈ S, or w < 0 and wν = 0 at some boundary point, it
follows from the strong maximum principle or the Hopf boundary lemma (see [14]) that
w ≡ 0, i.e. θω = ω. This implies that actually θ = 1 and ω = ω. ut
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5. Appendix

Here we prove the following result:

Theorem 5.1. Let S be a subdomain of a complete d-dimensional Riemannian mani-
fold (M, g). If β > 0 and p > 1, then the first eigenvalue λ1,β of the operator ω 7→
− div((β2ω2

+ |∇ω|2)p/2−1
∇ω) + β2ω(β2ω2

+ |∇ω|2)p/2−1 in W 1,p
0 (S) is isolated.

Furthermore any corresponding eigenfunction has constant sign.

Proof. The proof is an adaptation of the original one due to Anane [1] and Lindqvist [10,
11] when β = 0. We recall that

λ1,β = inf
{∫

S

(β2ω2
+ |∇ω|2)p/2 dvg : ω ∈ W

1,p
0 (S),

∫
|ω|p dvg = 1

}
, (5.1)

and that there exists ω ∈ W 1,p
0 (S) ∩ C1,α(S) such that

− div((β2ω2
+ |∇ω|2)p/2−1

∇ω)+ β2ω(β2ω2
+ |∇ω|2)p/2−1

= λ1,β |ω|
p−2ω in S.

(5.2)
The function |ω| is also a minimizer for λ1,β , thus it is a positive solution of (5.2). By the
Harnack inequality [16], for any compact subset K of S, there exists CK such that

|ω|(σ1)

|ω|(σ2)
≤ CK ∀σi ∈ K, i = 1, 2.

Thus any minimizer ω must keep a constant sign in S. If λ1,β is not isolated, there exists a
decreasing sequence {µn} of real numbers converging to λ1,β and a sequence of functions
ωn ∈ W

1,p
0 (S) satisfying

− div(β2ω2
n+|∇ωn|

2)p/2−1
∇ωn)+β

2ωn(β
2ω2

n+|∇ωn|
2)p/2−1

= µn|ωn|
p−2ωn in S

(5.3)
such that ‖ωn‖Lp(S) = 1. By standard compactness and regularity results, we can assume
that ωn→ ω weakly in W 1,p

0 (S) and strongly in Lp(S). Thus∫
S

(β2ω2
+ |∇ω|2)p/2 dvg ≤ lim inf

n→∞

∫
S

(β2ω2
n + |∇ωn|

2)p/2 dvg = λ1,β ,

which implies that ω is an eigenfunction associated with λ1,β .
We observe that ωn cannot have constant sign. Indeed, if ωn were positive in �, we

could proceed as in the proof of Theorem 4.1, Step 2; up to rescaling ωn, we could assume
that w = ω − ωn is nonpositive, is not zero, and the graphs of ω and ωn are tangent. In
that case, using (5.2) and (5.3), we see that w satisfies a nondegenerate elliptic equation
(as in (4.5)), and we obtain a contradiction either by the strict maximum principle or by
the Hopf lemma. Thus, any eigenfunction ωn must change sign in �. Set S+n = {σ ∈ S :
ωn(σ ) > 0} and S−n = {σ ∈ S : ωn(σ ) < 0}. Clearly, for 0 < θ < 1,∫

S±n

(β2ω2
n + |∇ωn|

2)p/2 dvg ≥ (1− θ)βp
∫
S±n

|ωn|
p dvg + θ

∫
S±n

|∇ωn|
p dvg.
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It follows from (5.3), multiplying by ω+n , that∫
S+n

(β2ω2
n + |∇ωn|

2)p/2 dvg = µn

∫
S+n

|ωn|
p dvg,

hence

µn

∫
S+n

|ωn|
p dvg ≥ (1− θ)βp

∫
S+n

|ωn|
p dvg + θ

∫
S+n

|∇ωn|
p dvg.

Since for some suitable q > p (for example q = p∗ if p < d, or any p < q < ∞ if
p ≥ d)∫

S+n

|∇ωn|
p dvg ≥ c(p, q)

(∫
S+n

|ωn|
q dvg

)p/q
≥ c(p, q)|S+n |

(p−q)/q

∫
S+n

|ωn|
p dvg

we obtain
µn ≥ (1− θ)βp + θc(p, q)|S+n |

(p−q)/q .

Similarly we get, multiplying (5.3) by ω−n ,

µn ≥ (1− θ)βp + θc(p, q)|S−n |
(p−q)/q .

It follows that the two sets
S± = lim sup

n→∞
S±n

have positive measure. Since ω ≥ 0 on S+ and ω ≤ 0 on S−, we derive a contradiction
with the fact that any eigenfunction corresponding to λ1,β has constant sign. ut
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[13] Porretta, A., Véron, L.: Separable p-harmonic functions in a cone and related quasilin-

ear equations on manifolds. J. Eur. Math. Soc. 11, 1285–1305 (2009) Zbl 1203.35101
MR 2557136

[14] Protter, M., Weinberger, H.: Maximum Principles in Differential Equations. Prentice-Hall
(1967) Zbl 0153.13602 MR 0219861

[15] Quaas, A., Sirakov, B.: Existence results for nonproper elliptic equations involving the
Pucci operator. Comm. Partial Differential Equations 31, 987–1003 (2006) Zbl 1237.35056
MR 2254600

[16] Serrin, J.: Local behavior of solutions of quasi-linear equations. Acta Math. 111, 247–302
(1964) Zbl 0128.09101 MR 0170096

[17] Serrin, J., Zou, H. H.: Cauchy–Liouville and universal boundedness theorems for quasilin-
ear elliptic equations and inequalities. Acta Math. 189, 79–142 (2002) Zbl 1059.35040
MR 1946918

[18] Tolksdorf, P.: On the Dirichlet problem for quasilinear equations in domains with conical
boundary points. Comm. Partial Differential Equations 8, 773–817 (1983) Zbl 0515.35024
MR 0700735

[19] Tolksdorf, P.: Regularity for a more general class of quasilinear elliptic equations. J. Differ-
ential Equations 51, 126–150 (1984) Zbl 0488.35017 MR 0727034
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