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Abstract. In 1997, Chekanov gave the first example of a Legendrian nonsimple knot type: the
m(52) knot. Epstein, Fuchs, and Meyer extended his result by showing that there are at least n
different Legendrian representatives with maximal Thurston–Bennequin number of the twist knot
K−2n with crossing number 2n + 1. In this paper we give a complete classification of Legen-
drian and transverse representatives of twist knots. In particular, we show that K−2n has exactly
dn2/2e Legendrian representatives with maximal Thurston–Bennequin number, and dn/2e trans-
verse representatives with maximal self-linking number. Our techniques include convex surface
theory, Legendrian ruling invariants, and Heegaard Floer homology.
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1. Introduction

Throughout this paper, we consider Legendrian and transverse knots in R3 with the stan-
dard contact structure ξst = ker(dz− y dx).

A twist knot is a twisted Whitehead double of the unknot, specifically, any knot
K = Km of the type shown in Figure 1. Twist knots have long been an important class
of knots to consider, particularly in contact geometry. If Legendrian knots in a given
topological knot type are determined up to Legendrian isotopy by their classical invari-
ants, namely their Thurston–Bennequin and rotation numbers, then the knot type is said
to be Legendrian simple; otherwise it is Legendrian nonsimple. While there is no rea-
son to believe all knot types should be Legendrian simple, it has historically been dif-
ficult to prove otherwise. Chekanov [C] and, independently, Eliashberg [El2] developed
invariants of Legendrian knots that show that K−4 = m(52) has Legendrian representa-
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Fig. 1. The twist knot Km; the box contains m right-handed half-twists if m ≥ 0, and |m| left-
handed half-twists if m < 0.

tives that are not determined by their classical invariants, providing the first example of
a Legendrian nonsimple knot. Shortly thereafter, Epstein, Fuchs, and Meyer [EFM] gen-
eralized the result of Chekanov and Eliashberg to show that Km is Legendrian nonsimple
for all m ≤ −4, and in fact that these knot types contain an arbitrarily large number
of Legendrian knots with the same classical invariants. Again these were the first such
examples.

One can also ask if a knot is transversely simple, that is, are transverse knots in that
knot type determined by their self-linking number? It is more difficult to prove transverse
nonsimplicity than Legendrian nonsimplicity. In particular, there are knot types that are
Legendrian nonsimple but transversely simple [EH2], whereas any transversely nonsim-
ple knot must be Legendrian nonsimple as well. The first examples of transversely non-
simple knots were produced in 2005–6 by Birman and Menasco [BM], and Etnyre and
Honda [EH3]. It has long been suspected that some twist knots are transversely nonsim-
ple, and this was proven very recently by Ozsváth and Stipsicz [OS] using the transverse
invariant in Heegaard Floer homology from [LOSS].

Although twist knots have long supplied a useful test case for new Legendrian in-
variants, such as contact homology and Legendrian Heegaard Floer invariants (cf. the
work of Epstein–Fuchs–Meyer and Ozsváth–Stipsicz above), a complete classification of
Legendrian and transverse twist knots has been elusive. In this paper, we establish this
classification and in particular identify which twist knots are Legendrian and transversely
nonsimple. As a byproduct, we obtain a complete classification of an infinite family of
transversely nonsimple knot types. This is one of the first (Legendrian or transversely)
nonsimple families where a classification is known; see also [ELT].

Theorem 1.1 (Classification of Legendrian twist knots). Let K = Km be the twist knot
of Figure 1, with m half-twists. We discard the case m = −1, which is the unknot.

(1) For m ≥ −2 even, there is a unique representative of Km with maximal Thurston–
Bennequin number, tb = −m − 1. This representative has rotation number rot =
0, and all other Legendrian knots of type Km destabilize to the one with maximal
Thurston–Bennequin number.

(2) For m ≥ 1 odd, there are exactly two representatives with maximal Thurston–Benne-
quin number, tb = −m− 5. These representatives are distinguished by their rotation
numbers, rot = ±1, and a negative stabilization of the rot = 1 knot is isotopic to a
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positive stabilization of the rot = −1 knot. All other Legendrian knots destabilize to
at least one of these two.

(3) For m ≤ −3 odd, Km has −(m+ 1)/2 Legendrian representatives with (tb, rot) =
(−3, 0). All other Legendrian knots destabilize to one of these. After any positive
number of stabilizations (with a fixed number of positive and negative stabilizations),
these −(m+ 1)/2 representatives all become isotopic.

(4) For m ≤ −2 even with m = −2n, Km has dn2/2e different Legendrian representa-
tions with (tb, rot) = (1, 0). All other Legendrian knots destabilize to one of these.
These Legendrian knots fall into dn/2e different Legendrian isotopy classes after any
given positive number of positive stabilizations, and dn/2e different Legendrian iso-
topy classes after any given positive number of negative stabilizations. After at least
one positive and one negative stabilization (with a fixed number of each), the knots
all become Legendrian isotopic.

In particular, Km is Legendrian simple if and only if m ≥ −3.

The content of Theorem 1.1 is depicted in the Legendrian mountain ranges in Figures 2–4.
The Legendrian representatives of Km with maximal Thurston–Bennequin number will
be given in Section 3. Note that the cases −3 ≤ m ≤ 2 in Theorem 1.1 were already
known by the classification of Legendrian unknots by Eliashberg and Fraser [EF] and
Legendrian torus knots and the figure eight knot by Etnyre and Honda [EH1].
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Fig. 2. Schematic Legendrian mountain range for K2n (n ≥ −1) (left) and K2n−1 (n ≥ 1) (right).
Rotation number is plotted in the horizontal direction, Thurston–Bennequin number in the vertical
direction. The numbers represent the number of Legendrian representatives for a particular (tb, rot)
(here, all numbers are 1 since these knot types are Legendrian simple), and the signed arrows
represent positive and negative stabilization.
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Fig. 3. Legendrian mountain range for K−2n−1 (n ≥ 1).



972 John B. Etnyre et al.

dn2/2e
+
��

−
��

dn/2e
+
��

−
��

dn/2e
+
��

−
��

dn/2e

dn/2e
+
��

−
��

1
+
��

−
��

1

dn/2e
+
��

−
��

1dn/2e

Fig. 4. Legendrian mountain range for K−2n (n ≥ 1).

Theorem 1.2 (Classification of transverse twist knots). Let K = Km be the twist knot
of Figure 1, with m half-twists.

(1) If m is even and m ≥ −2 or m is odd, then Km is transversely simple. Moreover, the
transverse representative of Km with maximal self-linking number has sl = −m− 1
if m ≥ −2 is even, sl = −m− 4 if m > −1 is odd, sl = −1 if m = −1, and sl = −3
if m < −1 is odd.

(2) If m ≤ −4 is even with m = −2n, then Km is transversely nonsimple. There are
dn/2e distinct transverse representatives of Km with maximal self-linking number
sl = 1. Any two of these become transversely isotopic after a single stabilization, and
all other transverse representatives of Km destabilize to one of these.

We prove these classification theorems by using convex surface techniques, along the
lines of the recipe described in [EH1], to produce an exhaustive list of all nondestabi-
lizable Legendrian twist knots. This is the most technically difficult part of the proof
and is deferred until Section 4. Given this list, we use the Legendrian ruling invariants
of Pushkar’–Chekanov and Fuchs, along with the aforementioned result of Ozsváth–
Stipsicz, to distinguish nonisotopic classes of Legendrian and transverse twist knots; this
is done in Section 3. We begin with a review of some necessary background in Section 2.

2. Background and preliminary results

In this section we recall some basic facts about convex surfaces and bypasses, as well as
ruling invariants of Legendrian knots.

2.1. Convex surfaces and bypasses

Convex surfaces are the primary tool we will use in this paper. We assume the reader is
familiar with this theory at the level found in [EH1, G, H]. For the convenience of the
reader and to clarify various orientation issues we will briefly recall some of the facts
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about convex surfaces most germane to the proofs below, but for the basic definitions and
results the reader is referred to the above references.

Recall that if 6 is a convex surface and α a Legendrian arc in 6 that intersects the
dividing curves 06 in three points p1, p2, p3 (where p1, p3 are the endpoints of the arc),
then a bypass for 6 (along α) is a convex disk D with Legendrian boundary such that

• D ∩6 = α,
• tb(∂D) = −1,
• ∂D = α ∪ β,
• α ∩ β = {p1, p3} are corners of D and elliptic singularities of Dξ .

The most basic property of bypasses is how a convex surface changes when pushed across
a bypass.

Theorem 2.1 (Honda [H]). Let 6 be a convex surface and D a bypass for 6 along
α ⊂ 6. Inside any open neighborhood of 6 ∪ D there is a (one-sided) neighborhood
N = 6 × [0, 1] of 6 ∪ D with 6 = 6 × {0} 6(if 6 is oriented, orient N so that
6 = −6 × {0} as oriented manifolds) such that 06 is related to 06×{1} as shown in
Figure 5.

aα

Fig. 5. Result of a bypass attachment: original surface 6 with attaching arc α (left); the surface
6′ = 6 × {1} (right). The dividing curves 06 and 06′ are shown as thicker curves.

In the above discussion the bypass is said to be attached from the front. To attach a bypass
from the back one needs to change the orientation of the interval [0, 1] in the above
theorem and mirror Figure 5.

If 6 and 6′ are two convex surfaces, ∂6′ is a Legendrian curve contained in 6,
and 6 ∩ 6′ = ∂6′, then if 6′ has a boundary-parallel dividing curve (and there are
other dividing curves on 6′) then one can always find a bypass for 6 contained in 6′
(and containing the boundary-parallel dividing curve). This is a simple application of the
Legendrian realization principle [K]. It is useful to be able to find bypasses in other ways
too. For this we have the notion of bypass rotation.

Lemma 2.2 (Honda, Kazez, and Matić [HKM]). Suppose 6 is a convex surface con-
taining a disk D such that D ∩ 06 is as shown in Figure 6. Also suppose δ and δ′ are as
shown in the figure. If there is a bypass for 6 attached along δ from the front side of the
diagram, then there is a bypass for 6 attached along δ′ from the front.

We end our brief review of convex surfaces by describing how two convex surfaces that
come together along a Legendrian circle in their boundary can be made into a single
convex surface by rounding their corners.
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d2δ
′ δ

Fig. 6. If there is a bypass for δ then there is one for δ′ as well.

Lemma 2.3 (Honda [H]). Suppose that 6 and 6′ are convex surfaces with dividing
curves 0 and 0′ respectively, and ∂6′ = ∂6 is Legendrian. Model 6 and 6′ in R3 by
6 = {(x, y, z) : x = 0, y ≥ 0} and 6′ = {(x, y, z) : y = 0, x ≥ 0}. Then we may form a
surface 6′′ from S = 6 ∪ 6′ by replacing S in a small neighborhood N of ∂6 (thought
of as the z-axis) with the intersection of N with {(x, y, z) : (x − δ)2 + (y − δ)2 = δ2}.
For a suitably chosen δ, 6′′ will be a smooth surface (actually just C1, but it can then be
smoothed by a C1 small isotopy which can easily be seen not to change the characteristic
foliation) with dividing curve as shown in Figure 7.

Fig. 7. Rounding a corner between two convex surfaces. On the left, 6 ∪6′; on the right, 6′′.

In this lemma, rounding a corner causes the dividing curves on the two surfaces to connect
up as follows: moving from 6 to 6′, the dividing curves move up (resp. down) if 6′ is to
the right (resp. left) of 6.

2.2. Ruling invariants

In order to distinguish between Legendrian isotopy classes of twist knots in Section 3, we
use invariants of Legendrian knots in standard contact R3 known as the ρ-graded ruling
invariants, as introduced by Pushkar’–Chekanov [PC] and Fuchs [F]. Here we very briefly
recall the relevant definitions and results; for further details, see, e.g., the above papers
or [Et].

Given the front (xz) projection of a Legendrian knot in R3, a ruling is a one-to-one
correspondence between left and right cusps, along with a decomposition of the front as
a union of pairs of paths beginning at a left cusp and ending at the corresponding right
cusp, satisfying the following conditions:
• all paths are smooth except possibly at double points (crossings) in the front, and never

change direction with respect to x-coordinate;
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• the two paths for a particular pair of cusps do not intersect except at the two cusp
endpoints;
• any two arbitrary paths intersect at most at cusps and crossings;
• at a crossing where two paths (which must necessarily have different endpoints) inter-

sect and one lies entirely above the other (such a crossing is a switch), the two paths
and their companion paths must be arranged locally as in Figure 8.

allowed switches disallowed switches

Fig. 8. Allowed and disallowed switches in a ruling. In each diagram, the two solid arcs are paired
together (i.e., share cusp endpoints), as are the two dashed arcs. Other pairs of arcs, which may be
present, are not shown.

See Figure 9 for examples of rulings; note that a ruling is uniquely determined by its
switches, and can be thought of as a “partial 0-resolution” of the front.

Fig. 9. Rulings of Legendrian versions of the twist knotsK−4,K3, andK4. Dots indicate switches.

One can refine the concept of a ruling by considering Maslov degrees. Removing the
2c left and right cusps from a front (not necessarily with a ruling) yields 2c arcs, each
connecting a left cusp to a right cusp. If rot is the rotation number of the front, then we
can assign integers (Maslov numbers) mod 2 rot to each of these arcs so that at each cusp,
the upper arc (with higher z coordinate) has Maslov number 1 greater than the lower arc;
for a connected front, these numbers are well-defined up to adding a constant to all arcs.
To each crossing in the front, we can define the Maslov degree to be the Maslov number
of the strand with more negative slope minus the Maslov number of the strand with more
positive slope. Finally, if ρ is any integer dividing 2 rot, then we say that a ruling of the
front is ρ-graded if all switches have Maslov degree divisible by ρ. In particular, a 1-
graded ruling (also known as an ungraded ruling) is a ruling with no condition on the
switches.

Proposition 2.4 (Pushkar’ and Chekanov [PC]). Let K be a Legendrian knot with rota-
tion number rot(K). For any ρ dividing 2 rot(K), the number of ρ-graded rulings of the
front of K is an invariant of the Legendrian isotopy class of K.
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The existence of rulings is closely related to the maximal Thurston–Bennequin number
of a knot.

Proposition 2.5 (Rutherford [R]). If a Legendrian knot K admits an ungraded ruling,
then it maximizes Thurston–Bennequin number within its topological class.

For twist knots, Proposition 2.5 allows easy calculation of the maximal value of tb; we
note that the following result can also be derived from the more general calculation for
two-bridge knots from [N].

Proposition 2.6. The maximal Thurston–Bennequin number for Km is

tb(Km) =



−m− 1, m ≥ 0 even,
−m− 5, m ≥ 1 odd,
−1, m = −1,
1, m ≤ −2 even,
−3, m ≤ −3 odd.

Proof. Figure 9 shows ungraded rulings for Legendrian forms ofK−4,K3, andK4; these
have obvious generalizations to Legendrian knots of type Km for m ≤ −2, m ≥ 1 odd,
and m ≥ 0 even, respectively, each of which has an ungraded ruling. It follows from
Proposition 2.5 that each of these knots maximizes tb. Easy calculations of Thurston–
Bennequin numbers for each case (along with the fact that K−1 is the unknot) yield the
proposition. ut

3. The classification of Legendrian twist knots

In this section we will classify Legendrian and transverse twist knots by proving Theo-
rems 1.1 and 1.2. We begin with several preliminary results that will be proved in Sec-
tion 4.

Theorem 3.1. For m ≤ −2, any Legendrian representative of K = Km with maximal
tb is Legendrian isotopic to some Legendrian knot whose front projection is of the form
depicted in Figure 10, where the rectangle contains |m + 2| negative half-twists each of
which is of type Z or S.

m

s z

m+ 2
S Z

Fig. 10. A front projection for Km for m ≤ −2, and half-twists of type S and Z.
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Theorem 3.2. For m ≥ 0, any Legendrian representative of K = Km with maximal tb
is Legendrian isotopic to the Legendrian knot with front projection depicted in Figure 11,
where the rectangle contains m positive half-twists each of which is of type X.

x

mm
X

Fig. 11. A front projection for Km for m ≥ 0, and crossings of type X.

The techniques developed for the proof of the above theorems also give the following
result.

Theorem 3.3. Let K be a Legendrian representative of the twist knot Km. Whenever
tb(K) < tb(Km) then K destabilizes.

We will see below that Theorems 3.2 and 3.3 establish items (1) and (2) in Theo-
rem 1.1, the classification of Legendrian Km for m ≥ −2. To classify Legendrian Km
form ≤ −3, we need to distinguish between the distinct representatives ofKm with max-
imal Thurston–Bennequin number and understand when they become the same under
stabilization.

We begin by considering Km when m ≤ −4 is even. According to Theorem 3.1,
we can represent each of the maximal-tb representatives of K−2n by a length 2n − 2
word in the letters Z+, Z−, S+, S−, where these letters represent the Legendrian half-
twists shown in Figure 12 and letters must alternate in sign. Given such a word w, let
z+(w), z−(w), s+(w), s−(w) denote the number of Z+, Z−, S+, S− in w, respectively,
and note that z+(w)+ s+(w) = z−(w)+ s−(w) = n− 1.

a b c d

e

Z+ Z− S+ S−

S+Z−S+Z−

Fig. 12. Denoting a maximal-tb twist knot by a word in Z’s and S’s.

Lemma 3.4. Two words of length 2nwith the same z+, z−, s+, s− correspond to Legend-
rian-isotopic knots.

Proof. A local computation (Figure 13) shows that S±S∓Z± and Z±S∓S± are Legen-
drian isotopic as Legendrian tangles. (Alternatively, the fact that these are Legendrian
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Fig. 13. Legendrian isotopy between SSZ and ZSS.

isotopic follows from the Legendrian satellite construction [NT].) Similarly, Z±Z∓S±
and S±Z∓Z± are Legendrian isotopic. It follows that we can transpose consecutive +
letters in a word while preserving Legendrian-isotopy class, and the same for consecutive
− letters. Thus two words with the same z+, z−, s+, s− that begin with the same sign
correspond to Legendrian-isotopic knots.

Fig. 14. Moving a Z from the beginning of a word to the end.

To complete the proof, it suffices to show that Z±w and wZ± correspond to Legen-
drian isotopic knots for a length 2n− 3 word w, as do S±w and wS±. For Z±w = wZ±,
see Figure 14; for S±w = wS±, reflect Figure 14 in the vertical axis. ut
By Lemma 3.4, we can define Legendrian isotopy classes Kz+,z− for 0 ≤ z± ≤ n − 1
corresponding to words with the specified z+, z−. We then have the following result.

Lemma 3.5. The Legendrian isotopy classes Kz+,z− and Kn−1−z+,n−1−z− are the same.

Proof. The map (x, y, z) 7→ (−x,−y, z) is a contactomorphism of R3 that preserves
Legendrian isotopy classes, as can easily be seen in the xy projection, where it is a rotation
by 180◦. In the xz projection, this map sends tangles Z± to S± and S± to Z± and thus
sends Kz+,z− to Kn−1−z+,n−1−z− . ut
We are now in a position to classify the Kz+,z− ’s and all Legendrian knots obtained from
the Kz+,z− ’s by stabilization. The key ingredients are a result of Ozsváth and Stipsicz [OS]
on distinct transverse representatives of twist knots, and the ruling invariant discussed in
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Section 2.2. Let St+, St− denote the operations on Legendrian isotopy classes given by
positive and negative stabilization.

Proposition 3.6. For 0 ≤ z±, z±′ ≤ n− 1, we have:

(1) Kz+,z− is Legendrian isotopic to Kz+′,z−′ if and only if (z+′, z−′) = (z+, z−) or
(z+′, z−′) = (n− 1− z+, n− 1− z−);

(2) Kz+,z− and Kz+′,z−′ are Legendrian isotopic after some positive number of positive
stabilizations if and only if z−′ = z− or z−′ = n − 1 − z−, and in these cases the
knots are isotopic after one positive stabilization;

(3) Kz+,z− and Kz+′,z−′ are Legendrian isotopic after some positive number of negative
stabilizations if and only if z+′ = z+ or z+′ = n − 1 − z+, and in these cases the
knots are isotopic after one negative stabilization;

(4) St+St−Kz+,z− is Legendrian isotopic to St+St−Kz+′,z−′ for all z±, z±′.

Proof. We first establish (3). It is well-known [EFM] that Z− and S− become Legendrian
isotopic after one negative stabilization; see Figure 15. Consequently, for z− < n − 1,
St−Kz+,z− = St−Kz+,z−+1, and thus St−Kz+,z− = St−Kz+,z−′ = St−Kn−1−z+,z−′′ for
any z+, z−, z−′, z−′′, where the last equality follows from Lemma 3.5. On the other hand,
by [OS], if 0 ≤ z+, z+′ ≤ n/2 with z+ 6= z+′, then Kz+,z+ and Kz+′,z+′ represent distinct
Legendrian isotopy classes even after any number of negative stabilizations. (Note that
Kz+,z+ can be represented by the word (Z−Z+)z+(S−S+)n−1−z+ , which corresponds to
the Legendrian knot E(2z+ + 1, 2n− 2z+ − 1) in the notation of [OS].)

Fig. 15. Z and S tangles are isotopic after an appropriate stabilization of each.

Item (3) follows, and (2) is proved similarly. Item (4) is an immediate consequence of
(2) and (3), since stabilizations commute:

St+St−Kz+,z− = St+St−Kz+,z−′ = St−St+Kz+,z−′ = St+St−Kz+′,z−′ .
It remains to establish (1). The “if” part follows from Lemma 3.5. For “only if”, we

use graded ruling invariants; one could also use Legendrian contact homology [C]. The
Maslov degrees of the two uppermost (clasp) crossings in a representative front diagram
for Kz+,z− are readily seen to be ±2(z+ + z− + 1− n). It follows from this that there is
exactly one ρ-graded (normal) ruling of the front unless ρ | 2(z++ z−+ 1− n), in which
case there are two ρ-graded rulings; see Figure 16.

Now suppose that Kz+,z− = Kz+′,z−′ . By Proposition 2.4, we must have |z+ + z− +
1− n| = |z+′ + z−′ + 1− n|. On the other hand, by (2) and (3), z+′ ∈ {z+, n− 1− z+}
and z−′ ∈ {z−, n− 1− z−}. Combined, these equations imply that (z+′, z−′) = (z+, z−)
or (n− 1− z+, n− 1− z−), as desired. ut
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Fig. 16. All possible ρ-graded rulings of the front for Kz+,z− (pictured here, ZZSZ with either
orientation). Dots indicate switches. The left ruling is ρ-graded for any ρ; all switches have Maslov
degree 0. The two new switches in the right ruling have Maslov degree 2(z+ + z− + 1 − n) (top)
and −2(z+ + z− + 1 − n) (bottom), and thus the right ruling is ρ-graded if and only if ρ divides
2(z+ + z− + 1− n).

We next consider Km when m ≤ −3 is odd, say m = −2n − 1; the argument here is
similar to, but simpler than, the case of m ≤ −4 even. According to Theorem 3.1, we
can represent each of the maximal-tb representatives of K−2n−1 by a length 2n− 1 word
in the letters Z+, Z−, S+, S−, where these letters represent the Legendrian half-twists
shown in Figure 12 and letters must alternate in sign and begin and end with the same
sign. The Legendrian isotopy at the end of the proof of Lemma 3.4 shows that we may
assume that the word begins (and ends) with a letter with a plus sign. As above, given
such a word w, let z+(w), z−(w), s+(w), s−(w) denote the number of Z+, Z−, S+, S−
in w, respectively, and note that z+(w)+ s+(w) = z−(w)+ s−(w)+ 1 = n.

Essentially the same proof as for Lemma 3.4 gives the following result.

Lemma 3.7. Two words of length 2n − 1 with the same z+, z−, s+, s− correspond to
Legendrian-isotopic knots. ut
By Lemma 3.7, we can define Legendrian isotopy classes Kz+,z− for 0 ≤ z± ≤ n corre-
sponding to words with the specified z+, z−. We then have the following result.

Lemma 3.8. The Legendrian isotopy classes Kz+,z− and Kn−z+,n−1−z− are the same. If
z+ < n and z− ≥ 1, then the Legendrian isotopy classes of Kz+,z− and Kz++1,z−−1 are
the same.

Proof. The first statement follows as in the proof of Lemma 3.5. For the second statement,
let S+Z−w′ be a word representing Kz+,z− , where w′ is some word of length 2n − 3;
then Z+S−w′ represents Kz++1,z−−1. The isotopy in Figure 14 shows that Z+S−w′ and
S−w′Z− correspond to Legendrian isotopic knots, while the reflection of this isotopy in
the z axis shows that S+Z−w′ and Z−w′S− correspond to Legendrian isotopic knots.
But S−w′Z− and Z−w′S− are also Legendrian isotopic by Lemma 3.7. ut
It follows from Theorem 3.1 and Lemma 3.8 that every maximal-tb knot has a repre-
sentative of the form Kn,z− for some 0 ≤ z− ≤ n − 1; we denote this representative
by Kz− .

Proposition 3.9. For 0 ≤ z−, z−′ ≤ n− 1, we have:

(1) Kz− is Legendrian isotopic to Kz−′ if and only if z−′ = z−;
(2) St±Kz− is Legendrian isotopic to St±Kz−′ for all z−, z−′.
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Proof. The proof of (2) is exactly the same as the proof of (2) and (3) in Proposition 3.6.
For item (1) we again use ρ-graded rulings. As in the proof of Proposition 3.6, all of
the crossings in Kz− have Maslov degree 0, except for the top two crossings, which have
grading ±(2z−+ 1). So Kz− has one ρ-graded ruling unless 2z−+ 1 is divisible by ρ, in
which case it has two. By Proposition 2.4, Kz− and Kz−′ cannot be Legendrian isotopic
unless z− = z−′. ut

We are now ready for the proof of our main theorem.

Proof of Theorem 1.1. We begin with items (1) and (2) of the theorem concerning the
knot type Km with m ≥ 0 (the case m = −2 is covered by (4)). Theorem 3.2 says that
there is a unique Legendrian representative for Km with maximal Thurston–Bennequin
number if orientations are ignored. For m odd, when we take orientations into account,
there are two maximal tb representatives K+ and K− of Km and they are distinguished
by their rotation numbers, rot(K±) = ±1. Using the isotopy described in the proof of
Lemma 3.5, one easily verifies that St−(K+) is Legendrian isotopic to St+(K−). Since
Theorem 3.3 says that all other representatives destabilize to K±, we conclude that Km
is Legendrian simple if m ≥ 1 is odd. When m ≥ 0 is even, one may again use the
isotopy described in the proof of Lemma 3.5 to check that the two oriented Legendrian
representatives of Km coming from Theorem 3.2 are Legendrian isotopic. Thus there is
a unique representative of Km with maximal Thurston–Bennequin number and all other
Legendrian representatives are stabilizations of this one. This completes the proof for
m ≥ 0.

Next consider the case when m is negative and even. The maximal Thurston–Benne-
quin number representatives ofK−2n are of the form Kz+,z− for z+, z− ∈ {0, . . . , n− 1},
by Theorem 3.1. (This is even true after considering possible orientations, since the orien-
tation reverse of Kz+,z− is Kz−,z+ .) Moreover, Proposition 3.6 says Kz+,z− = Kz+′,z−′ if
and only if (z+′, z−′) = (z+, z−) or (z+′, z−′) = (n−1−z+, n−1−z−). Since there are
n choices for z+ and z− it is clear that there are dn2/2e distinct representatives. Similarly
we see that after strictly positive or strictly negative stabilizations there are dn/2e distinct
representatives and after both types of stabilizations there is just one representative. This
completes the proof of item (4) of the theorem.

Similarly, whenm = −2n−1 is negative and odd, item (1) in Proposition 3.9 implies
there are at least n Legendrian representatives with maximal tb, while Lemma 3.8 and the
discussion around it implies there are at most n. Moreover Theorem 3.3 says all Legen-
drian representatives with nonmaximal tb destabilize to one of these. Thus item (3) of the
theorem is completed by item (2) in Proposition 3.9. ut

Proof of Theorem 1.2. We use the fact, due in this setting to [EFM], that the negative
stable classification of Legendrian knots is equivalent to the classification of transverse
knots. More precisely, two transverse knots are transversely isotopic if and only if any of
their Legendrian approximations are Legendrian isotopic after some number of negative
stabilizations. Then Theorem 1.2 is a direct corollary of Theorem 1.1. ut
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4. Normalizing the front projection

In this section we prove Theorems 3.1–3.3, thus completing the proof of our main The-
orem 1.1. To this end, notice that since Km is a rational knot, we can find an embedded
2-sphere S in S3 (= R3 ∪ {∞}) intersecting Km in four points and dividing Km into un-
knotted pieces. More precisely, we can choose S as shown in Figure 17, intersectingK in
four points labeled 1, 2, 3 and 4 in the figure and separating S3 into two balls Bin and Bout,
such that: Km intersects Bout as a (vertical) 2-braid with two negative half-twists,which
we denote Kout = K ∩ Bout, and Km intersects Bin as a (horizontal) 2-braid with m
positive half-twists, which we denote Kin = K ∩ Bin.

m

b

c

1

2 3

41

2 3

4

B

C

m

Fig. 17. Model of the knot Km, intersecting a 2-sphere S in four points. The closed curve C on S
intersects Km in four points and the closed curve B on S separates the points 1, 2 from 3, 4.

We begin by normalizing the dividing curves on S. After this we study the contact
structures on the 3-balls Bin and Bout.

4.1. Normalizing the sphere S

Throughout this section, we fix a standard model for Km as shown in Figure 17, and we
assume m 6= −1. A Legendrian realization K of Km defines an isotopy ψ : S3 → S3

mapping Km to K and S to ψ(S). We can change the isotopy ψ so that ψ(S) is a convex
surface, and a standard neighborhood N of K with meridional ruling curves intersects
ψ(S) in four Legendrian unknots. Let P be the sphere with four punctures P = S\ν(Km).
The position of the pullback 0P of the dividing curves on ψ(P ) depends on the chosen
convex representation of ψ(S), and thus on the isotopy ψ , but we can always choose ψ
so that 0P is normalized as follows.

Theorem 4.1. Let m 6= −1, and fix Km along with a neighborhood ν(Km) and the
surfaces S and P as above. For any Legendrian realization K of Km, there exists an
isotopy ψ : S3 → S3 such that S (and thus P) is convex, ψ(ν(Km)) = N is a standard
contact neighborhood of K, and the pullback 0P ⊂ P of the dividing curves on ψ(P ) is
as shown in Figure 18.

Before proving Theorem 4.1, we establish the following lemma.
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1 2P1 P2

Fig. 18. The dividing curves on P can always be arranged to be as shown (assuming m 6= −1).

Lemma 4.2. If m 6= −1 and K is a Legendrian realization of Km, then there is a Legen-
drian unknot L with tb(L) = −1 that, in the complement of K, is topologically isotopic
to the curve B in Figure 17.

Proof. There exists some Legendrian knot L in the topological class of B, disjoint
from Km. Suppose that L has been chosen so that tb(L) is maximal for Legendrians
in this class, say tb(L) = −n for some n > 0. We will show that the assumption that
n > 1 leads to a contradiction.

Let NL be a standard neighborhood of L disjoint from K. Set Q = S3 −NL. Clearly
Q is a solid torus S1 × D2 with convex boundary, and the boundary has two dividing
curves of slope −n.We can assume the ruling curves are meridional and then choose two
disks D1 and D2 in Q bounding these ruling curves as shown in Figure 19. Specifically,
∂Q \ (∂D1 ∪ ∂D2) consists of two annuli A1 and A2 such that A1 ∪ D1 ∪ D2 (after
rounding corners) represents the sphere S. We can isotope each Di so that a standard
neighborhood N of K intersects Di in two disks with Legendrian boundary (which are
meridional ruling curves on ∂N ) and Di is convex. Let Pi = Di \ N. Then Pi is a pair
of pants with three boundary components, which we label ci,1, ci,2, ci,3 so that ci,3 is the
boundary component contained in ∂Q and ci,1, ci,2 are ruling curves in ∂N .

m
a

1 2

m

D1 D2

A1

Fig. 19. The torus ∂Q = ∂NL on the left with the disk D1 and D2 shaded. On the right is the
annulus A1 and the disks D1 and D2 whose union can be taken to be S.

Notice that 0Pi = 0P ∩Pi intersects each of ci,1 and ci,2 exactly twice and intersects
ci,3 exactly 2n times. If 0Di has more than two boundary-parallel dividing curves then 0Pi
will have at least one boundary-parallel dividing curve along ci,3 and thus we can use this
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p

1

2

3

P ′
i

Ai,1

Ai,2

Ai,3

Fig. 20. The disk Di . The lightly shaded region is P ′
i

and the darkly shaded regions are the annuli
Ai,j ; the union of all the shaded regions is Pi ; the vertical line is C∩Pi ; and the horizontal lines are
the dividing curves 0Pi . In the darkly shaded regions, the dividing curves cross from one boundary
component to the other.

to construct a bypass to destabilize L in the complement of K. As this is a contradiction,
we know the dividing curves on Pi can be described in the following way (see Figure 20
for an illustration): There is a coordinate system on Di so that:

• Di is the unit disk in the xy plane;
• K ∩Di is {(0,±1/2)};
• C ∩Di is the line segment x = 0, where C is as shown in Figure 17;
• Pi is Di with small disks around (0,±1/2) removed.

Let Ai,j be small annular neighborhoods of ci,j in Pi , and let P ′i be the closure of the
complement of these annuli in Pi . For n > 1, the dividing curves on P ′i can be assumed to
be n−2 horizontal line segments, along with the line segments in P ′i given by y = ±1/2.
In addition, in each Ai,j , the dividing curves can be assumed to be the obvious extension
of the dividing curves in P ′i , with some number of half-twists in Ai,1 and Ai,2 and some
rigid rotation in Ai,3. To elaborate on this last point, identify the closure of Ai,3 radially
with S1 × [0, 1] so that 0Pi ∩ (S1 × {0}) is 2n equally spaced points p1, . . . , p2n in
the circle ci,3 and 0Pi ∩ (S1 × {1}) is the corresponding set of 2n points p′1, . . . , p

′
2n in

the other boundary component of Ai,3; then in Ai,3, 0Pi consists of 2n nonintersecting
segments connecting p1, . . . , p2n to p′1, . . . , p

′
2n in some (cyclically permuted) order.

After rounding the corners ofD1∪D2∪A1, defineA to be the annulusA1∪A1,3∪A2,3.

Notice that on A there are 2n dividing curves running from one boundary component to
the other (we know the dividing curves on A1 as A1 is part of ∂NL = ∂Q); let 0A denote
the union of these dividing curves. As above we can choose a product structure S1×[0, 1]
on the closure of A so that S1 has length 2n, 0A ∩ (S1 × {0}) and 0A ∩ (S1 × {1}) each
consist of 2n equally spaced points, and 0A connects these two sets of points through
2n nonintersecting segments. The dividing curve on the 2-sphere S must be connected
since we are in a tight contact structure, and thus the slope s of the curves in 0A must be
relatively prime to n.

Define curves γ and γ ′ in S as shown in Figure 21. Then γ and γ ′ bound disks Dout
in Bout andDin in Bin, respectively, where both disks are disjoint from K.We can assume
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Fig. 21. The sphere S with P ′1 and P ′2 shaded. The curve γ is shown on the left and its intersection
with the white annulus A consists of the four curves γ1, γ2, γ3, γ4. Ifm is even then γ ′ is the image
of the horizontal curve on the right after m/2 Dehn twists along the curve t and if m is odd then it
is the image of the diagonal curve on the right after (m− 1)/2 Dehn twists along the curve t .

that both γ and γ ′ intersect the dividing curves of S only in A, and that the curve γ
intersects A in four arcs γ1, γ2, γ3, γ4 as shown in Figure 21. If γ is isotoped so that it
intersects the P ′i in horizontal arcs, then using the above identification of the closure of A
with S1 × [0, 1], the slopes of γi can be taken to be 2, 0, n, n− 2, respectively. Similarly
γ ′ intersects A in two parallel linear arcs γ ′1 and γ ′2 of slope nm.

Legendrian-realize γ and γ ′, and makeDout andDin convex. If γ or γ ′ does not have
maximal tb, then Dout or Din has at least two boundary-parallel dividing curves and thus
there are at least two bypasses for S \ NL in the complement of K. (Notice that when
there are only two dividing curves the two bypasses are not disjoint; however, we will see
below that we will only need one bypass in this case, and in most cases.) Let c be the
curve along which one of the bypasses is attached. (Note that since γ ′ bounds a disc in
Bin the bypass in that case is attached from the back so its action on the dividing curves
of S is the mirror of Figure 5.) We will show that in most cases the bypass reduces n,
leading to a contradiction. In particular, we have the following claim.

Claim 4.3. If c ∩ (P ′1 ∪ P ′2) has at most one component and n ≥ 2, then we can destabi-
lize L (contradicting the maximality of tb(L)) except possibly when n = 3, in which case
we can change s by 1 or −1 depending on whether c is on γ or γ ′.

Remark 4.4. In the proof below notice that when n = 3 we can sometimes destabilize L
and sometimes change s. In the exceptional case when L does not destabilize notice that
s must be relatively prime to n. Thus we can only attach such an exceptional bypass once
and any subsequent bypasses attached from the same side of S, if it exists, cannot be
exceptional and must then provide a destabilization of L.

We first prove the claim, then use it to complete the proof of the lemma.

Proof of Claim. First note that if c∩ (P ′1∪P ′2) = ∅, then when we attach the bypass to A,
we see a destabilization for L in the complement of K, which contradicts the maximality
of tb(L). Thus to prove the claim, we may assume that c∩ (P ′1 ∪P ′2) has one component.
We treat the cases n ≥ 4, n = 3, and n = 2 separately. For n ≥ 4, there are eight subcases
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Fig. 22. The eight subcases of Case 2 (ordered left to right and top to bottom).

shown in Figure 22. The subcases for γ ′ (when the bypass is attached from the back) are
the mirrors of these cases. In subcases 3, 4, 7, 8, one can use bypass rotation, Lemma 2.2,
to obtain a bypass disjoint from P ′1∪P ′2 and hence destabilize L. The bypasses in subcases
2 and 6 are disallowed: if there is a bypass there then we would have a convex sphere
with disconnected dividing set, contradicting tightness. In subcases 1 and 5 we can still
destabilize L if n > 3. Thus we contradict the minimality of n in all subcases except
when n ≤ 3.

For n = 3, we argue as above except for subcases 1 and 5. In these cases, notice
that attaching the bypass does not destabilize L but it does alter the dividing curves.
Specifically pushing across the bypass adds 1 to (or, in the case of γ ′, subtracts 1 from)
the slope of 0A once we have renormalized everything after attaching the bypass. Thus
we see that when n = 3 we can either destabilize L or change the slope of s by 1. This
establishes the n = 3 case of the claim.

Finally, for n = 2, there are four subcases analogous to Figure 22. It is readily
checked, as above, that two of these are disallowed by tightness, while the other two
lead to destabilizations of L. ut
We now return to the proof of Lemma 4.2. Since the statement of the lemma is known for
m = 0, 1,±2 by the classification of Legendrian unknots, torus knots, and the figure eight
knot [EF, EH1], we need only check it for |m| > 2. As mentioned in Remark 4.4, there
is an exceptional case when s = 3 and the destabilization argument cannot be applied
directly; we ignore this case for now and return to it at the end of the proof.

Since γ ′1 and γ ′2 are parallel, the intersection of γ ′ with 0S\N must be essential. It
follows that |γ ′i ∩0A| = |s− nm| for i = 1, 2, since γ ′i has slope nm and 0A has slope s.
Now if |γ ′i ∩ 0A| ≥ 2 for i = 1, 2, then for any bypass c along γ ′, c ∩ (P ′1 ∪ P ′2) has at
most one component. Thus we can apply the claim if |s − nm| ≥ 2. It is an easy exercise
in algebra to check that |s − nm| ≥ 2 for all m with |m| > 2 whenever n ≥ 2 and
|s| ≤ 3n − 2. This establishes the lemma when (n, s) is in the shaded region in the left
diagram of Figure 23.

Similarly, if |γi ∩ 0A| ≥ 2 for all but at most one of i = 1, 2, 3, 4 and |γi ∩ 0A| ≥ 1
for the other i, then we can apply the claim to at least one of the (at least two) bypasses
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Fig. 23. The pairs (n, s) where the destabilization of γ ′ gives a bypass satisfying the conditions
of Claim 4.3 (left), and the pairs (n, s) where the destabilization of γ gives a bypass satisfying the
conditions of Claim 4.3 (right).

along γ . Now the intersection of γ and 0S\N is essential if the signs of s − 2, s, s − n,
s − n + 2 all agree. This is because in this case, a cancellation can only occur around
an arc going through one of the Pi’s, and there the signs of the crossings agree with two
of the above signs, so they cannot cancel. Given that the intersection of γ and 0S\N is
essential, we have |γ1 ∩ 0A| = |s − 2|, |γ2 ∩ 0A| = |s|, |γ3 ∩ 0A| = |s − n|, and
|γ4 ∩ 0A| = |s − n + 2|. Thus we can apply the claim and establish the lemma if the
following conditions hold:

• the signs of s − 2, s, s − n, s − n+ 2 all agree;
• at least three of |s − 2|, |s|, |s − n|, |s − n+ 2| are ≥ 2, and the fourth is ≥ 1.

The set of (n, s) for which these conditions hold is the shaded region in the right diagram
of Figure 23.

The union of the shaded regions in Figure 23 covers all of the half-plane {(n, s) :
n ≥ 2}. This covers all possible cases, and thus if n 6= 3 the knot L can always be
destabilized by the claim, yielding the desired contradiction. When n = 3 notice that we
can always find two successive bypass attachments along arcs on γ or γ ′ that intersect
P ′1 ∪ P ′2 at most one time. (To see this, notice that if there are not two bypasses along γ ′
then from above we see that s = ±nm,±(nm±1) or±(nm±2). Given that |nm| ≥ 6 we
see that in these cases we can find the two bypasses along γ .) Thus, Remark 4.4 shows
that L can be destabilized in this case too. ut

Proof of Theorem 4.1. Throughout this proof we use the notation established at the be-
ginning of this section and in the proof of Lemma 4.2. In particular notice that P =
P1 ∪ P2 ∪A. We also set P ′ = P ′1 ∪ P ′2 ∪A, that is, P ′ is P with annular neighborhoods
of its boundary removed (in which there can be twisting of the dividing curves).
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We begin by using Lemma 4.2 to obtain a Legendrian unknot L with tb = −1 as
described in the lemma. We then use L to create the pieces P1, P2, A mentioned above.
We will now analyze these pieces.

Recall that we have identified A with S1 × [0, 1] with S1 having length 2, that is,
S1 = [0, 2]/∼, where ∼ identifies the endpoints of the interval. We further arrange that
the dividing curves 0A intersect the boundary of A at {0, 1}× {0, 1}. In these coordinates
the slope of 0A is some integer. In Figure 24 we show two examples, one on the left with
slope 0, and one on the right with slope 1. All other slopes can be obtained from one of
these examples by applying some number of Dehn twists along a curve parallel to the
boundary of A.

1
2γ γ

Fig. 24. On the left the dividing curves have slope 0 on A, while on the right they have slope 1.

As in the proof of Lemma 4.2, we notice that there is always a bypass for P ′ on the
disk Dout with boundary γ. Suppose the bypass is attached to P ′ along a curve c. There
are three cases to consider: (1) c is disjoint from P1 ∪ P2; (2) it has an endpoint in P1
or P2; or (3) the center intersection point of c with 0P ′ is contained in P1 or P2. (Notice
that the last two cases do not have to be disjoint if the slope of 0A is near zero.) We
consider further subcases depending on the slope of 0A, which we denote by s.

If s > 2, then case (1) results in a reduction of the slope by 2, case (2) results in a
reduction of the slope by 1, and case (3) is disallowed since it results in a disconnected
dividing curve on S, contradicting the tightness of the standard contact structure on S3.
Thus in this case, we can attach bypasses to P to arrange that s = 2, 1, or 0.

If s < −1, then cases (1) and (2) are disallowed, and case (3) increases the slope by 1.
Thus in this case we can assume that s = −1.

We have now arranged that s = 2, 1, 0, or −1. If s = −1, then there are ten possible
bypass attachments. Most are disallowed, while the ones that are allowed can be used,
after bypass rotation using Lemma 2.2, to increase the slope of 0A to 0. If s = 0, then
there are six possible places for a bypass along γ ; see the left hand side of Figure 24.
Of these, two give a disallowed bypass and the other four, after bypass rotation using
Lemma 2.2, can be used to increase the slope of 0A to 1.

If s = 2, then there are ten possible bypass attachments. Of these, four reduce the
slope to 1, and four are disallowed. The remaining two change the dividing curve on P
to the one shown in Figure 25 with s = 3. Examining the eight possible bypasses in this
new situation, one sees that six are disallowed and the remaining two return 0P to the
configuration with s = 1.
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Fig. 25. The dividing curve after bypass attachment.

We have proved that the dividing curves on P ′ can be made to look like those in
Figure 18. To complete the proof of the theorem, notice that we have a standard neighbor-
hood N of K as claimed and the dividing curves on P can differ from those in the figure
only by twisting in the annuli Ai,j with i, j = 1, 2. We can add a small neighborhood
of the annuli Ai,j to N to get a new standard neighborhood of K (notice the slope of the
dividing curves does not change as the neighborhood is increased to contain the annuli)
and the surface P ′ for the old neighborhood is the surface P for the new neighborhood.
This completes the proof of the theorem. ut

4.2. The contact structure in Bout

In this subsection we prove that either the Legendrian knot K destabilizes or the Legen-
drian tangle in Bout is determined.

Theorem 4.5. Let K be a Legendrian knot in the knot type Km, m 6= −1. Assume we
have chosen an identification of K with the standard model as in Theorem 4.1. Let D =
{x2 + z2 ≤ 1} × {y = 0} be a convex disk in R3 ⊂ S3. Then either K destabilizes or
there is a contactomorphism from Bout to the complement of (the interior of ) a standard
neighborhood {(x, y, z) | x2 + z2 ≤ 1, y2 ≤ 1} of D in S3 (with corners rounded) taking
K ∩ Bout to the curves shown in Figure 26.

We notice that the dividing curves on the boundary of the ball in Figure 26 and the ones
on Bout in Figure 18 are not the same but that there is a diffeomorphism of the ball that
takes one set of curves to the other.

Fig. 26. Model for a nondestabilizable tangle in Bout.
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Proof. LetB be the complement of the interior of a neighborhood ofD in S3 with corners
rounded and let l1 (left) and l2 (right) be the two Legendrian arcs in B shown in Figure 26.
Let N1 = D2 × [0, 1] and N2 = D2 × [0, 1] be product neighborhoods of l1 and l2,
respectively. We can assume each Ni ∩ ∂B consists of two disks, each of which intersects
the dividing curve 0∂B in an arc. We can further assume that the characteristic foliation
of ∂B has the boundary of these disks as the union of leaves, and we can arrange that ∂Ni
is convex.

Notice that H = B \ (N1 ∪N2) is a genus 2 handlebody whose boundary is a surface
with corners. Two disksD1 andD2 that cutH into a 3-ball are indicated in Figure 28. (To
see where the disks come from, notice that one can isotope the picture into a standardly
embedded genus 2 handlebody in S3 by isotoping the neighborhoods N1 and N2 so that
they do not twist around each other. See Figure 27. The disks are now obvious. Isotoping
back to the original picture, once can track the boundaries of the disk to obtain Figure 28.)

Fig. 27. On the right hand side we see there is an obvious disk bounded by the dotted curve and
one of the arcs in B. The boundary of this disk is shown in the middle and left hand pictures after
the arcs in B are isotoped. On the right hand side we see the boundary of a disk that will provide a
compressing disk for H .

Fig. 28. The thicker curve bounds a disk D1 in H. The disk D2 can be seen by reflecting this
picture about a vertical line. The thinner curves depict the dividing curves.
vskip-10pt

We now proceed to see what data determines the contact structure on H . A contact
structure on a neighborhoodNb of ∂H is determined by the characteristic foliation on ∂H.
We can find a slightly smaller handlebody Ĥ in H such that ∂Ĥ is contained in Nb and
is obtained by rounding the corners of ∂H. Let D̂i = Di ∩ Ĥ , and Legendrian-realize
Li = ∂D̂i on ∂Ĥ .



Twist knots 991

Now Li intersects the dividing set 0Ĥ in four points, three of these points in (the part
of ∂Ĥ coming from) ∂Ni (notice that ∂D̂i ∩ ∂Ni intersects the dividing set efficiently,
i.e., minimally in its homology class) and one point x in (the part of ∂Ĥ coming from)
∂B. Thus we clearly have tb(Li) = −2.

Moreover, we can see that neither of the two boundary-parallel dividing curves on D̂i
straddles the point x, as follows. If one did, then the other dividing curve would give
a bypass attached along ∂Ni . Attaching the bypass to ∂Ĥ will result in a surface 6 of
genus two and a curve γ , which corresponds to ∂D̂i on ∂Ĥ . The curve γ will intersect
the dividing curves on 6 twice. Compressing 6 along a meridional disk to Ni+1 (where
we use the convention thatN3 = N1) will result in a convex torus T on which γ sits. (One
may also think of T as obtained by attaching the bypass to ∂(B \Ni+1) = ∂(H ∪Ni+1).)
The curve γ is an essential curve in the torus T and bounds a disk in the complement
of T . Moreover, while it intersects the dividing set twice, it can be isotoped to be disjoint
from it. Thus γ can be Legendrian-realized, resulting in an unknot with tb = 0 which
contradicts tightness.

The dividing set on D̂i has now been completely determined, and so the contact struc-
ture on H is completely determined by the characteristic foliation on ∂H (and after iso-
toping the boundary slightly, by 0∂H ).

We now turn our attention to K. We assume we have normalized K, a neighborhood
of K, and the sphere S as in Theorem 4.1. Let l′1 and l′2 be the Legendrian arcs that
are the components of K ∩ Bout, and N ′1 and N ′2 the components of N ∩ Bout. The set
H ′ = Bout \ (N ′1 ∪ N ′2) is a handlebody of genus 2 whose boundary is a surface with
corners. We can choose disks D′1 and D′2 as shown in Figure 29. Notice that this figure
differs from Figure 26 by a diffeomorphism of Bout and agrees with Figure 17 and the
conclusion in Theorem 4.1. (We should take a neighborhood of ∂H ′ and then take another
copy of the handlebody with the corners on the boundary rounded as we did above, but
for simplicity we will not include this in the notation.) Legendrian-realize L′i = ∂D′i .
We see that L′i intersects the dividing set on ∂Bout exactly twice, once near N ′i (and this
intersection point can be assumed to be on N ′i ) and once at some point y. While the
intersection is efficient, as above, if we consider ∂(Bout \ N ′i ) then the intersection is
inefficient. If tb(Li) ≤ −3 then there is a bypass for ∂Ni ∩ ∂H ′ along D′i .

Fig. 29. The thicker curve bounds a disk D′1 in H ′. The disk D′2 can be seen by reflecting this
picture about a vertical line.
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Notice that Km bounds a singular disk D′ with a single clasp singularity.

Claim 4.6. The bypass above coming from D′i can be thought of as a bypass along ∂D′.
Notice that the framing given to Km by D′ is (−1)m. From Proposition 2.6, the maximal
Thurston–Bennequin number of Km is ≤ 1 when m is even and ≤ −1 when m is odd; it
follows that the contact framing on K is always less than or equal to the framing given
by D′. Thus a bypass along ∂D′ always gives a destabilization of K.

To clarify what the claim says, recall that the effect of attaching a bypass to a convex
surface is entirely determined by its arc of attachment. Thus as long as the arc of attach-
ment for a bypass on D′i is a subset of ∂D′, we may assume it is a bypass on D′ as far as
its effect on ∂N is concerned.

Proof of Claim. Notice that ∂D′ can be broken into two parts c1 = ∂D′ ∩ Ni and c2 =
(∂D′) \ c1. Moreover we can assume that c1 = ∂D′i ∩ Ni . If c1 intersects the dividing
curves on ∂Ni efficiently then with the appropriate orientations on c1 and the dividing
curves, all the intersections between c1 and the dividing curves are negative, since if
not then we could add a neighborhood of a Legendrian arc in Bin to Ni to construct a
neighborhood of a Legendrian unknot with nonnegative Thurston–Bennequin number,
contradicting tightness. We can similarly assume c2 negatively intersects the dividing
curves on N \Ni , where the orientation on the dividing curves and c2 are consistent with
the orientations chosen for the dividing curves on Ni and c1. We have shown that we can
arrange that ∂D′ intersects the dividing curves on ∂N efficiently and ∂D′∩Ni = ∂D′i∩Ni .
Hence any bypass along ∂D′i for ∂Ni can be thought to be a bypass attached along ∂D′.

ut
We assume for the remainder of this proof that K does not destabilize. It follows from
the above discussion that tb(L′i) = −2 or −1. Arguing as we did for the standard model
above, we see that tb(L′i) cannot equal −1, so we may assume tb(L′i) = −2. More-
over, as above, we see that neither of the two boundary-parallel dividing curves on D′i
can straddle y. Thus the configuration of the dividing curves 0D′i is determined, and the
contact structure on H ′ is determined by the characteristic foliation on ∂H ′.

We can thus find a diffeomorphism φ : B → Bout that preserves the dividing set on
the boundary and takes li to l′i and Di to D′i . Since φ can be isotoped to be a contac-
tomorphism in a neighborhood of (∂B) ∪ l1 ∪ l2 and the dividing curves on Di and D′i
are determined above, we can isotope φ to be a contactomorphism from B to Bout taking
l1 ∪ l2 to l′1 ∪ l′2 = K ∩ Bout. ut

4.3. The contact structure in Bin and braids

The discD = {x2+ z2 ≤ 1}× {y0} is convex in (S3, ξst) with dividing curve 0D = {0}×
[−1, 1]×{y0}. Fixm points {(−1+ 2i

m+1 , y0, 0)}mi=1 on 0D . Then the fronts of Legendrian
braids in D × [−1, 1] with endpoints {(−1 + 2i

m+1 ,−1, 0)}mi=1 ∪ {(−1 + 2i
m+1 , 1, 0)}mi=1

are described as follows:

Theorem 4.7 (Etnyre and Vértesi [EV]). The Legendrian representations of a braid in
D × [−1, 1] are built up from the building blocks of Figure 30. ut
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Fig. 30. Building blocks of Legendrian braids. There can be other horizontal strands, not depicted,
above and/or below the strands shown.

Note that Z(0, 1) and S(1, 0) are just stabilizations. Using Theorem 4.7 we can under-
stand Legendrian braids with two strands; we will write Z = Z(1, 1), X = X(1, 1),
S = S(1, 1). Notice that if Z or S is followed by X or vice versa then it destabilizes, see
Figure 31. This observation immediately yields the following result.

Fig. 31. S = S(1, 1) followed by X = X(1, 1) is Legendrian isotopic to a trivial braid with one
stabilization.

Proposition 4.8. Consider a braid with two strands and n half-twists.

(1) If n ≥ 0 then a Legendrian representation of B either destabilizes or consists of n
blocks of type X.

(2) If n < 0 then a Legendrian representation of B either destabilizes or is built up from
n building blocks of type S and Z in any order. ut

This proposition allows us to understand K ∩ Bin.

Theorem 4.9. Let K be a Legendrian knot in the knot types Km, m 6= −1. Either K
destabilizes, or the contactomorphism from Bout to a ball in S3 given in Theorem 4.5 can
be extended to Bin, giving a contactomorphism from S3 to itself that maps K ∩ Bin to a
Legendrian braid on two strands with m+ 2 twists.

Proof. The contactomorphism clearly extends as a diffeomorphism and since there is a
unique contact structure up to isotopy on the 3-ball, we can isotope this diffeomorphism
(relative to Bout) to a contactomorphism on Bin. The image of K∩Bin is clearly a Legen-
drian 2-braid with m+ 2 twists. ut
We are now ready to simultaneously prove Theorems 3.1–3.3.

Proof of Theorems 3.1–3.3. If m 6= −1, let K be a Legendrian realization of Km. From
the previous theorem either K destabilizes or there is a contactomorphism of S3 taking K
to one of the Legendrian knots shown on the left of Figure 10; note that the box shown
there is a Legendrian 2-braid. If there is not an obvious destabilization of the 2-braid, then
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by Proposition 4.8, it is obtained by stacking |m+ 2| S’s and Z’s together if m ≤ −2, or
m+ 2 X’s if m ≥ 0. Clearly this agrees with Figure 10 for m ≤ −2, but also notice that
for m ≥ 0 this gives a knot isotopic to the one in Figure 11. Since Legendrian isotopy
in the standard contact structure on S3 is the same as ambient contactomorphism (i.e.,
a contactomorphism sending one Legendrian knot to the other) [El1], this completes the
proof once we know that the knots shown in Figures 10 and 11 do not destabilize. But
this is the content of Proposition 2.6. ut
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