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Abstract. The vertex algebraW1+∞,c with central charge c may be defined as a module over the
universal central extension of the Lie algebra of differential operators on the circle. For an integer
n ≥ 1, it was conjectured in the physics literature that W1+∞,−n should have a minimal strong
generating set consisting of n2

+ 2n elements. Using a free field realization ofW1+∞,−n due to
Kac–Radul, together with a deformed version of Weyl’s first and second fundamental theorems of
invariant theory for the standard representation of GLn, we prove this conjecture. A consequence
is that the irreducible, highest-weight representations of W1+∞,−n are parametrized by a closed
subvariety of Cn2

+2n.

Keywords. Invariant theory, vertex algebra, W1+∞ algebra, orbifold construction, strong finite
generation

1. Introduction

The Lie algebraD of regular differential operators on the circle has a universal central ex-
tension D̂ = D⊕Cκ which was introduced by Kac–Peterson in [KP]. The representation
theory of D̂ was first studied by Kac–Radul in [KRI], and in this paper the irreducible,
quasi-finite highest-weight representations were constructed and classified. In [FKRW],
the representation theory of D̂ was developed by Frenkel–Kac–Radul–Wang from the
point of view of vertex algebras. For each c ∈ C, D̂ admits a module Mc called the
vacuum module, which is a vertex algebra freely generated by vertex operators J l(z),
l ≥ 0. The highest-weight representations of D̂ are in one-to-one correspondence with
the highest-weight representations of Mc.

The unique irreducible quotient ofMc is a simple vertex algebra, and is often denoted
by W1+∞,c. These algebras have been studied extensively in the physics literature, and
they also play an important role in the theory of integrable systems. Let πc denote the
projectionMc →W1+∞,c, whose kernel Ic is the maximal proper graded D̂-submodule
of Mc, and let j l = πc(J l). For c /∈ Z, Mc is irreducible, so W1+∞,c ∼=Mc, but when
c is an integer n,Mn is reducible, and the structure and representation theory ofW1+∞,n
are nontrivial.
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For n ≥ 1, W1+∞,n has a free field realization as the invariant space E(V )GLn

[FKRW]. Here V = Cn, E(V ) is the bc-system, or semi-infinite exterior algebra asso-
ciated to V , and E(V )GLn is the invariant subalgebra under the natural action of GLn
by vertex algebra automorphisms. Using this realization, the authors explicitly identified
W1+∞,n with the vertex algebraW(gln) of central charge n, and classified its irreducible
representations. In particular, Mn has a unique nontrivial singular vector (up to scalar
multiples) of weight n + 1, which generates In as a vertex algebra ideal. This singular
vector gives rise to a “decoupling relation” in W1+∞,n of the form

jn = P(j0, . . . , jn−1),

where P is a normally ordered polynomial in the vertex operators j0, . . . , jn−1 and their
derivatives.

For n ≥ 1, there is an analogous free field realization of W1+∞,−n as the invariant
subalgebra S(V )GLn , where S(V ) is the βγ -system, or semi-infinite symmetric algebra,
associated to V = Cn [KRII]. In this paper, Kac–Radul used an infinite-dimensional
version of the theory of Howe pairs to decompose S(V ) into a direct sum of modules of
the form L⊗M , where L is an irreducible, finite-dimensional GLn-module, and M is an
irreducible, highest-weight W1+∞,−n-module. In particular, this decomposition of S(V )
furnishes an interesting discrete set of irreducible, highest-weight W1+∞,−n-modules.
In [A], Adamović used the realization W1+∞,−n ∼= S(V )GLn together with the Friedan–
Martinec–Shenker bosonization to exhibitW1+∞,−n as a subalgebra of the tensor product
of 2n copies of the Heisenberg vertex algebra, and constructed a 2n-parameter family of
irreducible, highest-weight modules over W1+∞,−n. However, in order to classify such
modules, more information about the structure ofW1+∞,−n and I−n is needed, and these
issues were not addressed in either of these papers.

The first step in this direction was taken by Wang in [WI], [WII]. In the case n = 1,
he showed that W1+∞,−1 is isomorphic to W(gl3) with central charge −2, and classified
its irreducible modules. He also conjectured in [WIII] that I−1 should be generated by
a unique singular vector. However, for n > 1, the structure of W1+∞,−n is still an open
problem. There is a singular vector in M−n of weight (n + 1)2, and it was conjectured
in the physics literature by Blumenhagen–Eholzer–Honecker–Hornfeck–Hubel in [B–H],
and also by Wang in [WIII], that this vector should give rise to a decoupling relation of
the form

j l = P(j0, . . . , j l−1), l = n2
+ 2n. (1.1)

The main result of this paper is a proof of this conjecture, and our starting point is the
realization W1+∞,−n ∼= S(V )GLn . This point of view allows us to study W1+∞,−n us-
ing classical invariant theory, an approach which was first suggested by Eholzer–Feher–
Honecker in [EFH]. As a vector space, S(V )GLn is isomorphic to the classical invariant
ring

R =
(

Sym
⊕
k≥0

(Vk ⊕ V
∗

k )
)GLn

,

where Vk and V ∗k are copies of V and V ∗, respectively. We view S(V )GLn as a deforma-
tion of R, in the sense that S(V )GLn is linearly isomorphic to R, and admits a filtration
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for which the associated graded object gr(S(V )GLn) is isomorphic to R as a commutative
ring. The generators and relations of R are given by Weyl’s first and second fundamental
theorems of invariant theory for the standard representation of GLn [W]. By a careful
analysis of the deformation of this ring structure, we prove two key facts:

• For n ≥ 1, M−n has a unique nontrivial singular vector (up to scalar multiples) of
weight (n+1)2, which generates the maximal proper submodule I−n. This is analogous
to the uniqueness of the singular vector inMn of weight n+ 1 which generates In, for
n ≥ 1.
• This singular vector is of the form J l − P(J 0, . . . , J l−1) for l = n2

+ 2n, and hence
gives rise to a decoupling relation in W1+∞,−n of the form (1.1). Using this relation,
it is easy to construct higher decoupling relations j r = Qr(j

0, . . . , j l−1) for r > l. It
follows that W1+∞,−n has a minimal strong generating set {j0, . . . , jn

2
+2n−1

}.

It is known [FKRW] that the Zhu algebra of Mc is isomorphic to the polynomial alge-
bra C[a0, a1, a2, . . . ]. It follows from our main result that the Zhu algebra of W1+∞,−n

is a quotient of the polynomial ring C[a0, . . . , an
2
+2n−1] by an ideal I−n corresponding

to I−n. In particular, the Zhu algebra of W1+∞,−n is commutative, so its irreducible rep-
resentations are one-dimensional, and are in one-to-one correspondence with the points
on the variety V (I−n) ⊂ Cn2

+2n. It follows that the irreducible, admissible representa-
tions ofW1+∞,−n are all highest-weight representations, and are parametrized by V (I−n)
as well. We show that V (I−n) is a proper, closed subvariety of Cn2

+2n. In future work,
we hope to study the geometry of this variety in more detail.

2. Vertex algebras

In this section, we define vertex algebras, which have been discussed from various differ-
ent points of view in the literature [B], [FHL], [FLM], [K], [LI], [LZ]. We will follow the
formalism developed in [LZ] and partly in [LI]. Let V = V0⊕V1 be a super vector space
over C, and let z,w be formal variables. By QO(V ), we mean the space of all linear maps

V → V ((z)) =
{∑
n∈Z

v(n)z−n−1
∣∣∣ v(n) ∈ V, v(n) = 0 for n� 0

}
.

Each element a ∈ QO(V ) can be uniquely represented as a power series

a = a(z) =
∑
n∈Z

a(n)z−n−1
∈ (EndV )[[z, z−1]].

We refer to a(n) as the nth Fourier mode of a(z). Each a ∈ QO(V ) is assumed to be of
the shape a = a0+a1 where ai : Vj → Vi+j ((z)) for i, j ∈ Z/2Z, and we write |ai | = i.

On QO(V ) there is a set of nonassociative bilinear operations ◦n, indexed by n ∈ Z,
which we call the nth circle products. For homogeneous a, b ∈ QO(V ), they are defined
by

a(w)◦nb(w) = Resz a(z)b(w) ι|z|>|w|(z−w)n−(−1)|a| |b| Resz b(w)a(z) ι|w|>|z|(z−w)n.
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Here ι|z|>|w|f (z,w) ∈ C[[z, z−1, w,w−1]] denotes the power series expansion of a ratio-
nal function f in the region |z| > |w|. We usually omit the symbol ι|z|>|w| and just write
(z−w)−1 to mean the expansion in the region |z| > |w|, and write −(w − z)−1 to mean
the expansion in |w| > |z|. It is easy to check that a(w) ◦n b(w) above is a well-defined
element of QO(V ).

The nonnegative circle products are connected through the operator product expan-
sion (OPE) formula. For a, b ∈ QO(V ), we have

a(z)b(w) =
∑
n≥0

a(w) ◦n b(w) (z− w)
−n−1

+ :a(z)b(w):, (2.1)

which is often written as a(z)b(w) ∼
∑
n≥0 a(w) ◦n b(w) (z−w)

−n−1, where ∼ means
equal modulo the term

:a(z)b(w): = a(z)−b(w)+ (−1)|a| |b|b(w)a(z)+.

Here a(z)− =
∑
n<0 a(n)z

−n−1 and a(z)+ =
∑
n≥0 a(n)z

−n−1. Note that :a(w)b(w): is
a well-defined element of QO(V ). It is called the Wick product of a and b, and it coincides
with a ◦−1 b. The other negative circle products are related to this by

n! a(z) ◦−n−1 b(z) = :(∂na(z))b(z):,

where ∂ denotes the formal differentiation operator d
dz

. For a1(z), . . . , ak(z) ∈ QO(V ),
the k-fold iterated Wick product is defined to be

:a1(z)a2(z) · · · ak(z): = :a1(z)b(z):, (2.2)

where b(z) = :a2(z) · · · ak(z):. We often omit the formal variable z when no confusion
can arise.

The set QO(V ) is a nonassociative algebra with the operations ◦n and a unit 1. We
have 1 ◦n a = δn,−1a for all n, and a ◦n 1 = δn,−1a for n ≥ −1. A linear subspace
A ⊂ QO(V ) containing 1 which is closed under the circle products will be called a
quantum operator algebra (QOA). In particular A is closed under ∂ since ∂a = a ◦−2 1.
Many formal algebraic notions are immediately clear: a homomorphism is just a linear
map that sends 1 to 1 and preserves all circle products; a module over A is a vector
space M equipped with a homomorphism A→ QO(M), etc. A subset S = {ai | i ∈ I }
of A is said to generate A if any element a ∈ A can be written as a linear combination
of nonassociative words in the letters ai , ◦n, for i ∈ I and n ∈ Z. We say that S strongly
generates A if any a ∈ A can be written as a linear combination of words in the letters
ai , ◦n for n < 0. Equivalently, A is spanned by the collection {:∂k1ai1(z) · · · ∂

kmaim(z): |
i1, . . . , im ∈ I, k1, . . . , km ≥ 0}.

We say that a, b ∈ QO(V ) quantum commute if (z − w)N [a(z), b(w)] = 0 for some
N ≥ 0. Here [ , ] denotes the super bracket. This condition implies that a ◦n b = 0 for
n ≥ N , so (2.1) becomes a finite sum. If N can be chosen to be 0, we say that a, b
commute. A commutative quantum operator algebra (CQOA) is a QOA whose elements
pairwise quantum commute. Finally, the notion of a CQOA is equivalent to the notion
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of a vertex algebra. Every CQOA A is itself a faithful A-module, called the left regular
module. Define

ρ : A→ QO(A), a 7→ â, â(ζ )b =
∑
n∈Z

(a ◦n b)ζ
−n−1.

Then ρ is an injective QOA homomorphism, and the quadruple of structures (A, ρ, 1, ∂)
is a vertex algebra in the sense of [FLM]. Conversely, if (V , Y, 1,D) is a vertex algebra,
the collection Y (V ) ⊂ QO(V ) is a CQOA. We will refer to a CQOA simply as a vertex
algebra throughout the rest of this paper.

The following are useful identities which measure the nonassociativity and noncom-
mutativity of the Wick product, and the failure of the positive circle products to be deriva-
tions of the Wick product. Let a, b, c be vertex operators in some vertex algebra A, and
let n > 0. Then

:(:ab:)c:− :abc: =
∑
k≥0

1
(k + 1)!

(
:(∂k+1a)(b ◦k c):+ (−1)|a||b|:(∂k+1b)(a ◦k c):

)
,

(2.3)

:ab:− (−1)|a||b|:ba: =
∑
k≥0

(−1)k

(k + 1)!
∂k+1(a ◦k b), (2.4)

a ◦n (:bc:)− :(a ◦n b)c:− (−1)|a||b|:b(a ◦n c): =
n∑
k=1

(
n

k

)
(a ◦n−k b) ◦k−1 c. (2.5)

3. Category R

In [LL] we considered a certain category R of vertex algebras, together with a functor
from R to the category of supercommutative rings. This functor provides a bridge be-
tween vertex algebras and commutative algebra, and it allows us to study vertex algebras
A ∈ R by using the tools of commutative algebra.

Definition 3.1. LetR be the category of vertex algebrasA equipped with a Z≥0-filtration

A(0) ⊂ A(1) ⊂ A(2) ⊂ · · · , A =
⋃
k≥0

A(k) (3.1)

such that A(0) = C, and for all a ∈ A(k), b ∈ A(l), we have

a ◦n b ∈ A(k+l) for n < 0, (3.2)
a ◦n b ∈ A(k+l−1) for n ≥ 0. (3.3)

Elements a(z) ∈ A(d) \A(d−1) are said to have degree d , and morphisms inR are vertex
algebra homomorphisms which preserve the filtration.
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Filtrations on vertex algebras satisfying (3.2)–(3.3) were introduced in [LII] and are
known as good increasing filtrations. Setting A(−1) = {0}, the associated graded object
gr(A) =

⊕
k≥0A(k)/A(k−1) is a Z≥0-graded associative, supercommutative algebra with

a unit 1 under a product induced by the Wick product onA. In general, there is no natural
linear map A→ gr(A), but for each r ≥ 1 we have the projection

φr : A(r)→ A(r)/A(r−1) ⊂ gr(A). (3.4)

Moreover, gr(A) has a derivation ∂ of degree zero (induced by the operator ∂ = d/dz

on A), and for each a ∈ A(d) and n ≥ 0, the operator a◦n on A induces a derivation of
degree d − k on gr(A), which we also denote by a◦n. Here

k = sup{j ≥ 1 | A(r) ◦n A(s) ⊂ A(r+s−j) ∀r, s, n ≥ 0},

as in [LL]. Finally, these derivations give gr(A) the structure of a vertex Poisson algebra.
The assignment A 7→ gr(A) is a functor from R to the category of Z≥0-graded

supercommutative rings with a differential ∂ of degree 0, which we will call ∂-rings. A
∂-ring is the same thing as an abelian vertex algebra, that is, a vertex algebra V in which
[a(z), b(w)] = 0 for all a, b ∈ V [B]. A ∂-ring A is said to be generated by a subset
{ai | i ∈ I } if {∂kai | i ∈ I, k ≥ 0} generates A as a graded ring. The key feature of R is
the following reconstruction property [LL]:

Lemma 3.2. Let A be a vertex algebra in R and let {ai | i ∈ I } be a set of generators
for gr(A) as a ∂-ring, where ai is homogeneous of degree di . If ai(z) ∈ A(di ) are vertex
operators such that φdi (ai(z)) = ai , then A is strongly generated as a vertex algebra by
{ai(z) | i ∈ I }.

There is a similar reconstruction property for kernels of surjective morphisms in R. Let
f : A → B be a morphism in R with kernel J , such that f maps A(k) onto B(k) for
all k ≥ 0. The kernel J of the induced map gr(f ) : gr(A) → gr(B) is a homogeneous
∂-ideal (i.e., ∂J ⊂ J ). A set {ai | i ∈ I } such that ai is homogeneous of degree di is said
to generate J as a ∂-ideal if {∂kai | i ∈ I, k ≥ 0} generates J as an ideal.

Lemma 3.3. Let {ai | i ∈ I } be a generating set for J as a ∂-ideal, where ai is homoge-
neous of degree di . Then there exist vertex operators ai(z) ∈ A(di ) with φdi (ai(z)) = ai ,
such that {ai(z) | i ∈ I } generates J as a vertex algebra ideal.
Proof. First, let a′i(z) ∈ A(di ) be an arbitrary vertex operator satisfying φdi (a

′

i(z)) = ai .
Clearly a′i(z) need not lie in J , but f (a′i(z)) lies in B(di−1). Since f maps A(di−1) onto
B(di−1), there exists ci(z) ∈ A(di−1) such that f (ci(z)) = −f (a′i(z)). Letting ai(z) =
a′i(z)+ ci(z), it follows that ai(z) ∈ J and φdi (ai(z)) = ai .

Now given ω(z) ∈ J of degree k, we can write φk(ω) =
∑
i∈I

∑
j≥0 fij∂

jai , where
all but finitely many fij are zero, and each fij is homogeneous of degree k − di . Choose
vertex operators fij (z) such that φk−di (fij (z)) = fij , and let

ω′(z) =
∑
i∈I

∑
j≥0

:fij (z)∂jai(z):.

Since each ai(z) is in J , ω′′(z) = ω(z)− ω′(z) also lies in J . Clearly φk(ω′(z)− ω(z))
= 0, so ω′′(z) ∈ J ∩A(k−1). The claim follows by induction on k. ut
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4. The algebra W1+∞,c

Let D be the Lie algebra of regular differential operators on C \ {0}, with coordinate t .
A standard basis for D is

J lk = −t
l+k(∂t )

l, k ∈ Z, l ∈ Z≥0,

where ∂t = d/dt . D has a 2-cocycle given by

9
(
f (t)(∂t )

m, g(t)(∂t )
n
)
=

m!n!
(m+ n+ 1)!

Rest=0 f
(n+1)(t)g(m)(t)dt, (4.1)

and a corresponding central extension D̂ = D ⊕ Cκ , which was first studied by Kac–
Peterson in [KP]. D̂ has a Z-grading D̂ =

⊕
j∈Z D̂j by weight, given by

wt(J lk) = k, wt(κ) = 0,

and a triangular decomposition

D̂ = D̂+ ⊕ D̂0 ⊕ D̂−,

where D̂± =
⊕
j∈±N D̂j and D̂0 = D0 ⊕ Cκ. For a fixed c ∈ C and λ ∈ D∗0 , define the

Verma module with central charge c over D̂ by

Mc(D̂, λ) = U(D̂)⊗U(D̂0⊕D̂+) Cλ,

where Cλ is the one-dimensional D̂0 ⊕ D̂+-module on which κ acts by multiplication
by c and h ∈ D̂0 acts by multiplication by λ(h), and D̂+ acts by zero. There is a unique
irreducible quotient of Mc(D̂, λ) denoted by Vc(D̂, λ).

Let P be the parabolic subalgebra of D consisting of differential operators which
extend to all of C, which has a basis {J lk | l ≥ 0, l+k ≥ 0}. The cocycle9 vanishes onP ,
so P may be regarded as a subalgebra of D̂. Clearly D̂0⊕ D̂+ ⊂ P̂ , where P̂ = P ⊕Cκ .
The induced D̂-module

Mc =Mc(D̂, P̂) = U(D̂)⊗U(P̂) C0

is then a quotient ofMc(D̂, 0), and is known as the vacuum D̂-module of central charge c.
Mc has the structure of a vertex algebra which is generated by fields

J l(z) =
∑
k∈Z

J lkz
−k−l−1, l ≥ 0,

of weight l + 1. The modes J lk represent D̂ onMc, and in order to be consistent with our
earlier notation, we rewrite these fields in the form

J l(z) =
∑
k∈Z

J l(k)z−k−1,
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where J l(k) = J lk−l . In fact, Mc is freely generated by {J l(z) | l ≥ 0}; the set of iterated
Wick products

:∂ i1J l1(z) · · · ∂ irJ lr (z):, (4.2)

such that l1 ≤ · · · ≤ lr and ia ≤ ib if la = lb, forms a basis for Mc. Define a filtration

(Mc)(0) ⊂ (Mc)(1) ⊂ · · ·

on Mc as follows: for k ≥ 0, (Mc)(2k) is the span of monomials of the form (4.2), for
r ≤ k, and (Mc)(2k+1) = (Mc)(2k). In particular, each J l and its derivatives has degree 2.
Equipped with this filtration, Mc lies in the category R, and gr(Mc) is the polynomial
algebra C[∂kJ l | k, l ≥ 0]. Moreover, the vertex Poisson algebra structure on Mc is the
same for all c. In particular, each operator J l◦k for k, l ≥ 0 is a derivation of degree zero
on gr(Mc), and this action of P on gr(Mc) is independent of c.

Lemma 4.1. For each c ∈ C, Mc is generated as a vertex algebra by J 0, J 1, and J 2.

Proof. Let J be the vertex subalgebra of Mc generated by J 0, J 1, and J 2. An OPE
calculation shows that for l ≥ 1,

J 2
◦1 J

l−1
= −(l + 1)J l + 2∂J l−1, J 1

◦0 J
l
= −∂J l .

It follows that α ◦1 J l−1
= −(l + 1)J l , where α = J 2

− 2∂J 1. Since α ∈ J , it follows
by induction that J l ∈ J for all l. ut

In particular, Mc is a finitely generated vertex algebra. However, Mc is not strongly
generated by any finite set of vertex operators. This follows from the fact that gr(Mc) ∼=

C[∂kJ l | k, l ≥ 0], which implies that there are no normally ordered polynomial relations
among the vertex operators J l , l ≥ 0, and their derivatives.

A weight-homogeneous element ω ∈Mc is called a singular vector if J l ◦kω = 0 for
all k > l ≥ 0. The maximal proper D̂-submodule Ic is the vertex algebra ideal generated
by all singular vectors ω 6= 1, and the unique irreducible quotientMc/Ic is often denoted
byW1+∞,c in the literature. We denote the projectionMc →W1+∞,c by πc, and we use
the notation

j l = πc(J
l), l ≥ 0, (4.3)

in order to distinguish between J l ∈ Mc and its image in W1+∞,c. Clearly W1+∞,c
is generated by j0, j1, j2 as a vertex algebra, but there may now be normally ordered
polynomial relations among {∂kj l | k, l ≥ 0}.

For c /∈ Z, Mc is irreducible, so W1+∞,c = Mc, but for n ∈ Z, Mn is reducible.
For n ≥ 1,W1+∞,n is known to be isomorphic toW(gln) with central charge n [FKRW].
An important ingredient in the proof is a realization of W1+∞,n as a subalgebra of the
bc-system E(V ), for V = Cn. This vertex algebra was introduced in [FMS], and is the
unique vertex algebra with odd generators bx(z), cx

′

(z) for x ∈ V and x′ ∈ V ∗, satisfying
the OPE relations

bx(z)cx
′

(w) ∼ 〈x′, x〉(z− w)−1, cx
′

(z)bx(w) ∼ 〈x′, x〉(z− w)−1,

bx(z)by(w) ∼ 0, cx
′

(z)cy
′

(w) ∼ 0, (4.4)
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where 〈 , 〉 denotes the natural pairing between V ∗ and V . The map

W1+∞,n→ E(V ), j l(z) 7→

n∑
i=1

:cx
′
i (z)∂ lbxi (z):, (4.5)

identifies W1+∞,n with the invariant subalgebra E(V )GLn [FKRW]. Here {x1, . . . , xn} is
a basis for V and {x′1, . . . , x

′
n} is the dual basis for V ∗. There is a singular vector in Mn

of weight n+ 1, which generates In and gives rise to a decoupling relation of the form

jn = P(j0, . . . , jn−1),

where P is a normally ordered polynomial in the vertex operators j0, . . . , jn−1 and their
derivatives. From this relation, higher decoupling relations j r = Qr(j

0, . . . , jn−1) can
be constructed for all r > n, so W1+∞,n is strongly generated by {j0, . . . , jn−1

}.
For n = −1, W1+∞,−1 is isomorphic to W(gl3) with central charge −2, which

was shown using the Friedan–Martinec–Shenker bosonization [WI], [WII]. In particular,
W1+∞,−1 is a tensor product of a Heisenberg algebra H and the simple Zamolodchikov
W3 algebra with c = −2. However, for n > 1, the structure of W1+∞,−n is not well
understood. There is a singular vector inM−n of weight (n+ 1)2, and it was conjectured
in [B–H] and [WIII] that this singular vector gives rise to a decoupling relation

j l = P(j0, . . . , j l−1) (4.6)

for l = n2
+ 2n. From such a relation, one can construct higher decoupling relations

j r = Qr(j
0, . . . , j l−1) for all r > l, so this would imply that W1+∞,−n is strongly

generated by {j0, . . . , jn
2
+2n−1

}.
For n ≥ 1, W1+∞,−n has an analogous realization as a subalgebra of the βγ -system

S(V ) for V = Cn. The βγ -system, or algebra of chiral differential operators on V , was
introduced in [FMS]. It is the unique vertex algebra with even generators βx(z), γ x

′

(z)

for x ∈ V , x′ ∈ V ∗, which satisfy the OPE relations

βx(z)γ x
′

(w) ∼ 〈x′, x〉(z− w)−1, γ x
′

(z)βx(w) ∼ −〈x′, x〉(z− w)−1,

βx(z)βy(w) ∼ 0, γ x
′

(z)γ y
′

(w) ∼ 0. (4.7)

We give S(V ) the conformal structure

L(z) =

n∑
i=1

:βxi (z)∂γ x
′
i (z):, (4.8)

under which βxi (z) and γ x
′
i (z) are primary of conformal weights 1 and 0, respectively.

Moreover, S(V ) has a basis consisting of the normally ordered monomials

:∂I1βx1 · · · ∂Inβxn∂J1γ x
′

1 · · · ∂Jnγ x
′
n :. (4.9)
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In this notation, Ik = (ik1 , . . . , i
k
rk
) and Jk = (j k1 , . . . , j

k
sk
) are lists of integers satisfying

0 ≤ ik1 ≤ · · · ≤ i
k
rk

and 0 ≤ j k1 ≤ · · · ≤ j
k
sk

, and

∂Ikβxk = :∂ i
k
1βxk · · · ∂

ikrk βxk :, ∂Jkγ x
′
k = :∂j

k
1 γ x

′
k · · · ∂

j ksk γ x
′
k :.

S(V ) then has a Z≥0-grading

S(V ) =
⊕
d≥0

S(V )(d), (4.10)

where S(V )(d) is spanned by monomials of the form (4.9) of total degree d =∑n
k=1(rk + sk). Finally, we define the filtration S(V )(d) =

⊕d
i=0 S(V )(i). This filtra-

tion satisfies (3.1)–(3.3), and we have

gr(S(V )) ∼= Sym
(⊕
k≥0

(Vk ⊕ V
∗

k )
)
, Vk = {β

x
k | x ∈ V }, V ∗k = {γ

x′

k | x
′
∈ V ∗}.

In this notation, βxk and γ x
′

k are the images of ∂kβx(z) and ∂kγ x
′

(z) in gr(S(V )) under
the projection φ1 : S(V )(1) → S(V )(1)/S(V )(0). The embedding W1+∞,−n → S(V )
introduced in [KRII] is defined by

j l(z) 7→

n∑
i=1

:γ x
′
i (z)∂ lβxi (z):. (4.11)

This map preserves conformal weight, and is a morphism in the category R. For the rest
of this paper, we will identify W1+∞,−n with its image in S(V ).

The standard representation of GLn on V = Cn induces an action of GLn on S(V )
by vertex algebra automorphisms. In fact, GLn is the full automorphism group of S(V )
preserving the conformal structure (4.8). As shown in [KRII], W1+∞,−n is precisely the
invariant subalgebra S(V )GLn . The action of GLn on S(V ) preserves the grading (4.10),
so that W1+∞,−n is a graded subalgebra of S(V ). We write

W1+∞,−n =
⊕
d≥0

(W1+∞,−n)
(d), (W1+∞,−n)

(d)
=W1+∞,−n ∩ S(V )(d), (4.12)

and define the corresponding filtration by (W1+∞,−n)(d) =
⊕d

i=0(W1+∞,−n)
(i).

The identificationW1+∞,−n ∼= S(V )GLn suggests an alternative strong generating set
for W1+∞,−n. Define

ωa,b(z) =

n∑
i=1

:∂aβxi (z)∂bγ x
′
i (z):, a, b ≥ 0. (4.13)

For each m ≥ 0, let Am denote the vector space of dimension m + 1 with basis {ωa,b |
a + b = m}. Note that ∂ωa,b = ωa+1,b + ωa,b+1, so ∂(Am) ⊂ Am+1. Moreover,
Am/∂(Am−1) is one-dimensional, and jm = ωm,0 /∈ ∂(Am−1), so we have a decom-
position

Am = ∂Am−1 ⊕ 〈j
m
〉, (4.14)
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where 〈jm〉 is the linear span of jm. Finally, {∂ajb | a + b = m} is another basis for Am,
so each ωa,b ∈ Am can be expressed uniquely in the form

ωa,b =

m∑
i=0

ci∂
ijm−i (4.15)

for constants c0, . . . , cm. Hence {ωa,b | a, b ≥ 0} is another strong generating set for
W1+∞,−n as a vertex algebra. The formula (4.15) holds in W1+∞,−n for any n, and
allows us to define a new generating set {�a,b | a, b ≥ 0} for M−n, where

�a,b =

m∑
i=0

ci∂
iJm−i, a + b = m.

In fact, this new generating set makes sense in Mc for any c ∈ C, and πc(�a,b) = ωa,b.
Since gr(Mc) ∼= C[∂kJ l | k, l ≥ 0], we also have gr(Mc) ∼= C[�a,b | a, b ≥ 0]. We
will use the same notation Am to denote the linear span of {�a,b | a + b = m}, when no
confusion can arise.

As shown in [KRII], the generating set (4.13) has a natural interpretation in terms
of Weyl’s description of the ring of polynomial invariants for the standard representation
of GLn [W].

Theorem 4.2 (Weyl). For k ≥ 0, let Vk be the copy of the standard GLn-module Cn with
basis xi,k for i = 1, . . . , n, and let V ∗k be the copy of V ∗ with basis x′i,k , i = 1, . . . , n.
The invariant ring (Sym

⊕
k≥0(Vk ⊕ V

∗

k ))
GLn is generated by the quadratics

qa,b =

n∑
i=1

xi,ax
′

i,b, (4.16)

which correspond to the GLn-invariant pairings Va ⊗ V ∗b → C for a, b ≥ 0. Let Qa,b be
commuting indeterminates for a, b ≥ 0. The kernel In of the homomorphism

C[Qa,b]→
(

Sym
⊕
k≥0

(Vk ⊕ V
∗

k )
)GLn

, Qa,b 7→ qa,b, (4.17)

is generated by the (n+ 1)× (n+ 1) determinants

dI,J = det

Qi0,j0 · · · Qi0,jn
...

...

Qin,j0 · · · Qin,jn

 . (4.18)

Here I = (i0, . . . , in) and J = (j0, . . . , jn) are lists of integers satisfying

0 ≤ i0 < · · · < in, 0 ≤ j0 < · · · < jn. (4.19)
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Since the action of GLn on S(V ) preserves the filtration, we have gr(S(V )GLn) ∼=

(gr(S(V ))GLn ∼= (Sym
⊕

k≥0(Vk ⊕ V
∗

k ))
GLn , and under the projection

φ2 : S(V )(2)→ S(V )(2)/S(V )(1) ⊂ gr(S(V )),

ωa,b corresponds to qa,b.
Recall that the projection π−n : M−n → W1+∞,−n sending �a,b → ωa,b is a

morphism in the category R. Under the identifications

gr(M−n) ∼= C[Qa,b | a, b ≥ 0], gr(W1+∞,−n) ∼= Sym
(⊕

(Vk ⊕ V
∗

k )
)GLn

∼= C[qa,b]/In,

gr(π−n) is just the quotient map (4.17). Clearly π−n maps each filtered piece (M−n)(k)
onto (W1+∞,−n)(k), so the hypotheses of Lemma 3.3 are satisfied. Since In =

Ker(gr(π−n)) is generated by the determinants dI,J , we can apply Lemma 3.3 to find
vertex operators DI,J ∈ (M−n)(2n+2) satisfying φ2n+2(DI,J ) = dI,J , such that {DI,J }
generates I−n. Since �a,b has weight a + b + 1, it follows that

wt(DI,J ) = |I | + |J | + n+ 1, |I | =

n∑
a=0

ia, |J | =

n∑
a=0

ja . (4.20)

In general, the vertex operators ai(z) furnished by Lemma 3.3 satisfying φdi (ai(z)) = ai
which generate I are not unique. However, in our case, DI,J is uniquely determined by
the conditions

φ2n+2(DI,J ) = dI,J , π−n(DI,J ) = 0. (4.21)

To see this, suppose thatD′I,J is another vertex operator satisfying (4.21). ThenDI,J−D′I,J
lies in (M−n)(2n) ∩ I−n, and since there are no relations inW1+∞,−n of degree less than
2n+ 2, we have DI,J −D′I,J = 0.

For each n ≥ 1, define

Un = (M−n)(2n+2) ∩ I−n, (4.22)

which is just the vector space with basis {DI,J }, where I, J satisfy (4.19).

Lemma 4.3. For all n ≥ 1, Un is a module over the parabolic Lie algebra P ⊂ D̂
generated by {J l(k) = J l ◦k | k, l ≥ 0}.

Proof. The action of P preserves the filtration degree, and in particular preserves
(M−n)(2n+2). Also, P preserves I−n since I−n is a vertex algebra ideal. ut

It will be convenient to work in the basis {�a,b ◦a+b−w | a, b ≥ 0, a+b−w ≥ 0} for P .
Note that �a,b ◦a+b−w is homogeneous of weight w. The action of P by derivations of
degree zero on gr(M−n) coming from the vertex Poisson algebra structure is independent
of n, and is specified by the action of P on the generators �l,m. We compute

�a,b ◦a+b−w �l,m = λa,b,w,l(�l+w,m)+ µa,b,w,m(�l,m+w), (4.23)
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where

λa,b,w,l =

{
(−1)b+1 (b+l)!

(l+w−a)! , l + w − a ≥ 0,
0, l + w − a < 0,

µa,b,w,m =

{
(−1)a (a+m)!

(m+w−b)! , m+ w − b ≥ 0,
0, m+ w − b < 0.

The action of P on Un is by “weighted derivation” in the following sense. Fix I =
(i0, . . . , in) and J = (j0, . . . , jn), and let DI,J ∈ Un be the corresponding element.
Given p = �a,b ◦a+b−w ∈ P , we have

p(DI,J ) =

n∑
r=0

λrDI r ,J +

n∑
r=0

µrDI,J r (4.24)

for lists I r = (i0, . . . , ir−1, ir + w, ir+1, . . . , in) and J r = (j0, . . . , jr−1, jr + w,

jr+1, . . . , jn), and constants λr , µr . If ir + w appears elsewhere on the list I r , then
λr = 0, and if jr + w appears elsewhere on the list J r , then µr = 0. Otherwise,

λr = ±λa,b,w,ir , µr = ±µa,b,w,jr , (4.25)

where the signs ± are the signs of the permutations transforming I r and J r into lists in
increasing order, as in (4.19).

For each n ≥ 1, there is a distinguished element D0 ∈ Un, defined by

D0 = DI,J , I = (0, 1, . . . , n), J = (0, 1, . . . , n). (4.26)

In this case, |I | = |J | = n(n+ 1)/2, so D0 is the unique element of I−n of minimal
weight (n+ 1)2, and hence is a singular vector in M−n.

Theorem 4.4. The element D0 generates the ideal I−n. It follows that D0 is the unique
nontrivial singular vector in M−n, up to scalar multiples.

Proof. Since I−n is generated by Un as a vertex algebra ideal, it suffices to show that Un
is generated byD0 as a module over P . Let Un[k] denote the subspace of Un of weight k.
Note that Un[k] is trivial for k < (n+ 1)2 and is spanned by D0 for k = (n+ 1)2.

For k > (n+ 1)2, we define a property Pn,k of the subspace Un[k] as follows:

• For every DI,J ∈ Un[k], if I 6= (0, . . . , n), there exists an integer s > 0 and elements

DI 1,J , . . . , DI s ,J ∈ Un[k − 1],

with I r = (ir0, . . . , i
r
n) satisfying 0 ≤ i0 − ir0 ≤ 1, and there exist elements

p1, . . . , ps ∈ P satisfying

s∑
r=1

pr(DI r ,J ) = DI,J . (4.27)
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• Each pr appearing in (4.27) is a linear combination of elements of the form
�a,b ◦a+b−1, where a ≥ i0, and b can be arbitrarily large. In other words, for each
integer t ≥ 0, we can assume that p1, . . . , ps are linear combinations of elements
�a,b ◦a+b−1 with b > t .
• Similarly, if I = (0, . . . , n) and J = (j0, . . . , jn) 6= (0, . . . , n), there exists an integer
s > 0 and elements DI,J 1 , . . . , DI,J s ∈ Un[k − 1], with J r = (j r0 , . . . , j

r
n), satisfying

0 ≤ j0 − j
r
0 ≤ 1, and elements p1, . . . , ps ∈ P satisfying

s∑
r=1

pr(DI,J r ) = DI,J . (4.28)

Moreover, each pr in (4.28) is a linear combination of elements of the form
�a,b ◦a+b−1, where b ≥ j0, and a can be arbitrarily large.

In order to prove that Un is generated by D0 as a P-module, it suffices to prove that
property Pn,k holds for all n ≥ 1 and all k > (n + 1)2. We proceed by induction on n
and k. First, we show that Pn,k holds for arbitrary n, and k = (n + 1)2 + 1. Second,
we fix n = 1 and show that property P1,k holds for all k > 4 by induction on k. Third,
we assume inductively that property Pm,k holds for each pair (m, k) with m < n and
k > (m+ 1)2, and show that Pn,k must then hold for k > (n+ 1)2.

Step 1. Fix n ≥ 1 and let k = (n + 1)2 + 1. Then Un[k] is spanned by two el-
ements corresponding to {I, J } = {(0, . . . , n − 1, n + 1), (0, . . . , n)} and {I, J } =
{(0, . . . , n), (0, . . . , n− 1, n+ 1)}.

Case 1: {I, J } = {(0, . . . , n−1, n+1), (0, . . . , n)}. Let I ′ = (0, . . . , n), so thatDI ′,J =
D0. For any b > n+ 1, let

p = (−1)b+1 (n+ 1)!
(b + n)!

�0,b ◦b−1 .

It follows from (4.23)–(4.25) that p(DI ′,J ) = DI,J .

Case 2: I = (0, . . . , n) and J = (0, . . . , n− 1, n+ 1). Let J ′ = (0, . . . , n), so DI,J ′ =
D0, and let

p = (−1)a
(n+ 1)!
(a + n)!

�a,0 ◦a−1 .

As above, p(DI,J ′) = DI,J . Hence property Pn,k holds for k = (n+ 1)2 + 1.

Step 2. By Step 1, P1,5 holds, so assume inductively that P1,k−1 holds. LetDI,J ∈ U1[k].

Case 1: I = (i0, i1) 6= (0, 1) and i1 − i0 > 1. For any b > j1 + 1, let I ′ = (i0, i1 − 1)
and let

p = (−1)b+1 1
(b + i1 − 1)!

�i1,b ◦i1+b−1 .

By (4.23)–(4.25), we have p(DI ′,J ) = DI,J .
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Case 2: I = (i0, i1) 6= (0, 1) and i1 − i0 = 1. Then i0 > 0, so we can take I ′ =
(i0 − 1, i1). Let DI ′,J be the corresponding element of U1[k− 1]. Also, let I ′′ = (i0 − 1,
i1 + 1) and let DI ′′,J be the corresponding element of U1[k]. For any b > j1 + 1, let
p1 = �0,b ◦b−1 and p2 = �1,b ◦b. We have

p1(DI ′,J ) = (−1)b+1 (b + i0 − 1)!
i0!

DI,J + (−1)b+1 (b + i1)!
(i1 + 1)!

DI ′′,J ,

p2(DI ′,J ) = (−1)b+1 (b + i0 − 1)!
(i0 − 1)!

DI,J + (−1)b+1 (b + i1)!
(i1)!

DI ′′,J .

Since the vectors
(
(b+i0−1)!

i0! ,
(b+i1)!
(i1+1)!

)
and

(
(b+i0−1)!
(i0−1)! ,

(b+i1)!
(i1)!

)
in C2 are linearly indepen-

dent, we can find a suitable linear combination p = c1p1 + c2p2 such that p(DI ′,J )
= DI,J .

Case 3: I = (0, 1), J = (j0, j1) 6= (0, 1), and j1 − j0 > 1. The argument is similar to
Case 1 with the roles of I and J reversed.

Case 4: I = (0, 1), J = (j0, j1) 6= (0, 1), and j1 − j0 = 1. This is similar to Case 2
with the roles of I and J reversed.

Step 3. Assume that property Pm,k holds for each pair (m, k) with m < n and k ≥
(m + 1)2. We know from Step 1 that Pn,(n+1)2+1 holds, so we may assume inductively
that Pn,k−1 holds. Let DI,J ∈ Un[k], and assume first that I 6= (0, . . . , n).

Case 1: I 6= (0, . . . , n), and i0 6= 0. Let I ′ = (i0 − 1, i1, . . . , in), and let DI ′,J be the
corresponding element of Un[k − 1]. For b > jn + 1, let

p = (−1)b+1 i0!
(b + i0 − 1)!

�i0,b ◦i0+b−1 .

By (4.23)–(4.25), we have p(DI ′,J ) = DI,J+
∑n
r=1 λrDI r ,J , where I r = (i0−1, i1, . . . ,

ir−1, ir + 1, ir+1, . . . , in). For each r = 1, . . . , n, let

Kr
= (i1, . . . , ir−1, ir + 1, ir+1, . . . , in),

which is the list of length n obtained from I r by removing the first entry i0−1. Similarly,
let J ′ = (j1, . . . , jn), and letDKr ,J ′ be the corresponding element of Un−1. By inductive
assumption, for each r = 1, . . . , n there exist an integer sr > 0 and a collection of lists
Lr,1, . . . , Lr,sr of length n, together with elements pr,1, . . . , pr,sr ∈ P , such that

sr∑
t=1

pr,t (DLr,t ,J ′) = DKr ,J ′ .

Moreover, we may assume that each of the lists Lr,t has the property that the first term l
r,t
1

satisfies 0 ≤ ir1 − l
r,t
1 ≤ 1. Furthermore, we may assume that each pr,t is a linear combi-

nation of elements of the form �a,b ◦a+b−1 with a ≥ i1 and b > jn + 1.
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Let Mr,t be the list of length n+ 1 given by (i0 − 1, lr,t1 , . . . , l
r,t
n ), and let DMr,t ,J be

the corresponding element of Un. Since a − (i0 − 1) ≥ 2, the operators �a,b ◦a+b−1 do
not affect the first index i0 − 1 of Mr,t , so

∑sr
t=1 pr,t (DMr,t ,J ) = DI r ,J . Hence

p(DI ′,J )−

n∑
r=1

sr∑
t=1

λrpr,t (DMr,t ,J ) = DI,J .

Case 2: I 6= (0, . . . , n), and i0 = 0. Let r be the minimal integer for which ir > r . By
assumption, we have 1 ≤ r ≤ n. Hence I = (0, . . . , r − 1, ir , . . . , in). Since ir − ir−1 =

ir − (r − 1) ≥ 2, it follows that operators of the form �r+1,b ◦r+b only act on the last
n− r + 1 terms of I .

Let I ′ = (ir , . . . , in) and J ′ = (jr . . . , jn) be the lists of length n − r + 1 obtained
from I and J , respectively, by deleting the first r terms, and let DI ′,J ′ ∈ Un−r be the cor-
responding element. By inductive assumption there exist elements DI 1,J ′ , . . . , DI s ,J ′ ∈

Un−r and elements p1, . . . , ps ∈ P such that

s∑
t=1

pt (DI t ,J ′) = DI ′,J ′ . (4.29)

Moreover, we may assume that for t = 1, . . . , s, I t = (itr , . . . , i
t
n) satisfies 0 ≤ ir − itr

≤ 1, and that each pt is a linear combination of elements of the form �a,b ◦a+b−1 where
a ≥ ir ≥ r + 1 and b > jn + 1. Let K t

= (0, . . . , r − 1, itr , . . . , i
t
n), and let DK t ,J be the

corresponding element of Un. It follows from (4.23)–(4.25) and (4.29) that

s∑
t=1

pt (DK t ,J ) = DI,J .

Case 3: I = (0, . . . , n), J 6= (0, . . . , n), and j0 6= 0. The argument is the same as the
proof of Case 1, with the roles of I and J reversed.

Case 4: I = (0, . . . , n), J 6= (0, . . . , n), and j0 = 0. This is the same as Case 2, with
the roles of I and J reversed.

This completes the proof that property Pn,k holds for all n ≥ 1 and k > (n+ 1)2. ut

Remark 4.5. Specializing Theorem 4.4 to the case n = 1 proves the conjecture of Wang
[WIII] that all normally ordered polynomial relations in W1+∞,−1 among the generators
j0, j1, j2 are consequences of a single relation.

There is a convenient way to think about the vertex operators DI,J ∈ M−n which is
suggested by the proof of Lemma 3.3. Given a homogeneous polynomial

p ∈ gr(M−n) ∼= C[Qa,b | a, b ≥ 0]

of degree k in the variables Qa,b, a normal ordering of p will be a choice of normally
ordered polynomial P ∈ (M−n)(2k), obtained by replacing Qa,b by �a,b, and replac-
ing ordinary products with iterated Wick products of the form (2.2). Of course P is
not unique, but for any choice of P we have φ2k(P ) = p, where φ2k : (M−n)(2k) →
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(M−n)(2k)/(M−n)(2k−1) ⊂ gr(M−n) is the usual projection. For the rest of this paper,
D2k , E2k , F 2k , etc., will always denote elements of (M−n)(2k) which are homogeneous,
normally ordered polynomials of degree k in the vertex operators �a,b.

Let D2n+2
I,J ∈ (M−n)(2n+2) be some normal ordering of dI,J . Then

π−n(D
2n+2
I,J ) ∈ (W1+∞,−n)(2n),

where π−n : M−n→W1+∞,−n is the projection, and φ2n(π−n(D
2n+2
I,J ))∈gr(W1+∞,−n)

∼= C[qa,b]/In can be expressed uniquely as a polynomial of degree n in the variables
qa,b. Choose some normal ordering of the corresponding polynomial in the variables
�a,b, and call this vertex operator −D2n

I,J . Then D2n+2
I,J + D2n

I,J has the property that
π−n(D

2n+2
I,J + D

2n
I,J ) ∈ (W1+∞,−n)(2n−2). Continuing this process, we arrive at a vertex

operator D2n+2
I,J +D

2n
I,J + · · · +D

2
I,J in the kernel of π−n. We must have

DI,J =

n+1∑
k=1

D2k
I,J , (4.30)

since DI,J is uniquely characterized by (4.21).
In this decomposition, the term D2

I,J lies in the space Am spanned by {�a,b |
a + b = m}, for m = |I | + |J | + n. Recall that Am = ∂Am−1 ⊕ 〈J

m
〉, and let

prm : Am→ 〈Jm〉 be the projection onto the second term. Define the remainder

RI,J = prm(D
2
I,J ). (4.31)

We will see that RI,J is independent of the choice of decomposition (4.30).

Lemma 4.6. For all j, k, l, m ≥ 0,�j,k◦0�l,m is a total derivative. In particular,�j,k◦0
�l,m lies in the subspace ∂(As−1) ⊂ As , where s = j+k+l+m. Moreover,�j,k◦1∂�l,m
and �j,k ◦2 ∂2�l,m also lie in ∂(As−1).

Proof. A calculation shows that for all k, l ≥ 0,

J k ◦0 J
l
=

k−1∑
i=0

(−1)i+1∂�k+l−i−1,i . (4.32)

We can write �j,k = c1J
j+k
+ c2∂ν and �l,m = d1J

l+m
+ d2∂µ, for constants c1, c2,

d1, d2 and vertex operators ν ∈ Aj+k−1, µ ∈ Al+m−1. The first statement follows from
(4.32) and the fact that ∂ν ◦0 �l,m = 0 and J j+k ◦0 (∂µ) = ∂(J j+k ◦0 µ) ⊂ ∂As−1. The
second statement then follows from the calculation

�j,k ◦1 ∂�l,m = ∂(�j,k ◦1 �l,m)− ∂�j,k ◦1 �l,m = ∂(�j,k ◦1 �l,m)+�j,k ◦0 �l,m,

and the third statement follows from

�j,k ◦2 ∂
2�l,m = ∂(�j,k ◦2 ∂�l,m)−∂�j,k ◦2 ∂�l,m = ∂(�j,k ◦2 ∂�l,m)+2�j,k ◦1 ∂�l,m.

ut
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Lemma 4.7. Let E ∈ (M−n)(2m) be a vertex operator of degree 2m, and choose a de-
composition

E =

m∑
k=1

E2k, (4.33)

where E2k is a homogeneous, normally ordered polynomial of degree k in the vari-
ables�a,b. IfE =

∑m
k=1 F

2k is any rearrangement of (4.33), i.e., another decomposition
of the same form, then E2

− F 2 is a second derivative.

Proof. Let µ = :a1 · · · am: be a normally ordered monomial in (M−n)(2m), where each
ai is one of the generators �a,b. Let µ̃ = :ai1 · · · aim :, where (i1, . . . , im) is some permu-
tation of (1, . . . , m). It suffices to show that any decomposition µ − µ̃ =

∑m−1
k=1 E

2k of
the difference µ− µ̃ ∈ (M−n)(2m−2), has the property that E2 is a second derivative.

To prove this statement, we proceed by induction on m. For m = 1, there is nothing
to prove since µ− µ̃ = 0. For m = 2, and µ = :�a,b�c,d :, we have

µ− µ̃ = :�a,b�c,d :− :�c,d�a,b: =
∑
i≥0

(−1)i

(i + 1)!
∂ i+1(�a,b ◦i �c,d), (4.34)

by (2.4). Since �a,b ◦0 �c,d is already a total derivative by Lemma 4.6, it follows that
µ− µ̃ is a second derivative, as claimed.

Next, we assume the result for r ≤ m−1. Since the permutation group onm letters is
generated by the transpositions (i, i + 1) for i = 1, . . . , m − 1, we may assume without
loss of generality that

µ̃ = :a1 · · · ai−1ai+1aiai+2 · · · am:.

If i > 1, we have µ− µ̃ = :a1 · · · ai−1f :, where f = :ai · · · am:− :ai+1aiai+2 · · · am:,
which lies in (M−n)(2m−2i). Since each term of f has degree at least 2, it follows that
µ− µ̃ can be expressed in the form

∑m−1
k=i E

2k . Since i > 1, there is no term of degree 2.
Given any rearrangement µ − µ̃ =

∑m−1
k=1 F

2k , it follows from our inductive hypothesis
that the term F 2 is a second derivative.

Suppose next that i = 1, so that µ̃ = :a2a1a3 · · · am:. Define

ν = :(:a1a2:)a3 · · · am:, ν̃ = :(:a2a1:)a3 · · · am:,

and note that ν − ν̃ = :(:a1a2:− :a2a1:)f :, where f = :a3 · · · am:. By (4.34), :a1a2:−
:a2a1: is homogeneous of degree 2, so ν − ν̃ is a linear combination of monomials of
degree 2m− 2. By inductive assumption, any rearrangement ν − ν̃ =

∑m−1
k=1 F

2k has the
property that F 2 is a second derivative.

Next, by (2.3), we have

µ− ν = −
∑
k≥0

1
(k + 1)!

(:(∂k+1a1)(a2 ◦k f ):+ :(∂k+1a2)(a1 ◦k f ):). (4.35)
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Since the operators ◦k for k ≥ 0 are homogeneous of degree −2, each term appearing in
(4.35) has degree at most 2m− 2. Moreover,

deg(:(∂k+1a1)(a2◦kf ):) = 2+deg(a2◦kf ), deg(:(∂k+1a2)(a1◦kf ):) = 2+deg(a1◦kf ),

so the only way to obtain terms of degree 2 is for a2 ◦k f or a1 ◦k f to be a scalar. This can
only happen if k > 0, in which case we obtain either ∂k+1a1 or ∂k+1a2, which are second
derivatives. Finally, by inductive assumption, any rearrangement of µ − ν can contain
only second derivatives in degree 2.

Similarly, µ̃− ν̃ has degree at most 2m− 2, and any rearrangement of µ̃− ν̃ can only
contain second derivatives in degree 2. Since µ− µ̃ = (µ− ν)+ (ν − ν̃)+ (ν̃ − µ̃), the
claim follows. ut

Corollary 4.8. Fix n ≥ 1. Given DI,J ∈ Un, suppose that DI,J =
∑n+1
k=1 D

2k
I,J and

DI,J =
∑n+1
k=1 D̃

2k
I,J are two different decompositions of DI,J of the form (4.30). Then

D2
I,J − D̃

2
I,J ∈ ∂

2(As−2),

where s = |I |+ |J |+n. In particular, RI,J is independent of the choice of decomposition
of DI,J .

Lemma 4.9. Fix n ≥ 1, and let R0 denote the remainder of the element D0 given by
(4.26). The condition R0 6= 0 is equivalent to the existence of a decoupling relation of the
form j l = P(j0, . . . , j l−1) in W1+∞,−n, for l = n2

+ 2n.

Proof. Let D0 =
∑n+1
k=1 D

2k
0 be a decomposition of D0 of the form (4.30). If R0 6= 0,

we have D2
0 = λJ

l
+ ∂ω for some λ 6= 0 and some ω ∈ Al−1. Applying the projection

π−n : M−n→W1+∞,−n, since π−n(D0) = 0 we obtain

j l = −
1
λ

(
∂π−n(ω)+

n+1∑
k=2

π−n(D
2k
0 )
)
, (4.36)

which is a decoupling relation of the desired form. The converse follows from the fact
that D0 is the unique element of I−n of weight (n+ 1)2. ut

In the cases n = 1 and n = 2, we can give explicit formulas for D0 and R0. These
calculations were performed using Kris Thielemans’ OPE package [T]. For n = 1, let

D4
0 = :�0,0�1,1:− :�0,1�1,0:, D2

0 =
1
2∂�1,1 +

1
3J

3.

We have π−1(D
4
0 +D

2
0) = 0, so

D0 = D
4
0 +D

2
0, R0 =

1
3J

3.
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Similarly, for n = 2, let

D6
0 = :�0,0�1,1�2,2:− :�0,0�1,2�2,1:− :�0,1�1,0�2,2:
+ :�0,1�1,2�2,0:− :�0,2�1,1�2,0:+ :�0,2�1,0�2,1:,

D4
0 = −

1
12 :�0,0�2,5:+ 1

4 :�0,1�2,4:− 1
6 :�0,2�2,3:− 1

3 :�0,1�4,2:

+
1
3 :�0,2�4,1:− 1

4 :�0,0�5,2:+ 1
4 :�0,2�5,0:− 1

5 :�0,0�6,1:+ 1
5 :�0,1�6,0:

+
2
3 :�1,1�2,3:− 2

3 :�1,3�2,1:− 1
6 :�1,0�2,4: + 1

6 :�1,4�2,0:+ 1
3 :�1,1�3,2:

−
1
3 :�1,2�3,1:+ 1

4 :�1,0�4,2:− 1
4 :�1,2�4,0:+ 1

5 :�1,0�5,1:− 1
5 :�1,1�5,0:

−
1
3 :�2,0�3,2:+ 1

3 :�2,2�3,0:− 1
4 :�2,0�4,1:+ 1

4 :�2,1�4,0:,

and

D2
0 = −

1
30∂�2,5 −

7
180∂�3,4 −

1
10∂�4,3 −

1
10∂�5,2 +

7
180∂�7,0 −

1
120J

8.

We have D0 = D
6
0 + D

4
0 + D

2
0 , so that R0 = −

1
120J

8. For n > 2, it is difficult to find
explicit formulas for D0 and R0, but we will show that R0 6= 0.

Lemma 4.10. Fix n ≥ 1, and suppose that DI,J ∈ Un has the property that RI,J = 0.
Then for any decomposition DI,J =

∑n+1
k=1 D

2k
I,J of the form (4.30), the term D2

I,J is a
second derivative. In particular, D2

I,J ∈ ∂
2(As−2) where s = |I | + |J | + n.

Proof. Let I = (i0, . . . , in) and J = (j0, . . . , jn). By (4.24) and (4.25), DI,J is an
eigenvector of J 2

◦2 with eigenvalue λ = −
∑n
r=0 ir(ir − 1)+

∑n
r=0(jr + 1)(jr + 2), so

J 2
◦2

(n+1∑
k=1

D2k
I,J

)
= λ

(n+1∑
k=1

D2k
I,J

)
. (4.37)

On the other hand, we can compute J 2
◦2 (

∑n+1
k=1 D

2k
I,J ) using (2.5). For k > 2, it follows

from (2.5) that J 2
◦2D

2k
I,J can be expressed in the form E2k

+E2k−2
+E2k−4. For k > 3,

any rearrangement of J 2
◦2 D

2k
I,J will only contain second derivatives in degree 2, so we

only need to consider the contribution from J 2
◦2 D

2k
I,J for k = 1, k = 2, and k = 3.

For k = 3, D6
I,J is a sum of terms of the form :�a,b�c,d�e,f :, and by (2.5), the

contribution of J 2
◦2 D

6
I,J in degree 2 will consist of terms of the form

J 2
◦0 (�a,b ◦0 (�c,d ◦0 �e,f )),

which is a total derivative by Lemma 4.6.
For k = 2, D4

I,J consists of a sum of terms of the form :�a,b�c,d :. By (2.5), the
contribution of J 2

◦2 D
4
I,J in degree 2 is a sum of terms of the form (J 2

◦0 �a,b) ◦1 �c,d

and (J 2
◦1 �a,b) ◦0 �c,d , which are all total derivatives, by Lemma 4.6.

For k = 1, D2
I,J =

∑s
i=1 ci∂

iJ s−i , since RI,J = 0. Suppose that c1 6= 0. Using
(4.23), we calculate

J 2
◦2 ∂J

s−1
= −(2s + 2)J s − (s2

− 3s − 4)∂J s−1.
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By Lemma 4.6, J 2
◦2(
∑s
i=2 ci∂

iJ s−i) is a total derivative, so J 2
◦2D

2
I,J ≡ −(2s+2)c1J

s

modulo ∂(As−1). But J 2
◦2D

2
I,J ≡ λD

2
I,J modulo ∂2(As−2) by (4.37) and Corollary 4.8,

which violates the fact that RI,J = 0. ut

Lemma 4.11. Suppose that DI,J has the property that RI,J = 0, and for some decom-
position DI,J =

∑n+1
k=1 D

2k
I,J , the term D4

I,J does not depend on �0,0. Then for any de-

composition of �0,1 ◦2 DI,J of the form
∑n+1
k=1 E

2k , the term E2 is a total derivative.

Proof. It suffices to find some decomposition of�0,1◦2DI,J of the desired form; since the
property of E2 being a total derivative is stable under rearrangements, any other decom-
position of �0,1 ◦2 DI,J will have this property as well. As in the proof of the preceding
lemma, for k ≥ 3, �0,1 ◦2 D

2k
I,J can be expressed in the form E2k

+ E2k−2
+ E2k−4.

The same argument then shows that for k ≥ 3, �0,1 ◦2 D
2k
I,J can only contribute a second

derivative in degree 2.
For k = 2, D4

I,J consists of a sum of terms of the form :�a,b�c,d :. By (2.5), we have

�0,1 ◦2 (:�a,b�c,d :) =
:(�0,1◦2�a,b)�c,d :+ :�a,b(�0,1◦2�c,d):+(�0,1◦1�a,b)◦0�c,d+(�0,1◦0�a,b)◦1�c,d .

Since �0,1◦2 lowers the weight by 1, the only element of the form �a,b for which
�0,1 ◦2 �a,b is a constant is �0,0. SinceD4

I,J does not depend on �0,0, none of the terms
:(�0,1 ◦2�a,b)�c,d : or :�a,b(�0,1 ◦2�c,d): appearing in�0,1 ◦2D

4
I,J will have degree 2.

Moreover, each term of the form (�0,1 ◦1 �a,b) ◦0 �c,d + (�0,1 ◦0 �a,b) ◦1 �c,d appear-
ing in �0,1 ◦2 D

4
I,J is a total derivative, by Lemma 4.6. It follows that the component of

�0,1 ◦2 D
4
I,J in degree 2 is a total derivative.

Finally, for k = 1, it follows from Lemma 4.10 that D2
I,J is a second derivative,

since RI,J = 0. By Lemma 4.6, �0,1 ◦2 D
2
I,J is then a total derivative. We conclude that

�0,1 ◦2 DI,J can be expressed in the form
∑n+1
k=1 E

2k where E2 is a total derivative, as
claimed. ut

Lemma 4.12. Fix n ≥ 1, and assume that D0 has the property that R0 6= 0. Let I =
(1, . . . , n+ 1) = J , and let DI,J be the corresponding element of Un. Then RI,J 6= 0 as
well.

Proof. Choose a decomposition DI,J =
∑n+1
k=1 D

2k
I,J of the form (4.30). We will assume

that RI,J = 0, and obtain a contradiction by showing that this implies that R0 = 0. Since
D2n+2
I,J does not depend on the variables {�a,0 | a ≥ 0}, we may assume without loss

of generality that for k = 1, . . . , n, D2k
I,J also does not depend on {�a,0 | a ≥ 0}. In

particular, D4
I,J does not depend on �0,0 so the hypothesis of Lemma 4.11 is satisfied.

By Lemma 4.10, we may assume that D2
I,J is a second derivative. We act on DI,J by

the operator �0,1 ◦2, which is homogenous of weight −1. For k > 0, �0,1 ◦2 �j,k cannot
contain a term of the form �a,0, by (4.24) and (4.25). Similarly, if P is any normally
ordered polynomial in the variables {�j,k | k > 0}, �0,1 ◦2 P can be expressed as a
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normally ordered polynomial in {�j,k | k > 0} as well. Using (4.24) and (4.25), we
calculate

�0,1 ◦2 DI,J = 2DK1,J , K1
= (0, 2, 3, . . . , n+ 1).

Since D4
I,J is independent of �0,0, it follows from Lemma 4.11 that DK1,J also satisfies

RK1,J = 0. Lemma 4.10 then shows that D2
K1,J

is a second derivative. Finally, since
DI,J is a normally ordered polynomial in {�j,k | k > 0}, we can assume that DK1,J has
a decomposition

DK1,J =

n+1∑
k=1

D2k
K1,J

such that each term D2k
K1,J

does not depend on {�a,0 | a ≥ 0}. Repeating this argument
n times, we find that

(�0,1◦2)
n(DI,J ) = λDK,J ,

where K = (0, 1, . . . , n) and λ =
∏n+1
i=1 (i)(i + 1). Moreover,DK,J has a decomposition

DK,J =

n+1∑
k=1

D2k
K,J

such that D2
K,J is a second derivative (so in particular RK,J = 0), and D4

K,J does not
depend on {�a,0 | a ≥ 0}. In particular, D4

K,J is independent of �0,0.
Next, we act on DK,J by �0,0 ◦1. We get �0,0 ◦1 DK,J = DK,L1 , where L1

=

0, 2, . . . , n + 1. Moreover, since D4
K,J is independent of �0,0, we can conclude that

D2
K,L1 is a second derivative. However, we can no longer conclude that D4

K,L1 does not
depend on �0,0. So instead of using the operator �0,0◦1 to lower the weight at this stage,
we use the operator

f = �1,0 ◦2 +�0,0 ◦1 .

Clearly f lowers the weight by 1, and by the same argument as the proof of Lemma 4.6,
f (∂2As) ⊂ ∂As . Moreover, f (�0,0) = 0, so given any normally ordered monomial D4

of the form :�a,b�c,d :, the component of f (D4) in degree 2 will be a total derivative, as
in the proof of Lemma 4.11.

Note that f (DK,L1) = −4DK,L2 where L2
= (0, 1, 3, . . . , n + 1). Since D2

K,L1

is a second derivative, f (D2
K,L1) is a total derivative, and since any rearrangement of

f (D2k
K,L1) can only contribute a second derivative in degree 2 for k > 1, we conclude

that RK,L2 is zero. Applying Lemma 4.10 again, D2
K,L2 is then a second derivative. For

i = 2, . . . , n let Li = (0, 1, . . . , i − 1, i + 1, . . . , n+ 1). It is easy to check using (4.24)
and (4.25) that

f (DK,Li ) = −(i + 1)2DK,Li+1 .

Moreover, at each stage, D2
K,Li

is a second derivative, and in particular, RK,Li = 0. At

the nth stage, we see that f (DK,Ln) = −(n + 1)2D0, so we have R0 = 0, which is a
contradiction. ut
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Recall that S(V ) is a graded algebra with Z≥0 grading (4.10), which specifies a linear
isomorphism S(V ) ∼= Sym

⊕
k≥0(Vk⊕V

∗

k ). By (4.12),W1+∞,−n is a graded subalgebra
of S(V ), so we obtain an isomorphism of graded vector spaces

i−n : W1+∞,−n→
(

Sym
⊕
k≥0

(Vk ⊕ V
∗

k )
)GLn

. (4.38)

Let p ∈ (Sym
⊕

k≥0(Vk ⊕ V
∗

k ))
GLn be a homogeneous polynomial of degree 2d ,

and let f = (i−n)
−1(p) ∈ (W1+∞,−n)

(2d) be the corresponding homogeneous vertex
operator. Let F ∈ (M−n)(2d) be a vertex operator satisfying π−n(F ) = f , where π−n :
M−n → W1+∞,−n is the usual projection. We can write F =

∑d
k=1 F

2k , where F 2k is
a normally ordered polynomial of degree k in the vertex operators �a,b.

Next, let Ṽ be the vector space Cn+1, and let

q̃a,b ∈
(

Sym
⊕
k≥0

(Ṽk ⊕ Ṽ
∗

k )
)GLn+1

be the generator given by (4.16). Here Ṽk and Ṽ ∗k are isomorphic to Ṽ and Ṽ ∗k , respec-
tively, for k ≥ 0. Let p̃ be the polynomial of degree 2d obtained from p by replacing
each qa,b with q̃a,b, and let f̃ = (i−n−1)

−1(p̃) ∈ (W1+∞,−n−1)
(2d) be the corresponding

homogeneous vertex operator. Finally, let F̃ 2k
∈M−n−1 be the vertex operator obtained

from F 2k by replacing each�a,b with the corresponding vertex operator �̃a,b ∈M−n−1,
and let F̃ =

∑d
i=1 F̃

2k .

Lemma 4.13. We can choose F such that π−n−1(F̃ ) = f̃ .

Proof. We may assume without loss of generality that p is a monomial in the variables
qa,b. If d = 1, p = qa,b for some a, b ≥ 0, and f = ωa,b. We can take F = �a,b,
so the claim is obvious. We assume inductively that for monomials p = qa1,b1 · · · qar ,br
for r < d, there is a vertex operator F =

∑r
k=1 F

2k such that π−n(F ) = f where
f = (i−n)

−1(p), such that π−n−1(F̃ ) = f̃ , and F 2r
= :�a1,b1 · · ·�ar ,br :.

Now let p = qa1,b1 · · · qad ,bd . By inductive assumption, there exists a vertex operator
G =

∑d−1
k=1 G

2k
∈M−n such that

G2d−2
= :�a2,b2 · · ·�ad ,bd :, π−n(G) = g, π−n−1(G̃) = g̃,

where g = (i−n)−1(qa2,b2 · · · qad ,bd ). Define a vertex operator H ∈M−n by

H =

d∑
k=2

H 2k, H 2k
= :�a1,b1G

2k−2:.

Since π−n is a vertex algebra homomorphism, we have

π−n(H) = π−n(:�a1,b1G:) = :ωa1,b1g:,
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and using (2.3), we see that
:ωa1,b1g: = f + f ′, (4.39)

where f ′ is homogeneous of degree 2d − 2. In fact, a computation using (2.3) shows that
under the isomorphism (4.38), f ′ corresponds to the polynomial

d∑
r=2

(
(−1)b1+1

ar + b1 + 1
qa1+b1+ar ,br +

(−1)a1

a1 + br + 1
qar ,br+a1+b1

)
qa2,b2 · · · q̂ar ,br · · · qad ,bd .

In this notation, the symbol q̂ar ,br means that the factor qar ,br has been omitted, so the
above polynomial is homogeneous of degree 2d − 2. Since this formula is independent
of n, it follows that π−n−1(H̃ ) = f̃ + f̃ ′. By inductive assumption, there is a vertex
operator A =

∑d−1
k=1 A

2k
∈M−n such that π−n(A) = f ′ and π−n−1(Ã) = f̃

′. Finally,
we define F =

∑d
k=1 F

2k by F 2d
= H 2d , and F 2k

= H 2k
− A2k for 1 ≤ k < d . It is

immediate that F has the desired properties. ut

Corollary 4.14. Fix n ≥ 1, and let DI,J ∈ Un. There exists a decomposition DI,J =∑n+1
k=1 D

2k
I,J of the form (4.30) such that the corresponding vertex operator

D̃I,J =

n+1∑
k=1

D̃2k
I,J ∈M−n−1

has the property that π−n−1(D̃I,J ) lies in the homogeneous subspace (W1+∞,−n−1)
(2n+2)

of degree 2n+ 2.

Proof. For each monomial µ of degree 2n + 2 appearing in the polynomial dI,J , let
fµ = (i−n)

−1(µ) ∈ (W1+∞,−n)
(2n+2). By the preceding lemma, we may choose Fµ =∑n+1

k=1 F
2k
µ ∈ M−n such that π−n(Fµ) = fµ, and π−n−1(F̃µ) = f̃µ. For each k =

1, . . . , n + 1, define D2k
I,J =

∑
µ F

2k
µ where the sum is over all monomials µ appearing

in dI,J , and takeDI,J =
∑n+1
k=1 D

2k
I,J . Clearly this is a decomposition ofDI,J of the form

(4.30), and we have

π−n−1(D̃I,J ) =
∑
µ

π−n−1(F̃µ) =
∑
µ

f̃µ,

which is homogeneous of degree 2n+ 2. ut

Now we have assembled all the technical tools necessary to prove our main result.

Theorem 4.15. For all n ≥ 1, we have R0 6= 0. Hence there is a decoupling relation in
W1+∞,−n of the form j l = P(j0, . . . , j l−1) for l = n2

+ 2n.

Proof. This is well known for n = 1 and we have already shown it for n = 2, so we will
assume inductively that it holds for n − 1. The idea of the proof is to use our inductive
assumption together with Lemma 4.12 to construct a decomposition

D0 =

n+1∑
k=1

D2k
0
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with the property that D4
0 contains the term :J 0J l−1: with nonzero coefficient, for l =

n2
+ 2n. By (4.34), :J 0J l−1: − :J l−1J 0: is a second derivative, so we may assume that

:J l−1J 0: does not appear in D4
0 . Suppose that such a decomposition exists, and that

R0 = 0. First, (2.5) shows that for k > 1, J 0
◦1 D

2k
0 can be expressed in the form

E2k
+E2k−2, so for k > 2, any rearrangement of J 0

◦1 D
2k
0 can only contribute a second

derivative in degree 2. Moreover, since R0 = 0, D2
0 is a total derivative, so by Lemma

4.6, J 0
◦1D

2
0 is also a total derivative. SinceD4

0 contains the term :J 0J l−1: with nonzero
coefficient, J 0

◦1 D
4
0 will contain the term J l−1 with nonzero coefficient, and this term

cannot be canceled by any term coming from J 0
◦1 D

2k
0 for k 6= 2. This contradicts the

fact that D0 is a singular vector.
Let d0 ∈ gr(M−n) ∼= C[Qa,b | a, b ≥ 0] denote the image ofD0 under the projection

φ2n+2 : (M−n)(2n+2)→ (M−n)(2n+2)/(M−n)(2n+1) ⊂ gr(M−n). By Theorem 4.2,

d0 = det

Q0,0 · · · Q0,n
...

...

Qn,0 · · · Qn,n

 ,
so d0 can be written in the form

d0 = Q0,0dI,J + d
′, (4.40)

where I = (1, . . . , n) = J , dI,J is the corresponding polynomial of degree 2n, and d ′

is a polynomial of degree 2n + 2 which does not depend on Q0,0. Consider the ver-
tex operator DI,J ∈ M−n+1 corresponding to dI,J , regarded now as an element of
gr(M−n+1). By Corollary 4.14, we may choose a decomposition DI,J =

∑n
k=1D

2k
I,J

such that the corresponding vertex operator D̃I,J =
∑n
k=1 D̃

2k
I,J ∈M−n has the property

that π−n(D̃I,J ) ∈ (W1+∞,−n)
(2n). Moreover, since dI,J does not depend on Q0,0, we

may assume that each termD2k
I,J appearing inDI,J is independent of J 0

= �0,0. We will
use this decomposition of D̃I,J to create a decomposition ofD0 with the desired property.

By our inductive assumption together with Lemma 4.12,D2
I,J contains the term J l−1

with nonzero coefficient, and since D̃2
I,J is obtained from D2

I,J by replacing each �j,k ∈
M−n+1 with the corresponding element of M−n, it follows that D̃2

I,J contains J l−1

(regarded now as an element of M−n) with nonzero coefficient as well. Consider the
vertex operator

:J 0D̃I,J : =
n∑
k=1

:J 0D̃2k
I,J : ∈M−n.

Since D̃2
I,J has a nonzero term of the form J l−1, :J 0D̃I,J : has a nonzero term of the form

:J 0J l−1: in degree 4. Applying the projection π−n : M−n→W1+∞,−n, we have

π−n(:J 0D̃I,J :) = :j0f :,

where f = π−n(D̃I,J ). Since f is homogeneous of degree 2n, it follows from (2.3)
that :j0f : = g + g′ where g ∈ (W1+∞,−n)

(2n+2) and g′ ∈ (W1+∞,−n)
(2n). It is
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easy to see from (2.3) that under the isomorphism i−n given by (4.38), i−n(g′) ∈
(Sym

⊕
k≥0(Vk ⊕ V

∗

k ))
GLn does not depend on q0,0. Hence we can choose a vertex op-

erator E =
∑n
k=1 E

2k
∈ M−n such that π−n(E) = −g′, and such that each E2k is

independent of J 0. It follows that π−n(:J 0D̃I,J :+ E) ∈ (W1+∞,−n)
(2n+2).

Next, let F 2n+2 be a normal ordering of the polynomial d ′ given by (4.40). Since
d ′ is independent of Q0,0, we may assume that F 2n+2 does not depend on J 0. Then
π−n(F

2n+2) will contain terms of lower degree in W1+∞,−n, and we can find elements
F 2k
∈M−n for k = 1, . . . , n, such that

π−n(F ) ∈ (W1+∞,−n)
(2n+2), F =

n+1∑
k=1

F 2k.

Moreover, we may assume that each term F 2k is independent of J 0. Finally, we define
the decomposition

D0 =

n+1∑
k=1

D2k
0 , (4.41)

where D2
0 = E

2
+ F 2, and D2k

0 = :J 0D̃2k−2
I,J : + E2k

+ F 2k for 1 < k ≤ n + 1. Since
π−n(:J 0D̃I,J : + E) and π−n(F ) are both homogeneous of degree 2n+ 2, and

φ2n+2(:J 0D̃I,J :+ E + F) = d0 ∈ gr(M−n),

it follows that (4.41) is indeed a decomposition of D0, as claimed. Since D̃2
I,J contains

the term J l−1 with nonzero coefficient, and both E4 and F 4 are independent of J 0, it
follows that D4

0 contains the term :J 0J l−1: with nonzero coefficient, as desired. ut

Theorem 4.16. For n ≥ 1, W1+∞,−n is strongly generated as a vertex algebra by

{j0, j1, . . . , jn
2
+2n−1

}.

Proof. The decoupling relation j l = P(j0, . . . , j l−1) for l = n2
+ 2n given by Theorem

4.15 is equivalent to the existence of an element J l − P(J 0, . . . , J l−1) ∈ I−n. It suffices
to show that for all r > l, there exists an element J r −Qr(J

0, . . . , J l−1) ∈ I−n, so we
assume inductively that such an element exists for r − 1.

Choose a decomposition

Qr−1 =

d∑
k=1

Q2k
r−1,

where Q2k
r−1 is a homogeneous normally ordered polynomial of degree k in the vertex

operators J 0, . . . , J l−1 and their derivatives. In particular,

Q2
r−1 =

l−1∑
i=0

ci∂
r−i−1J i,
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for constants c0, . . . , cl−1. We apply the operator�0,2 ◦1 ∈ P , which raises the weight by
one. By (4.23), we have�0,2 ◦1J

r−1
= −(r+1)J r . Moreover,�0,2 ◦1 (

∑d
k=1Q

2k
r−1) can

be expressed in the form
∑d
k=1 E

2k where each E2k is a normally ordered polynomial
in J 0, . . . , J l and their derivatives. If J l or its derivatives appear in E2k , we can use
the element J l − P(J 0, . . . , J l−1) in I−n to eliminate the variable J l and any of its
derivatives, modulo I−n. Hence �0,2 ◦1 (

∑d
k=1Q

2k
r−1) can be expressed modulo I−n

in the form
∑d ′

k=1 F
2k , where d ′ ≥ d, and F 2k is a normally ordered polynomial in

J 0, . . . , J l−1 and their derivatives. It follows that

−
1

r + 1
�0,2 ◦1 (J

r−1
−Qr−1(J

0, . . . , J l−1))

can be expressed as an element of I−n of the desired form. ut

We remark that a similar strategy can be used to reprove the result from [FKRW] that for
n ≥ 1,Mn has a unique singular vectorD of weight n+1, andW1+∞,n has a decoupling
relation jn = P(j0, . . . , j

n−1). Recall thatW1+∞,n can be realized as the invariant space
E(V )GLn , where E(V ) is the bc-system associated to the vector space V = Cn [FKRW].
The associated graded algebra gr(E(V )) is

∧⊕
k≥0(Vk ⊕ V

∗

k ), and we have a linear
isomorphism

E(V )GLn ∼=

(∧⊕
k≥0

(Vk ⊕ V
∗

k )
)GLn

.

There is a singular vector D in Mn of weight n + 1, which corresponds to the relation
(p0,0)

n+1
∈ (
∧⊕

k≥0(Vk⊕V
∗

k ))
GLn . Here p0,0 =

∑n
i=1 xi,0∧x

′

i,0, which is analogous to
the corresponding element q0,0 ∈ (Sym

⊕
k≥0(Vk ⊕ V

∗

k ))
GLn . We have a decomposition

D =
∑n+1
k=1 D

2k , where D2 is a linear combination of the vertex operators ∂ iJ n−i . An
argument similar to the proof of Theorem 4.15 shows that for all n ≥ 1, the coefficient
of J n in D2 is nonzero, which yields a decoupling relation jn = P(j0, . . . , jn−1) in
W1+∞,n. Finally, an argument analogous to the proof of Theorem 4.4 shows thatD is the
unique singular vector in In.

A remaining question is whether the isomorphism W1+∞,−1 ∼= H⊗W3,−2 given by
Wang in [WI] has an analogue for n > 1. In other words, can W1+∞,−n be related to
W(g) for some Lie algebra g? We cannot answer this question at present, but there are a
few things we can say. First, note that j0 generates a copy of the Heisenberg algebra H,
and j0

◦0 acts by zero on W1+∞,−n. Since W1+∞,−n decomposes as a direct sum of
irreducible H-modules, it follows that W1+∞,−n ∼= H ⊗ A, where A is the commutant
Com(H,W1+∞,−n). Define vertex operators

L =
1

2n
(:j0j0:+ n∂j0

− 2nj1), (4.42)

W = :j0j0j0:+
3n
2

:j0∂j0: − 3n :j0j1:+
n2

4
∂2j0
−

3n2

2
∂j1
+

3n2

2
j2. (4.43)

Since W1+∞,−n is generated by j0, j1, and j2, and we can use (4.42) and (4.43) to
express j1 and j2 in terms of the vertex operators j0, L andW , it follows that {j0, L,W }
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is another generating set for W1+∞,−n. A straightforward OPE calculation shows that
both L and W commute with j0, so that A is generated by L and W as a vertex algebra.
Moreover, L generates a Virasoro algebra with central charge −n − 1 and W is primary
of conformal weight 3. Thus we have proved

Theorem 4.17. A is a conformal vertex algebra with central charge −n− 1.

In the case n = 1, an OPE calculation shows that L and W generate a copy of the
Zamolodchikov W3 algebra with central charge −2, so we recover Wang’s result.

5. The representation theory of W1+∞,−n

In [WII], Wang showed that the irreducible, highest-weight modules over W1+∞,−1 cor-
respond to the points on a certain complex algebraic variety of dimension 2. The key step
was to compute the Zhu algebra ofW1+∞,−1. Given a vertex algebra V with weight grad-
ing V =

⊕
n∈Z Vn, the Zhu functor attaches to V an associative algebra A(V), together

with a surjective linear map πZh : V → A(V) [Z]. For a ∈ Vm and b ∈ V , define

a ∗ b = Resz

(
a(z)

(z+ 1)m

z
b

)
, (5.1)

and extend ∗ by linearity to a bilinear operation V ⊗ V → V . Let O(V) denote the
subspace of V spanned by elements of the form

a ◦ b = Resz

(
a(z)

(z+ 1)m

z2 b

)
(5.2)

where a ∈ Vm, and let A(V) be the quotient V/O(V), with projection πZh : V → A(V).
Then O(V) is a two-sided ideal in V under the product ∗, and (A(V), ∗) is a unital,
associative algebra. The assignment V 7→ A(V) is functorial, and if I is a vertex algebra
ideal of V , we have A(V/I) ∼= A(V)/I , where I = πZh(I).

The main application of the Zhu functor is to study the representation theory of V .
A Z≥0-graded module M =

⊕
n≥0Mn over V is called admissible if for every a ∈ Vm,

a(n)Mk ⊂ Mm+k−n−1, for all n ∈ Z. Given a ∈ Vm, the Fourier mode a(m− 1) acts on
each Mk . The subspace M0 is then a module over A(V) with action [a] 7→ a(m − 1) ∈
End(M0). In fact, M 7→ M0 provides a one-to-one correspondence between irreducible,
admissible V-modules and irreducible A(V)-modules.

Let V be a vertex algebra which is strongly generated by a set of weight-homogeneous
elements αi of weights wi , for i in some index set I . Then A(V) is generated by {ai =
πZh(αi(z)) | i ∈ I }. Moreover, A(V) inherits a filtration (but not a grading) by weight,
and the associated graded object gr(A(V)) is a commutative algebra with generators {āi |
i ∈ I }. Given an element f ∈ A(V) of weight at most w, let f̄ ∈ gr(A(V)) denote the
symbol of f , i.e., the image of f in gr(A(V))[w].

Let C2(V) denote the vector space spanned by the elements {:(∂α)β: | α, β ∈ V}. It
is well-known that V/C2(V) is a commutative algebra. Moreover, the map V/C2(V)→
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gr(A(V)) sending the coset of α ∈ V to the symbol of πZh(α), is a surjective algebra
homomorphism.

Now we consider the case ofMc andW1+∞,c. For any c ∈ C, A(Mc) is the polyno-
mial algebra C[a0, a1, a2, . . . ], where al = πZh(J

l(z)) [FKRW]. Moreover, A(W1+∞,c)
∼= C[a0, a1, a2, . . . ]/Ic, where Ic = πZh(Ic), and we have a commutative diagram

Mc
πc //

πZh

��

W1+∞,c

πZh

��
A(Mc)

A(πc) // A(W1+∞,c)

(5.3)

Since A(W1+∞,c) is a commutative algebra, its irreducible modules are all one-dimen-
sional.

If c is an integer n ≥ 1, it is known thatA(W1+∞,n) ∼= C[a0, a1, . . . , an−1] [FKRW].
The irreducible A(W1+∞,n)-modules (and hence the irreducible, admissible W1+∞,n-
modules) then correspond to the points in Cn. The situation is much more interesting
in the case of negative integral central charge. For n = 1, it was shown in [WII] that
A(W1+∞,−1) ∼= C[h, t, w]/I , where I is the ideal generated by f (t, w) = w2

−
1
9 t

2(8t + 1). It follows that the irreducible, admissible W1+∞,−1-modules are parametr-
ized by the points on the variety V (I) ⊂ C3, which is just the product of an affine line
with a rational curve. For n > 1, it is immediate from Theorem 4.16 that A(W1+∞,−n) is
generated by {a0, . . . , an

2
+2n−1

}. Hence

A(W1+∞,−n) ∼= C[a0, . . . , an
2
+2n−1]/I−n,

where I−n is now regarded as an ideal inside C[a0, . . . , an
2
+2n−1]. Let V (I−n) ⊂ Cn2

+2n

be the corresponding variety, which then parametrizes the irreducible, admissible modules
over W1+∞,−n.

Theorem 5.1. For all n ≥ 1, V (I−n) is a proper, closed subvariety of Cn2
+2n.

Proof. We need to construct a nontrivial relation among the generators a0, . . . , an
2
+2n−1

of A(W1+∞,−n). Recall the vector space Un = (M−n)(2n+2) ∩ I−n given by (4.22),
whose component Un[k] of weight k has a basis {DI,J | |I | + |J | + n+ 1 = k}. A basis
for Un[(n+ 1)2 + 2] consists of the following five elements:

D(0,...,n),(0,...,n−1,n+2), D(0,...,n),(0,...,n−2,n,n+1), D(0,...,n−1,n+1),(0,...,n−1,n+1),

D(0,...,n−2,n,n+1),(0,...,n), D(0,...,n−1,n+2),(0,...,n).

As in the proof of Lemma 4.12, let f be the operator�1,0 ◦2 +�0,0 ◦1, which lowers the
weight by one. We calculate

f (D(0,...,n),(0,...,n−1,n+2)) = −(n+ 2)2D(0,...,n),(0,...,n−1,n+1),

f (D(0,...,n),(0,...,n−1,n+1)) = −(n+ 1)2D(0,...,n),(0,...,n),

f (D(0,...,n),(0,...,n−2,n,n+1)) = −n
2D(0,...,n),(0,...,n−1,n+1).
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Since the remainder R0 = R(0,...,n),(0,...,n) is nonzero by Theorem 4.15, it follows that
R(0,...,n),(0,...,n−1,n+2) and R(0,...,n),(0,...,n−2,n,n+1) are both nonzero as well. Hence there
exists a unique nontrivial linear combination

E = D(0,...,n),(0,...,n−1,n+2) + λD(0,...,n),(0,...,n−2,n,n+1), λ ∈ C \ {0}, (5.4)

such that for any decomposition E =
∑n+1
k=1 E

2k , the term E2 does not depend on
J n

2
+2n+2, and hence is a total derivative.
Recall from the proof of Theorem 4.15 that D0 = D(0,...,n),(0,...,n) admits a decom-

position D0 =
∑n+1
k=1 D

2k
0 for which D4

0 contains the term :J 0J n
2
+2n−1: with nonzero

coefficient. By the same argument, there is a decomposition

D(0,...,n),(0,...,n−1,n+1) =

n+1∑
k=1

D2k
(0,...,n),(0,...,n−1,n+1)

for which D4
(0,...,n),(0,...,n−1,n+1) contains :J 0J n

2
+2n: with nonzero coefficient. Similarly,

there exist decompositions

D(0,...,n),(0,...,n−1,n+2) =

n+1∑
k=1

D2k
(0,...,n),(0,...,n−1,n+2),

D(0,...,n),(0,...,n−2,n,n+1) =

n+1∑
k=1

D2k
(0,...,n),(0,...,n−2,n,n+1),

such that D4
(0,...,n),(0,...,n−1,n+2) and D4

(0,...,n),(0,...,n−2,n,n+1) both contain :J 0J n
2
+2n+1:

with nonzero coefficient.
Let E =

∑n+1
k=1 E

2k be a decomposition of E, where E2k is a homogeneous, normally
ordered polynomial of degree k in the variables�a,b. Under the linear change of variables
(4.15), we may regard E2k as a polynomial in the variables ∂ iJ l , i, l ≥ 0. Since E has
weight (n + 1)2 + 2, and E2 is a total derivative, E only depends on J 0, . . . , J n

2
+2n+1

and their derivatives.
By weight considerations, for k > 3, E2k only depends on J 0, . . . , J n

2
+2n−1 and

their derivatives. We may also assume that E6 only depends on J 0, . . . , J n
2
+2n−1 and

their derivatives, since our decomposition can be chosen so that :J 0J 0J n
2
+2n: does not

appear in E6. The possible terms in E4 which can contain either J n
2
+2n or J n

2
+2n+1 are

:J 0J n
2
+2n+1:, :J 1J n

2
+2n:, and :J 0∂J n

2
+2n:. We may disregard :J 0∂J n

2
+2n: since it lies

in C2(M−n), and hence will not contribute to the symbol of πZh(E) in A(M−n), which
has weight (n + 1)2 + 2. Finally, the terms ∂2J n

2
+2n and ∂J n

2
+2n+1 which can appear

in E2, may be disregarded as well, since they lie in C2(M−n).
Using the relation D(0,...,n),(0,...,n−1,n+1), we can eliminate J n

2
+2n+1 and its deriva-

tives from E, since R(0,...,n),(0,...,n−1,n+1) is nonzero. Next, we can eliminate J n
2
+2n and

its derivatives using D0 = D(0,...,n),(0,...,n), since R0 6= 0. Let E′ be the element of I−n
obtained from E in this way. Since E′ only depends on J 0, . . . , J n

2
+2n−1, πZh(E

′) ∈
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A(M−n) will lie in C[a0, . . . , an
2
+2n−1]. We will see that πZh(E

′) is nonzero, and hence
gives rise to a nontrivial relation among the generators a0, . . . , an

2
+2n−1 ofA(W1+∞,−n).

It is enough to show that the symbol of πZh(E
′) in gr(A(M−n)) has weight (n+ 1)2+ 2,

and is nonzero.
We introduce the degree-lexicographic monomial ordering on C[a0, a1, a2, . . . ],

where the variables are ordered by al < al+1, for l ≥ 0. Given a polynomial P ∈
C[a0, a1, a2, . . . ], Symb(P ) will denote the component of maximal weight, and LT(P )
will denote the leading term of Symb(P ). Similarly, given a vertex operator F ∈M−n, let
LT(F ) denote LT(πZh(F )), i.e., the leading term of the symbol of πZh(F ). An easy calcu-
lation shows that �k,l ∼= (−1)lJ k+l modulo total derivatives, so LT(�k,l) = (−1)lak+l .
It follows that LT(D0) = ±

∏n
k=0 a

2k . Similarly, we have

LT(D(0,...,n),(0,...,n−1,n+2)) = ±a
2n+2

n−1∏
k=0

a2k,

LT(D(0,...,n),(0,...,n−2,n,n+1)) = ±a
2n−1a2n+1

n−2∏
k=0

a2k.

Now we return to our elementE given by (5.4). Suppose first thatE4 contains the term
:J 0J n

2
+2n+1: with nonzero coefficient. As above, using the relationD(0,...,n),(0,...,n−1,n+1),

we eliminate the variable J n
2
+2n+1, and using D0, we eliminate J n

2
+2n, to obtain E′ ∈

I−n. SinceE4 contains :J 0J n
2
+2n+1: with nonzero coefficient, andD4

(0,...,n),(0,...,n−1,n+1)

contains :J 0J n
2
+2n: with nonzero coefficient, it follows that E′ contains the homoge-

neous, normally ordered polynomial :J 0J 0D2n+2
0 : in the variables J 0, . . . , J n

2
+2n−1 and

their derivatives. (Recall that D2n+2
0 is the term of maximal degree appearing in the de-

composition D0 =
∑n+1
k=1 D

2k
0 ). It follows that LT(E′) = ±(a0)2

∏n
k=0 a

2k , and hence is
nonzero.

Next, suppose that E4 does not contain :J 0J n
2
+2n+1:, but that it does con-

tain the term :J 1J n
2
+2n: with nonzero coefficient. A similar argument shows that

LT(E′) = ±a1∏n
k=0 a

2k , and hence is nonzero. Finally, suppose that E4 contains neither
:J 0J n

2
+2n+1: nor :J 1J n

2
+2n: with nonzero coefficient. Then the symbol of πZh(E

′) has
degree at most 2n+ 2, and coincides with the symbol of πZh(E). It follows that

LT(E′) = LT(D(0,...,n),(0,...,n−1,n+2)) = ±a
2n+2

n−1∏
k=0

a2k.

In particular, LT(E′) is nonzero, as desired. ut

It is an interesting problem to calculate the dimension of the variety V (I−n) and determine
whether it is irreducible or not. We hope to return to these questions in future work.

Acknowledgments. I thank W. Wang for helpful email correspondence.
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