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Every braid admits a short sigma-definite expression
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Abstract. A result by Dehornoy (1992) says that every nontrivial braid admits a σ -definite expres-
sion, defined as a braid word in which the generator σi with maximal index i appears with exponents
that are all positive, or all negative. This is the ground result for ordering braids. In this paper, we
enhance this result and prove that every braid admits a σ -definite word expression that, in addition,
is quasi-geodesic. This establishes a longstanding conjecture. Our proof uses the dual braid monoid
and a new normal form called the rotating normal form.
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It has been known since [6] that Artin’s braid groups are orderable, by an ordering that
enjoys many remarkable properties [11]. The key point in the existence of this ordering
is the property that every nontrivial braid admits a σ -definite expression, defined to be a
braid word w in the standard Artin generators σi in which the generator σi with highest
index i occurs only positively (no σ−1i ), in which case w is called σ -positive, or only
negatively (no σi), in which case w is called σ -negative. For β a braid, let ‖β‖σ denote
the length of the shortest expression of β in terms of the Artin generators σ±1i . Our main
goal in this paper is to prove the following result.

Theorem 1. Each n-strand braid β admits a σ -definite expression of length at most
6(n− 1)2‖β‖σ .

Theorem 1 answers a puzzling open question in the theory of braids. Indeed, the prob-
lem of finding a short σ -definite expression word for every braid has a long history. In
the past two decades, at least five or six different proofs of the existence of such σ -
definite expressions have been given. The first one by Dehornoy in 1992 relies on self-
distributive algebra [6]. The next one, by Larue [18], uses the Artin representation of
braids as automorphisms of a free group, an argument that was independently rediscov-
ered by Fenn–Greene–Rolfsen–Rourke–Wiest [14] in a topological language of so-called
curve diagrams. A completely different proof based on the geometry of the Cayley graph
of Bn and on Garside’s theory appears in [7]. Further methods have been proposed in
connection with relaxation algorithms, which are strategies for inductively simplifying
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some geometric object associated with the braid under consideration, typically a family
of closed curves drawn in a punctured disk. Both the methods of Dynnikov–Wiest in [12]
and of Bressaud in [4] lead to σ -definite expressions. However, a frustrating feature of all
the above methods is that, when one starts with a braid word w of length `, one obtains
in the best case the existence of a σ -definite word w′ equivalent to w whose length is
bounded above by an exponential in `—in the cases of [18, 14, 7, 12, 4], the original
method of [6] is much worse. By contrast, experiments, specially those based on the al-
gorithms derived from [7] and [12], strongly suggested the existence of short σ -definite
expressions, making it natural to conjecture that every braid word of length ` is equiva-
lent to a σ -definite word of length O(`). This is what Theorem 1 establishes. It is fair to
mention that the method of [12] proves the existence of “relatively short σ -definite ex-
pressions”. Indeed, it provides for every length ` braid word a σ -definite equivalent word
whose length with respect to some conveniently extended alphabet lies inO(`). However,
when the output word is translated back to the alphabet of Artin’s generators σi , the only
upper bound Dynnikov and Wiest could deduce so far is exponential in `.

The statement of Theorem 1 is essentially optimal. Indeed, it is observed in [11, Chap-
ter XVI] that the length 4(n− 2) braid word

σn−1σ
−2
n−2 . . . σ

−2e
2 σ 2e

1 σ 2e
2 . . . σ 2

n−2σ
−1
n−1,

with e = ±1 according to the parity of n, is equivalent to no σ -definite word of length
smaller than n2

− n− 2. Thus, in any case, the factor (n− 1)2 of Theorem 1 could not be
possibly replaced with a factor less than O(n).

Our proof of Theorem 1 is effective, and it directly leads to an algorithm that returns,
for every n-strand braid β, a distinguished σ -definite word NFn(β) that represents β.
Analyzing the complexity of this algorithm leads to

Theorem 2. There exists an effective algorithm which, for each n-strand braid specified
by a word of length `, computes the σ -definite word NFn(β) in O(`2) steps.

We prove Theorems 1 and 2 using the dual braid monoid B+∗n associated with the Birman–
Ko–Lee generators and introducing a new normal form on B+∗n , called the rotating normal
form, which is analogous to the alternating normal form of [5] and [10]. The rotating
normal form is based on the φn-splitting operation, a natural way of expressing every
n-strand dual braid in terms of a finite sequence of (n− 1)-strand dual braids.

The principle of the argument is as follows. Given an n-strand braid β, we first express
it as a fraction δ−tn β ′, where δn is the Garside element of the monoid B+∗n and β ′ belongs
to B+∗n . If the exponent t happens to be greater than the length of the above-mentioned
φn-splitting of β ′, then the σ -negative factor δ−tn wins over the σ -positive factor β ′, and
a σ -negative word representing β can be obtained by an easy direct computation. Oth-
erwise, we determine the rotating normal form w of β ′ and try to find a σ -positive ex-
pression of β by pushing the negative factor δ−tn to the right through the positive part w.
The process is incremental. The problem is that certain special σ -negative words, called
dangerous, appear in the process. The key point is that rotating normal words satisfy some
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syntactic conditions that enable them to neutralize dangerous words. In this way, one fi-
nally obtains a word expression of β that contains no σ−1n−1, hence is either σ -positive, or
involves no σn−1 at all. An induction on the braid index n then allows one to conclude.

The basic step of the above process consists in switching one dangerous factor and
one rotating normal word. This step increases the length by a multiplicative factor 3 at
most, and this is the way the length and time upper bounds of Theorems 1 and 2 arise.

In this paper, the braid ordering is not used—on the contrary, the existence of the
latter can be (re)-deduced from our current results. However, the braid ordering is present
behind our approach. What actually explains the existence of our normal form is the
connection between the rotating normal form of Section 2 and the restriction of the braid
ordering to the dual braid monoid, which is sketched in [15]. It is also worth noting that
the results of the current paper give a new, entirely self-contained proof of the existence
of the Dehornoy order of braids.

The paper is organized as follows. In Section 1, we briefly recall the definition of the
dual braid monoids and the properties of these monoids that are needed in what follows,
in particular those connected with the Garside structure. In Section 2, we introduce the
rotating normal form, which is our new normal form on B+∗n . In Section 3, we establish
syntactic constraints on rotating normal words, namely that every normal word is what we
call a ladder. In Section 4, we introduce the notion of a dangerous braid word and define
the so-called reversing algorithm, which transforms each word consisting of a dangerous
word followed by a ladder into a particular type of σ -definite word called a wall. In
Section 5 we compute the complexity of the above reversing algorithm. Finally, we put
all pieces together and establish Theorems 1 and 2 in Section 6.

1. Dual braid monoids

Our first ingredient for investigating braids will be the Garside structure of the so-called
dual braid monoid B+∗n . Here we recall the needed definitions and results.

1.1. Birman–Ko–Lee generators

We recall that Artin’s braid group Bn is defined for n ≥ 2 by the presentation〈
σ1, . . . , σn−1;

σiσj = σjσi for |i − j | ≥ 2
σiσjσi = σjσiσj for |i − j | = 1

〉
. (1.1)

The submonoid of Bn generated by {σ1, . . . , σn−1} is denoted by B+n , and its ele-
ments are called positive braids. As is well known, the monoid B+n equipped with Gar-
side’s fundamental braid 1n has the structure of what is now usually called a Garside
monoid [16, 8].

The dual braid monoid is another submonoid of Bn. It is generated by a subset of Bn
that properly includes {σ1, . . . , σn−1}, and consists of the so-called Birman–Ko–Lee gen-
erators introduced in [3].
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Definition 1.1. (See Figure 1.) For 1 ≤ p < q, we put

ap,q = σp . . . σq−2σq−1σ
−1
q−2 . . . σ

−1
p . (1.2)

1

2

3

4

Fig. 1. From left to right: diagram of the braids a2,3 (= σ2), a1,3 (= σ1σ2σ
−1

1 ) and a1,4
(= σ1σ2σ3σ

−1
2 σ

−1
1 ). The generator ap,q corresponds to the half-twist where the qth strand crosses

over the pth strand, both remaining under all intermediate strands.

Remark 1.2. In [3], ap,q is defined to be σq−1 . . . σp+1σpσ
−1
p+1 . . . σ

−1
q−1, i.e., it corresponds

to the strands at positions p and q passing in front of all intermediate strands, not behind.
Both options lead to isomorphic monoids, but our choice naturally leads to the suitable
embedding of B+∗n−1 into B+∗n , indeed, we need that B+∗n−1 is an initial segment of B+∗n with
respect to the standard braid ordering.

The family of all braids ap,q enjoys nice invariance properties with respect to cyclic
permutations of indices, which are better visualized when ap,q is represented on a cylinder
—see Figure 2. Then it is natural to associate with ap,q the chord connecting the vertices p
and q in a circle with n marked vertices [2].

1

6

1
2

3

4

1

2

3

4

5

6

Fig. 2. Rolling up the usual diagram helps to visualize the symmetries of the braids ap,q . On the
resulting cylinder, ap,q naturally corresponds to the chord connecting the vertices p and q.

Hereafter, we write [p, q] for the interval {p, . . . , q} of N, and we say that [p, q] is
nested in [r, s] if r < p < q < s. A nicely symmetric presentation of Bn in terms of the
generators ap,q is as follows.

Lemma 1.3 ([3]). In terms of the ap,q , the group Bn is presented by the relations

ap,qar,s = ar,sap,q for [p, q] and [r, s] disjoint or nested, (1.3)
ap,qaq,r = aq,rap,r = ap,rap,q for 1 ≤ p < q < r ≤ n. (1.4)

In the representation of Figure 2, relations of type (1.4) mean that, in each chord triangle,
the product of two adjacent edges taken clockwise does not depend on the edges: for
instance, the triangle (1, 3, 5) gives a1,3a3,5 = a3,5a1,5 = a1,5a1,3. Relations of type (1.3)



Every braid admits a short sigma-definite expression 1595

say that the generators associated with nonintersecting chords commute: for instance,
in Figure 2, we read that a2,4 and a1,5 commute—but, for instance, nothing is claimed
about a2,4 and a1,3.

1.2. The dual braid monoid B+∗n and its Garside structure

By definition, we have σp = ap,p+1 for each p: every Artin generator is a Birman–Ko–
Lee generator. On the other hand, the braid a1,3 belongs to no monoid B+n . Hence, for
n ≥ 3, the submonoid of Bn generated by the Birman–Ko–Lee braids ap,q is a proper
extension of B+n : this submonoid is what is called the dual braid monoid.

Definition 1.4. For n ≥ 2, the dual braid monoid B+∗n is defined to be the submonoid
of Bn generated by the braids ap,q with 1 ≤ p < q ≤ n.

So, every positive n-strand braid belongs toB+∗n , but the converse is not true for n ≥ 3:
the braid a1,3, i.e., σ1σ2σ−11 , belongs to B+∗3 but not to B+3 .

Proposition 1.5 ([3]). For each n, the relations of Lemma 1.3 yield a presentation ofB+∗n
in terms of the generators ap,q , and B+∗n is a Garside monoid with Garside element

δn = a1,2a2,3 . . . an−1,n (= σ1σ2 . . . σn−1). (1.5)

Proposition 1.5 implies that the left- and right-divisibility relations in the dual braid
monoid B+∗n have lattice properties, i.e., any two elements of B+∗n admit (left and right)
greatest common divisors and least common multiples. It also implies that Bn is a group
of fractions for the monoid B+∗n , and that every element of B+∗n admits a distinguished
decomposition similar to the greedy normal form of B+n [3]. This decomposition involves
the so-called simple elements of B+∗n , which are the divisors of δn, and are in one-to-one
correspondence with the noncrossing partitions of {1, . . . , n} [3, 1].

1.3. The rotating automorphism

An important role will be played by the so-called rotating automorphism φn of B+∗n .
In every Garside monoid, conjugating under the Garside element defines an automor-
phism [8]. In the case of the monoid B+n and its Garside element 1n, the associated
automorphism is the flip automorphism that exchanges σi and σn−i for each i, thus an
involution that corresponds to a symmetry in braid diagrams. In the case of the dual
monoid B+∗n and its Garside element δn, the associated automorphism has order n, and it
is similar to a rotation.

Lemma 1.6 (See Figure 3.). For each β in B+∗n , let φn(β) be defined by

δnβ = φn(β)δn. (1.6)

Then, for all p, q with 1 ≤ p < q ≤ n, we have

φn(ap,q) =

{
ap+1,q+1 for q ≤ n− 1,
a1,p+1 for q = n.

(1.7)
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Fig. 3. Representation of the rotating automorphism φn as a clockwise rotation of the marked circle
by 2π/n.

The proof is an easy verification from (1.2), (1.5) and the relations (1.3), (1.4). Note that
the relation φn(ap,q) = ap+1,q+1 always holds provided the indices are taken mod n and
possibly switched so that, for instance, ap+1,n+1 means a1,p+1.

The formulas of (1.7) show that B+∗n is globally invariant under φn. By contrast, note
that B+∗n is not invariant under the flip automorphism 8n : σi 7→ σn−i . For instance,
83(a1,3), which is σ2σ1σ−12 , does not belong to B+∗3 .

2. The rotating normal form

Besides the Garside structure, the main tool we shall use in this paper is a new normal
form for the elements of the dual braid monoid B+∗n , i.e., a new way of associating with
every element of B+∗n a distinguished word (in the letters ap,q ) that represents it. This nor-
mal form is called the rotating normal form, as it relies on the rotating automorphism φn
which we have seen is similar to a rotation.

The rotating normal form is reminiscent of the alternating normal form introduced
in [10] for the case of the monoid B+n—which is itself connected with Burckel’s approach
of [5]. It is also closely connected with the normal forms introduced in [17], which are
other developments, in a different direction, of the alternating normal form. As the prop-
erties of B+∗n and φn are essentially the same as those of B+n and 8n, adapting the results
of [10] is easy, and therefore constructing the rotating normal form is not very hard—
what will be harder is identifying the needed properties of rotating normal words, as will
be done in subsequent sections.

2.1. The φn-splitting

The basic observation of [10] is that each braid in the monoidB+n admits a unique maximal
right-divisors that lies in the submonoid B+n−1. A similar phenomenon occurs in the dual
monoid B+∗n .

Lemma 2.1. For n ≥ 3, every braid β of B+∗n admits a maximal right-divisor lying
in B+∗n−1. The latter is the unique right-divisor β1 of β such that ββ−11 has no nontriv-
ial (i.e., 6= 1) right-divisor lying in B+∗n−1.

Proof. The submonoid B+∗n−1 of B+∗n is closed under right-divisors and left-lcm’s. Hence
we can apply Lemma 1.12 of [10]. ut
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Definition 2.2. The braid β1 of Lemma 2.1 is called the B+∗n−1-tail of β and it is denoted
by tailn−1(β).

Example 2.3. Let us compute the B+∗2 -tail of δ2
3 . As B+∗2 is generated by a1,2, this

B+∗2 -tail is the maximal power of a1,2 that right-divides δ2
3 . By definition, we have

δ2
3 = a1,2a2,3a1,2a2,3. By applying (1.4) twice, we obtain

δ2
3 = a1,2a2,3a1,3a1,2 = a1,2a1,3a

2
1,2.

As the word a1,2a1,3 is alone in its equivalence class, the braid it represents cannot be
right-divisible by a1,2. Therefore, the B+∗2 -tail of δ2

3 is a2
1,2.

In the context of the monoid B+n , one obtains a distinguished decomposition for every
braid in B+n by considering the B+n−1-tail and the 8n(B+n−1)-tail alternately, which is pos-
sible because B+n is generated by B+n−1 and 8n(B+n−1). In our context of B+∗n , we shall
use the B+∗n−1-tail, the φn(B

+∗

n−1)-tail, . . . , the φn−1
n

(B+∗n−1)-tail cyclically to obtain a distin-
guished decomposition for every braid of B+∗n .

In order to show that every braid in B+∗n admits such a decomposition, we must check
that the images of B+∗n−1 under the powers of φn cover B+∗n . Actually, iterating twice is
enough.

Lemma 2.4. For n ≥ 3, every generator ap,q of B+∗n belongs to B+∗n−1 ∪ φn(B
+∗

n−1) ∪

φ2
n
(B+∗n−1).

Proof. For q ≤ n− 1, the braid ap,q belongs to B+∗n−1. Next, for q = n and p ≥ 2, we
have ap,n = φn(ap−1,n−1), which belongs to φn(B

+∗

n−1). Finally, for p = 1 and q = n, we
find ap,q = φn(an−1,n) = φ

2
n
(an−2,n−1), which belongs to φ2

n
(B+∗n−1). ut

By iterating the tail construction, we then associate with every braid of B+∗n a finite se-
quence of braids of B+∗n−1 that specifies it completely.

Proposition 2.5. Assume n ≥ 3. Then, for each nontrivial braid β of B+∗n , there exists a
unique sequence (βb, . . . , β1) in B+∗n−1 satisfying βb 6= 1 and

β = φb
−1
n
(βb) · . . . · φn(β2) · β1, (2.1)

for each k ≥ 1, the braid βk is the B+∗n−1-tail of φb−k
n
(βb) · . . . · βk. (2.2)

Proof. Starting from β(0) = β, we define two sequences, denoted β(k) and βk , by

β(k) = φ
−1
n
(β(k

−1)β
−1
k ) and βk = tailn−1(β

(k−1)) for k ≥ 1. (2.3)

Using induction on k ≥ 1, we prove the relations

β = φk
n
(β(k)) · φk

−1
n
(βk) · . . . · β1, (2.4)

tailn−1(φn(β
(k))) = 1. (2.5)
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Assume k = 1. Lemma 2.1 implies that the B+∗n−1-tail of ββ−11 is trivial. Then, as φn(β
(1))

is equal to ββ−11 , the B+∗n−1-tail of φn(β
(1)) is trivial, and the relation β = φn(β

(1)) · β1

holds. Assume k ≥ 2. By the construction of β(k), we have φn(β
(k)) = β(k−1)β−1k , hence

β(k−1)
= φn(β

(k)) · βk . Then we have the relation

φk
−1
n
(β(k

−1)) = φk
n
(β(k)) · φk

−1
n
(βk). (2.6)

On the other hand, by induction hypothesis, we have

β = φk
−1
n
(β(k

−1)) · φk
−2
n
(βk−1) · . . . · β1. (2.7)

Substituting (2.6) in (2.7), we obtain (2.4). As βk is the B+∗n−1-tail of β(k−1), Lemma 2.1
gives (2.5).

By construction, the sequence of right-divisors of β,

β1, φn(β2)β1, φ
2
n
(β3)φn(β2)β1, . . .

is nondecreasing for divisibility, and therefore, for length reasons, it must be eventually
constant. Hence, by right cancellativity of B+∗n , there exists b such that for k ≥ b, we have
φk−1
n
(βk) · . . . · β1 = φ

b−1
n
(βb) · . . . · β1. Then (2.4) implies

β = φb
n
(β(b))φb

−1
n
(βb) · . . . · β1,

with βb 6= 1 whenever b is chosen to be minimal.
By the definition of b, we have βk = 1, and therefore φn(β

(k)) = β(k−1) by (2.3),
for k ≥ b + 1. Then we have β(b) = φn(β

(b+1)), φ−1
n
(β(b)) = φn(β

(b+2)) and φ−2
n
(β(b)) =

φn(β
(b+3)). By (2.5), the B+∗n−1-tails of β(b), φ−1

n
(β(b)) and φ−2

n
(β(b)) are trivial. Hence, for

every generator x of B+∗n−1, the braid β(b) is not right-divisible by x, nor by φn(x) or φ2
n
(x).

Then Lemma 2.4 implies that β(b) is right-divisible by no ap,q with 1 ≤ p < q ≤ n, i.e.,
we have β(b) = 1, whence β = φb−1

n
(βb) · . . . · β1.

We now prove the uniqueness of (βb, . . . , β1). Let φc−1
n
(γc) · . . . ·φn(γ2) ·φn(γ1) be a

decomposition of β satisfying γc 6= 1 and γk = tailn−1(φ
c−k
n

(γc) · . . . ·γk) for each k ≥ 1.
Using induction on k ≥ 1, we prove the relations

γk = βk and φc
−k−1
n

(γc) · . . . · φn(γk+2) · γk+1 = β
(k).

For k = 1, by hypothesis, we have β = (φc−1
n
(γc) · . . . ·φn(γ2)) ·γ1, where γ1 is the B+∗n−1-

tail of β, hence, by Lemma 2.1, we have β1 = γ1 and β(1) = φc−2
n
(γc) · . . . · φn(γ3) · γ2.

By the induction hypothesis,

(φc
−k−1
n

(γc) · . . . · φn(γk+2)) · γk+1 = β
(k),

and by the hypothesis about γk+1, the braid γk+1 is the B+∗n−1-tail of β(k). Then, by Lemma
2.1 again, γk+1 = βk+1 and φc−k−2

n
(γc) · . . . ·φn(γk+3) ·γk+2 = β

(k+1). We proved γk = βk
for b ≥ k ≥ 1, hence

φc
−b−1
n

(γc) · . . . · φn(γb+2) · γb+1 = β
(b). (2.8)
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By the definition of b, we have β(b) = 1, whereas, by hypothesis, the braid γc is nontrivial.
So (2.8) may hold only for c = b. ut

Definition 2.6. The sequence (βb, . . . , β1) of Proposition 2.5 is called the φn-splitting
of β. Its length, i.e., the parameter b, is called the n-breadth of β.

The idea of the φn-splitting is very simple: starting with a braid β of B+∗n , we ex-
tract the maximal right-divisor that lies in B+∗n−1, i.e., that leaves the nth strand unbraided,
then we extract the maximal right-divisor of the remainder that leaves the first strand
unbraided, and so on rotating by 2π/n at each step—see Figure 4.

β1φ6(β2)
φ2

6 (β3)

φ3
6 (β4)

6

5

4

3

2
1

Fig. 4. The φ6-splitting of a braid of B+∗6 . Starting from the right, we extract the maximal right-
divisor that keeps the sixth strand unbraided, then rotate by 2π/6 and extract the maximal right-
divisor that keeps the first strand unbraided, etc.

In practice, we shall use the following criterion for recognizing a φn-splitting.

Lemma 2.7. Condition (2.2) is equivalent to

for each k ≥ 1, the B+∗n−1-tail of φb−k
n
(βb) · . . . · φn(βk+1) is trivial. (2.9)

Proof. By Lemma 2.1, for every k ≥ 1, the braid βk is theB+∗n−1-tail of the braid φb−k
n

(βb)·

. . . · φn(βk+1) · βk if and only if the B+∗n−1-tail of φb−k
n

(βb) · . . . · φn(βk+1) is trivial. Hence
(2.2) and (2.9) are equivalent. ut

As the notion of φn-splitting is both new and fundamental for what follows, we mention
several examples.

Example 2.8. Let us first determine the φn-splitting of the Birman–Ko–Lee generators
of B+∗n . For q ≤ n− 1, the braid ap,q belongs to B+∗n−1, so its φn-splitting is (ap,q). As
ap,n does not lie in B+∗n−1, the rightmost entry in its φn-splitting must be 1. Now, we
have φ−1

n
(ap,n) = ap−1,n−1 for p ≥ 2. Hence, for p ≥ 2, the φn-splitting of ap,n is

(ap−1,n−1, 1). Finally, the braids a1,n and φ−1
n
(a1,n) = an−1,n do not lie in B+∗n−1, but

φ−2
n
(a1,n) = an−2,n−1 does. So the φn-splitting of a1,n is the sequence (an−2,n−1, 1, 1). To

summarize, the φn-splitting of ap,q is
(ap,q) for p < q ≤ n− 1,
(ap−1,n−1, 1) for 2 ≤ p and q = n,
(an−2,n−1, 1, 1) for p = 1 and q = n.

(2.10)
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Example 2.9. Let us compute the φ3-splitting of δ2
3 . With the notation of the proof of

Proposition 2.5, we obtain

β(0) = β = (a1,2a2,3)
2, β1 = tail2(β(0)) = a2

1,2,

β(1) = φ
−1
3 (β

(0)β
−1
1 ) = φ

−1
3 (a1,2a1,3) = a1,3a2,3, β2 = tail2(β(1)) = 1,

β(2) = φ
−1
3 (β

(1)β
−1
2 ) = φ

−1
3 (a1,3a2,3) = a2,3a1,2, β3 = tail2(β(2)) = a1,2,

β(3) = φ
−1
3 (β

(2)β
−1
3 ) = φ

−1
3 (a2,3) = a1,2, β4 = tail2(β(3)) = a1,2,

β(4) = φ
−1
3 (β

(3)β
−1
4 ) = 1,

and we stop as the remainder β(4) is trivial. Thus the φ3-splitting of δ2
3 is the sequence

(a1,2, a1,2, 1, a2
1,2).

2.2. The rotating normal form

Using the φn-splitting, we shall now construct a unique normal form for the elements
of B+∗n , i.e., we identify for each braid β in B+∗n a distinguished word that represents β.

The principle is as follows. First, each braid of B+∗2 is represented by a unique
word ak1,2. Then the φn-splitting provides a distinguished decomposition for every braid
of B+∗n in terms of braids of B+∗n−1. So, using induction on n, we can define a normal form
for β in B+∗n starting with the normal form of the entries in the φn-splitting of β.

For the rest of this paper, it will be convenient to make the following conventions for
braid words and the braids they represent.

Definition 2.10. A word on the letters σ±1i (resp. a±1
p,q ) is called a σ -word (resp. an a-

word). The set of all positive n-strand a-words (including the empty word ε) is denoted
by B+∗n . The braid represented by an a-word or a σ -word w is denoted by w. For w a
σ -word or an a-word and w′ a σ -word or an a-word, we say that w is equivalent to w′,
denoted w ≡ w′, if w = w′.

According to the formulas (1.7), φn maps each braid ap,q to another similar braid ar,s .
Using this observation, we can introduce the alphabetical homomorphism, still de-
noted φn, that maps the letter ap,q to the corresponding letter ar,s , and extends to every
a-word. Note that, in this way, if the a-word w represents the braid β, then φn(w) repre-
sents φn(β).

Definition 2.11. (i) For β in B+∗2 , the φ2-rotating normal form of β is defined to be the
unique a-word ak1,2 that represents β.

(ii) For β in B+∗n with n ≥ 3, the φn-rotating normal form of β is defined to be the a-word
φb−1
n
(wb) . . . w1, where (βb, . . . , β1) is the φn-splitting of β and wk is the φn−1-

rotating normal form of βk for each k.

As the φn-splitting of a braid β lying in B+∗n−1 is the length 1 sequence (β), the φn-
normal form and the φn−1-normal form of β coincide. Therefore, we can drop the sub-
script n, and speak of the rotating normal form, or simply normal form, of a braid of B+∗n .
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We naturally say that a positive a-word is normal if it is the normal form of the braid it
represents.

Example 2.12. Let us compute the normal form of δ2
4 . First, we check the equality δ2

4 =

a1,2a1,4δ
2
3 . Then the φ4-splitting of δ2

4 turns out to be (a2,3, a2,3, 1, δ2
3). The φ3-splitting

of a2,3 is (a1,2, 1), and therefore its normal form is φ3(a1,2), which is a2,3. Next, we saw
in Example 2.9 that the φ3-splitting of δ2

3 is (a1,2, a1,2, 1, a2
1,2). Therefore, its normal form

is φ3
3 (a1,2) · φ

2
3 (a1,2) · φ3(ε) · a1,2a1,2, hence a1,2 · a1,3 · ε · a1,2a1,2, i.e., a1,2a1,3a1,2a1,2.

So, finally, the normal form of δ2
4 is

φ3
4 (a2,3) · φ

2
4 (a2,3) · φ4(ε) · a1,2a1,3a1,2a1,2,

hence a1,2 ·a1,4 ·ε ·a1,2a1,3a1,2a1,2, i.e., a1,2a1,4a1,2a1,3a1,2a1,2. When expressed in terms
of the standard Artin generators, this amounts to saying that the rotating normal form of
the braid δ2

4 , i.e., (σ1σ2σ3)2, is σ1 · σ1σ2σ3σ−12 σ
−1

1 · σ1 · σ1σ2σ
−1

1 · σ1 · σ1, a result that has
no interest in itself but to show how different the current normal form is from the usual
normal forms.

As the relations of Lemma 1.3 preserve the length, positive equivalent a-words always
have the same length. Hence, if w′ is the unique normal word equivalent to some word w
of B+∗n , then w and w′ have the same length.

Proposition 2.13. For each length ` word w of B+∗n , the normal form of w can be com-
puted in at most O(`2) elementary steps.

Proof. Computing the B+∗n−1-tail of the braid w can be done in O(`) steps. Hence com-
puting the φn-splitting can be done in O(`2) steps. Taking into account the observation
that the lengths of equivalent words are equal, one deduces using an easy induction on n
that computing the rotating normal form of w can be done in O(`2) steps. ut

We considered above the question of going from w to an equivalent normal word, thus
first identifying the φn-splitting of w and then finding the normal form of the successive
entries. Conversely, when we start with a normal word w, it is easy to isolate the suc-
cessive entries of the φn-splitting of the braid w, i.e., to group the successive letters in
blocks: one finds the last block as the maximal block that contains no letter ai,n, then one
removes this block, applies the rotation φ−1

n
, and iterates the process.

Hereafter, if w is an n-normal word, the (unique) sequence of (n− 1)-normal words
of (wb, . . . , w1) such that (wb, . . . , w1) is the φn-splitting of w is naturally called the
φn-splitting of w.

Lemma 2.14. Assume n ≥ 3. For each normal word w of B+∗n , the φn-splitting of w can
be computed in at most O(`) elementary steps.

Proof. By the definition of φn, a generator ap,q lies in φk
n
(B+∗n−1) if and only if we have

p 6= k mod n and q 6= k mod n. Therefore, given a normal wordw in B+∗n , we can directly
read the φn-splitting (wb, . . . , w1) of w. Indeed, reading w from right to left, w1 is the
maximal suffix of w that lies in B+∗n−1, then φn(w2) is the maximal suffix of the remaining
braid lying in φn(B

+∗

n−1), etc., until the empty word is left. ut
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Example 2.15. Let us consider the normal word w = a1,2a1,4a2,3a1,2 and compute
the φ4-splitting of w. Reading w from right to left, we find that the maximal suffix
of w containing no letter ap,q with p = 0 mod n or q = 0 mod n is the word
a2,3a1,2. The latter is the maximal suffix of w lying in B+∗3 , so we have the relation
w1 = a2,3a1,2. Repeating this process, one easily finds that the φ4-splitting of w is
(φ−3

4 (a1,2), φ
−2
4 (a1,4), φ

−1
4 (1), a2,3a1,2), hence the sequence (a2,3, a2,3, 1, a2,3a1,2).

3. Ladders

The φn-splitting operation associates with every braid in B+∗n a finite sequence of braids
in B+∗n−1. Now, in the other direction, a sequence of braids in B+∗n−1 need not be the φn-
splitting of a braid in B+∗n . The aim of this section is to establish constraints that are
satisfied by the entries of a φn-splitting. The main constraint is that a φn-splitting neces-
sarily contains what we call ladders, which are sequences of (nonadjacent) letters ap,q
whose indices q make an increasing sequence (the bars of the ladder).

3.1. Last letters

We begin with some elementary observations about the last letters of the normal forms of
the entries in a φn-splitting.

Definition 3.1. For each nonempty word w, the last letter of w is denoted by w#. Then,
for each nontrivial braid β in B+∗n , we define the last letter of β, denoted β#, to be the last
letter in the normal form of β.

Lemma 3.2. Assume n ≥ 3, and let (βb, . . . , β1) be a φn-splitting.

(i) For k ≥ 2, the letter β#
k is ap,n−1 for some p, unless βk = 1.

(ii) For k ≥ 3, we have βk 6= 1.
(iii) For k ≥ 2, if the normal form of βk is wan−2,n−1 with w nonempty, then the letter w#

is ap,n−1 for some p.

Proof. (i) Assume k ≥ 2. Put ap,q = β#
k . By (2.9), theB+∗n−1-tail of φb−k+1

n
(βb)·. . .·φn(βk)

is trivial. In particular, φn(β
#
k) cannot lie in B+∗n−1, so β#

k must be a letter of the form ap,n−1.
(ii) Assume that βc = 1 with c ≥ 3 and βk 6= 1 for b ≥ k > c. By the definition of a

φn-splitting, we have βb 6= 1, hence c ≤ b − 1. By the definition of c, we have βc+1 6= 1,
hence, by (i), β#

c+1 = ar,n−1 for some r . By (2.9), the B+∗n−1-tail of φb−c+1
n

(βb) · . . . ·

φ2
n
(βc+1)φn(βc) is 1. As βc = 1, we deduce that the B+∗n−1-tail of φb−c+1

n
(βb)·. . .·φ

2
n
(βc+1)

is 1 as well. This implies that the last letter of φ2
n
(βc+1), which is φ2

n
(ar,n−1), does not

belong to B+∗n−1. Then (1.7) implies r = n− 2 and φ3
n
(ar,n−1) = a1,2. As the normal form

of βc−1 is a word of B+∗n−1, the braid φn(βc−1) can be represented by a word that contains
no letter a1,q . Now the relations

a1,2ap,q ≡

{
ap,qa1,2 for 2 < p,
a1,qa1,2 for 2 = p,
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imply that there exists a braid β ′ in B+∗n satisfying a1,2φn(βc−1) ≡ β ′a1,2. Therefore
a1,2 is a right-divisor of φ3

n
(βc+1) · φ

2
n
(βc) · φn(βc−1). As c − 1 ≥ 2 by hypothesis, this

contradicts (2.9).
(iii) Assume that the normal form of βk is wan−2,n−1 with w 6= ε. Let ap,q be the last

letter of w. As

ap,qan−2,n−1 ≡

{
an−2,n−1ap,q for q < n− 2,
ap,n−1ap,q for q = n− 2,

(3.1)

we must have q = n− 1. Indeed, otherwise, ap,q would be a right-divisor of βk , i.e.,
the B+∗n−1-tail of φn(βk) would be nontrivial, contradicting (2.9). ut

3.2. Barriers

If (βb, . . . , β1) is the φn-splitting of a braid of B+∗n , then Lemma 3.2 says that, for k ≥ 3,
the letter β#

k must be some letter ap−1,n−1. We shall see now that the braid βk−1 cannot be
an arbitrary braid of B+∗n−1: its normal form has to satisfy some constraints involving the
integer p, namely containing a letter called an ap,n-barrier—a key point in subsequent
results.

Definition 3.3. The letter ar,s is called an ap,n-barrier if

1 ≤ r < p < s ≤ n− 1. (3.2)

There exists no ap,n-barrier with n ≤ 3; the only ap,4-barrier is a1,3, which is an a2,4-
barrier.

By definition, if the letter x is an ap,n-barrier, then in the presentation of B+∗n there
exists no relation of the form ap,n · x = y · ap,n allowing one to push the letter ap,n to
the right through the letter x: so, in some sense, x acts as a barrier. We shall prove now
that (almost) every nonterminal entry βk of a splitting necessarily contains a barrier—a
key point for what follows. The reason is simple: if there were no barrier in βk , then
the relations would enable one to push the last letter of φ2

n
(βk+1) through φn(βk) and

incorporate it in βk−1, contradicting the definition of a splitting.

Lemma 3.4. Assume that n ≥ 3, β is a braid of B+∗n−1 and the B+∗n−1-tail of φn(ap,nβ) is
trivial for p ≤ n− 2. Then the normal form of β is not the empty word and it contains an
ap,n-barrier.

Proof. We assume that the normal form w of β contains no ap,n-barrier, and derive a
contradiction. Let w′ be the word ap,nw and let X be the set of all letters aq,r with
p < r ≤ n− 1. Write w′ = uv where v is the maximal suffix of w containing letters
from X only. By hypothesis, the B+∗n−1-tail of φn(w′) is trivial. Hence the word w′ ends
with aq,n−1 for some q, i.e., v is not empty. As the first letter of w′ is ap,n, which is
not in X, the word u is not empty. Let as,t be the last letter of u. By the construction
of u, the letter as,t is either ap,n or satisfies t ≤ p. In both cases, the braid φn(as,t ) lies
in B+∗n−1. We shall now prove that as,t quasi-commutes with v, i.e., there exists a word v′
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satisfying as,tv ≡ v′as,t . Any letter aq,r occurring in v is not an ap,n-barrier, i.e., it
satisfies p ≤ q < r ≤ n− 1. Hence, by the relations

as,taq,r ≡


aq,ras,t for p < q or t < p by (1.3),
as,ras,t for q = t = p by (1.4),
ar,tas,t for q = s = p by (1.4),

the letter as,t quasi-commutes with v. Then φn(as,t ) is a right-divisor of φn(ap,nβ). This
contradicts the hypothesis that the B+∗n−1-tail of φn(ap,nβ) is trivial since the braid φn(as,t )
belongs to B+∗n−1. ut

We now show how Lemma 3.4 can be used in the context of a φn-splitting.

Lemma 3.5. Let (βb, . . . , β1) be a φn-splitting of some braid of B+∗n with n ≥ 3. Then,
for each k in {b− 1, . . . , 2} such that β#

k+1 is not an−2,n−1 (if any), the normal form of βk
contains an φn(β

#
k+1)-barrier.

Proof. Condition (2.9) implies that the B+∗n−1-tail of φb−k+1
n

(βb) · . . . · φ
2
n
(βk+1)φn(βk) is

trivial. In particular the B+∗n−1-tail of φ2
n
(β#
k+1)φn(βk) is trivial. Then Lemma 3.4 implies

that the normal form of βk contains an ap,n-barrier. ut

Example 3.6. Let us consider the braid β whose normal form is

a2,4a1,3a4,5a2,4a2,4a3,5a4,5.

The φ5-splitting of β is (β4, β3, β2, β1) with

β4 = a1,4, β3 = a1,4, β2 = a3,4a1,3a1,3a2,4a3,4 and β1 = 1.

The letter β#
4 is a1,4, hence by Lemma 3.5 the normal form of β3 must contain an a2,5-

barrier; indeed, a1,4 is an a2,5-barrier. The letter β#
3 is a1,4. Then, again by Lemma 3.5,

the normal form of β2 has to contain an a2,5-barrier; indeed, the normal form of β2 is
a3,4a1,3a1,3a2,4a3,4, which contains the a2,5-barrier a1,3.

3.3. Ladders

We have seen above in Lemma 3.4 that every normal word w of B+∗n−1 such that the B+∗n−1-
tail of φn(ap,nw), with p ≤ n− 2, is trivial contains at least one ap,n-barrier. We shall see
now that, under the same hypotheses,w contains not only one barrier, but even a sequence
of overlapping barriers. Words containing such sequences are what we shall call ladders.

Definition 3.7. For n ≥ 3, we say that a normal word w is an ap,n-ladder of height h lent
on aq−1,n−1 if there exists a decomposition

w = w0x1w1 . . . wh−1xhwh (3.3)

and a sequence p = f (0) < f (1) < · · · < f (h) = n− 1 such that
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(i) for each k ≤ h, the letter xk is an af (k−1),n-barrier of the form a.,f (k),
(ii) for each k < h, the word wk contains no af (k),n-barrier,

(iii) the last letter of w is aq−1,n−1.

By convention, any a-word whose last letter is aq−1,n−1 is an an−1,n-ladder lent
on aq−1,n−1 and its height is 0. There exist no ap,n-barrier with n ≤ 3, hence there exist
only a2,3-ladders in B+∗3 .

The concept of a ladder is easily illustrated by representing the generators ap,q as a
vertical line from the pth line to the qth line on an n-line stave. Then, for every k ≥ 0,
the letter xk looks like a bar of a ladder—see Figure 5.

1

6

Fig. 5. An a2,6-ladder lent on a3,5 (the last letter). The gray line starts at position 2 and goes up to
position 5 using the bars of the ladder. The empty spaces between bars in the ladder are represented
by a framed box. In such boxes the vertical line representing the letter ai,j does not cross the gray
line. The bars of the ladder are represented by black thick vertical lines.

Our aim is to prove that the normal form of each nonterminal entry in a φn-splitting
is a ladder. In order to do that, we begin with a preparatory lemma showing that barriers
necessarily occur after certain letters of a normal form. Applying this result repeatedly
will eventually provide us with a ladder.

Lemma 3.8. Assume that n ≥ 4, w is a suffix of a normal word of B+∗n−1, ap,q belongs
to B+∗n−2, and the B+∗n−1-tail of φn(ap,qw) is trivial. Then w contains an aq,n-barrier.

Proof. (The method is formally similar to that for Lemma 3.4, but we repeat it because
the technical details are actually different.) Let X be the set of all letters ar,s with s > q.
Write ap,qw = uv where v is the maximal suffix containing letters of X only. As, by
hypothesis, the B+∗n−1-tail of φn(ap,qw) is trivial, the last letter of w exists and has the
form a.,n−1, hence v is nonempty.

As the letter ap,q does not lie in X, the word u is not empty. Let x = at,t ′ be the last
letter of u. By the definition of u, we have t ′ ≤ q. We suppose that v contains no aq,n-
barrier, i.e., every letter ar,s of v satisfies r ≥ q, and eventually derive a contradiction.
By (1.3) and (1.4), we have

xar,s ≡

{
ar,sx for r > q or t ′ < q,
at,sx for q = r = t ′,

which implies that x and v quasi-commute, i.e., there exists an a-word v′ satisfying
xv ≡ v′x. Then φn(x) is a right-divisor of the braid represented by φn(ap,qw). The
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hypothesis about ap,q and the relation t ′ ≤ q imply that φn(x) lies in B+∗n−1, which contra-
dicts the hypothesis that the B+∗n−1-tail of φn(ap,qw) is trivial. ut

We can now show that every normal word satisfying some mild additional condition is a
ladder.

Proposition 3.9. Assume that n ≥ 3, β belongs to B+∗n−1 and the B+∗n−1-tail of φn(ap,nβ)
is trivial for some p ≤ n− 2. Then the normal form of β is an ap,n-ladder lent on β#.

Proof. We put f (0) = p and let w be the normal form of β. Lemma 3.5 implies that w
admits a decomposition w0x1w

(0), where w0 is the maximal prefix of w that contains no
ap,n-barrier and x1 = a.,f (1) is an ap,n-barrier. By hypothesis, the B+∗n−1-tail of the braid
φn(ap,nw) is trivial, i.e., the B+∗n−1-tail of φn(x1w

(0)) is trivial. Assume f (1) 6= n− 1.
Lemma 3.8 implies that the word w(0) admits a decomposition w1x2w

(1), where w1 is the
maximal prefix of w(0) that contains no af (1),n-barrier and x2 is an af (1),n-barrier. The
same argument repeats until we find a decomposition w0x1w1 . . . xhw

(h−1) with f (h) =
n− 1. Then, putting wh = w(h−1), we have obtained for β an expression that satisfies all
requirements of Definition 3.7. ut

Applying Proposition 3.9 to the successive entries of a φn-splitting allows one to deduce
that its entries contain ladders.

Corollary 3.10. Assume that n ≥ 3 and (βb, . . . , β1) is a sequence in B+∗n−1 that is the
φn-splitting of some braid of B+∗n . Then, for each k in {b − 1, . . . , 2}, the normal form
of βk is a φn(β

#
k+1)-ladder lent on β#

k .

Proof. Condition (2.9) implies that the B+∗n−1-tail of φ2
n
(βk+1)φn(βk) is trivial. In particu-

lar, the B+∗n−1-tail of φ2
n
(β#
k+1)φn(βk) is trivial. By Lemma 3.2, the letter β#

k+1 has the form
a.,n−1. Then Proposition 3.9 implies that the normal form of βk is a φn(β

#
k+1)-ladder lent

on β#
k . ut

For subsequent use it is worth noting that, by the definition of a ladder, as the letter an−2,n−1
is not a barrier, if a word wan−2,n−1 is an ap,n-ladder and w is nonempty, then w is an
ap,n-ladder lent on ar−1,n−1 for some r—see Lemma 3.2(iii).

Another consequence of Proposition 3.9 is:

Corollary 3.11. Assume that n ≥ 3 and (βb, . . . , β1) is a sequence in B+∗n−1 that is the
φn-splitting of some braid of B+∗n . Then, for each c in {b − 1, . . . , 2} such that βc is
either 1 or an−2,n−1, we have β#

c+1 = an−2,n−1.

Proof. Assume βc ∈ {1, an−2,n−1}. Let ap−1,n−1 be the last letter of βc+1. Condi-
tion (2.9) implies that the B+∗n−1-tail of φ2

n
(βc+1)φn(βc) is trivial. In particular the B+∗n−1-tail

of φn(ap,nβc) is trivial. Then, as the normal form of βc contains no barrier, Proposition 3.9
implies p = n− 1. Therefore β#

c+1 = an−2,n−1. ut

Example 3.12. Let us consider the braid of Example 3.6 again. Its φ4-splitting is is
(β4, . . . , β1) with β4 = a1,4, β3 = a1,4, β2 = a3,4a1,3a1,3a2,4a3,4 and β1 = 1. The
normal form of β4 ends with a1,4, hence the normal form of β3 must be an a2,5-ladder
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lent on a1,4. Indeed, the ladder is ε · a1,4 · ε, and it has height 1, corresponding, with
the notation of Definition 3.7, to w0 = ε, x1 = a1,4 and w1 = ε. Similarly, the nor-
mal form of β3 ends with a1,4, hence by Corollary 3.10, the normal form of β2 must be
an a2,5-ladder lent on a3,4. Indeed, here the ladder has height 2, and its decomposition is
a3,4 ·a1,3 ·a1,3 ·a2,4 ·a3,4, corresponding, with the notation of Definition 3.7, tow0 = a3,4,
x1 = a1,3, w1 = a1,3, x2 = a2,4 and w2 = a3,4. We observe that a1,3 is an a2,5-barrier
and a2,4 is an a3,5-barrier.

4. Reversing

In Section 3, we have established that almost every normal word is a ladder. We wish
to use this result to establish Theorem 1, i.e., to obtain (short) σ -definite expressions.
The basic question is as follows. Starting with a braid word that contains letters σi with
both positive and negative exponents, we shall try to obtain an equivalent word that is
σ -positive—it is known that one cannot obtain both a σ -positive and a σ -negative expres-
sion, so our attempt must fail in some cases. The problem is to get rid of the letters σ−1i
with maximal index i. We shall see that, without loss of generality, we can assume that
the initial word consists of an initial fragment—that will be called dangerous—containing
negative letters (those with a negative exponent), followed by a normal word, hence by
a ladder according to Proposition 3.9. Then the main technical step consists in proving
that the product of a dangerous word with a ladder can be transformed using a simple al-
gorithmic process called reversing into an equivalent σ -positive word: roughly speaking,
ladders protect against dangerous elements.

4.1. D-words

Up to now, we have considered braid words involving letters of two different alphabets,
namely the Artin generators σi and the Birman–Ko–Lee generators ap,q . From now on,
we shall also use a third alphabet, corresponding to the following braids.

Definition 4.1. For 1 ≤ p < q, we put

dp,q = ap,p+1ap+1,p+2 . . . aq−1,q (= σpσp+1 . . . σq−1).

So, in particular, the equalities

ap,q = dp,qd
−1
p,q−1 = dp,q−1 σq−1 d

−1
p,q−1 (4.1)

hold for 1 ≤ p < q.
Hereafter it is convenient to use dp,q as a single letter. In this context, a word on the

letters d±1
p,q (resp. a±1

p,q and d±1
p,q , resp. σ±1

i ) will be called a d-word (resp. an ad-word,
resp. a σ -word). We adopt the convention that the d-word dp,p is the empty word ε for
all p.
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All words over the above alphabets represent braids, and they can be translated into
σ -words. It is coherent with the intended braid interpretations to define words ap,q and
dp,q by

ap,q = σp . . . σq−2σq−1σ
−1
q−2 . . . σ

−1
p , dp,q = σp . . . σq−1. (4.2)

In this way, for each ad-word w, the braid represented by w coincides with the braid
represented by the σ -word w obtained from w by replacing every letter ap,q by ap,q and
every letter dp,q by dp,q , and no ambiguity can result from using different alphabets. Of
course, if w and w′ are two ad-words, we declare that w ≡ w′ if the σ -words w and w′

are equivalent under the braid relations (1.1). Note in particular that the braid represented
by the d-word d1,n is the Garside braid δn.

The following equivalences of ad-words easily result from the definitions.

Lemma 4.2. The following relations are satisfied:

dp,r ≡ dp,q dq,r for p < q < r, (4.3a)
φn(dp,q) ≡ dp+1,q+1 for p < q ≤ n− 1, (4.3b)
dp,q dr,s ≡ dr,s dp,q for p < q < r < s, (4.3c)

d
−1
r,s ap,q dr,s ≡ φ

−1
s
(φr(ap,q)) for p < q ≤ r < s. (4.3d)

Proof. Relation (4.3a) holds by the definition of dp,q . Relation (4.3b) is an immediate
consequence of (1.7). For (4.3c), we observe that the σi of greatest index occurring in dp,q
is σq−1, while the σi of lower index occurring in dr,s is σr . As q < r implies q − 1 ≤ r−2,
we can apply Artin’s commutativity relation (1.1) to obtain the expected result.

It remains to prove (4.3d). First, (4.3a) implies d1,s ≡ d1,rdr,s , hence dr,s ≡ d−11,rd1,s .
We deduce d−1r,s ap,q dr,s ≡ d

−1
1,s d1,rap,qd

−1
1,r d1,s . As, by hypothesis, ap,q lies in B+∗r , the

subword d1,rap,qd
−1
1,r is equivalent to φr(ap,q). Finally the conjunction of B+∗r ⊆ B

+∗
s and

φr(ap,q) ∈ B
+∗
r implies d−11,sφr(ap,q)d1,s ≡ φ

−1
s
(φr(ap,q)). ut

4.2. Sigma-positive words

Our aim is to obtain σ -positive and σ -negative expression words. We shall need slightly
more precise versions of these notions.

Definition 4.3. (i) A σ -word w is called σi-positive (resp. σi-negative) if w contains at
least one letter σi and no letter σ−1i (resp. at least one letter σ−1i and no letter σi) and
no letter σ±1j for j > i.

(ii) A σ -word w is said to be σi-nonnegative if it is either σi-positive, or contains no
letter σ±1j with j ≥ i.

(iii) An ad-word w is called σi-positive (resp. σi-negative, resp. σi-nonnegative) if the
word w is σi-positive (resp. σi-negative, resp. σi-nonnegative).

Example 4.4. A σ -word cannot be simultaneously σi-positive and σi-negative, but, on
the other hand, a σ -word can be neither σi-positive nor σi-negative for any i. For instance,
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σ2σ1σ
−1

2 is neither σ2-positive (since it contains a letter σ−12 ), nor σ2-negative (since it con-
tains a letter σ2), nor σ1-positive or σ1-negative (since it contains a letter σ2). By contrast,
the equivalent word σ−11 σ2σ1 is σ2-positive. On the other hand, the empty word, σ−11 , and
σ2σ

−1
1 are σ2-nonnegative words, since the letter σ−12 does not occur in them.
As for a-words, a−12,3a1,3 is not σ2-positive, since its translation under (4.2) is the σ -

word σ−12 σ1σ2σ
−1

1 , which is not σ2-positive as it contains the letter σ−12 . However, the pre-
vious a-word is equivalent to the a-word a1,3a

−1
1,2, which translates into σ1σ2σ−11 σ

−1
1 and

is therefore σ2-positive, since σ1σ2σ−11 σ
−1

1 contains one letter σ2 and no letter σ−12 .

An immediate consequence of Definition 4.3(iii) is

Lemma 4.5. An ad-word w is σi-positive if w contains at least one letter a.,i+1 or d.,i+1,
and no letter a−1.,i+1, d−1.,i+1, a±1

.,j , or d±1
.,j with j > i + 1.

4.3. Dangerous words

We arrive at a key notion. The problem is to identify the generic form of the σ -negative
fragments we wish to control and, possibly, get rid of. It turns out that the convenient
notion is defined in terms of the letters d−1p,q , and it is what we call a dangerous word.

Definition 4.6. For n ≥ 3, a d-word is called ap,n-dangerous of type q if it has the form

d
−1
f (d),n−1d

−1
f (d−1),n−1 . . . d

−1
f (1),n−1 (4.4)

with q = f (d) ≥ f (d − 1) ≥ · · · ≥ f (1) = p.

By convention the unique an−1,n-dangerous word is the empty word.
Note that a dangerous d-word w is completely determined by the σ -word w. Indeed,

we recover w from w by gathering the σ−1i ’s and cutting before each letter σ−1n−2. For in-
stance, σ−13 σ

−1
2 σ

−1
3 σ

−1
2 σ

−1
1 can only be the translation of the a1,5-dangerous word d−12,4d

−1
1,4.

At this point, the definition of a dangerous word comes out of a hat. For the moment,
let us observe that the letter ap,n is equivalent to dp,nd−1p,n−1. In this expression, d−1p,n−1,
which is ap,n-dangerous, corresponds to the negative fragment of ap,n. This reflects the
intuition that dangerous words are associated with the negative parts of a-words—hence
with their dangerous parts in view of our aim, which is to find σ -positive expressions.

4.4. The reversing algorithm

The aim of this section is to describe an algorithm that, starting with an ap,n-dangerous
word u and an ap,n-ladder w, returns a σn−2-positive word w′ that is equivalent to uw and
that is close to being an ap,n-ladder in a sense that will be defined below.

The basic ingredient is a process called reversing that transforms (certain) ad-words
with letters d−1.,n−1 on the left into equivalent words with letters d−1.,n−1 on the right (or with
no letter d−1.,n−1 at all). Thus reversing is a process of pushing letters d−1.,n−1 to the right.
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Definition 4.7. Let w,w′ be ad-words. We write wy(1)w′ if w′ is obtained from w by
replacing a subword u of w by a word u′ such that (u, u′) is one of the pairs

(d
−1
p,n−1ar,s, Rp(ar,s)d

−1
p,n−1) with s ≤ p ≤ n− 2 or p ≤ r ≤ n− 2, (4.5)

(d
−1
p,n−1ar,s, dr,n−1R

′
p(ar,s)d

−1
s,n−1) with r < p < s ≤ n− 1, (4.6)

(d
−1
p,n−1dr,n−1, dr,n−1R

′′
p) with r < p ≤ n− 2, (4.7)

with

Rp(ar,s) =


ar,n−1 for s = p,
ar,s for s < p,

as−1,n−1 for r = p,
ar−1,s−1 for r > p.

R′p(ar,s) = d
−1
p−1,n−2d

−1
r,s−1,

R′′p = d
−1
p−1,n−2.

We say that w reverses to w′, denoted w y w′, if there exists a sequence of words
w0, w1, . . . , w` satisfying w0 = w, w` = w′, and wky(1)wk+1 for every k.

Before giving an example, we introduce the notion of a reversing diagram, which en-
ables one to conveniently illustrate the reversing process. Assume that w0, w1, . . . , w` is
a reversing sequence, i.e., is a sequence of ad-words such that wky(1)wk+1 for every k.
First, we associate with w0 a path labeled with the successive letters of w0: we asso-
ciate to every letter d−1p,n−1 a vertical down-oriented edge labeled dp,n−1, and to every
other letter x a horizontal right-oriented edge labeled x. Then we successively repre-
sent the words w1, . . . , w` as follows: if wk+1 is obtained from wk by replacing d−1p,n−1x

by ud−1q,n−1 (where d−1p,n−1xy(1)ud−1q,n−1), then we complete the pattern associated with
the subword d−1p,n−1x using right-oriented edges labeled u and down-oriented edge la-
beled dq,n−1; see Figure 6.

dp,n−1

x

is completed to
dp,n−1

x

u

dq,n−1 or
dp,n−1

x

u

ε

Fig. 6. Reversing of d−1
p,n−1x into udq,n−1. We replace the down-oriented edge labeled dq,n−1 by

a vertical double line labeled ε whenever q = n− 1, i.e., dq,n−1 ≡ ε.

Assume that w and w′ are ad-words and w reverses to w′. Then the reversing se-
quence going from w to w′ is not unique in general, but the resulting reversing dia-
gram depends on w and w′ only. Reversing can easily be turned into a (deterministic)
algorithm by choosing to always reverse the rightmost possible subword. The algorithm
terminates when a word with no subword d−1p,n−1x satisfying d−1p,n−1x y u′ for some
u′ has been obtained. This algorithm is called reversing algorithm. See Figure 7 for an
example.
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d2,4

d3,4

d1,4

d1,4

d−12,3

a1,3

ε
d−11,3 d−11,2

d3,4

a1,3

a1,4

d3,4

d2,4 d−12,3 d−12,3

a2,4

ε

Fig. 7. Reversing diagram for the word d−13,4d
−1
2,4a1,3a1,3a2,4. We end up with

d1,4d
−1
2,3d

−1
1,3d

−1
1,2a1,4d2,4d

−1
2,3d

−1
2,3. Each rectangle in the diagram corresponds to one relation

uy(1)u′, hence the number of rectangles is the length of every reversing sequence (w0, . . . , w`)
from w0 to w`: the sequence is not unique, but its length and the corresponding diagram are.

Remark 4.8. Formally, the above notion of reversing is similar to the transformation
called “word reversing” in [9]. However, similarity is superficial only: what is common is
the idea of iteratively pushing some specific factors to the right, but the factors considered
and the basic switching rules are completely different.

The first, easy observation is that reversing transforms a braid word into an equivalent
braid word.

Lemma 4.9. For w,w′ ad-words, w y w′ implies w ≡ w′.

We skip the proof, which is a simple verification from the formulas of Lemma 4.2.

5. Walls

We shall now apply the reversing algorithm of Section 4.4 to those words that consist of an
ap,n-dangerous word followed by an ap,n-ladder, with the aim of obtaining an equivalent
σi-positive word whenever possible.

Once again, the problem is to identify the generic form of the final words we can
obtain. A new type of braid word called wall occurs here, and the main result is that
reversing a word consisting of a dangerous word followed by a ladder always results in a
σ -nonnegative word that is a wall.

5.1. Dangerous against ladders: case of length 1

We first concentrate on the case when the dangerous word has length 1, i.e., it consists
of a single negative d-letter—the general case will be handled in Section 5.3. In view of
Theorems 1 and 2, we shall not only describe the resulting ad-word, but also compute
both the time and space complexity of the algorithm involved in the transformation.

First we introduce the notion of a wall, a weak variant of a ladder. It comes in two
versions called high and low.
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Definition 5.1. For n ≥ 3 and p ≤ n− 2, we say that an ad-word w is a high ap,n-wall
lent on aq−1,n−1 if there exists a decomposition

w = u · dr,n−1 · w
′
· dq−1,n−1 · v

such that
• u is a positive a-word, (5.1a)
• r < p, (5.1b)
• w′ is a σn−2-nonnegative ad-word, (5.1c)
• v is aq−1,n−1-dangerous. (5.1d)

We say that an ad-word w is a low ap,n-wall lent on aq−1,n−1 if there exists a decompo-
sition

w = u · dq−1,n−1 · v

such that
• u is a positive a-word, (5.2a)
• q − 1 < p, (5.2b)
• v is aq−1,n−1-dangerous of type p′ < p. (5.2c)

In both cases, we write F(w) for the word denoted u above, and D(w) for the word
denoted v above.

We say that an a-word w is an ap,n-wall if it is either a high or a low ap,n-wall.
Note that the condition satisfied by the letter dr,n−1 occurring in the decomposition of

a high wall is the condition satisfied by the ap,n-barrier ar,n−1. The same property holds
for the letter dq−1,n−1 occurring in the decomposition of a low wall.

So far we have defined ap,n-walls for p ≤ n− 2 only. We now consider an−1,n-walls,
which are special as are an−1,n-ladders.

Definition 5.2. For n ≥ 3, we say that an ad-word w is an an−1,n-wall lent on aq−1,n−1
if w can be decomposed as u · dq−1,n−1 · v with u a positive a-word and v an aq−1,n−1-
dangerous word. Then we define F(w) = u and D(w) = v.

By definition, every ap,n-wall lent on aq−1,n−1 is also an ar,n-wall lent on aq−1,n−1 for
r ≥ p.

Walls are introduced in order to describe the output of the reversing algorithm running
on those words that consist of an ap,n-dangerous word followed by an ap,n-ladder.

Lemma 5.3. Let w be an ap,n-ladder lent on aq−1,n−1 with p ≤ n− 2 and n ≥ 3. Let
w0x1 . . . xhwh be the decomposition of w as a ladder. Then d−1p,n−1w is equivalent to an
ap,n-wall w′ lent on aq−1,n−1. The latter can be computed using at most |w| reversing
steps plus one basic operation, and it satisfies
• |F(w′)| = |w0|, (5.3a)
• |D(w′)| ≤ 2, (5.3b)
• |w′| ≤ |w| + 2(h− 1)+ 2|wh| + |D(w′)|, (5.3c)
• w′ is a high wall for wh 6= ε. (5.3d)
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dp,n−1

w0

u0 y1

x1

v1

wh−1

uh−1 yh

xh

vh

ε

wh

Fig. 8. Reversing d−1
p,n−1w into a wall when w is a ladder (proof of Lemma 5.3).

Proof. The main idea is illustrated in Figure 8: starting with d−1p,n−1w, i.e., with
d−1p,n−1w0x1 . . . xhwh, we reverse the diagram by pushing the vertical (negative) d-arrows
to the right until a wall is obtained. The success at each elementary step is guaranteed by
Lemma 4.9. In general we obtain a high wall. A few particular cases have to be considered
separately, namely when wh is empty, in which case we obtain a low wall if the height h
is 1.

We start with a description of elementary blocks of the diagram of Figure 8. Write
xk = ae(k),f (k) for k = 1, . . . , h, and put f (0) = p. Fix k with 0 ≤ k ≤ h− 1. Put uk =
Rf (k)(wk), yk+1 = de(k+1),n−1 and vk+1 = R

′

f (k)(xk+1). Then we have d−1f (k),n−1wkxk+1 y
ukyk+1vk+1d

−1
f (k+1),n−1, corresponding to the diagram

df (k),n−1

wk

uk

df (k),n−1

yk+1

xk+1

vk+1

df (k+1),n−1

Gathering the reversing diagrams corresponding to the successive values of the pa-
rameter k, we precisely obtain the diagram of Figure 8. Put w′k = ukyk+1vk+1 for
0 ≤ k ≤ h− 1.

At this point, we have to consider three slightly different cases. Assume first wh = ε
and h ≥ 2, the easiest case, from which the other two cases will be derived.

Put w′ = w′0 . . . w
′

h−1. By construction, we have d−1p,n−1w y w′. Hence, by Lem-
ma 4.9, d−1p,n−1w is equivalent to w′. We shall now prove that w′ is a wall of the expected
type, and that the complexity statements are satisfied.

As wh is empty, the last letter of w is xh. This implies xh = aq−1,n−1, hence yh =
dq−1,n−1. Put w′′ = v1w

′

1 . . . w
′

h−2uh−1. We recall that w′k is equal to ukyk+1vk+1. By
construction, we have

w′ = u0 · de(1),n−1 · w
′′
· dq−1,n−1 · vh.

We shall now check that w′ is a high ap,n-wall lent on aq−1,n−1. As the image of an a-
letter underRp is an a-letter, the word u0 is a positive a-word whose length is |w0|. Hence
(5.1a) and (5.3a) are satisfied.

Next, by the definition of a ladder, the letter x1 is an ap,n-barrier, hence e(1) < p

holds, i.e., (5.1b) is satisfied.
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As the words uk , yk+1, vk+1 are σn−2-nonnegative, the word w′′ is also σn−2-
nonnegative. So (5.1c) holds.

Now, we recall that vh is equal to d−1f (h−1)−1,n−2d
−1
e(h),n−2 with e(h) = q − 1. By the

definition of a ladder, the letter xh is an af (h−1),n-barrier. Therefore, we have q − 1 <
f (h− 1), which implies f (h− 1) − 1 ≥ q − 1. Hence vh is aq−1,n−1-dangerous of
length 2. So (5.1d) and (5.3b) are satisfied.

Finally, for (5.3c), we compute

|w′k| = |uk| + |yk+1| + |vk+1| = |wk| + 1+ 2 = |wkxk+1| + 2.

Then, as wh is empty, we obtain

|w′| =

h−1∑
k=0

|w′k| =

h−1∑
k=0

|wkxk+1| + 2h = |w| + 2h.

As in this case wh is empty and the length of D(w′) is 2, i.e., the length of vh is 2,
condition (5.3c) holds. So the case of wh empty with h ≥ 2 is completed, except for the
time complexity analysis.

Assume now wh = ε and h = 1. Then w′ is equal to u0 · dq−1,n−1 · v1. As in the
previous case, the word u0 is a positive a-word of length w0 and we have |w′| = |w| + 2.
The word v1 is equal to d−1p−1,n−2d

−1
q−1,n−2, which is aq−1,n−1-dangerous of type p − 1 and

has length 2. Therefore, w′ is a low ap,n-wall lent on aq−1,n−1 satisfying (5.3a), (5.3b)
and (5.3c).

Assume finally wh 6= ε. Then we decompose wh as w′′haq−1,n−1. Put

w′ = w′0 . . . w
′

h−1w
′′

hdq−1,n−1d
−1
q−1,n−2

and w′′ = v1w
′

1 . . . w
′

h−1w
′′

h. We have w′ = u0 · de(1),n−1 · w
′′
· dq−1,n−1 · d

−1
q−1,n−2.

Then (5.1a), (5.1b), (5.1c) are checked as in the case wh = ε. By construction, the
word d−1q−1,n−2 is aq−1,n−1-dangerous of length at most 1. We recall that we use the con-
vention that the d-word dn−2,n−2 is the empty word ε. So (5.1d) and (5.3b) are satis-
fied. Then, by the definition of w′, (5.3d) holds. We check now (5.3c). Starting from
|w′k| = |wkxk+1| + 2, we obtain

|w′| ≤

h−1∑
k=0

|w′k| + |w
′′

h| + 2 =
h−1∑
k=0

|wkxk+1| + |wh| + 2h+ 1 = |w| + 2h+ 1.

As wh is not empty, we have |wh| ≥ 1, hence 2|wh| ≥ 2. Moreover, in this case, the
length of D(w′) is at most 1. Therefore, we get 3 ≤ 2|wh| + |D(w′)|, and eventually

|w′| ≤ |w| + 2(h− 1)+ 2|wh| + |D(w′)|.

So, all cases have been considered. It only remains to consider the time complexity. In
the first and second cases, at most |w| reversing operations are needed. In the last case—
wh 6= ε—at most |w| reversing operations are needed, plus the decomposition of w#

h into
at most two d-letters. ut
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Example 5.4. We saw in Example 3.12 that the wordw = a3,4a1,3a1,3a2,4a3,4 is an a2,5-
ladder lent on a3,4. Let us compute the a2,5-wall lent on a3,4 that is equivalent to d−12,5w.
Applying the reversing algorithm to d−12,4w gives

w′′ = a2,3d1,4d
−1
1,3d

−1
1,2a1,4d2,4d

−1
2,3d

−1
2,3a3,4 (see Figure 9).

a3,4 a1,3 a1,3 a2,4 a3,4

d2,4 d2,4 d3,4 d3,4 ε

a2,3 d1,4 d−11,3 d−11,2
a1,4 d2,4 d−12,3 d−12,3

Fig. 9. Reversing diagram for the word d−12,4a3,4a1,3a1,3a2,4a3,4.

The word w′′ is not a wall because its last letter does not have the correct form. However,
if we replace the last letter a3,4 of w′′ by d3,4 we obtain the high wall

w′ = a2,3 · d1,4 · d
−1
1,3d

−1
1,2a1,4d2,4d

−1
2,3d

−1
2,3 · d3,4 · ε.

The word F(w′) of w′ is a2,3, whereas D(w′) is empty.

5.2. Dangerous against wall

In the previous section, we studied the action of the reversing algorithm running on a
word uw in the special case when u is an ap,n-dangerous word of length 1 and w is an
ap,n-ladder. We proved that the output word is an ap,n-wall. Before turning to the general
case of an initial dangerous word with an arbitrary length—that will be done in the next
section—we consider here the case of an ap,n-dangerous word of length 1 followed by
an ap,n-wall. The result is that the output word is again an ap,n-wall. This shows that, in
contrast to the family of ladders, the family of walls enjoys good closure properties that
will make inductive arguments possible.

We start with a technical result that will be used twice in the proof of Lemma 5.6.

Lemma 5.5. Assume that n ≥ 3, w is a positive a-word containing an ap,n-barrier and
r < p. Then the word d−1p,n−1wdr,n−1 reverses to the ad-word

udt,n−1u
′dr,n−1d

−1
s−1,n−2,

which is obtained in at most |w| + 1 steps and satisfies
• t < p and r < s, (5.4a)
• u is a positive a-word with |u| < |w|, (5.4b)
• u′ is a σn−2-nonnegative ad-word, (5.4c)
• |udt,n−1u

′dr,n−1d
−1
s−1,n−2| ≤ |wdr,n−1| + 2|w| − 2|u| + 1. (5.4d)

Proof. Write w as w′at,t ′v where w′ is the maximal prefix of w that contains no ap,n-
barrier, and with at,t ′ an ap,n-barrier. The argument is illustrated in Figure 10: starting
with d−1p,n−1wdr,n−1, we reverse the diagram by pushing the vertical (negative) d-arrows
to the right until a wall is obtained. The success at each elementary step is guaranteed by
Lemma 4.9.
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dp,n−1

w′

Rp(w
′) dt,n−1

at,t ′

R′p(at,t ′)

dt ′,n−1

v

v′

ds,n−1

dr,n−1

dr,n−1 R′′s

ε

Fig. 10. Reversing diagram for the word d−1
p,n−1wdr,n−1 (proof of Lemma 5.5).

As w′ does not contain any ap,n-barrier, we have d−1p,n−1w
′ y Rp(w

′)d−1p,n−1. By
construction at,t ′ is an ap,n-barrier, i.e., t < p < t ′. We deduce

d
−1
p,n−1at,t ′ y dt,n−1R

′
p(at,t ′)d

−1
t ′,n−1.

By the definition of elementary reversing steps, we obtain d−1
t ′,n−1v y v′d−1s,n−1 for some

ad-word v′ with |v′| ≤ 3|v| and some s ≥ t ′. The hypothesis r < p together with p < t ′

and t ′ ≤ s implies r < s. Hence d−1s,n−1dr,n−1 y dr,n−1R
′′
s .

Write u = Rp(w′) and u′ = R′p(at,t ′)v
′. By construction, we have

d
−1
p,n−1wdr,n y udt,n−1u

′dr,n−1d
−1
s−1,n−2,

and we claim that the latter word has the expected properties.
Condition (5.4a) is an immediate consequence of the above results.
As the image of an a-letter under Rp is an a-letter, the word u is a positive a-word

of length |w′|. By definition, w′ is a proper prefix of w. Then |w′| < |w|, i.e., (5.4b) is
satisfied.

By the definition of elementary reversing steps, the image of a positive a-word un-
der R and R′ is σn−2-nonnegative, hence v′ is σn−2-nonnegative. As R′p(at,t ′) is σn−2-
nonnegative, u′ is σn−2-nonnegative, i.e., (5.4c) holds.

For (5.4d), we compute

|udt,n−1u
′dr,n−1d

−1
s−1,n−2| = |w

′
| + |u′| + 3 = |w′| + |v′| + 5.

By the construction of v′, we have |v′| ≤ 3|v|. Using |w| = |w′| + 1+ |v|, we deduce

|udt,n−1u
′dr,n−1d

−1
s−1,n−2| ≤ 3|w| − 2|w′| + 2 = |wdr,n−1| + 2(|w| − |w′|)+ 1,

which is the expected inequality since |w′| = |u| by (5.4b).
An easy bookkeeping argument gives the bound on the number of steps in the revers-

ing process. ut

We are now able to establish the main result of this section.

Lemma 5.6. Assume that w is an ap,n-wall lent on aq−1,n−1. Then d−1p,n−1w reverses in
at most |F(w)| + 1 steps to an ap,n-wall w′ satisfying
• |F(w′)| ≤ |F(w)|, (5.5a)
• |D(w′)| ≤ |D(w)| + 1, (5.5b)
• |w′| ≤ |w| + 2|F(w)| − 2|F(w′)| + 1, (5.5c)
• w′ is a high wall whenever w is a high wall. (5.5d)
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Proof. Assume that w is a low wall. Then w admits the decomposition w =

F(w)dq−1,n−1D(w). By the definition of a wall, we have q − 1 < p. First, assume in
addition that F(w) contains no ap,n-barrier. Then the reversing process gives

d
−1
p,n−1w y Rp(F (w))d

−1
p,n−1dq−1,n−1D(w) y Rp(F (w))dq−1,n−1d

−1
p−1,n−2D(w).

Write w′ = u · dq−1,n−1 · v with u = Rp(F (w)) and v = d−1p−1,n−2D(w). As the image
of a positive a-letter under Rp is a positive a-letter, the word u is a positive a-word
of length |F(w)|. Then q − 1 < p implies that w′ is a low ap,n-wall lent on aq−1,n−1
satisfying (5.5a) and (5.5b) because D(w′) = v. Condition (5.5c) is a direct consequence
of the construction of w′ together with |v| = |D(w)| + 1.

Next, assume in addition that F(w) contains an ap,n-barrier. By Lemma 5.5 applied
to F(w)dq−1,n−1, there exist two words u and u′ and two integers s and t satisfying

d
−1
p,n−1w y udt,n−1u

′dq−1,n−1d
−1
s−1,n−2D(w).

Write w′ = u · dt,n−1 · u
′
· dq−1,n−1 · v, with v = d−1s−1,n−2D(w). Condition (5.4a) implies

that v is an aq−1,n−1-dangerous word of length at most |D(w)| + 1, and that t < p holds.
Then, (5.4b) and (5.4c) imply that w is a high ap,n-wall lent on aq−1,n−1 and it satisfies
(5.5a) and (5.5b). Using (5.4d), we compute

|w′| = |F(w)dq−1,n−1| + 2|F(w)| − 2|u| + |v|,

which implies (5.5c) since we have F(w′) = u and D(w′) = d−1s−1,n−2D(w) = v.
Assume now that w is a high wall. Then w admits the decomposition

w = F(w)dr,n−1w
′′dq−1,n−1D(w),

with r < p. First, assume that F(w) contain no ap,n-barrier. Then the reversing process
gives

d
−1
p,n−1w y Rp(F (w))dr,n−1d

−1
p−1,n−2w

′′dq−1,n−1D(w).

Write w′ = Rp(F (w)) · dr,n−1 · d
−1
p−1,n−2w

′′
· dq−1,n−1 ·D(w). A direct verification, based

on the fact thatw is a high ap,n-wall lent on aq−1,n−1, gives thatw′ is a high ap,n-wall lent
on aq−1,n−1 satisfying (5.5a), (5.5b) and (5.5d). For (5.5c), we compute |w′| = |w| + 1.

Assume now that F(w) contains an ap,n-barrier. Then, by Lemma 5.5 applied to
F(w)dr,n−1, there exist two words u, u′ and two integers s, t satisfying

d
−1
p,n−1w y udt,n−1u

′dr−1,n−1d
−1
s−1,n−2w

′′dq−1,n−1D(w).

Write w′ = u · dt,n−1 · u
′dr−1,n−1d

−1
s−1,n−2w

′′
· dq−1,n−1 ·D(w). Condition (5.4c) implies

that the word u′dr−1,n−1d
−1
s−1,n−2w

′′ is σn−2-nonnegative, and even σn−2-positive. Then, a
direct verification, based on the fact that w is a high ap,n-wall lent on aq−1,n−1, shows
that w′ is a high ap,n-wall lent on aq−1,n−1 and it satisfies (5.5a), (5.5b) and (5.5d). Using
(5.4d), we compute

|w′| ≤ |F(w)dr,n−1| + 2|F(w)| − 2|u| + 1+ |w′′| + 1+ |D(w)|,

which implies (5.5c) since F(w′) = u.
As for the number of reversing steps, it follows from an easy bookkeeping argument

using Lemma 5.5. ut
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5.3. Dangerous against ladders: the general case

In the previous section, we studied the action of the reversing algorithm running on a
word uw in the special case when u is ap,n-dangerous of length 1 andw is an ap,n-ladder.
We proved that the output word is an ap,n-wall. The aim of this section is to describe the
reversing algorithm in the general case, i.e., for a dangerous word of arbitrary length.

Proposition 5.7. Assume that w is an ap,n-ladder lent on aq−1,n−1 and u is an ap,n-
dangerous word of type t with n ≥ 3. Then uw is equivalent to an at,n-wall w′ lent
on aq−1,n−1 which can be computed using at most |u| |w| reversing steps, plus one basic
operation, hence in time O(|u| |w| + 1), and it satisfies

• |D(w′)| ≤ |u| + 1, (5.6a)
• |w′| ≤ 3|w| + |u| − 1. (5.6b)

Moreover, if w is an ap,n-ladder lent on an−2,n−1 but different from an−2,n−1, then w′

admits the decomposition w′ = w′′dn−2,n−1, where w′′ is a σn−2-positive word.

Proof. All ladders and walls in this proof are supposed to be lent on aq−1,n−1. We shall
construct an ap,n-wall w′ that is equivalent to uw by induction on the length of u.

Assume first p ≤ n− 2. Then u is not empty. Write u as d−1f (d),n−1 · . . . · d
−1
f (1),n−1. By

the definition of a dangerous word, we have f (1) = p and f (d) = t . Definew(1) to be the
af (1),n-wall provided by Lemma 5.3 that is equivalent to d−1f (1),n−1w. Starting from w(1),
we inductively define w(k+1) to be the ad-word obtained by reversing d−1f (k+1),n−1w(k).

We claim that w(k) is an af (k),n-wall. Indeed, by the definition of a wall, the relation
f (k) ≥ f (k − 1) implies that w(k−1) is also an af (k),n-wall. Then Lemma 5.6 guarantees
that w(k) is an af (k),n-wall.

By construction, we have uw ≡ w(d). In particular, uw is an at,n-wall. We shall now
prove that w(d) satisfies the complexity statements.

Lemma 5.3 gives |D(w(1))| ≤ 2. For 1 ≤ k ≤ d − 1, (5.5b) implies |D(w(k+1))| ≤

|D(w(k))| + 1. Hence, |D(w(d))| ≤ |u| + 1, i.e., (5.6a) is satisfied.
Let w0x1 . . . xhwh be the decomposition of the ap,n-ladder w. Then, by (5.5c), for

each k ≥ 1 we have

|w(k+1)| ≤ |w(k)| + 2|F(w(k))| − 2|F(w(k+1))| + 1. (5.7)

Gathering the various relations (5.7) for k = 1, . . . , d − 1, we obtain

|w(d)| ≤ |w(1)| + 2|F(w(1))| − 2|F(w(d))| + d − 1 ≤ |w(1)| + 2|F(w(1))| + d − 1.

By (5.3a), we have |F(w(1))| = |w0|, hence

|w(d)| ≤ |w(1)| + 2|w0| + d − 1.

Condition (5.3c) implies |w(1)| ≤ |w|+ 2(h− 1)+ 2|wh|+ |D(w(1))|. Using the relation
|w| ≥ |w0| + h+ |wh|, we obtain

|w(d)| ≤ 3|w| + d + |D(w(1))| − 3.
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By construction, d is the length of u. As (5.3b) implies |D(w(1))| ≤ 2, we find

|w(d)| ≤ 3|w| + |u| − 1,

which completes the case p ≤ n− 2 writing w′ = w(d).
Assume now p = n− 1. Then the word u is empty. Put w = w′′aq−1,n−1, and write

w′ = w′′dq−1,n−1d
−1
q−1,n−2. The word w′ is clearly an an−1,n-wall lent on aq−1,n−1 and

all complexity statements are satisfied. Moreover, for q = n− 1 and w 6= an−2,n−1,
Lemma 3.2(iii) implies that w′′ ends with ar,n−1 for some r , hence it is σn−2-positive.
Then w′ has the expected properties.

Finally, assume p 6= n− 1, q = n− 1 and w 6= an−2,n−1. Then u is not empty. By
hypothesis, the last letter ofw is an−2,n−1, which is not a barrier. Hence the wordwh is not
empty and its last letter an−2,n−1. Then (5.3d) implies that the wall w(1) is high. Hence,
(5.5d) implies that the wall w(k) is high for every d ≥ k ≥ 1, and therefore w′ is a high
wall. By definition, w′ can be expressed as udr,n−1ŵdn−2,n−1. By construction, udr,n−1ŵ

is a σn−2-positive word, so w′ has all expected properties.
As for the time complexity upper bound, it follows from an easy bookkeeping argu-

ment using Lemmas 5.3 and 5.6, and the fact that the cost of one reversing step is O(1).
ut

Example 5.8. Let w be the a3,7-ladder a4,6a1,4a2,6 and u be the a3,7-dangerous word
d−15,6d

−1
3,6d

−1
3,6. The reversing diagram for uw is displayed in Figure 11.

a4,6 a1,4 a2,6

d3,6 d3,6 d4,6 ε

a3,5 d1,6 d−12,5 d−11,3 d2,6 d−13,5 d−12,5

d3,6 d3,6 ε

a4,6 d1,6 d−12,5

d5,6 ε

d4,6
d−14,5 d−14,5

Fig. 11. Reversing uw into a wall. Here u is the a3,7-dangerous word d−15,6d
−1
3,6d

−1
3,6 and w is the

a3,7-ladder a4,6a1,4a2,6, which is lent on a2,6. With the notation of Proposition 5.7, w(1) is the
word a3,5d1,6d

−1
2,5d

−1
1,3d2,6d

−1
3,5d

−1
2,5: it can be read (from left to right) on the third row from the

bottom. Then w(2) is the word a4,6d1,6d
−1
2,5d

−1
2,5d

−1
1,3d2,6d

−1
3,5d

−1
2,5: it can be read on the second

row, continuing on the third row when the vertical ε-labeled edge is met. Finally w(3) is the word
d4,6d

−1
4,5d

−1
4,5d1,6d

−1
2,5d

−1
2,5d

−1
1,3d2,6d

−1
3,5d

−1
2,5: it can be read on the bottom row, continued on the sec-

ond row, and finally on the third row. The point is that we had three negative d.,6-letters at first and,
at each step, we got rid of one of them, ending with a word that contains negative d.,q -letters for
q ≤ 5 only.

We conclude the section with one more technical result, which provides the precise
basic step needed in the inductive definition of our final normal form NFn.
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Lemma 5.9. Assume that n ≥ 3, and

• (wb, . . . , w1) is the φn-splitting of a normal word w, with b ≥ 3,
• ub is a w#

b-dangerous word,
• c is a number in {b, . . . , 3}.

Then there exists

• a σn−1-nonnegative word w′,
• a w#

c-dangerous word uc,

both computable in time O(|ub| |w|2), that satisfy

d−b+3
1,n φb

−1
n
(ub)φ

b−2
n
(wb−1) . . . w1 ≡ w

′
· d−c+3

1,n φc
−1
n
(uc)φ

b−2
n
(wc−1) . . . w1, (5.8)

with |w′| ≤ 3|wb−1| + · · · + 3|wc| + |ub| − |uc| − b + c and |uc| ≤ |ub| + b.

Proof. The idea is as follows: using induction on k going from b to c + 1, we compute a
σn−1-nonnegative word w′k−1 and a w#

k-dangerous word uk−1 satisfying

d−k+3
1,n φk

−1
n
(uk)φ

k−2
n
(wk−1) ≡ w

′

k−1d
−k+4
1,n φk

−2
n
(uk−1). (5.9)

Then we define w′ to be w′b−1 . . . w
′
c.

Let us go into details. First we construct the words w′k and uk . Fix k in {b, . . . , c + 1}
and assume that uk is a w#

k-dangerous word. Corollary 3.10 guarantees that wk−1 is a
φn(w

#
k)-ladder lent on w#

k−1. Then, by Proposition 5.7, the word φn(uk)wk−1 is equivalent
to an at,n-wall vk−1 lent on w#

k−1 for some t . By the definition of a wall, we have

vk−1 = v
′

k−1dp−1,n−1uk−1,

where v′k−1 is a σn−2-nonnegative word, uk−1 is a w#
k−1-dangerous word and ap−1,n−1 is

the last letter of wk−1. Then we obtain

d−k+3
1,n φk

−1
n
(uk)φ

k−2
n
(wk−1) ≡ d

−k+3
1,n φk

−2
n
(v′k−1dp−1,n−1uk−1).

We push the power of d−11,n to the last word between dp−1,n−1 and uk−1:

d−k+3
1,n φk

−2
n
(v′k−1dp−1,n−1uk−1) ≡ φn(v

′

k−1dp−1,n−1)d
−k+3
1,n φk

−2
n
(uk−1)

By relation (4.3a), we have φn(dp−1,n−1)d
−1
1,n ≡ d

−1
1,p. Eventually, we obtain

d−k+3
1,n φk

−1
n
(uk)φ

k−2
n
(wk−1) ≡ φn(v

′

k−1)d
−1
1,pd

−k+4
1,n φk

−2
n
(uk−1). (5.10)

Writing w′k−1 = φn(v
′

k−1)d
−1
1,p, Relation (5.10) implies (5.9). By construction, w′k−1 is

σn−1-nonnegative and uk is an w#
k-dangerous word.

Gathering the relations (5.9) for k from b to c + 1, we obtain the relation (5.8) for
w′ = w′b−1 . . . w

′
c.

By construction, w′k is σn−1-nonnegative for each k, hence w′ is σn−1-nonnegative as
well.
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It remains to establish the complexity statements. For every k in {b, . . . , c + 1}, (5.6b)
implies |vk−1| ≤ 3|wk−1|+ |uk|−1. Then, by the construction of w′k−1, we have |w′k−1| ≤

3|wk−1| + |uk| − |uk−1| − 1. We deduce

|w′| = |w′b−1 . . . w
′
c| ≤ 3|wb−1 . . . wc| + |ub| − |uc| − b + c.

For each k, (5.6a) implies |uk| ≤ |uk+1| + 1. Then we find |uk| ≤ |ub| + b− k, hence
|uk| ≤ |ub| + b. By Proposition 5.7, computing uk and vk from wk and uk+1 requires
at most O(|uk+1| |w| + 1) steps. Therefore, computing w′ and uc from ub and the φn-
splitting of w requires at mostO((|ub|+b)|w|+b− c) steps. As b ≤ |w|+2, we deduce
that computing w′ and uc from ub and the φn-splitting of w requires at mostO(|ub| |w|2)
steps. ut

6. The main result

We are now ready to establish Theorems 1 and 2 of the introduction. What we shall do is
to construct, for each n-strand braid β, a certain ad-word NFn(β) that represents β and is
σ -definite, i.e., a word on the letters ap,q and dp,q which, translated to the alphabet of σi ,
becomes either σ -positive or σ -negative.

The construction of NFn(β) involves two steps. The first (easy) step, described in
Section 6.1, consists in extending the rotating normal form of Section 2.2 to all of Bn by
appending convenient denominators. The process is based on the Garside structure of the
monoid B+∗n .

The second step starts from the rotating normal form, and is described in Section 6.2.
The process splits into three cases according to the relative size of two parameters associ-
ated with β, namely the breadth of the numerator and the exponent of the denominator in
the rotating normal form of β. The reversing machinery developed in Sections 4 and 5 is
needed to treat the difficult case when the above two parameters are close to one another.

6.1. The rotating normal form of an arbitrary braid

As mentioned above, we first extend the rotating normal form, so far defined only for
those braids that belong to the monoid B+∗n , to all braids.

Proposition 6.1. Each braid β admits a unique expression d−t1,nw where t is a nonnega-
tive integer, w is a (rotating) normal word, and the braid w is not left-divisible by d1,n
unless t is zero.

Proof. By Proposition 1.5, the monoid B+∗n is a Garside monoid with Garside element
δn, and the group Bn is a group of fractions for the monoid B+∗n . Hence, there exists a
smallest integer t such that δtnβ belongs to B+∗n . If t is positive, the minimality hypothesis
implies that δn is not a left-divisor of δtnβ. Taking for w the rotating normal form of δtnβ
gives a pair (t, w) of the expected form—we recall that d1,n ≡ δn.

Assume that (t ′, w′) is another pair with the above properties. Then δt
′

nβ belongs
to B+∗n , hence t ′ ≥ t . If we had t ′ > t , the hypothesis δ−tn w = δ−t

′

n w′ would yield
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δt
′
−t
n w = w′, implying that w′ is left-divisible by δn, which contradicts t ′ > 0. Hence
t ′ = t , whence w′ = w by uniqueness of the rotating normal form. ut

Definition 6.2. The ad-word d−t1,nw involved in Proposition 6.1 is called the n-rotating
normal form of the braid β. The number t is called the n-depth of β; the number t + |w|,
i.e., the length of the ad-word d−t1,nw, is called the n-length of β, denoted |β|n; finally, for
n ≥ 3, the n-breadth of w is called the n-breadth of β.

By definition, the rotating normal form of a braid is an ad-word, i.e., a word involving
the letters ap,q and dp,q (actually the letter d−11,n only). The terminology is coherent since,
for β in B+∗n , the rotating normal form as defined above coincides with the rotating normal
form of Definition 2.11: indeed, β belongs to B+∗n if and only if its n-depth is 0.

Building on Proposition 2.13 and on the Garside structure of B+∗n , we easily see that
the rotating normal form of an arbitrary braid can be computed in quadratic time.

Lemma 6.3. For n ≥ 3 and 1 ≤ i ≤ n− 1, let θi,n be the a-word φi+1
n
(δn−1). Then θi,n

is equivalent to δnσ
−1
i , and it has length n− 2.

Proof. By Lemma 1.6, we have φi+1
n
(an−1,n)=ai,i+1. We deduce φi+1

n
(δn)≡φ

i+1
n
(δn−1)σi

= θi,nσi . As δn is invariant under φn, we have δn = θi,nσi . The length of the a-word δn−1
is n− 2. As φn preserves the length of a-words, the length of θi,n is n− 2. ut

We recall that, for β a braid, ‖β‖σ denotes the length of the shortest expression of β in
terms of the Artin generators σi .

Proposition 6.4. For each n-strand braid β, we have |β|n ≤ (n− 1)‖β‖σ . Moreover, if
β is specified by a word of length `, the rotating normal form of β can be computed in
time O(`2).

Proof. The case n = 2 is trivial. Starting with a word on the alphabet {σ1, σ−11 }, we freely
reduce it to σ k1 by deleting the factors σ1σ−11 and σ−11 σ1. The rotating normal form is ak1,2
in the case k ≥ 0, and dk1,2 in the case k < 0, and it is geodesic.

Assume now n ≥ 3. Letw be an n-strand braid word representing β. Then the rotating
normal form of β is obtained as follows:

• Replace each positive letter σi in w with ai,i+1, so as to obtain

u = w0σ
−1
i1
w1 . . . wc−1σ

−1
ic
wc.

• Put v = φc
n
(w0)φ

c−1
n
(θi1,nw1) . . . φn(θic−1,nwc−1)θic,nwc.

• Let s be the maximal integer such that δsn left-divides v in B+∗n , and let v′ be a positive
a-word satisfying v ≡ δsnv

′.
• If s ≥ c, put t = 0 and w′′ = δs−cn v′; otherwise put t = c − s and w′′ = v′.
• Let w′ be the normal form of w′′. Then the rotating normal form of β is d−t1,nw

′.
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Indeed, Lemma 6.3 and δn ≡ d1,n imply

w ≡ w0d
−1
1,nθi1,nw1 . . . d

−1
1,nθic−1,nwc−1d

−1
1,nθic,nwc.

Pushing the letters d−11,n to the left, we obtain

w ≡ d−c1,nφ
c
n
(w0)φ

c−1
n
(θi1,nw1) . . . φn(θic−1,nwc−1)θic,nwc = d

−c
1,nv.

Using the relation d1,n ≡ δn and the construction of w′, we obtain w ≡ d−t1,nw
′, where w′

is not left-divisible by d1,n unless t is zero.
As for the length, replacing σ−1ik by d−11,nθik multiplies it by at most n− 1. Applying the

construction in the case when w is a shortest expression of β gives |β|n ≤ (n− 1)‖β‖σ .
As for the time complexity, v is obtained in timeO(`), the integer s is obtained in time

O(`2)—see for instance [13]—and w′ is obtained in time O(|w′′|2) by Proposition 2.13.
Hence, as |w′′| ≤ `, the rotating normal form of β is obtained from the word w in time
O(`2). ut

Example 6.5. Consider β = σ1σ
−2
3 σ2σ3. We use the notation of Proposition 6.4. First,

we write u = w0σ
−1

3 w1σ
−1

3 w2 with w0 = a1,2, w1 = ε and w2 = a2,3a3,4. Then we have
θ3,4 = φ

4
4 (δ3) = a1,2a2,3, and we find

v = φ2
4 (w0)φ4(θ3,4w1)θ3,4w2 = a3,4 a2,3a3,4 a1,2a2,3a2,3a3,4.

The maximal power of δ4 that left-divides v is 1 and we have v ≡ δ4a2,3a1,2a2,3a2,4.
So we find s = 1 and v′ = a2,3a1,2a2,3a2,4. Here we have c = 2 and s = 1, hence we
put t = 1 and w′′ = a2,3a1,2a2,3a2,4. The rotating normal form w′ of w′′ turns out to be
a1,2a1,4a2,3a1,2. So, finally, the rotating normal form of β is

d
−1
1,4a1,2a1,4a2,3a1,2.

Hence the 4-depth of β is 1, its length is 5, and its 4-breadth is 4, since we saw in Exam-
ple 2.15 that the 4-breadth of a1,2a1,4a2,3a1,2 is 4: itsφ4-splitting is (a2,3, a2,3, 1, a2,3a1,2),
a sequence of length 4.

6.2. The word NFn(β): the easy cases

Starting from the rotating normal form, we shall now define for each braid β a new dis-
tinguished expression NFn(β) that is a σ -definite word. The word NFn(β) will be con-
structed as a word on the letters ap,q and dp,q . At the end, it will be obvious how to
translate it into an ordinary braid word, i.e., a word on the letters σi .

The construction of NFn(β) depends on the relative values of the n-depth and the n-
breadth of β. The first case, which is easy, is when the n-depth of β is 0, i.e., β belongs
to B+∗n , or it is |β|n, i.e., β is a negative power of d1,n. Note that this case is the only
possible one in the case of B2.

Definition 6.6. Assume that β is a braid ofBn whose n-depth is 0 or |β|n. Then we define
NFn(β) to be the n-rotating normal form of β.
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In this case, everything is clear.

Proposition 6.7. Under the hypotheses of Definition 6.6, the word NFn(β) is a σ -definite
expression of β, and its length is at most |β|n. Moreover, if β is specified by a σ -word of
length `, the word NFn(β) can be computed in time O(`2).

Proof. If |β|n is equal to 0, then β is the trivial braid 1 and its rotating normal form is
the empty word. If β is nontrivial and its n-depth is 0, then the rotating normal form is
a nonempty positive a-word, i.e., a σ -positive word. If β is nontrivial and its n-depth t
equals |β|n, then the rotating normal form of β is d−t1,n, which is σn−1-negative. The com-
plexity statements are clear from Proposition 6.4. ut

The second case, which is easy as well, is when the depth is large. We recall that, if w is
a normal word, then the φn-splitting of w is the sequence of normal words that represent
the entries in the φn-splitting of the braid represented by w.

Definition 6.8. Assume that β is a nontrivial braid of Bn with n ≥ 3 whose n-depth t
satisfies t 6= 0 and t > b − 2, where b is the n-breadth of β. Let d−t1,nw be the rotating
normal form of β and (wb, . . . , w1) be the splitting of w. Then we put

NFn(β) = d−t
+b−1

1,n · wbd
−1
1,n · . . . · w2d

−1
1,n · w1.

Proposition 6.9. Under the hypotheses of Definition 6.8, the word NFn(β) is a σ -nega-
tive expression of β, and its length is at most |β|n. Moreover, if β is specified by a σ -word
of length `, the word NFn(β) can be computed in time O(`2).

Proof. First, we claim that NFn(β) is an expression of β. Let d−t1,nw be the rotating normal
form of β and (wb, . . . , w1) be the φn-splitting of w. We have

d−t1,nw = d
−t
1,n · φ

b−1
n
(wb) · . . . · φn(w2) · w1. (6.1)

Pushing b − 1 powers of d1,n to the right in (6.1) and dispatching them between the
factors wk , we find

d−t1,nw = d
−t
1,n · φ

b−1
n
(wb) · . . . · φn(w2) · w1

= d−t
+b−1

1,n · d
−b+1
1,n · φ

b−1
n
(wb) · . . . · φn(w2) · w1

≡ d−t
+b−1

1,n · wb · d
−1
1,n · d

−b+2
1,n · . . . · φn(w2) · w1

≡ · · · ≡ d−t
+b−1

1,n · wb · d
−1
1,n · . . . · w2 · d

−1
1,n · w1 = NFn(β).

Next, t being the n-depth of β, exactly t powers of d−11,n occur in NFn(β). Hence, as t
is not 0, at least one d−11,n appears in NFn(β). By construction, the intermediate words wk
contain no letter ap,n. Therefore, the word NFn(β) is σn−1-negative.

As for the length, we find

|NFn(β)| = t − b + 1+ |wb| + 1+ · · · + |w2| + 1+ |w1|

= t − b + 1+ |w| + b − 1 = |d−t1,nw
′
| = |β|n.
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Finally, assume that β is specified by a word of length `. Then, by Proposition 6.4,
we can compute the rotating normal form of β in at most O(`2) steps. By Lemma 2.14,
computing the φn-splitting of w can be done in O(|w|) steps. Hence, NFn(β) can be
computed in time O(`2). ut

6.3. The word NFn(β): the difficult case

There remains the case of a braid β whose n-depth t satisfies t 6= 0 and t ≤ b− 2, where
b is the n-breadth of β: this is the difficult case. In this case, it is impossible to directly
predict whether β has a σn−1-positive or a σn−1-neutral word (i.e., one in which neither
σn−1 nor σ−1n−1 occurs), and this is the point where we shall use the ladder and reversing
machinery developed in Sections 3, 4 and 5.

Definition 6.10. Assume that β is a nontrivial braid of Bn with n ≥ 3 whose n-depth t
satisfies t 6= 0 and t ≤ b − 2, where b is the n-breadth of β. Let d−t1,nw be the rotating
normal form of β, and (wb, . . . , w1) be the φn-splitting ofw. Writewt+2 = w

′

t+2ap−1,n−1.
Put

v = φb−1−t
n

(wb) . . . φ
2
n
(wt+3) φn(w

′

t+2) d
−1
1,p, ut+2 = d

−1
p−1,n−2.

Case 1: w2 6= ε. Then we put

NFn(β) = vw′′φn(w
′

2)w1,

where w′′ and u3 are the words produced by Lemma 5.9 applied to the sequence
(wt+2, . . . , w1), the word ut+2 and the integer 3, and where w′2 is the word given by
Proposition 5.7 applied to the words w2 and φn(u3).

Case 2: w2 = ε, w3 = · · · = wk−1 = an−2,n−1 and wk 6= an−2,n−1 for some k ≤ t + 1.
Then we put

NFn(β) = vw′′φn(w
′

k)d
−k+2
1,n−1w1,

where w′′ and uk+1 are the words given by Lemma 5.9 applied to the sequence
(wt+2, . . . , w1), the word ut+2 and the integer k + 1, and where w′kan−2,n−1 is the word
produced by Proposition 5.7 applied to the words wk and φn(uk+1).

Case 3: w2 = ε, w3 = · · · = wt+1 = an−2,n−1 and v 6= d−11,n−1. Then we put

NFn(β) = vd−t+1
1,n−1w1.

Case 4: w2 = ε, w3 = · · · = wt+1 = an−2,n−1 and v = d−11,n−1. Then we put

NFn(β) = NFn−1(δ
−t
n−1w1).

Proposition 6.11. Under the hypotheses of Definition 6.10, the word NFn(β) is a σ -
definite expression of β, and its length is at most 3|β|n. Moreover, if β is specified by a
σ -word of length `, the word NFn(β) can be computed in time O(`2).
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Proof. We use the notation of Definition 6.10. First, we claim that the following equiva-
lence holds:

d−t1,nw ≡ v d
−t+1
1,n φt

+1
n
(ut+2)φ

t
n
(wt+1) . . . φn(w2)w1. (6.2)

Indeed, as the sequence (wb, . . . , w1) is the φn-splitting of w, we have

d−t1,nw = d
−t
1,nφ

b−1
n
(wb) . . . φ

t+1
n
(wt+2) . . . φn(w2)w1. (6.3)

By construction,wt+2 isw′t+2ap−1,n−1. By (4.1), we have ap−1,n−1 ≡ dp−1,n−1ut+2, hence
wt+2 ≡ w

′

t+2dp−1,n−1ut+2. Then the word d−t1,nw is equivalent to

d−t1,nφ
b−1
n
(wb) . . . φ

t+1
n
(w′t+2dp−1,n−1)φ

t+1
n
(ut+2)φ

t
n
(wt+1) . . . φn(w2)w1. (6.4)

We push the factor d−t1,n appearing in (6.4) to the right, until it arrives at the left of the
factor φt+1

n
(ut+2). In this way, we obtain

d−t1,nw ≡ φ
b−t−1
n

(wb) . . . φn(w
′

t+2dp−1,n−1) d
−t
1,nφ

t+1
n
(ut+2)φ

t
n
(wt+1) . . . φn(w2)w1.

Relations (4.3a) and (4.3b) imply φn(dp−1,n−1)d
−1
1,n ≡ d−11,p. Inserting the latter value in

the relation above, we obtain (6.2), as expected.
Next, by construction, the word v is σn−1-nonnegative, and its length satisfies

|v| = |wb| + · · · + |wt+2|. (6.5)

To go further, we consider the four cases of Definition 6.10 separately. In the first
three cases, we shall show that NFn(β) is σn−1-positive; in the fourth case, we shall show
that NFn(β) is σ -definite using induction on n and possibly Propositions 6.7 and 6.9.

Case 1. First, NFn(β) is equivalent to d−t1,nw. Indeed, Lemma 5.9 implies

d−t1,nw ≡ vw
′′φ2
n
(u3)φn(w2)w1,

while Proposition 5.7 implies φn(u3)w2 ≡ w
′

2. We deduce

d−t1,nw ≡ vw
′′φn(w

′

2)w1 = NFn(β).

Next, by construction, w′2 is a wall lent on w#
2, hence, by definition, it is σn−2-positive.

So φn(w
′

2) is σn−1-positive. As v, w′′ and w1 are σn−1-nonnegative, NFn(β) is σn−1-
positive.

As for the length, Lemma 5.9 and Proposition 5.7 imply

|w′′| ≤ 3|wt+1| + · · · + 3|w3| − |u3| − t + 2, |w′2| ≤ 3|w2| + |u3| − 1.

Merging these values with (6.5), and t > 0, we deduce |NFn(β)| ≤ 3|w|.

Case 2. First, we observe that the last letter of wk must be an−2,n−1: this follows from
Corollary 3.11 since, by the construction of k, the word wk−1 is either ε or an−2,n−1.



Every braid admits a short sigma-definite expression 1627

Now, we check that NFn(β) is equivalent to d−t1,nw. By Lemma 5.9, we have

d−t1,nw ≡ vw
′′d−k+2

1,n φk
n
(uk+1)φ

k−1
n
(wk)φ

k−2
n
(an−2,n−1) . . . φ

2
n
(an−2,n−1)w1.

By Proposition 5.7, φn(uk+1)wk is equivalent to a wall w̃k lent on w#
k = an−2,n−1. We

define w′k by setting w̃k = w′kan−2,n−1. Then

d−t1,nw ≡ vw
′′d−k+2

1,n φk
−1
n
(w′k)φ

k−1
n
(an−2,n−1) . . . φ

2
n
(an−2,n−1)w1. (6.6)

Pushing the negative powers of d1,n appearing in (6.6) to the right and dispatching them
between the φ.

n
(an−2,n−1), we find

d−t1,nw ≡ vw
′′φn(w

′

k)d
−k+2
1,n φk

−1
n
(an−2,n−1) . . . φ

2
n
(an−2,n−1)w1

≡ vw′′φn(w
′

k)φn(an−2,n−1)d
−1
1,nd

−k+3
1,n . . . φ2

n
(an−2,n−1)w1

≡ · · · ≡ vw′′φn(w
′

k)φn(an−2,n−1)d
−1
1,n . . . φn(an−2,n−1)d

−1
1,nw1.

Then φn(an−2,n−1)d
−1
1,n ≡ d

−1
1,n−1 implies

d−t1,nw ≡ vw
′′φn(w

′

k)d
−k+2
1,n−1w1 = NFn(β).

Next, by the construction of w′k and the last statement of Proposition 5.7, the word
w′k is σn−2-positive. So φn(w

′

k) is σn−1-positive. As v, w′′, and d−k+2
1,n−1w1, are σn−1-non-

negative, the word NFn(β) is σn−1-positive.
As for the length, Lemma 5.9 and Proposition 5.7 imply

|w′′| ≤ 3|wt+1| + · · · + 3|w3| − |uk+1| − t + 2, |w′kan−2,n−1| ≤ 3|wk| + |uk+1| − 1.

Merging these values with (6.5) and the hypothesis t > 0, we find |NFn(β)| ≤ 3|w|.

Case 3. As above, we observe that the last letter of wt+2 is an−2,n−1, which follows from
Corollary 3.11, since wt+1 is either 1 or an−2,n−1.

Then we check that NFn(β) is equivalent to d−t1,nw. As the last letter ofwt+2 is an−2,n−1,
the word ut+2 is empty. Then we find

d−t1,nw ≡ vd
−t+1
1,n φt

n
(an−2,n−1) . . . φ

2
n
(an−2,n−1)φn(ε)w1. (6.7)

Pushing again the negative powers of d1,n of (6.7) to the right and dispatching them
between the φ.

n
(an−2,n−1), we find

d−t1,nw ≡ vφn(an−2,n−1)d
−1
1,nd

−t+2
1,n φt

−1
n
(an−2,n−1) . . . φ

2
n
(an−2,n−1)w1

≡ · · · ≡ vφn(an−2,n−1)d
−1
1,n . . . φn(an−2,n−1)d

−1
1,nw1.

Then φn(an−2,n−1)d
−1
1,n ≡ d

−1
1,n−1 implies

d−t1,nw ≡ vd
−t+1
1,n−1w1 = NFn(β).
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Next, we check that NFn(β) is σn−1-positive. As w#
t+2 = an−2,n−1, we have

v = φb−1−t
n

(wb) . . . φ
2
n
(wt+3) φn(w

′

t+2) d
−1
1,n−1

By Lemma 3.2(iii), if the word w′t+2 is not empty, it ends with a letter of the form a.,n−1,
hence v is σn−1-positive. Assume that w′t+2 is empty and t ≤ b − 3. As the word
wt+2 is an−2,n−1, Corollary 3.11 implies that wt+3 ends with an−2,n−1. Then v ends with
φ2
n
(an−2,n−1)d

−1
1,n−1, which is a1,nd

−1
1,n−1, hence v is σn−1-positive.

Relation (6.5) directly implies |NFn(β)| = |w|.

Case 4. By construction, we have v = d−11,n−1. The same analysis as in Case 3 gives
t = b − 2 and

d−t1,nw ≡ d
−t
1,n−1w1.

The induction hypothesis together with Propositions 6.7 and 6.9 gives d−t1,n−1w1 ≡

NFn−1(δ
−t
n−1w1), hence d−t1,nw ≡ NFn(β) by definition.

Always by the induction hypothesis and Propositions 6.7 and 6.9, we have

|NFn(β)| = |NFn−1(δ
−t
n−1w1)| ≤ 3|δ−tn−1w1|n−1.

By definition, we have |β|n = t + |wb| + · · · + |w1| and |δ−tn−1w1|n−1 ≤ t + |w1|, hence
|δ−tn−1w1|n−1 ≤ |β|n. Thus, we obtain |NFn(β)| ≤ 3|β|n.

So all cases have been considered, and it only remains to analyze the time complexity.
By Proposition 6.4 and Lemma 2.14, the rotating normal form of β and the φn-splitting
of w can be computed in timeO(`2). Then, in Cases 1 and 2, Lemma 5.9 is used once for
(wt+2, . . . , w1) and ut+2, with a cost O(`2). In addition, Proposition 5.7 is used at most
once with φn(uk+1) and wk (k = 2 for Case 1), with a cost at most O(max(1, |uk+1|`)).
Lemma 5.9 guarantees |uk+1| ≤ |uk+1|+t+1−c, i.e., |ut+2| ≤ t . So the total cost entailed
by Proposition 5.7 is at most O(`2). The other computations in Cases 1, 2, and 3 require
at most O(`) steps, and therefore the total cost of the computation of NFn(β) is O(`2)

in Cases 1, 2 and 3. The result is similar for Case 4, using the induction hypothesis, and
possibly Propositions 6.7 and 6.9. ut

6.4. Putting things together

Using the σ -definite words NFn(β) constructed in Sections 6.2 and 6.3, we are now ready
to establish Theorems 1 and 2 of the introduction. As a preliminary remark, we observe
that the words NFn(β) do not really depend on the index n.

Lemma 6.12. If β belongs to Bn−1, the words NFn(β) and NFn−1(β) coincide.

Proof. An easy verification shows that, if β belongs to Bn−1 and has n-depth t , then either
t = 0 (if β belongs to B+∗n−1), or we are in Case 4 of Definition 6.10. In both cases, the
definition of NFn(β) implies NFn(β) = NFn−1(β). ut

So, from now on, we can skip the subscript n and write NF(β) without ambiguity. The
main result, of which Theorems 1 and 2 are easy consequences, is as follows. We recall
that, for β a braid, ‖β‖σ denotes the length of the shortest expression of β in terms of the
Artin generators σi .
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Theorem 6.13. For each n-strand braid β, the ad-word NF(β) is a σ -definite expression
of β, and its length is at most 3(n− 1)‖β‖σ . Moreover, if β is specified by a σ -word of
length `, the word NF(β) can be computed in time O(`2).

Proof. Everything is obvious in the case n = 2, so we assume n ≥ 3. Applying Propo-
sition 6.1, and, according to the case, Proposition 6.7, 6.9, or 6.11, the word NF(β) is, in
any case, a σ -definite expression of β, and its length is at most 3|β|n. On the other hand,
Proposition 6.4 implies |β|n ≤ (n− 1)‖β‖σ , so we deduce the expected upper bound

|NF(β)| ≤ 3(n− 1)‖β‖σ . (6.8)

Finally, gathering the complexity analysis of Propositions 6.4, 6.7, 6.9, and 6.11 shows
that, in all cases, NF(β) can be computed in O(`2) steps when β is specified by an initial
word of length `. ut

As promised, we can now deduce Theorems 1 and 2 in a few words.

Proof of Theorem 1. Let NF(β) be the translation of the ad-word NF(β) into a σ -word.
The formulas of (4.2) show that the translation of a letter ap,q or dp,q with q ≤ n has
length at most 2n− 3. So (6.8) implies |NF(β)| ≤ 6(n− 1)2‖β‖σ . ut

Proof of Theorem 2. Translating NF(β) into NF(β) has a linear time cost, so the quadratic
upper bound for the computation of NF(β) established in Theorem 6.13 immediately
gives a quadratic upper bound for the computation of NF(β). ut

Let us now give a concrete example of the previous constructions.

Example 6.14. We consider the braid β = σ1σ
−2
3 σ2σ3 of Example 6.5 again. We saw

above that its rotating normal form is the ad-word

d
−1
1,4a1,2a1,4a2,3a1,2.

We saw in Example 2.15 that the φ4-splitting of a1,2a1,4a2,3a1,2 is (w4, . . . , w1), with

w4 = a2,3, w3 = a2,3, w2 = ε, and w1 = a2,3a1,2.

So the 4-depth of β is 1, whereas its 4-breadth is 4. As 1 ≤ 4 − 2, we are in the difficult
case. With the notation of Definition 6.10, we have t = 1 and w3 = ε · a2,3, so we
first put w′3 = ε, p = 3, v = φ2

4 (w4)φ4(w
′

3)d
−1
1,p, and u3 = d−1p−1,2, i.e., in the current

case, v = a1,4d
−1
1,3 and u3 = ε. Then, as w2 = ε, w3 = a2,3 and v 6= d−11,3, we are

in Case 3 of Definition 6.10. According to the latter, we define NF(β) = vd0
1,3w1, i.e.,

NF(β) = a1,4d
−1
1,3a2,3a1,2. This ad-word is σ3-positive: indeed, its σ -translation is the

σ -word
NF(β) = σ1σ2σ3σ

−1
2 σ

−1
1 σ

−1
2 σ

−1
1 σ2σ1

which contains one σ3, but no σ−13 , and no σ±1
i with i ≥ 4.
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In the very simple case of Example 6.14, the reversing machinery is not used (and
directly guessing a σ -definite word equivalent to the initial word would have been easy).
However, much more complicated phenomena may occur in general, in particular when
the braid index reaches 5, which is the smallest value for which there exist ladders with
more than one bar. All situations considered in Definition 6.10 may occur when the length
and the braid index increase, and explicit examples can easily be found using a computer.
The examples witnessing really complicated behaviors, typically requiring more than one
reversing step, involve words that are too long to be given here. However their existence
confirms the amazing intricacy of the braid relations.

As a consequence, we deduce that the complexity of the Dehornoy order of braids is
at most quadratic.

Acknowledgments. The author thanks P. Dehornoy for his help in writing this paper.
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