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Abstract. We prove that with probability tending to 1, a one-relator group with at least three gen-
erators and the relator of length n is residually finite, is a virtually residually (finite p-)group for all
sufficiently large p, and is coherent. The proof uses both combinatorial group theory and non-trivial
results about Brownian motions.

1. Introduction

Residual finiteness of one-relator groups has been one of the main topics in combinatorial
group theory since the 1960s. The first non-residually finite examples were given in [2]
(say, the Baumslag–Solitar groups BS(p, q) = 〈a, b | b−1apb = bq〉 where p and q
are different primes). Possibly the strongest “positive”, nonprobabilistic result so far is
the result by D. Wise [16]: any one-relator group whose relator is a positive word satis-
fying the condition C′(1/6) is residually finite. The strongest “negative” result appeared
recently in the paper by Baumslag, Miller and Troeger [1]: LetG = 〈a, b, . . . | r = 1〉 be
a one-relator group with at least two generators and let G(r,w) = 〈a, b, . . . | rr

w
= r2
〉

where w is an element of a free group with free generators a, b, . . . that does not com-
mute with r . Then [1, Theorem 1] asserts that the group G(r,w) is not residually finite.
Note that the length of the relator of G(r,w) is at most a constant multiple of the length
of the relator of G.

Another important problem about one-relator groups is whether every one-relator
group is coherent, i.e. every finitely generated subgroup of it is finitely presented.

In this paper, we show that generically one-relator groups with at least three generators
have both properties: they are residually finite and coherent. We also discuss the case of
one-relator groups with two generators at the end of the paper.

We consider three natural models of choosing a random one-relator group.

Model NR. For every r ≥ 0, consider the set Sr of all group words R of length r in a
free group Fk = 〈x1, . . . , xk〉. On that set, we choose the uniform probability measure.
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By a random one-relator group with k generators of complexity r we mean the group with
presentation 〈x1, . . . , xk | R = 1〉 where R is a random word from Sr .

Model CR. In this model, we consider the set CSr of cyclically reduced words in Fk of
length r and consider the uniform probability measure on that set. Then a random one-
relator group with k generators of complexity r is a group 〈x1, . . . , xk | R = 1〉 where R
is a random word from CSr .

The third model is one considered, for example, in Kapovich–Schupp–Shpilrain [13].

Model IC. Consider the equivalence relation on the set of all cyclically reduced words
from Fk: two words are equivalent if the corresponding one-relator groups are isomorphic.
In this model we consider any set Dr of representatives of length exactly r of all equiv-
alence classes of words containing words of length r . Consider the uniform probability
measure on Dr . Then by a random one-relator group with k generators of complexity r
we mean the group with presentation 〈x1, . . . , xk | R = 1〉 where R is a random word
from Dr .

Now given any property P of groups and any of the three probabilistic models above,
consider the probability pr that a random k-generator one-relator group with relator of
length r has property P . If pr has a limit p, we say that a random k-generator one-relator
group has this property with probability p.

We prove below (see Lemmas 3.1, 3.2) that if the limit of the probabilities pr exists
in the random model CR, then it coincides with the limit in the models NR and IC.

Recall that an ascending HNN extension of a free group (the mapping torus of a
free group endomorphism) is a group of the form HNNφ(Fk) = 〈x1, . . . , xk, t | x

t
1 =

φ(x1), . . . , x
t
k = φ(xk)〉 where φ is an injective endomorphism of Fk .

Here is the main result of this paper.

Theorem 1.1. A random k-generator one-relator group, k ≥ 3, can be embedded into an
ascending HNN extension of a finitely generated free group with probability 1. Therefore
almost surely, such a group is residually finite, is a virtually residually (finite p-)group
for every sufficiently large prime p, and is coherent.

As an immediate corollary of Theorem 1.1, we deduce that one cannot replace a mul-
tiplicative constant in the result of Baumslag–Miller–Trager [1, Theorem 1] mentioned
above by an additive constant: if n ≥ 3, then there exists no map φ : Fn → Fn such that
|φ(R)| − |R| is bounded from above by some constant C and such that for every non-
trivial R ∈ Fn, the group 〈Fn | φ(R) = 1〉 is not residually finite. Indeed, it is easy to see
that if such a map existed, the probability of a one-relator group with n generators to be
residually finite would be bounded away from 1 as |R| tends to∞.

Although the proof of Theorem 1.1 presented below is relatively short, it uses some
strong results from different areas of mathematics that are very rarely employed together:
geometric group theory, algebraic geometry and probability theory (Brownian motion).
Namely, we use the result of Feighn and Handel [10] that ascending HNN extensions of
free groups are coherent (that is mostly geometric group theory, more precisely discrete
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Morse theory), results by Borisov and Sapir from [4], [5] that every ascending HNN
extension of a free group is residually finite and even a virtually residually (finite p-)group
for almost all primes p (that is essentially a result from algebraic geometry, namely the
theory of quasi-fixed points of polynomial maps over finite fields), a result of Ol’shanskiı̆
[14] about subgroups with congruence extension property of hyperbolic groups (this is
geometric group theory), a result of Kapovich, Schupp and Shpilrain [13] about generic
solvability of the isomorphism problem for one-relator groups (this result uses many parts
of geometric group theory including the Arzhantseva–Ol’shanskiı̆ method, boundaries of
hyperbolic groups, etc.), and a result by Cranston, Hsu, and March [8] that the boundary
of the convex hull of a Brownian trajectory is smooth almost surely in Wiener’s measure
(probability theory) .

Note that almost all (with probability tending to 1) one-relator groups with a relator
of size r � 1 satisfy the small cancellation condition C′(1/6) and in fact C′(λ) for every
fixed λ > 0 [12]. Hence they are hyperbolic almost surely. It is still a major open question
in group theory whether every hyperbolic group is residually finite. The positive answer
would of course imply a part of Theorem 1.1. Most specialists believe, however (see, for
example, Gromov’s conjecture [12, 5.B]), that there are non-residually finite hyperbolic
groups, and that, moreover, almost all hyperbolic groups and even most C′(λ)-groups are
not residually finite. Constructing an example of a non-residually finite hyperbolic group
is difficult because all non-elementary hyperbolic groups have “very many” quotients,
including torsion and even, in most cases, bounded torsion, quotients [12, 14].

2. The theory of one-relator groups

2.1. The case of two generators

Let G = 〈a, b | R = 1〉 be a one-relator group, R is a cyclically reduced word in
F2 = 〈a, b〉. Consider a square lattice 0 in R2, the Cayley graph of Z2. We assume that
horizontal edges are labeled by a and vertical edges are labeled by b. Let ψ : F2 → Z2

be the abelianization map. Let w be the path in 0 starting at the origin (0, 0) and reading
the word R. This w is called the trace of the relator R. Note that w can visit every vertex
(edge) many times. Vertices (edges) visited only once are called simple. A line L in R2 is
said to be a supporting line of w if the path w lies on one side of L and has a common
vertex with L.

Theorem 2.1 (Brown [6, Theorem 4.4]). Let G = 〈a, b | R = 1〉, where R is a non-
trivial cyclically reduced word in the free group on {a, b} and R /∈ [F2, F2]. Let w be the
trace of R, ending at a point (m, n).

G is an ascending HNN extension of a free group if and only if one of the two sup-
porting lines of w parallel to the vector (m, n) intersects w in one simple vertex or one
simple edge.
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2.2. Embedding into 2-generated groups

Let G = 〈x1, . . . , xk | R = 1〉. If the sum of the exponents of xi in R is 0, then we can
apply the Magnus rewriting to R. It consists of

• removing all occurrences of xi in R;
• replacing every occurrence of a letter xj in R by the letter xj,p where p is the sum of

exponents of the xi in the prefix of R before that occurrence of xj .

Let R′ be the resulting word. The second indices p of letters in R′ will be called the
Magnus xi-indices. We say that a certain Magnus index is unique if it occurs only once
in R′.

We are going to use the following statement, which can be deduced from, say, a gen-
eral result in [14] about hyperbolic groups.

Lemma 2.2. Let w1, . . . , wk be words in the free group Fn satisfying C′(1/12). Then the
subgroup H = 〈w1, . . . , wk〉 of Fn satisfies the congruence extension property, that is,
for every normal subgroup N of H , the intersection of H and the normal closure NFn

of N in Fn is N . In particular, the natural homomorphism H/N → Fn/N
Fn is injective.

Let φ be the map Fk → Fn (where Fn = 〈x1, . . . , xn〉) given by xi 7→ wi , i = 1, . . . , k,
where w1, . . . , wk satisfy C′(1/12). Lemma 2.2 immediately implies

Lemma 2.3. The map φ induces an injective homomorphism from G = 〈x1, . . . , xk |

R = 1〉 to the one-relator n-generated group 〈x1, . . . , xn | φ(R) = 1〉.

Theorem 2.4. Consider a groupG = 〈x1, . . . , xk | R = 1〉, whereR is a word in the free
group on {x1, . . . , xk}, k ≥ 2. Assume the sum of the exponents of xk in R is zero and the
maximal Magnus xk-index of x1 is unique. Then G can be embedded into an ascending
HNN extension of a finitely generated free group.

Proof. We may assume that the maximal Magnus xk-index of x1 is greater than the one
of xi , for 1 < i < k, otherwise apply the automorphism xi 7→ x−mk xix

m
k , xj 7→ xj

(j 6= i) for m large enough.
Let n� 1. Consider the following words w1, . . . , wk ∈ F2:

w1 = aba
2b . . . anban+1ba−n−1ba−nb . . . a−2ba−1b,

wi = ab
ia2bi . . . anbia−nbi . . . a−2bia−1bi for 1 < i < k,

wk = ab
ka2bk . . . anbka−nbk . . . a−2bk.

These words satisfy the following conditions:

(1) For n large enough, these words and their cyclic shifts satisfy the small cancellation
condition C′(1/12). Indeed, the maximal length of a subword repeating twice as a
prefix of cyclic shifts of wi does not exceed 2n+ 3+ k, and the length of each wi is
at least n2. For n large enough, we have (2n+ 3+ k)/n2 < 1/12.

(2) The sum of the exponents of a in wi , i < k, is 0, the sum of the exponents of a in wk
is 1.
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(3) The maximal Magnus a-index of b in w1 is (n+ 1)(n+ 2)/2, and this index is
unique. The maximal Magnus a-indices of b in all other words are strictly smaller
than the one in w1.

By Lemma 2.3, the group G embeds into the 2-generated one-relator group with pre-
sentation 〈a, b | R(w1, . . . , wk) = 1〉.

It remains to prove that R(w1, . . . , wk) satisfies the conditions of Lemma 2.1. Let
R′ = R(w1, . . . , wk). Clearly the sum of the exponents of a in R′ is zero. Every letter b
with maximal Magnus a-index in R′ comes from some occurrence of a word wi substi-
tuted for the letter xi . The sum of the exponents of a is nonzero only in wk . Therefore the
Magnus a-index of a letter b is the sum of the Magnus xk-index of the letter xi in R, for
which it was substituted, and the Magnus a-index of b inwi . The Magnus xk-index inR is
maximal for the letter x1 and the maximum is unique in R. The maximal Magnus a-index
of b in w1 is also unique (and greater than in all other wi’s). This gives the uniqueness
of the maximal Magnus a-index in R′. Therefore there is a supporting line parallel to the
b-axis that intersects the trace of R′ in one simple edge corresponding to the letter b with
the maximal Magnus a-index. Therefore by Lemma 2.1 the group 〈a, b | R′ = 1〉 is an
ascending HNN extension of a finitely generated free group. ut

2.3. More than two generators and walks in Zk

In the case of more than two generators we generalize the notion of supporting line in
the following way. Given a relator R, a nontrivial word in the free group on {x1, . . . , xk},
let w be its trace in the lattice Zk . For a letter t ∈ {x1, . . . , xk}, let wt be a set of edges
labeled by t in w. A vertex on wt is called simple if it does not belong to two edges of wt .
In particular, if w contains two consecutive edges with labels t, t−1, then the endpoints of
those edges are not simple vertices.

Definition 2.5. A hyperplane P is a supporting hyperplane of wt if the trace wt lies on
one side of P and has a common vertex with P . A hyperplane P is said to touch w if

• P is parallel to the line containing the origin and the endpoint of w,
• there is t ∈ {x1, . . . , xk} such that P is a supporting hyperplane of wt ,
• the intersection of P and wt consists of one simple vertex or one simple edge.

Lemma 2.6. Let G = 〈x1, . . . , xk | R = 1〉, where R is a word in the free group on
{x1, . . . , xk}, k ≥ 2. Let w be a trace of R in the lattice Zk . If there is a hyperplane P
touching w, then G can be embedded into an ascending HNN extension of a free group.

Proof. We will embed G into a one-relator group on k + 1 generators that satisfies the
condition of Theorem 2.4.

If the normal vector of P has irrational entries, then there is a hyperplane P ′ whose
normal vector has rational entries that also touchesw. Thus we can assume that the normal
vector of P pointing toward the half-space not containing wt is (n(1), . . . , n(k)) with
integer entries.
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Consider the following substitution φ:

xi 7→ xiz
n(i), i = 1, . . . , k.

Let H = 〈x1, . . . , xk, z | φ(R)〉. Then G is embedded into H by φ. Since the normal
vector of P is orthogonal to the line connecting the origin and the endpoint of w, the sum
of the exponents of z in φ(R) is zero.

It remains to show that the maximal Magnus z-index of xt in φ(R) is unique.
We can assume that the edge in wt intersecting P corresponds to the first letter of

R. Assume that there is another letter xt (at position j ) in φ(R) with at least the same
Magnus z-index as the first letter xt in the word. Letm(i) be the total sum of the exponents
of the letter xi between those two occurrences of xt (note that it is the same in R and in
φ(R)). If the exponent of the first xt is 1, then add 1 to m(t). If the exponent of the
other letter xt (at position g) is −1, then subtract 1 from m(t). The Magnus z-index of
the letter xt at position j differs from the Magnus z-index of the first xt by precisely
m(1)n(1)+m(2)n(2)+ · · · +m(k)n(k).

Consider the edge corresponding to the first letter xt and the edge of the letter xt at
position j . Connect their initial points in Zk by a vector (the vector connecting their
terminal points is the same). It is easy to see that the coordinates of this vector are
(m(1), . . . , m(k)). If the scalar product of this vector with the normal vector of P is non-
negative, then one of the endpoints of the edge of the letter xt at position g lies at P or on
the other side than wt . This is impossible, because P touches w (with respect to xt ). ut

Remark 2.7. Let R be a nonreduced word in {x1, . . . , xn}, and let R′ be the cyclically
reduced form of R. Let w,w′ be the walks corresponding to R and R′ respectively. If
there exists a touching plane for w, then there exists a touching plane for w′. The proof
easily proceeds by induction on the number of reductions.

Let w be the walk in Zk corresponding to R. Let ξ be the vector connecting the initial
and the terminal points of w. Let t ∈ {1, . . . , k}. For every supporting plane P of wt let
P+ be the closed half-space of Rk bounded by P and containing wt . The intersection
of all P+ is a convex polyhedron in Rk . Let 10(t) denote the projection of the bound-
ary 1(t) of that polyhedron onto the hyperplane orthogonal to ξ . Then 1(t) is the right
cylinder with base 10(t), i.e. the direct product 10(t)× R. A vertex of the random walk
projected to a 0-cell of 10(t) is called a corner. For every vertex x that is a 0-cell of a
10(t), the line x + Rξ ⊆ 1(t) will be called the support line of wt .

Lemma 2.6 immediately implies

Lemma 2.8. If one of the support lines of wt intersects wt in a simple vertex or a simple
edge, then G is embeddable into an ascending HNN extension of a free group.

3. Random walks in Zk

3.1. Preliminaries

Denote by PNR
n the (uniform) measure on simple random walks of length n (not necessar-

ily reduced) and by PNB
n the uniform measure on nonbacktracking simple random walks
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of length n. To model cyclically reduced words, we denote by PCR
n the uniform measure

on nonbacktracking simple random walks with last edge that is not the inverse of the first
edge of the walk (note that asymptotically this happens with probability (2k − 1)/2k). In
all cases we can consider the sample space � containing all walks of any finite length.

We say that an event A depends only on the cyclically reduced path of the random
walk if w ∈ A if and only if w′ ∈ A, where w′ is the cyclically reduced path of w. An
example of such an event is the event that a support line of the cyclically reduced path w′

of a random walk w intersects w′ in a simple vertex or a simple edge.

Lemma 3.1. Let A be an event depending only on the cyclically reduced path of the
random walk. Assume limn→∞ PCR

n (A) exists. Then

lim
n→∞

PNR
n (A) = lim

n→∞
PCR
n (A).

Proof. Let limn→∞ PCR
n (A) = a and assume n0 is such that for all n > n0,

|PCR
n (A)− a| < ε.

If A depends only on the cyclically reduced path w′ of a random walk w, then condition-
ing on the length of the cyclically reduced path |w′| we see that PNR

n (A | |w′| = k) =

PCR
k (A), provided PNR

n (|w′| = k) > 0. Let n1 be such that for all n > n1, PNR
n (|w′| < n0)

≤ ε. Then

PNR
n (A) =

n∑
k=0

PNR
n (|w′| = k)PCR

k (A),

and we can split the sum into two parts (k ≤ n0 and k > n0) and obtain, for n > n1,

(1− ε)(a − ε) < PNR
n (A) < ε + (a + ε).

Therefore limn→∞ PNR
n (A) = a. ut

Lemma 3.2. Assume limn→∞ PCR
n (A) exists. Then the limit probability in the model IC

exists as well and they are the same.

Proof. By the result of Kapovich, Schupp and Shpilrain [13, Theorem C], there is a
generic set Q of cyclically reduced words such that two one-relator groups with rela-
tors in Q are isomorphic if and only if their relators are obtained from each other by a
relabeling automorphism and cyclic shift. This set is generic in the following sense:

lim
n→∞

|Tn ∩Q|

|Tn|
= 1,

where Tn consists of all cyclically reduced words in Fk of length n.
Assume limn→∞ PCR

n (A) = p. If we consider only words inQ, the limit clearly stays
the same. Each word inDr represents several words inQ∪ Tr . The maximum number of
words which may be relators of pairwise isomorphic one-relator groups is the number of
relabeling automorphisms (2kk!) times the number of cyclic shifts (r). There are words
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for which different cyclic shift are equal words after relabeling (these words are products
of more than one copy of the same word in different alphabets), and there are words
containing fewer than k letters, but the probability of obtaining such a word tends to 0
(exponentially) as the length grows. If we exclude such words from Q ∩ Tr , then the set
of groups given by relators in Q ∩ Tr contains groups isomorphic to those with a relator
from Dr (that is, the set from the model IC), each with the same multiplicity. Therefore
the limit probability in the model IC is equal to p as in the model CR. ut

Next we will need a modified version of Donsker’s invariance principle. Denote by C the
space of all continuous functions f : [0, 1]→ Rk such that f (0) = 0, equipped with the
sup norm.

Theorem 3.3 (Donsker’s Theorem modified). Consider a piecewise linear function Yn :
[0, 1] → Rk , where the line segments connect the points Yn(t) = Snt/

√
n for t =

0, 1/n, 2/n, . . . , n/n = 1, where (Sn) has a distribution according to PCR
n . Then Yn(t)

converges in distribution to a Brownian motion as n→∞.

Proof. First we prove that conditioning on the first step of a nonbacktracking random
walk has asymptotically no influence on Yn(t), which allows us to switch between PNB

and PCR. Next, we basically repeat the proof of Donsker’s Theorem in [3, Theorem
10.1]. The Central Limit Theorem for nonbacktracking walks that we will use was proved
in [15].

Let (Rn) be a nonbacktracking random walk. We cut the walk at time ln(n), splitting
the walk into two (dependent) parts (R(1)ln(n)) and (R(2)n−ln(n)). Define piecewise linear func-

tions X(t) and Z(t) connecting the points X(t) = Rnt/
√
n and Z(t) = R(2)nt /

√
n− ln(n)

respectively. Clearly, the distance (in the sup norm) between X(t) and Z(t) goes to 0
as n → ∞. Moreover the latter part of the walk (R(2)n−ln(n)) tends to be independent of
the first step of (Rn) as n→∞. Therefore the piecewise linear functions obtained from
walks with measures PNB and PCR have the same limit in distribution.

Next we show that the finite-dimensional distribution of Yn(t) converges to the one of
Brownian motion. By the result of Rivin [15, Theorem 5.1] the probability distribution of
Sn/
√
n converges to a normal distribution on Rk , whose mean is 0 and covariance matrix

is diagonal, with entries

σ 2
=

1
√

2k − 1

[
1+

(
c + 1
c − 1

)1/2]
,

where c = k/
√

2k − 1. By the previous paragraph this holds for Rn/
√
n as well.

Consider now the two-dimensional distribution that is the position at two time points,
s < t . It is enough to show that Sns/

√
n and (Snt − Sns)/

√
n are asymptotically in-

dependent (the normal distribution of each of them was already established). The first
step of (Snt − Sns) is not independent of (Sns), but asymptotically the distribution of
(Snt − Sns)/

√
n is independent of the first step. The convergence of finite-dimensional

distributions for more time points can be proved in the same way.
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It remains to show the tightness of the process. We refer to the proof in Billingsley [3,
p. 69], and here we prove only the lemma needed. The claim is

PNB
n

(
max
i<n
|Si | ≥ λσ

√
n
)
≤ PNB

n (|Sn| ≥ (λ−
√

2)σ
√
n).

In order to prove this, we define events Ei = {maxj<i |Sj | < λσ
√
n ≤ |Si |}. Now we

have:

PNB
n

(
max
i<n
|Si | ≥ λσ

√
n
)
≤ PNB

n (|Sn| ≥ (λ−
√

2)σ
√
n)

+

n−1∑
i=1

PNB
n (Ei ∩ {|Sn| < (λ−

√
2)σ
√
n}),

PNB
n (Ei ∩ {|Sn| < (λ−

√
2)σ
√
n}) ≤ PNB

n (Ei ∩ {|Sn − Si | ≥ σ
√

2n})

= PNB
n (Ei)PNB

n (|Sn − Si | ≥ σ
√

2n).

The last equality follows from the fact that the length of Sn − Si is independent of the
walk up to time i. Now by Chebyshev’s inequality PNB

n (|Sn − Si | ≥ σ
√

2n) ≤ 1/2. The
claim follows from

n−1∑
i=1

PNB
n (Ei ∩ {|Sn| < (λ−

√
2)σ
√
n}) ≤

1
2

n−1∑
i=1

PNB
n (Ei)

≤
1
2

PNB
n

(
max
i<n
|Si | ≥ λσ

√
n
)
. ut

3.2. Corners of random walk

Let (Sn) be a nonbacktracking random walk in Zk of length n with last edge that is not the
inverse of the first edge (according to the measure PCR

n ). Recall that10 is the projection of
the boundary of the convex hull of the random walk (Sn) onto the hyperplane orthogonal
to ξ , the vector connecting the initial and the terminal points of the random walk. Denote
by Hn the set of corners, which are the vertices of the random walk that project to the
0-cells of 10. We count the corners with their multiplicities.

Lemma 3.4. Let (Sn) be a nonbacktracking random walk in Zk of length n with last edge
that is not the inverse of the first edge (according to the measure PCR

n ). Let Hn be the set
of its corners as defined above. Then for any integer m,

PCR
n (|Hn| < m)→ 0 as n→∞.

Proof. Consider a piecewise linear function Xn : [0, 1] → Rk , where the line segments
connect the points Xn(t) = Snt/

√
n for t = 0, 1/n, 2/n, . . . , n/n = 1. Recall that C is

the space of all continuous functions f : [0, 1]→ Rk such that f (0) = 0, equipped with
the sup norm. By Theorem 3.3, Xn(t) converges in distribution to a Brownian motion
as n → ∞. Denote by Am the subset of C such that f ∈ Am if the convex hull of the
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projection of f to the hyperplane orthogonal to f (1) is a (k − 1)-dimensional (convex)
polytope with at most m 0-cells. We will show that the set Am is a closed subset of C
in the sup norm and that the Wiener measure of Am is zero. It follows from the weak
convergence that P(Xn(t) ∈ Am)→ 0 as n→∞.

First we show that Am is closed. Suppose f /∈ Am is the limit (in the sup norm) of
fn ∈ Am. Let pn (resp. p) denote the projection on the hyperplane through the origin
orthogonal to fn(1) (resp. f (1)). For any ε > 0 and for all but finitely many n, we have
|p(f (t)) − p(pn(fn(t)))| < ε for all t . If the convex hull of pn(fn) is a polytope with
at most m 0-cells, then the same holds for p(pn(fn)). Denote by Bn (resp. B) the convex
hull of p(pn(fn)) (resp. p(f )). Then for any ε > 0 the boundary of B is in the Hausdorff
ε-neighborhood of the boundary of Bn for all but finitely many n. We need to prove that
if a convex body in Rk is sufficiently close to some polytope with at most m 0-cells, then
the body itself is such a polytope. To prove that, enumerate the 0-cells of Bn somehow,
say {vn,1, . . . , vn,m} (the last few 0-cells may coincide if the total number of 0-cells is
smaller than m). Choose one convergent subsequence {vnj (i),i}j=1,2,... of {vn,i} for each i
in such a way that {nj (i+1) : j = 1, 2, . . .} is a subset of {nj (i) : j = 1, 2, . . .}. LetN (0)

be the sequence {nj (m) : j = 1, 2, . . .}. There exists a subset N (1) of N (0) such that for
every i, j ∈ {1, . . . , m} either vt,i and vt,j span a 1-cell in all Bt , t ∈ N (1), or they span
a 1-cell in no Bt , t ∈ N (1). Proceeding by induction on the dimension of a cell, we can
find an infinite subset N of natural numbers such that for every subset M ⊂ {1, . . . , m}
either the vertices vt,i , i ∈ M , span a cell in Bt for all t ∈ N or they span a cell in
none of these Bt . For every M ⊆ {1, . . . , m} such that vt,i , i ∈ M , span a cell FM(t)
of dimension j in all Bt , t ∈ N , the limit limt∈N FM(t) exists and is a Euclidean convex
polytope of dimension j spanned by the 0-cells vi , i ∈ M . Hence the convex hull B
of p(f ) is a convex polytope with at most m 0-cells.

To see that Am has measure 0 we introduce the following set D of continuous func-
tions [0, 1]→ Rk . A function f ∈ C is in D if the convex hull of its projection to some
two-dimensional plane orthogonal to f (1) has a smooth boundary, i.e. it is a C1 curve
in the plane. Clearly D ∩ Am is empty for all m. Let Xt be a standard Brownian motion
in Rk . Then X(t) − tX(1) is a Brownian bridge in Rk . All projections of this Brownian
bridge to R2 are equivalent in distribution and give Brownian bridges in R2. To conclude
that D has Wiener measure 1, it is enough to show that the convex hull of a planar Brow-
nian bridge has a smooth boundary almost surely. For Brownian motions, that is proved
in [8]. We are going to use almost the same argument.

Consider a Brownian bridge and pick any of its extreme points. Move the beginning
of the time from 0 to this extreme point and rotate the plane so that the path is in the upper
half-plane. The resulting process Yt is a Brownian excursion, i.e. it stays in the upper half-
plane and returns to the starting point. The same is true for Y1−t . Then the transformation
Vt := (1+ t)Yt/(1+t) is a Brownian meander (see for example [3, p. 68, Exercise 3]). Let
Vt = (Vt (1), Vt (2)). By [7], for any c > 0, we have

P(inf{t : t > 0, |Vt (2)| ≤ c|Vt (1)|} = 0) = 1.

By reversing the transformation we obtain the same property for Yt and Y1−t . Now the
claim follows using the argument from Theorem 1 in [8]. ut
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We say that a random walk is bad if there is no 0-cell of 10 such that only a single
vertex is projected to it.

Lemma 3.5. The probability that a k-dimensional nonbacktracking simple random walk
(with last edge that is not the inverse of the first edge of the walk) is bad in the above
sense tends to 0 for k > 2.

Proof. Let (Sn) be a k-dimensional nonbacktracking simple random walk (with last edge
that is not the inverse of the first edge of the walk), k > 2. The number of all cyclically
reduced walks, |Tn|, equals asymptotically (2d − 1)n. Let Bn be the set of all bad walks,
i.e. for all 0-cells of 10 we have at least two vertices projected to it.

Define a map τi : Bn → Tn+4 that inserts a commutator at the i-th corner of the
random walk in such a way that it produces a new corner. For example, if the corner is
between the letters xi and xj , we can insert xix−1

j x−1
i xj in between, so that the second

vertex of these three new vertices projects outside of 10 of the original walk. Note that
the new walk is not bad anymore.

This map τi is injective. Moreover the images of the same walk under τi for dif-
ferent i are disjoint. The set of bad walks with more than K corners, UK := {w |
w ∈ Bn, |Hn(w)| > K}, is mapped by τ1, . . . , τK into Tn+4. The union of their images,⋃K
i=1 τi(UK), is of size K|UK |.

For any integer K we can write

|Bn| = |Bn \ UK | + |UK | ≤ P(|Hn| < K)|Tn| +
|Tn+4|

K
,

|Bn|

|Tn|
≤ P(|Hn| < K)+

1
K

|Tn+4|

|Tn|

≤ P(|Hn| < K)+
(2d − 1)4

K
→

(2d − 1)4

K
.

This holds forK arbitrarily large. The first summand tends to 0 as n→∞, by Lemma 3.5.
This implies that the probability of a bad walk is less than any positive number. ut

Remark 3.6. Using Lemma 3.1, the same result as in Lemma 3.5 follows for a simple
random walk (we consider corners of its reduced form).

Proof of Theorem 1.1. Let G = 〈x1, . . . , xk | R = 1〉 be a random k-generator one-
relator group, k > 2. If the trace of R is not bad in the above sense, then there is a hyper-
plane touching its cyclic reduction. Thus, by Lemma 3.5, there is a hyperplane touching
R with probability tending to 1. By Lemma 2.6, this implies that the group can be em-
bedded into an ascending HNN extension of a free group almost surely. ut

4. What if the number of generators is 2? Some open questions

Theorem 1.1 leaves the case of one-relator groups with two generators open. The reason
is the following. In [4], Borisov and Sapir reported a result of computations saying that,
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apparently, more than 94% of one-relator groups with two generators and a relator of size
n� 1 are ascending HNN extensions of free groups. Borisov and Sapir used the Monte-
Carlo method for n ≈ 106. Schupp and later Dunfield and Thurston [9] conducted similar
experiments and came to the same conclusion. Thus in some sense we know (although it
is not proved yet) that probably the majority of one-relator groups with two generators are
residually finite and coherent. At the same time, Dunfield and Thurston noticed [9] that a
2-generated one-relator group is not almost surely an ascending HNN extension of a free
group (that is, the probability that a 2-generated one-relator group with a relator of size n
is an ascending HNN extension of a free group is bounded away from 1 as n→∞).

Nevertheless the answer to the following question can be positive:

Question 4.1. Is it true that the probability that a 2-generated one-relator group is resid-
ually finite is 1?

Answering a question of M. Sapir, Fu and Virág proved (see [11]) that a 2-generated
one-relator group is almost surely a very special HNN extension of a free group. That
HNN extension is determined by three parameters: an integer k (the rank of the free
group), an integer i between 1 and k, and a word w from the free group Fk . It is given by
the following presentation:

H(k, i, w) = 〈a1, . . . , ak, t | ta1t
−1
= a2, . . . , tai−1t

−1
= ai, tai t

−1
= w,

twt−1
= ai+1, tai+1t

−1
= ti+2, . . . , tak−1t

−1
= ak〉.

Question 4.2. Is every group H(k, i, w) residually finite?

By [11], a positive answer to Question 4.2 implies a positive answer to Question 4.1.
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