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Abstract. We classify possible finite groups of symplectic automorphisms of K3 surfaces of order
divisible by 11. The characteristic of the ground field must be equal to 11. The complete list of such
groups consists of five groups: the cyclic group C11 of order 11, C11 o C5, PSL2(F11) and the
Mathieu groups M11, M22. We also show that a surface X admitting an automorphism g of order
11 admits a g-invariant elliptic fibration with the Jacobian fibration isomorphic to one of explicitly
given elliptic K3 surfaces.

1. Introduction

Let X be a K3 surface over an algebraically closed field k of characteristic p ≥ 0. An
automorphism g ofX is called symplectic if it preserves a regular 2-form ofX. In positive
characteristic p, an automorphism of order a power of p is called wild. A wild automor-
phism is symplectic. A subgroupG of the automorphism group Aut(X) is called symplec-
tic if all elements of G are symplectic, and wild if it contains a wild automorphism. No
K3 surface in characteristic p > 11 can admit a wild automorphism ([4, Theorem 2.1]).
The existence of such a bound is not a common property among all classes of surfaces,
e.g. in every positive characteristic one can find a rational surface and an abelian surface
admitting a wild automorphism.

It is a well-known result of V. Nikulin that the order of a symplectic automorphism
of finite order of a complex K3 surface takes value in the set {1, 2, 3, 4, 5, 6, 7, 8}. This
result is true over an algebraically closed field k of positive characteristic p if the order is
coprime to p. The latter condition is automatically satisfied if p > 11 [4]. If p = 11, an
elliptic K3 surface Xε defined by the equation of degree 12 in P(1, 1, 4, 6)

y2
+ x3

+ εx2t40 + t0t
11
1 − t

11
0 t1 = 0, ε ∈ k, (1.1)

admits a symplectic automorphism of order 11

gε : (t0, t1, x, y) 7→ (t0, t0 + t1, x, y). (1.2)
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The main result of the paper is the following.

Theorem 1.1. Let G be a finite group of symplectic automorphisms of a K3 surface X
over an algebraically closed field of characteristic p ≥ 0. Assume that the order of G is
divisible by 11. Then p = 11 and G is isomorphic to one of the following five groups:

C11, C11 o C5, PSL2(F11), M11, M22,

where Cn is the cyclic group of order n and Mn is one of the Mathieu groups. Moreover,
the following assertions are true.

(i) For any element g ∈ G of order 11, X admits a g-invariant elliptic pencil |F | and X
is C11-equivariantly isomorphic to a torsor of one of the surfaces Xε equipped with
its standard elliptic fibration.

(ii) IfX = Xε andG contains an element of order 11 leaving invariant both the standard
elliptic fibration and a section, then G ∼= C11 if ε 6= 0, and G is isomorphic to a
subgroup of PSL2(F11) if ε = 0.

The surface X0 is a supersingular K3 surface with Artin invariant 1 isomorphic to the
Fermat surface

x4
0 + x

4
1 + x

4
2 + x

4
3 = 0.

In a recent paper of Kondō [7] it is proven that both M11 and M22 appear as symplectic
automorphism groups ofX0. Thus the surfaceX0 admits three maximal finite simple sym-
plectic groups of automorphisms, isomorphic to PSL2(F11), M11 and M22. An element
g of order p = 11 in the latter two groups leaves invariant an elliptic pencil. We do not
know whether the pencil has a section; all we know is that it does not have a g-invariant
section.

In our earlier work [4] finite groups of symplectic automorphisms of K3 surfaces in
positive characteristic p have been studied. If such a group is not wild, then it is isomor-
phic to a subgroup of the Mathieu group M23 with at least four orbits in its natural action
on a set of 24 elements. In characteristic p < 7, there are examples of finite wild sym-
plectic groups which cannot be embedded into M23. In characteristic p = 11, Theorem
1.1 shows that every finite symplectic group, wild or not, can be embedded into M23. We
do not know whether the same holds true in characteristic p = 7.

Corollary 1.2. A finite group G acts symplectically and wildly on a K3 surface over an
algebraically closed field of characteristic 11 if and only ifG is isomorphic to a subgroup
of M23 of order divisible by 11 and having three or four orbits in its natural action on a
set of 24 elements.

Notation

For an automorphism group G or an automorphism g of X, we denote by Xg the fixed
locus with reduced structure, i.e. the set of fixed points of g.

A subset T of X is G-invariant if g(T ) = T for all g ∈ G. In this case we say G
leaves T invariant.
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An elliptic pencil |F | on X is G-invariant if g(F ) ∈ |F | for all g ∈ G. In this case
we say G leaves |F | invariant.

We also use the following notations for groups:

• Cn the cyclic group of order n, sometimes denoted by n,
• m : n = mo n the semidirect product of cyclic groups Cm and Cn,
• Mn the Mathieu group of degree n,
• Ln(q) = PSLn(Fq),
• GUn(q) the general unitary group over Fq ,
• #G the cardinality of a group G,
• V g the subspace of g-invariant vectors of a vector space V .

2. Wild C11-actions on K3 surfaces

In this section we improve the result of [3] and [4] in the case of wild C11-actions on K3
surfaces.

Lemma 2.1. Let X be a K3 surface over an algebraically closed field k of characteris-
tic 11. Assume thatX admits an automorphism g of order 11. ThenX admits a g-invariant
elliptic pencil |F |.

Proof. By Theorem 2.2 and Propositions 2.3, 2.5 of [4], we see that the fixed locus Xg is
either the support of a fibre of an elliptic fibration, or a point. Thus we need to prove the
lemma in the second case.

Assume that Xg is a point. In this case, by Theorems 1 and 2.4 of [3] (or Proposition
2.4 of [4]), the quotient surface X/〈g〉 is a rational surface with trivial canonical divisor
and one isolated elliptic Gorenstein singularity. By Proposition 2.9 of [4], X admits a
g-invariant elliptic pencil.

Lemma 2.2. Let X be a K3 surface over an algebraically closed field k of characteris-
tic 11. Assume that X admits an automorphism g of order 11. Let φ : X → P1 be a
g-invariant elliptic fibration. Then the following assertions are true.

(i) φ has either 12 cuspidal fibres, or one cuspidal fibre and 22 nodal fibres.
(ii) g∗ acts on the base P1 faithfully, leaving one cuspidal fibre F0 invariant and has

either one orbit or two orbits on the set of remaining singular fibres.
(iii) Xg is either the whole curve F0 or the cusp of F0.

Proof. Assume that g∗ acts as identity on the base P1. Then g becomes an automorphism
of the elliptic curve, X/P1 over the function field of P1. On the Jacobian J of this elliptic
curve, g induces an automorphism g′ of order 11. Note that J is an elliptic K3 surface
with a section (cf. [2, Theorem 5.7.2]). Since the order of g′ is greater than 3, g′ must be
a translation by an 11-torsion section. This contradicts Theorem 2.13 of [4] stating that
no jacobian elliptic K3 surface in characteristic p admits a nontrivial p-torsion if p > 7.
Thus g∗ acts on the base P1 faithfully, and hence fixes only one point. Let F0 be the



802 Igor V. Dolgachev, JongHae Keum

corresponding fibre. The fibre F0 contains Xg . An elliptic K3 surface cannot have only
one singular fibre. This follows from the equality e(X) = 24 for the Euler number and
the bound ρ(X) ≤ 22 for the Picard number. Singular fibres away from F0 form orbits
of fibres of the same type, and the number of such singular fibres is a multiple of 11, the
order of g. Thus the Euler number of such a fibre must be ≤ 2. This leaves the following
four possibilities:

(a) one orbit of singular fibres of type I2,
(b) one orbit of singular fibres of type II ,
(c) one orbit of singular fibres of type I1,
(d) two orbits of singular fibres of type I1.

Let Y be a minimal resolution of X/〈g〉 and Z the relative minimal model of Y . Then Z
is a rational elliptic surface with e(Z) = 12 and ρ(Z) = 10. The rationality follows from
[3, Theorems 1 and 3.7].

In case (a),Z has two singular fibres: one fibre of type I2 and the other fibreZ0 coming
from F0. The fibre Z0 has Euler number e(Z0) = 10 and eight irreducible components.
Such an elliptic fibre does not exist. Thus case (a) does not occur.

In case (b), Z has two singular fibres: one fibre of type II and the other fibre Z0
coming from F0. The fibre Z0 has Euler number e(Z0) = 10 and nine irreducible com-
ponents, hence is of type D̃8 or Ẽ8, additive in both cases. It follows that F0 cannot be of
multiplicative type I2, hence it is of type II .

In case (c),Z has two singular fibres; one fibre of type I1 and the other fibreZ0 coming
from F0. The fibre Z0 has Euler number e(Z0) = 11 and nine irreducible components.
Such an elliptic fibre does not exist. Thus case (c) does not occur.

In case (d), Z has three singular fibres; two fibres of type I1 and the fibre Z0 coming
from F0. The fibreZ0 has Euler number e(Z0) = 10 and has nine irreducible components,
hence is of type D̃8 or Ẽ8, additive in both cases. By the same reason as in case (b), F0 is
of type II . This completes the proof of (i) and (ii). The action of g on the rational curve
F0 gives (iii).

Lemma 2.3. Let X be a K3 surface over an algebraically closed field k of characteris-
tic 11. Assume that X admits an automorphism g of order 11. Then the following asser-
tions are true.

(i) rank Pic(X/〈g〉) = 2.
(ii) For any l 6= 11, dimH 2

et(X,Ql)
g
= rank Pic(X)g = 2.

(iii) rank Pic(X) = 2, 12 or 22.

Proof. By Lemma 2.1, X admits a g-invariant elliptic fibration. The quotient surface
X/〈g〉 is rational (Theorems 1 and 3.7 of [3]), and has no reducible fibre (Lemma 2.2).
Let Y be a minimal resolution of X/〈g〉. Then Y is an extremal rational elliptic surface
with only one reducible fibre, not necessarily relatively minimal. Thus the sublattice N
of Pic(Y ) spanned by the exceptional divisor classes has corank 2. This proves (i).

Recall that for a nonsingular projective variety Z in positive characteristic, there is an
exact sequence of Ql-vector spaces

0→ NS(Z)⊗Ql → H 2
et(Z,Ql)→ T 2

l (Z)→ 0, (2.1)
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where T 2
l (Z) = Tl(Br(Z)) in the standard notation in the theory of étale cohomology.

The Brauer group Br(X) is known to be a birational invariant, in particular, it is trivial
when Z is a rational variety. In fact, one can show that

NS(Z)⊗Ql = Ker(H 2
et(Z,Ql)→ H 2(k(Z),Ql)),

T 2
l (Z) = Im(H 2

et(Z,Ql)→ H 2(k(Z),Ql)).

Here H 2(k(Z),Ql) = lim
−→

UH
2(U,Ql), where U runs through the set of open subsets

of Z (see [15]). It is known that the dimensions of all Ql-spaces above do not depend
on l prime to the characteristic. Since Y is rational, the Lefschetz number λ(Y ) equals
dim T 2

l (Y ) = 0. It follows from [15, Proposition 5] that

T 2
l (X)

g ∼= T
2
l (Y ) = 0.

Hence,

dimH 2
et(X,Ql)

g
= rank NS(X)g = rank Pic(X)g = rank Pic(X/〈g〉) = 2.

This proves (ii).
Considering the Q-representation of the cyclic group 〈g〉 of order 11 on Pic(X)⊗Q,

we get (iii) from (ii).

3. The surfaces Xε

Let p = 11 and Xε be the K3 surface from (1.1). The surface Xε has an elliptic pencil
defined by the projection to the t0, t1 coordinates

fε : Xε → P1.

We will refer to it as the standard elliptic fibration. Its zero section, the section at infinity,
will be denoted by Sε. It is immediately checked that the surface Xε is nonsingular. Com-
puting the discriminant 1ε of the Weierstrass equation of the general fibre of the elliptic
fibration on Xε we find that

1ε = −t
2
0 (t

11
1 − t

10
0 t1)(5t

11
1 − 5t10

0 t1 + 4ε3t11
0 ). (3.1)

This shows that the set of singular fibres of the elliptic fibration on X0 (resp. Xε, ε 6= 0)
consists of 12 irreducible cuspidal curves (resp. one cuspidal fibre and 22 nodal fibres).
The automorphism gε given by (1.2) is symplectic and of order 11. It fixes pointwise the
cuspidal fibres over the point∞ = (0, 1) and has one orbit (resp. two orbits) on the set
of remaining singular fibres. It leaves invariant the zero section Sε. The quotient surface
Xε/〈gε〉 is a rational elliptic surface with a double rational point of type E8 equal to the
image of the singular point of the fixed fibre. A minimal resolution of the surface has one
reducible nonmultiple fibre of type Ẽ8 and one irreducible singular cuspidal fibre (resp.
two nodal fibres).
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Proposition 3.1. Let X be a K3 surface over an algebraically closed field k of charac-
teristic 11. Assume that X admits an automorphism g of order 11. Let f : X → P1 be
a g-invariant elliptic fibration. Assume that f has a section S. Then there exists an iso-
morphism φ : X → Xε of elliptic surfaces such that φgφ−1

= τgε for some translation
automorphism τ of Xε. In particular, if g(S) = S then φgφ−1

= gε.

Proof. Let

y2
+ x3

+ A(t0, t1)x + B(t0, t1) = 0

be the Weierstrass equation of the g-invariant elliptic pencil, whereA (resp. B) is a binary
form of degree 8 (resp. 12). By Lemma 2.2, g acts nontrivially on the base of the fibration.
After a linear change of the coordinates (t0, t1) we may assume that g acts on the base by

g : (t0, t1) 7→ (t0, t1 + t0).

We know that a g-invariant elliptic fibration has one g-invariant irreducible cuspidal fibre
F0 and either 22 irreducible nodal fibres forming two orbits, or 11 irreducible cuspidal
fibres forming one orbit (Lemma 2.2). Thus the discriminant polynomial 1 = −4A3

−

27B2 must have one double root (corresponding to the fibre F0) and either one orbit of
double roots, or two orbits of simple roots. We know that the zeros of A correspond to
either cuspidal fibres or nonsingular fibres with “complex multiplication” automorphism
of order 6. Since this set is invariant with respect to our automorphism of order 11 acting
on the base, we see that the only possibility is A = ct80 for some constant c ∈ k. We
obtain 1 = −4c3t24

0 − 27B2. Again this uniquely determines B and hence the surface.
Since B is of degree 12 and invariant under the action of g on the base, it must be of the
form

B = a(t11
1 − t

10
0 t1)t0 + bt

12
0

for some constants a, b. One can rewrite the above Weierstrass equation in the form

y2
+ x3

+ εx2t40 + a(t0t
11
1 − t

11
0 t1)+ b

′t12
0 = 0.

A suitable linear change of variables u0 = t0, u1 = t1 + dt0 makes b′ = 0 without
changing the action of g on the base. ThusX ∼= Xε as an elliptic surface. Let φ : X→ Xε
be the isomorphism. The composite

φgφ−1g−1
ε : Xε → Xε

acts trivially on the base, hence must be a translation automorphism. Since φ maps the
zero section S of f : X → P1 to the zero section Sε of fε : Xε → P1 and gε(Sε) = Sε,
the last assertion follows. ut

Lemma 3.2. Let ε = 0. For any translation automorphism τ of X0, the composite auto-
morphisms τg0 and g0τ are of order 11.
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Proof. Let f : X → B be any elliptic surface with a section S. Recall that its Mordell–
Weil group MW(f ) is isomorphic to the quotient of the Néron–Severi group by the sub-
group generated by the divisor classes of S and the components of fibres. Thus any auto-
morphism g of X which preserves the class of a fibre and the section S acts linearly on
the group MW(f ). Assume MW(f ) is torsion free. Suppose g is of finite order n with
rank MW(f )g = 0 and let τ be a translation automorphism identified with an element of
MW(f ). Then for any s ∈ MW(f ) we have

τg(s) = g(s)+ τ, (τg)n(s) = gn(s)+ gn−1(τ )+ · · · + g(τ)+ τ = s.

The last equality follows from the fact that the linear action of g − 1X on MW(f ) is
invertible. This shows that (τg)n acts identically on MW(f ). It also acts identically on
the class of a fibre. Thus (τg)n acts identically on the Néron–Severi lattice.

Apply this to our case ε = 0, when g = g0 is a symplectic automorphism of order 11
ofX0. We will see in the proof of Proposition 3.8 that MW(f0) is torsion free. By Lemma
2.3(ii), rank MW(f0)

g
= 0. Since the surface X0 is supersingular (see Remark 3.6), by a

theorem of Ogus [10], an automorphism acting identically on the Picard group must be
the identity. Thus τg0 is a symplectic automorphism of order 11 for any section τ . ut

An interesting question: Is there a τ such that the fixed locus Xτg0
0 consists of an isolated

point, the cusp of a cuspidal curve fixed pointwise by g0? We do not know any example
of a symplectic automorphism of order 11 with an isolated fixed point.

Corollary 3.3. LetX be a K3 surface over an algebraically closed field k of characteris-
tic 11. Assume that X admits an automorphism g of order 11. Then X is isomorphic to a
torsor of one of the elliptic surfaces Xε. The order of this torsor in the Shafarevich–Tate
group of torsors is equal to 1 or 11.

Proof. Let fJ : J → P1 be the Jacobian fibration of the elliptic fibration f : X → P1

defined by the g-invariant elliptic pencil. Let J o be the open subset of J whose comple-
ment is the set of singular fibres of fJ . We know that the fibres of f are irreducible. By
a result of M. Raynaud, this allows us to identify J o with the component Pic0

X/P1 of the
relative Picard scheme of invertible sheaves of degree 0 (see [2, Proposition 5.2.2]). The
automorphism g acts naturally on the Picard functor and hence on J o. Since J is mini-
mal, it acts biregularly on J . This action preserves the elliptic fibration on J and defines
an automorphism of order 11 on the base. This implies that there exists a C11-equivariant
isomorphism of elliptic surfaces J and Xε.

The assertion about the order of the torsor follows from the existence of a section or
an 11-section of f . In fact, let Y be a nonsingular relatively minimal model of the elliptic
surface X/〈g〉 with the elliptic fibration induced by f . It is a rational elliptic surface. Let
F0 be the g-invariant fibre of f over a point s0 ∈ P1. The singular fibres of the elliptic
fibration f ′ : Y → P1 over P1

\ {s0} are either two irreducible nodal fibres (ε 6= 0) or one
cuspidal irreducible fibre (ε = 0). The standard argument in the theory of elliptic surfaces
shows that the fibre of f ′ over s0 is either of type Ẽ8 or D̃8. This fibre is not multiple if
and only if f ′ has a section. The pre-image of this section is a section of f making X the
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trivial torsor. A singular fibre of additive type can be multiple only if the characteristic
is positive, and the multiplicity m must be equal to the characteristic (see [2, Proposition
5.1.5]). In this case an exceptional curve of the first kind on Y is an m-section. The pre-
image of this multi-section on X is an m-section, in our case an 11-section. ut

Remark 3.4. Note that, even in the case X = Xε, the g-invariant fibration may be dif-
ferent from the standard elliptic fibration. In other words, a nontrivial torsor of an elliptic
surface could be isomorphic to the same surface. This strange phenomenon could happen
only in positive characteristic and only for torsors of order divisible by the characteristic.
We do not know an example where this strange phenomenon really occurs. In Kondō’s
example, the g-invariant elliptic fibration for an element g of order 11 in G = M11 or
M22 may have a section (but no g-invariant section!). If this happens, it is isomorphic to
the standard elliptic fibration and hence g is conjugate to τgε, as we have seen in Propo-
sition 3.1.

Lemma 3.5. Suppose p = 11. Then there is a finite subgroup Kε of Aut(Xε) with the
following property:

(i) Kε leaves invariant both the standard elliptic fibration of Xε and the zero section Sε
which is the section at infinity.

(ii) K0 ∼= GU2(11)/(±I ) ∼= L2(11) : 12 and K1 ∼= 11 : 4, where the first factor in the
semidirect product is a symplectic subgroup and the second factor a nonsymplectic
subgroup.

(iii) The image of Kε in Aut(P1) is equal to the subgroup Aut(P1, V (1ε)) which leaves
the set V (1ε) invariant.

(iv) Aut(P1, V (10)) ∼= PGU2(11) ∼= L2(11).2 and Aut(P1, V (1ε)) ∼= 11 : 2 if ε 6= 0.

Proof. Assume ε = 0. After a linear change of variables

t0 = α
11t ′0 + αt

′

1, t1 = t
′

0 + t
′

1,

where α ∈ F112 \ F11 ⊂ k
∗, we can transform the polynomial t0t11

1 − t
11
0 t1 to the form

λt12
0 +µt

12
1 . After scaling, we may assume that f = t12

0 +t
12
1 . Now notice that f represents

a hermitian form over the field F112 , hence the finite unitary group GU2(11) leaves the
polynomial f invariant. The group GU2(11) acts on the surface

X0 ∼= V (y
2
+ x3

+ t12
0 + t

12
1 ) (3.2)

in an obvious way, by acting on the variables t0, t1 and identically on the variables x, y.
Note that

(t0, t1, x, y) = (λt0, λt1, λ
4x, λ6y)

in P(1, 1, 4, 6) for all λ ∈ k∗. In particular, (t0, t1, x, y) = (−t0,−t1, x, y), so −I ∈
GU2(11) acts trivially on X0. Note also that SU2(11) and hence PSU2(11) acts sym-
plectically on X0. The action of PSU2(11) is faithful because it is a simple group. Take
K0 = GU2(11)/(±I ) and consider the homomorphism

det : K0 → (F112)
∗.
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It is known that

PSU2(11) ∼= PSL2(F11) = L2(11).

If A ∈ GU2(11), then (detA)12
= (detA)(detA) = detAtA = det I = 1, so the image

of det is a cyclic group of order dividing 12. On the other hand, if ζ ∈ F112 is a 12-th root

of unity, the unitary matrix
(

1 0
0 ζ

)
generates an order 12 subgroup of K0, which acts on

X0 nonsymplectically. This proves (i) and (ii).
We know that the group GU2(11) leaves the polynomial f invariant. Thus its image

PGU2(11) in Aut(P1) must coincide with Aut(P1, V (10)). It is known that PGU2(11)
is a maximal subgroup in the permutation group S12 and PGU2(11) ∼= PGL2(F11) ∼=

L2(11).2, a nonsplit extension. The quotient group is generated by the image of the auto-
morphism (t0, t1) 7→ (t0, ζ t1), where ζ ∈ F112 is a 12-th root of unity. This proves (iii)
and (iv).

Assume ε 6= 0. An element of PGL2(k) leaving V (1ε) invariant must either leave all
factors of 1ε from (3.1) invariant or interchange the second and the third factors. It can
be seen by computation that the group Aut(P1, V (1ε)) is generated by the following two
automorphisms:

e(t0, t1) = (t0, t1 + t0), i(t0, t1) = (t0,−t1 + bt0),

where b is a root of b11
− b + 3ε3

= 0. The order of e (resp. i) is 11 (resp. 2) and i
normalizes e. We see that they lift to automorphisms of Xε

ẽ(t0, t1, x, y) = (t0, t1 + t0, x, y),

ĩ(t0, t1, x, y) = (t0,−t1 + bt0,−x + 3εt40 ,
√
−1y),

and we take Kε = (ẽ, ĩ). Clearly ĩ is nonsymplectic of order 4 and normalizes ẽ which is
symplectic of order 11, and both leave invariant the zero section Sε. ut

Remark 3.6. The equation (3.2) makes X0 a weighted Delsarte surface according to the
definition in [5]. It follows that X0 is a supersingular surface with Artin invariant σ = 1
(loc.cit.). It is known that all such surfaces are isomorphic [10]. Thus X0 is isomorphic to
either the Fermat quartic

x4
0 + x

4
1 + x

4
2 + x

4
3 = 0,

or the Kummer surface associated to the product of supersingular elliptic curves, or the
modular elliptic surface of level 4 (see [14]). We do not know whether the surface Xε,
ε 6= 0, is supersingular. By Lemma 2.3, we know that rank Pic(Xε) = 2, 12 or 22.

Definition 3.7. The subgroup Kε ⊂ Aut(Xε) from Lemma 3.5 contains a symplectic
subgroup leaving invariant the standard elliptic fibration of Xε, isomorphic to L2(11) if
ε = 0 and to C11 if ε = 1. Denote this subgroup byHε. It leaves invariant the zero section
Sε of the elliptic fibration.
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The group Hε acts on the base curve P1 and we have a homomorphism

π : Hε → Aut(P1, V (1ε)),

which is an embedding. The image π(Hε) is equal to the unique index 2 subgroup of
Aut(P1, V (1ε)).

Proposition 3.8. Let G be a finite group of symplectic automorphisms of the surface Xε
leaving invariant the standard elliptic fibration of Xε. Let

ψ : G→ Aut(P1, V (1ε))

be the natural homomorphism. Then ψ is an embedding. If in addition G is wild and
leaves invariant the zero section Sε, then G is contained in Hε.

Proof. Let α ∈ Ker(ψ). Then α acts trivially on the base curve. Since p > 3, α be-
ing symplectic must be a translation by a torsion section. It is known that there is no
p-torsion in the Mordell–Weil group of an elliptic K3 surface if the characteristic p is
greater than 7 ([4, Theorem 2.13]), and there are no other torsion sections because no
symplectic automorphism of order coprime to p can have more than eight fixed points
([4], Theorem 3.3), while the fibration has 12 or 23 singular fibres. Hence α must be the
identity automorphism. This proves that ψ is an embedding.

If ψ is surjective, then #G = 2 ·#L2(11) or 2 ·11, which cannot be the order of a wild
symplectic group in characteristic 11, by Proposition 4.2 and Lemma 5.2. Thus ψ is not
surjective. From this we see that if G is wild, then ψ(G) is contained in the unique index
2 subgroup π(Hε) of Aut(P1, V (1ε)). If an element α ∈ G and an element h ∈ Hε have
the same image in Aut(P1, V (1ε)), then αh−1 is a translation by a section. If α leaves
invariant the zero section Sε, so does αh−1, hence αh−1 is the identity automorphism.
This proves the second assertion. ut

4. A Mathieu representation

From now onX is a K3 surface over an algebraically closed field of characteristic p = 11
and G a group of symplectic automorphisms of X of order divisible by 11.

Lemma 4.1. LetG be a finite group of symplectic automorphisms of a K3 surfaceX over
an algebraically closed field of characteristic p = 11. Then

ord(g) ∈ {1, 2, 3, 4, 5, 6, 7, 8, 11} for all g ∈ G.

Proof. If the order ord(g) of g ∈ G is coprime to the characteristic p = 11, then ord(g) ∈
{1, . . . , 8} by Theorem 3.3 of [4]. It remains to show that G cannot contain any element
of order 11r , r > 1. Assume the contrary, and let h ∈ G be an element of order 11r .
We may assume that r is a prime and hence r = 2, 3, 5, 7, or 11. Let g = hr . Then g
is of order 11. By Lemmas 2.1 and 2.3, X admits a g-invariant elliptic pencil |F | and
rank Pic(X)g = 2.
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Case 1: r = 11. In this case, let

M := Pic(X)g ∼= Z2.

Then h acts on M . This action must be trivial, since a free Z-module of rank 2 does not
admit an automorphism of order 11. Thus M = Pic(X)h. Since the divisor class [F ] is
contained in M , we see that the elliptic pencil |F | is h-invariant. Note that by Lemma
2.2 the automorphism g leaves only one fibre F0 invariant. This implies that h acts on the
base curve P1 of the pencil |F | faithfully. However, using the Jordan canonical form we
see that P1 does not admit an automorphism of order 112. A contradiction.

Case 2: r = 2, 3, 5, 7. Let F0 ∈ |F | be the g-invariant fibre. Then F0 is a cuspidal curve
and Xg is either the cusp of F0 or the whole curve F0 (Lemma 2.2). Let

f = h11.

Then f is of order r . By Theorem 3.3 of [4],

3 ≤ #Xf ≤ 8.

Since r is prime to 11,
Xh = Xf ∩Xg.

Clearly g acts on the finite set Xf , and this action cannot be of order 11. This means that
g acts trivially on Xf , i.e. Xf ⊂ Xg . Thus Xg cannot be a point and

Xh = Xf ⊂ Xg = F0.

Now h acts on Xg = F0 with #Xf fixed points. But no nontrivial action on a rational
curve can fix more than two points. A contradiction. ut

A Mathieu representation of a finite group G is a 24-dimensional representation on a
vector space V over a field of characteristic zero with character

χ(g) = ε(ord(g)),

where

ε(n) = 24
(
n
∏
p|n

(
1+

1
p

))−1

, ε(1) = 24. (4.1)

The number
µ(G) =

1
#G

∑
g∈G

ε(ord(g)) (4.2)

is equal to the dimension of the subspace VG of V . Here VG is the linear subspace of
vectors fixed by G. The natural action of a finite group G of symplectic automorphisms
of a complex K3 surface on the singular cohomology

H ∗(X,Q) =
4⊕
i=0

H i(X,Q) ∼= Q24
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is a Mathieu representation with

µ(G) = dimH ∗(X,Q)G ≥ 5.

From this Mukai deduces that G is isomorphic to a subgroup of M23 with at least five
orbits. In positive characteristic, if G is wild, then the formula for the number of fixed
points is no longer true and the representation of G on the l-adic cohomology, l 6= p,

H ∗et(X,Ql) =

4⊕
i=0

H i
et(X,Ql) ∼= Q24

l ,

is not Mathieu in general. However, in our case we have the following.

Proposition 4.2. Let G be a finite group acting symplectically on a K3 surface X over
a field of characteristic 11. Then the representation of G on H ∗et(X,Ql), l 6= 11, is a
Mathieu representation with dimH ∗et(X,Ql)

G
≥ 3.

Proof. Note that rank Pic(X)G ≥ 1, and the second assertion follows. It remains to prove
that the representation is Mathieu. By Lemma 4.1, it is enough to show this for auto-
morphisms of order 11. Let g ∈ G be an element of order 11. We need to show that
the character χ(g) of the representation on the l-adic cohomology H ∗et(X,Ql) is equal to
ε(11) = 2. Since

χ(g) = Tr(g∗|H ∗et(X,Ql)),

it suffices to show that Tr(g∗|H 2
et(X,Ql)) = 0. In order to show this, we recall a result

of Illusie ([6, 3.7.3]) that the characteristic polynomial of g∗|H ∗et(X,Ql) has integer co-
efficients and is independent of l 6= p = 11. Thus, Tr(g∗|H 2

et(X,Ql)) = 0 if and only if
dimH 2

et(X,Ql)
g
= 2. Now the result follows from Lemma 2.3(ii). ut

5. Determination of the groups

In this section we determine all possible finite groups which may act symplectically and
wildly on a K3 surface in characteristic 11. We use only purely group-theoretic arguments.

Proposition 5.1. LetG be a finite group having a Mathieu representation over Q or over
Ql for all prime l 6= 11. Then

#G = 2a · 3b · 5c · 7d · 11e · 23f

for some a ≤ 7, b ≤ 2, c ≤ 1, d ≤ 1, e ≤ 1, f ≤ 1.

Proof. If the representation is over Q, this is the theorem of Mukai [8, Theorem (3.22)].
In his proof, Mukai uses at several places the fact that the representation is over Q. The
only essential place where he uses this is Proposition (3.21), where G is assumed to
be a 2-group containing a maximal normal abelian subgroup A and the case of A =
(Z/4)2 with #(G/A) ≥ 24 is excluded by using the fact that a certain 2-dimensional
representation of the quaternion group Q8 cannot be defined over Q. We use the fact that
G also admits a Mathieu representation on the 2-adic cohomology, and it is easy to see
that the representation of Q8 cannot be defined over Q2. ut
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The following lemma is of purely group-theoretical nature and its proof follows an argu-
ment employed by S. Mukai [8].

Lemma 5.2. Let G be a finite group admitting a Mathieu representation over Q or over
Ql for all prime l 6= 11. Assume µ(G) ≥ 3. Assume that G contains an element of order
11, but no elements of order > 11. Then the order of G is equal to one of the following:

11, 5 · 11, 22
· 3 · 5 · 11, 24

· 32
· 5 · 11, 27

· 32
· 5 · 7 · 11.

Proof. Since G has no elements of order 23, by Proposition 5.1, we have

#G = 2a · 3b · 5c · 7d · 11 for a ≤ 7, b ≤ 2, c ≤ 1, d ≤ 1.

Let Sq be a q-Sylow subgroup ofG for q = 5, 7 or 11. Then Sq is cyclic and its centralizer
coincides with Sq . Let Nq be the normalizer of Sq . Since G does not contain elements of
order 5k, 7k, 11k with k > 1, the index

mq := [Nq : Sq ]

is a divisor of φ(q) = q − 1, where φ is the Euler function. Since it is known that the
dihedral groups D14 and D22 do not admit a Mathieu representation, we have

m7 = 1 or 3 and m11 = 1 or 5.

Let an be the number of elements of order n in G. Then

aq =
#G(q − 1)
qmq

for q = 5, 7, 11.

As in [8], we have

µ(G) =
1

#G

∑
ε(n)an = 8+

1
#G

(16−2a3−4a4−4a5−6a6−5a7−6a8−6a11). (5.1)

Case 1: The order of G is divisible by 7, i.e. #G = 2a · 3b · 5c · 7 · 11. The formula (5.1)
gives

µ(G) ≤ 8+
16
#G
−

30
7m7
−

60
11m11

. (5.2)

Since µ(G) ≥ 3, both m7 and m11 must be greater than 1. Hence

m7 = 3, m11 = 5.

This implies that #G is divisible by 5, and the formula (5.1) gives

µ(G) ≤ 8+
16
#G
−

16
5m5
−

10
7
−

12
11
. (5.3)

If m5 = 1, then this inequality gives µ(G) < 3, a contradiction.
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If m5 = 2, then the number of q-Sylow subgroups is equal to

#G
qmq

= 2a−1
· 3b · 7 · 11 (q = 5), 2a · 3b−1

· 5 · 11 (q = 7), 2a · 3b · 7 (q = 11).

Taking q = 5 and applying Sylow’s theorem, we get

2a−1
· 3b · 7 · 11 ≡ 1 mod 5, i.e. a ≡ b mod 4.

Since 1 ≤ a ≤ 7 and 1 ≤ b ≤ 2, the only solutions are (a, b) = (5, 1), (6, 2). However,
neither 25

· 5 · 11 nor 26
· 3 · 5 · 11 is congruent to 1 modulo 7.

If m5 = 4, then the number of q-Sylow subgroups is equal to

#G
qmq

= 2a−2
· 3b · 7 · 11 (q = 5), 2a · 3b−1

· 5 · 11 (q = 7), 2a · 3b · 7 (q = 11).

A similar argument shows that a − b ≡ 1 mod 4 and the possible order is

#G = 27
· 32
· 5 · 7 · 11.

Case 2: The order of G is divisible by 5, but not by 7, i.e. #G = 2a · 3b · 5 · 11. The
formula (5.1) gives

µ(G) ≤ 8+
16
#G
−

16
5m5
−

60
11m11

. (5.4)

If m11 = 1, then this inequality gives µ(G) < 3, a contradiction. Hence

m11 = 5.

If m5 = 1, then the number of q-Sylow subgroups is equal to 2a · 3b · 11 (q = 5),
2a · 3b (q = 11). By Sylow’s theorem, a − b ≡ 0 mod 4 and a + 8b ≡ 0 mod 10. This
system of congruences has only one solution a = b = 0 in the range a ≤ 7, b ≤ 2. This
gives the possible order

#G = 5 · 11.

If m5 = 2, then the number of q-Sylow subgroups is equal to 2a−1
· 3b · 11 (q = 5),

2a · 3b (q = 11). By Sylow’s theorem, a − b ≡ 1 mod 4 and a + 8b ≡ 0 mod 10. Hence
a = 2, b = 1, which gives the possible order

#G = 22
· 3 · 5 · 11.

If m5 = 4, then the number of q-Sylow subgroups is equal to 2a−2
· 3b · 11 (q = 5),

2a · 3b (q = 11). By Sylow’s theorem, a − b ≡ 2 mod 4 and a + 8b ≡ 0 mod 10. Hence
a = 4, b = 2, giving the possible order

#G = 24
· 32
· 5 · 11.

Case 3: The order of G is divisible by neither 5 nor 7, i.e. #G = 2a · 3b · 11. In this case
m11 6= 5, and hence m11 = 1. Thus the formula (5.1) gives

µ(G) ≤ 8+
16
#G
−

60
11
. (5.5)
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The number of 11-Sylow subgroups is equal to 2a · 3b. By Sylow’s theorem, a + 8b ≡
0 mod 10. This congruence has three solutions (a, b) = (0, 0), (2, 1), (4, 2) in the range
a ≤ 7, b ≤ 2. In the second and the third case, the inequality (5.5) gives µ(G) < 3. The
first gives the possible order

#G = 11. ut

Proposition 5.3. In the situation of the previous lemma, G is isomorphic to one of the
following groups:

C11, 11 : 5, L2(11), M11, M22.

Proof. By Lemma 5.2, there are five possible orders for G

11, 5 · 11, 22
· 3 · 5 · 11, 24

· 32
· 5 · 11, 27

· 32
· 5 · 7 · 11. (5.6)

In the first two cases, the assertion is obvious. The remaining possible three orders are
exactly the orders of the three simple groups given in the assertion. The theory of finite
simple groups shows that there is only one simple group of the given order in each of
these cases.

Assume the last three cases. It suffices to show that G is simple.
Let K be a proper normal subgroup of G such that G/K is simple. If #K is not divis-

ible by 11, then an order 11 element of G acts on the set Sylq(K) of q-Sylow subgroups
of K . Since #Sylq(K) is not divisible by 11 for any prime q dividing #K , the order 11
element g must normalize a q-Sylow subgroup of K . If one of the numbers q = 3, 5,
or 7 divides #K , then g centralizes an element of one of these orders. This contradicts
the assumption that G does not contain an element of order > 11. If q = 2 divides #K ,
then a 2-Sylow subgroup of K is of order ≤ 27, and hence g centralizes an element of
order 2, again a contradiction. So, we may assume that 11|#K . If #K = 11, then an order
2 element of G normalizes K . Neither a cyclic group of order 22 nor a dihedral group
of order 22 has a Mathieu representation, so #K > 11. If K ∼= 11 : 5, then an order 2
element of G normalizes the unique 11-Sylow subgroup of K , again a contradiction. If
#K is one of the remaining three possibilities, then the group G/K is of order 25

· 3 · 7
or 23

· 7 or 22
· 3. In the first case an order 7 element of G normalizes, hence centralizes

a Sylow 11-subgroup of K , again a contradiction. Obviously in the other two cases G/K
cannot be simple. This proves that G is simple. ut

Corollary 5.4. Let G be a finite group acting symplectically and wildly on a K3 sur-
face X over a field of characteristic 11. Let g be an element of order 11 in G. Then the
normalizer of 〈g〉 in G must be isomorphic to 11 : 5 if #G > 11.

6. Proof of the main theorem

In this section we complete the proof of Theorem 1.1 announced in Introduction. It re-
mains to prove assertion (ii).
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Lemma 6.1. Assume ε 6= 0. Let G ⊂ Aut(Xε) be a finite wild symplectic subgroup. If
an element g ∈ G of order 11 leaves invariant the standard elliptic fibration with a g-
invariant section, then G = 〈g〉 ∼= C11 and G is conjugate to Hε = 〈gε〉. In particular,
Hε is a maximal finite wild symplectic subgroup of Aut(Xε).

Proof. Since g leaves a section invariant, it must be a conjugate to gε. So up to con-
jugation, we may assume that g leaves the zero section Sε invariant. Thus g = gε by
Proposition 3.8.

Suppose 〈g〉 6= G. Let N be the normalizer of 〈g〉 in G. Then N ∼= 11 : 5 by
Corollary 5.4.

We claim that N leaves invariant the standard elliptic pencil |F |. It is enough to show
that h(F0) = F0 for any h ∈ N , where F0 = X

g is a cuspidal curve in |F |. In fact, for
any x ∈ F0, we have h(x) = hg(x) = gih(x) for some i, so h(x) ∈ Xg = F0, which
proves the claim.

Next, we claim that N leaves invariant the zero section Sε. In fact, h(Sε) = hg(Sε) =
gih(Sε), so g leaves invariant h(Sε), and hence h(Sε) = Sε as g cannot leave invariant
two distinct sections by Lemma 2.3(ii).

Now Proposition 3.8 gives a contradiction. Hence, G = 〈g〉. ut

Lemma 6.2. Let G ⊂ Aut(X0) be a finite wild symplectic subgroup, isomorphic to
L2(11). If an element g ∈ G of order 11 leaves invariant both the standard elliptic fi-
bration and a section, then G is conjugate to H0. In particular, if G contains g0 then
G = H0.

Proof. Replacing G by a conjugate subgroup in Aut(X0), we may assume that g leaves
invariant both the standard elliptic fibration and the zero section S0, i.e. g = g0. We need
to prove that G = H0.

Let |F | be the standard elliptic fibration. Then g(S0) = S0 and Xg = F0, a cuspidal
curve in |F |.

Let N be the normalizer of 〈g〉 in G. Then N ∼= 11 : 5. The same argument as in the
proof of Lemma 6.1 shows that N leaves invariant both the standard elliptic pencil |F |
and the zero section S0. By Proposition 3.8, N ⊂ H0.

We have N ⊂ G ∩ H0. Suppose G ∩ H0 = N . Consider the G-orbit of the divisor
class [F ] ∈ Pic(X0),

G([F ]) = {h([F ]) ∈ Pic(X0) | h ∈ G}.

Clearly N acts on it. Note
#G([F ]) = [G : N ] = 12.

ThusG([F ]) is the set of 12 different elliptic fibrations with a section. The automorphism
g cannot leave invariant an elliptic fibration other than |F |, hence fixes [F ] and has one
orbit on the remaining 11 elliptic fibrations, which we denote by [F1], . . . , [F11].

Recall that H0 leaves invariant the zero section S0. The three divisor classes

[F ],
11∑
j=1

[Fj ], [S0]
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are N -invariant, and their intersection matrix is 0 11m 1
11m 110m 11b

1 11b −2


where m = F · Fi, b = S0 · Fi, i ≥ 1. Its determinant is equal to

242(m2
+ bm)− 110m,

which cannot be 0 for any positive integers m and b. This implies that

µ(N) = 2+ rank Pic(X0)
N
≥ 5,

a contradiction to the equality µ(N) = 4. This proves that N is a proper subgroup of
G ∩H0. Since N is a maximal subgroup of G, we have G = H0. ut

Note that µ(M11) = µ(M22) = 3 and µ(L2(11)) = 4. Note also that L2(11) is isomor-
phic to a maximal subgroup of both M11 and M22.

The following proposition completes the proof of Theorem 1.1(ii).

Proposition 6.3. Let G ⊂ Aut(X0) be a finite wild symplectic subgroup. Assume that
G ∼= M11 or M22. Then no conjugate of G in Aut(X0) contains the automorphism g0
given by (1.2). In other words, no element of G of order 11 can leave invariant both
the standard elliptic fibration and a section. In particular, H0 is a maximal finite wild
symplectic subgroup of Aut(X0).

Proof. Suppose that a conjugate ofG contains g0. ReplacingG by the conjugate, we may
assume that g0 ∈ G.

Let K be a subgroup of G such that g0 ∈ K ⊂ G and K ∼= L2(11). Then by Lemma
6.2, K = H0. Thus g0 ∈ H0 ⊂ G. Since H0 ∼= L2(11) is a maximal subgroup of G, its
normalizer subgroup NG(H0) coincides with H0.

Let |F | be the standard elliptic fibration onX0, and S0 the zero section. Then g(S0) =

S0 andXg = F0, a cuspidal curve in |F |. Furthermore, both the section S0 and the elliptic
pencil |F | are H0-invariant (see Definition 3.7).

Consider the G-orbit of the divisor class [F ],

G([F ]) = {h([F ]) ∈ Pic(X0) | h ∈ G}.

Consider the action of H0 on it. By Proposition 3.8, the stabilizer subgroup G[F ] of [F ]
coincides with H0. The automorphism g0 cannot leave invariant two different elliptic
fibrations, hence fixes [F ] and has orbits on the setG([F ])\ {[F ]} of cardinality divisible
by 11. This implies thatH0 fixes [F ] and has orbits on the setG([F ])\{[F ]} of cardinality
divisible by 11. Write

G([F ]) = {[F ] = [F0], [F1], . . . , [Fr−1]}

where r = #G([F ]) = [G : H0]. Let O1 ∪ · · · ∪ Os be the orbit decomposition of the
index set {1, . . . , r − 1} by the action of H0. Since H0 fixes [F ] and acts transitively
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on each Oi , the intersection number F · Ft is constant on the orbit Oi containing t , i.e.
F · Ft = mi for all t ∈ Oi . Note that the divisor

F =
r−1∑
j=0

Fj

is G-invariant, and

F2
=

(r−1∑
j=0

Fj

)2
= rF0 ·

r−1∑
j=0

Fj = r

s∑
i=1

mi#Oi . (6.1)

Next recall that H0 leaves invariant the zero section S0. Similarly we consider the
G-orbit of the divisor class [S0],

G([S0]) = {h([S0]) ∈ Pic(X0) | h ∈ G}.

Let G0 be the stabilizer subgroup of [S0]. Since it contains H0 and H0 is maximal in G,
we see that G0 = H0 or G0 = G.

Assume G0 = H0. Then all stabilizers are conjugate to H0. Similarly to the above
we claim that g0 ∈ H0 fixes no elements of G([S0]) other than [S0]. If g0h(S0) = h(S0)

for some h ∈ G, then g0 ∈ hH0h
−1 and since all cyclic subgroups of order 11 in H0 are

conjugate insideH0 we can write (g0) = hh
′(g0)h

′−1h−1 for some h′ ∈ H0. This implies
hh′ ∈ NG((g0)). Since #NG((g0)) = #NH0((g0)) = 55 (see the proof of Lemma 5.2),
we obtain NG((g0)) = NH0((g0)) ⊂ H0, hence h ∈ H0 and h(S0) = S0. This proves the
claim and shows that H0 has orbits on the set G(S0) \ {S0} of cardinality divisible by 11.
Write

G([S0]) = {[S0], [S1], . . . , [Sr−1]}.

It is clear that the divisor

S =
r−1∑
j=0

Sj

is G-invariant. Let S0 · Ft = bi for t ∈ Oi . Then we have

F · S =
(r−1∑
j=0

Fj

)
·

(r−1∑
j=0

Sj

)
= rS0 ·

r−1∑
j=0

Fj = r
(

1+
s∑
i=1

bi#Oi
)
. (6.2)

In either case G ∼= M11 or M22, we know µ(G) = 3 and hence the two divisors F and S
are linearly dependent in Pic(X0). This implies

F2S2
= (F · S)2.

Substituting from (6.1), (6.2), we get

r
( s∑
i=1

mi#Oi
)
S2
= r2

(
1+

s∑
i=1

bi#Oi
)2
. (6.3)
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Since #Oi ≡ 0 mod 11 for all i and r ≡ 1 mod 11, we have LHS ≡ 0 mod 11, but
RHS ≡ 1 mod 11, a contradiction.

Assume G0 = G. Then the divisor S = S0 is G-invariant, and we have a simpler
equality

r
( s∑
i=1

mi#Oi
)
S2
=

(
1+

s∑
i=1

bi#Oi
)2
, (6.4)

again a contradiction. ut

Remark 6.4. In [7] Kondō proves that the unique supersingular K3 surface X with Artin
invariant 1 admits symplectic automorphism groups G ∼= M11 or G ∼= M22. It follows
from the previous results that any element g ∈ G of order 11 leaves invariant an elliptic
pencil without a g-invariant section. In fact, according to his construction of G on X,
one can show that Pic(X)g ∼= U(11), hence a g-invariant elliptic pencil has only an 11-
section.

It is known that the Brauer group of a supersingular K3 surface is isomorphic to the
additive group of the field k [1]. It is well-known that the group of torsors of an elliptic
fibration with a section is isomorphic to the Brauer group. We do not know which torsors
admit a nontrivial automorphism of order p (maybe all?). Nor do we know whether they
define elliptic fibrations on the same surface X0. Note that the latter could happen only
for torsors of order divisible by p = char(k). It would be very interesting to see how the
three groups L2(11), M11 and M22 sit inside the infinite group Aut(X0).

Remark 6.5. It follows from Lemma 3.5 that our surface X0 admits a nonsymplectic au-
tomorphism of order 12. By Remark 3.6, X0 is supersingular with Artin invariant σ = 1.
It follows from [9] that the maximal order of a nonsymplectic isomorphism of a super-
singular surface with Artin invariant σ divides 1+ pσ . Thus 12 is the maximum possible
order. What is the maximum possible nonsymplectic extension of M11 or M22?

Remark 6.6. A K3 surface may admit a nonsymplectic automorphism of order 11 over
any field of characteristic 0 or p 6= 2, 3, 11. The well-known example is the surface
V (x2

+ y3
+ z11

+ w66) in P(1, 6, 22, 33). It would be interesting to know whether
there exists a supersingular K3 surface X which admits a nonsymplectic automorphism
of order 11. It follows from [9] that, if p 6= 2, then 11 must divide 1+pσ , where σ is the
Artin invariant of X.
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