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Abstract. We give explicit constructions of all the numerical Campedelli surfaces, i.e. the minimal
surfaces of general type with K2

= 2 and pg = 0, whose fundamental group has order 9. There

are three families, one with πalg
1 = Z9 and two with πalg

1 = Z2
3.

We also determine the base locus of the bicanonical system of these surfaces. It turns out that
for the surfaces with πalg

1 = Z9 and for one of the families of surfaces with πalg
1 = Z2

3 the base
locus consists of two points. To our knowlegde, these are the only known examples of surfaces of
general type with K2 > 1 whose bicanonical system has base points.
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1. Introduction

A numerical Campedelli surface is a minimal surface of general type with K2
= 2 and

pg = 0. It is known (cf. [BPHV, Chap. VII.10]) that the algebraic fundamental group
π

alg
1 of such a surface is finite, of order at most 9. In this paper, we construct explicitly all

the numerical Campedelli surfaces with |πalg
1 | = 9.

For this, given a surface S as above, we consider its universal cover Y → S. Assume
for simplicity that KS is ample. Then by results of Konno ([Ko]) the canonical map of
Y is an isomorphism and Y is the intersection of a normal threefold W ⊂ P7 of degree
5 or 6 with a cubic hypersurface. Using Fujita’s classification of these threefolds ([Fu1–
Fu3]), we prove that in our situation W actually has degree 6 and that there are three
possibilities for W , each giving rise to a family of numerical Campedelli surfaces with
algebraic fundamental group of order 9 (Theorem 3.1).

More precisely (cf. §3), there is an irreducible family of dimension 6 of numerical
Campedelli surfaces with πalg

1 = Z9, and two irreducible families, of dimension respec-
tively 7 and 6, of numerical Campedelli surfaces with πalg

1 = Z2
3. Recall that the expected
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number of moduli of a numerical Campedelli surface is 6; as far as we know, these are
the only known examples in which the dimension of the moduli space is greater than
expected.

Furthermore we prove (Theorem 4.2) that the moduli space of these surfaces has
exactly two connected components, both irreducible, corresponding to πalg

1 = Z9 and
π

alg
1 = Z2

3. We also show that for all these surfaces πalg
1 coincides with the topological

fundamental group (Theorem 4.3).
Moreover, we determine the base locus 0 of the bicanonical system |2KS | (Theo-

rem 4.4). If πalg
1 (S) = Z9, then 0 consists of two points. If πalg

1 (S) = Z2
3, then 0 is

empty in general but there is a codimension 1 subvariety of the moduli space where 0
consists of two points. This fact is quite surprising. Indeed, excluding the case K2

= 1,
pg = 0 in which |2KS | is a pencil, the bicanonical map of a minimal surface of general
type is generically finite ([Xi2]) and, by the work of various authors (cf. [Ci]), it is known
to be a morphism if either pg > 0 or K2 > 4. To our knowledge, the examples presented
here are the only known surfaces of general type with K2 > 1 whose bicanonical map is
not a morphism.

The paper is organized as follows. In §2 we establish some preliminaries. In §3 we
state the classification theorem (whose proof will be given in §5) and describe in detail
the three families of Campedelli surfaces with πalg

1 of order 9. In §4 we study the moduli
and the bicanonical system of such surfaces and finally in §5 we prove the classification
theorem.

Notation. We work over the complex numbers. All varieties are projective algebraic. All
the notation we use is standard in algebraic geometry. We just recall the definition of
the numerical invariants of a smooth surface S: the self-intersection number K2

S of the
canonical divisor KS , the geometric genus pg(S) := h0(KS) = h

2(OS), the irregularity
q(S) := h0(�1

S) = h1(OS) and the holomorphic Euler characteristic χ(S) := 1 +
pg(S)− q(S).

2. Set-up and preliminaries

Here we establish the notation and recall or prove some facts that we use throughout the
paper.

Let S denote a numerical Campedelli surface, i.e. a minimal projective surface of
general type with K2

S = 2 and pg(S) = 0 (and so q(S) = 0), and let G denote the
algebraic fundamental group of S.

Proposition 2.1 ([Re2], cf. [MP]). The group G is finite, of order ≤ 9.

We assume from now on that G has order 9 and we consider the corresponding étale
G-cover π : Y → S.

Proposition 2.2. (i) Y is a smooth minimal surface of general type with K2
Y = 18,

pg(Y )=8, q(Y )=0, hence K2
Y =3pg(Y )− 6;

(ii) the canonical map ϕ : Y → P7 is birational onto its image V .
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Proof. Since π is étale, Y is smooth andKY = π∗KS is nef and big. Hence Y is minimal
of general type and K2

Y = 9K2
S = 18, χ(Y ) = 9χ(S) = 9. By Proposition 2.1, we

have πalg
1 (Y ) = 0 and thus, in particular, q(Y ) = 0. It follows that pg(Y ) = 8 and so

K2
Y = 3pg(Y )− 6.

Suppose that the canonical map ϕ of Y is not birational. Then, by [Ko], ϕ is generi-
cally finite of degree 2 and its image is a ruled surface, which is rational by the regularity
of Y . But then, by [Be, Cor. 5.8] (cf. [MP, Proposition 4.1]), G = Zr2, contradicting the
assumption that G has order 9. ut

Conversely, one has:

Proposition 2.3. Let V be a surface with canonical singularities and ample KV , and
with K2

V = 18, pg(V ) = 8, q(V ) = 0; let G be a group of order 9 that acts freely on V .
Then the quotient surface S := V/G is the canonical model of a numerical Campedelli
surface with πalg

1 = G.

Proof. Since the quotient map p : V → S is étale, S has canonical singularities andKV =
p∗KS . Since KV is ample, KS is also ample, and therefore S is the canonical model of a
surface of general type. Since p is étale, we haveK2

S = K
2
V /9 = 2, χ(S) = χ(V )/9 = 1.

In addition, q(S) = 0 since q(V ) = 0, and thus pg(S) = 0. Let S′ → S and Y → V be
the minimal resolutions. The surface S′ is a numerical Campedelli surface and the map
p : V → S induces an étale map p′ : Y → S′ with Galois group G. Therefore there is a
surjection πalg

1 (S′) � G. By Proposition 2.1 this is actually an isomorphism. ut

The next result is needed in §3 to explain the choices of linearization in the construction
of the examples. It is well known to experts (cf. [Re2]), but we recall it here for lack of a
published reference.

Proposition 2.4. The representation of G on H 0(Y,KY ) decomposes as the direct sum
of the eight nontrivial characters of G.

Proof. Let χ ∈ G∗ be a character of G and Vχ ⊂ H 0(Y,KY ) the corresponding eigen-
space. There is a natural isomorphismG∗→ Tors S, the torsion subgroup of Pic S, which
induces a natural identification Vχ ∼= H 0(S,KS + ηχ ), where ηχ is the line bundle
associated to χ ∈ G∗. Notice that V1 = {0}, since pg(S) = 0. By Proposition 2.1,
there is no irregular étale cover of S, hence for every η ∈ Tors S we have h1(S, η) = 0.
Since χ(S) = 1, Serre duality gives h0(S,KS + η) = 1 for every η ∈ Tors S \ {0}, i.e.
dimVχ = 1 for every χ ∈ G∗ \ {0}. ut

3. The classification

The main result of this paper, which will be proven in §5, is the following classification
theorem:

Theorem 3.1. Let S be a numerical Campedelli surface with πalg
1 (S) of order 9. Then:

(i) if πalg
1 (S) ∼= Z9, then S is a surface of type A (cf. §3.1);

(ii) if πalg
1 (S) ∼= Z2

3, then S is a surface of type B1 or B2 (cf. §3.2, §3.3).
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In this section we describe in detail the three families of Campedelli surfaces with πalg
1

of order 9 (i.e., type A, type B1, type B2). The notation is consistent with the previous
section.

The examples are obtained as quotients of surfaces Y with K2
Y = 18, pg(Y ) = 8 and

q(Y ) = 0 by a group G of order 9 acting freely.
In each case Y is the minimal resolution of a surface V of P7 with canonical singular-

ities, obtained as the intersection of a normal threefold W ⊂ P7 of degree 6 with a cubic
hypersurface. The line bundle OW (1) is equal to −2KW and the surface V is contained
in the smooth part of W , hence by adjunction KV = OV (1). (W is actually smooth in
cases A and B1, and it is a cone over a smooth surface of P6 in case B2). It is then easy to
check that V has the right invariants: K2

V = 18, pg(V ) = 8, q(V ) = 0. By construction,
the threefold W is the intersection of all the quadrics containing V .

The group G acts on W ⊂ P7 and the action is free on W outside a finite set. We
choose a linearization of OW (3) and we let T1 ⊂ H

0(OW (3)) be the space of invariant
sections with respect to this linearization. Then we show that the linear system |T1| is
free on W , so that the general V ∈ |T1| satisfies the assumptions of Proposition 2.3 and
V/G is the canonical model of a Campedelli surface with πalg

1 = G. In all the examples,
the map H 0(OP7(3))→ H 0(OW (3)) is surjective, so that V is cut out on W by a cubic
hypersurface of P7.

Remark 3.2. In the above construction, the chosen linearization of OW (3) induces a
decomposition into G-eigenspaces:

H 0(OW (3)) =
⊕
χ∈G∗

Tχ .

For every χ ∈ G∗ the linear system |Tχ | consists of G-invariant surfaces, hence one
could hope to obtain surfaces with the required properties also for some character χ 6= 1.
It turns out (cf. Lemma 5.7) that this is not possible because for every χ 6= 1 the system
|Tχ | has base points with nontrivial stabilizer inG, and thereforeG does not act freely on
the surfaces of |Tχ | for χ 6= 1.

Remark 3.3. In each example we compute the dimension of the invariant subspace T1 by
writing down a basis of it. Alternatively, the dimension of T1 can be computed by using
the equivariant Riemann–Roch theorem ([Re1, Corollary in (8.6)]).

3.1. Surfaces of type A

In this example G ∼= Z9. We take W := P1
× P1

× P1 and consider homogeneous
coordinates (x0, x1), (y0, y1), (z0, z1) on W and the corresponding affine coordinates
x := x1/x0, y := y1/y0 and z := z1/z0.

We fix a primitive third root ω of 1 and we let a generator g of G act by

g : (x, y, z) 7→ (y, z, ωx). (3.1)
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Note that the fixed points of g3 are the eight points with the three affine coordinates x, y, z
equal either to 0 or to∞.

Set H := OW (1, 1, 1). The linear system |H | embeds W in P7 as a smooth threefold
of degree 6. The action of G extends to P7 and the projective representation of G on P7

induces a linear representation on H 0(OP7(3)), hence a linearization of 3H . Let T1 ⊂

H 0(W, 3H) be the subspace of G-invariant elements. In affine coordinates a basis of T1
is given by:

1, x3
+ y3

+ z3, x2y + y2z+ ωz2x, x2z+ ωy2x + ωz2y,

x3y3
+ y3z3

+ z3x3, x3y2z+ ωy3z2x + z3x2y,

x3yz2
+ ω2y3zx2

+ z3xy2, x3y3z3.

(3.2)

Using this basis it is easy to check that the system |T1| is free of dimension 7.
By Bertini’s theorem, the general element of |T1| is a smooth surface on which G

acts freely. Let V ∈ |T1| be a surface with at most rational double points and not passing
through the fixed points of g3. By adjunction, the canonical divisorKV is the restriction of
H to V , hence K2

V = 3H 3
= 18. The adjunction sequence gives: pg(V ) = 8, χ(V ) = 9,

q(V ) = 0. Set S := V/G. Then by Proposition 2.3 the surface S is the canonical model
of a numerical Campedelli surface with πalg

1 = G.

Proposition 3.4. The family of surfaces of type A depends on six moduli.

Proof. Consider V1, V2 ∈ |T1| such that the surfaces S1 := V1/G and S2 := V2/G are
isomorphic. Since Vi is the (algebraic) universal cover of Si , the isomorphism S1 → S2
lifts to an isomorphism V1 → V2. Since V1 and V2 are canonically embedded in P7, the
isomorphism V1 → V2 is induced by an automorphism γ of P7. The threefold W ⊂ P7

is the intersection of all the quadrics containing Vi , i = 1, 2 (cf. [Ko, Theorem 3.1]), and
therefore γ maps W to itself. Since every automorphism of W extends to P7, we may
regard γ as an automorphism of W .

By construction, γ belongs to the normalizer 0 of G in AutW . Since the group G
is finite, the connected component 01 of the identity in 0 is actually contained in the
centralizer of G. In addition, if γ is an element of 01, then by continuity γ does not
permute the three copies of P1. Then it is easy to see that 01 consists of the maps of
the form (x, y, z) 7→ (λx, λy, λz) for λ ∈ C∗. Hence we obtain a family of Campedelli
surfaces with six moduli. ut

Remark 3.5. The expected dimension of the moduli space of a minimal surface of gen-
eral type S is 10χ(S)−2K2

S = χ(TS). In particular the expected dimension of the moduli
space of Campedelli surfaces is equal to 6.

Remark 3.6. J. H. Keum has kindly communicated to us an example, due to Persson, of
a numerical Campedelli surface with πalg

1
∼= Z9. One can check that this example is given

by the above construction.



462 Margarida Mendes Lopes, Rita Pardini

3.2. Surfaces of type B1

In this example G ∼= Z2
3. We take W to be the flag variety {x0y0 + x1y1 + x2y2 = 0} ⊂

P2
× P2∗. We denote by H the restriction to W of OP2×P2∗(1, 1), so that W is embedded

by |H | into P7 as a smooth threefold of degree 6. Let g1, g2 ∈ G be generators acting on
P2 by

(x0, x1, x2)
g1
7→ (x0, ωx1, ω

2x2), (x0, x1, x2)
g2
7→ (x1, x2, x0), (3.3)

where ω 6= 1 is a third root of 1. The induced G-action on P2
× P2∗ obviously preserves

W and it is easy to check that every nontrivial element of G fixes finitely many points
of W .

Notice that, although the action of G on P2 is not induced by a linear action, the
corresponding action on P2

×P2∗ is induced by a linearG-action onH 0(OP2×P2∗(1, 1)).
In particular, G acts on OP2×P2∗(1, 1), on H and on their multiples. There is an exact
sequence

0→ H 0(OP2×P2∗(2, 2))
i
→ H 0(OP2×P2∗(3, 3))→ H 0(W, 3H)→ 0.

The map i is multiplication by the invariant section x0y0 + x1y1 + x2y2 and thus it is
equivariant with respect to the action of G. In particular, the subspace T1 ⊂ H

0(W, 3H)
on which G acts trivially is the image of the subspace R1 ⊂ H

0(OP2×P2(3, 3)) on which
G acts trivially. A basis of R1, which has dimension 12, is the following:

(x3
0 + x

3
1 + x

3
2)(y

3
0 + y

3
1 + y

3
2), (x3

0 + x
3
1 + x

3
2)(y0y1y2),

(x0x1x2)(y
3
0 + y

3
1 + y

3
2), (x0x1x2)(y0y1y2),

(x2
0x1 + x

2
1x2 + x

2
2x0)(y

2
0y1 + y

2
1y2 + y

2
2y0),

(x2
1x0 + x

2
2x1 + x

2
0x2)(y

2
1y0 + y

2
2y1 + y

2
0y2),

(x2
0x1 + ωx

2
1x2 + ω

2x2
2x0)(y

2
0y1 + ω

2y2
1y2 + ωy

2
2y0),

(x2
1x0 + ωx

2
2x1 + ω

2x2
0x2)(y

2
1y0 + ω

2y2
2y1 + ωy

2
0y2),

(x2
0x1 + ω

2x2
1x2 + ωx

2
2x0)(y

2
0y1 + ωy

2
1y2 + ω

2y2
2y0),

(x2
1x0 + ω

2x2
2x1 + ωx

2
0x2)(y

2
1y0 + ωy

2
2y1 + ω

2y2
0y2),

(x3
0 + ωx

3
1 + ω

2x3
2)(y

3
0 + ω

2y3
1 + ωy

3
2), (x3

0 + ω
2x3

1 + ωx
3
2)(y

3
0 + ωy

3
1 + ω

2y3
2).

Next we write down a basis of the subspace of H 0(OP2×P2∗(2, 2)) on which G acts
trivially:

x2
0y

2
0 + x

2
1y

2
1 + x

2
2y

2
2 ,

x2
0y1y2 + x

2
1y0y2 + x

2
2y0y1, x1x2y

2
0 + x0x2y

2
1 + x0x1y

2
2 ,

x0x1y0y1 + x1x2y1y2 + x2x0y2y0.

It follows that the space T1 has dimension 12 − 4 = 8. Let z0, . . . , z8 be a basis of
H 0(OP2×P2∗(1, 1)) on which G acts diagonally. Then z3

0, . . . , z
3
8 restrict on W to ele-

ments of T1, hence the linear system |T1| is free.
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By Bertini’s theorem, the general V ∈ |T1| is a smooth surface on whichG acts freely.
Let V ∈ |T1| be a surface with at most rational double points and not passing through any
point fixed by a nontrivial element of G. By adjunction, the canonical divisor KV is the
restriction of H to V , hence K2

V = 3H 3
= 18. The adjunction sequence for V ⊂ W

gives: pg(V ) = 8, χ(V ) = 9, q(V ) = 0. Set S := V/G. Then by Proposition 2.3 the
surface S is the canonical model of a numerical Campedelli surface with πalg

1 = G.
To compute the number of moduli for surfaces of type B1 we need the following

description of AutW :

Lemma 3.7. There is an exact sequence

0→ Aut P2 i
→ AutW

σ
→ Z2 → 0.

In particular G, being of order 9, can be identified with a subgroup of Aut P2.

Proof. Every automorphism g of P2 extends naturally to an automorphism of P2
× P2∗

that preserves the flag variety W . The Picard group of W is isomorphic to Z2, since W
is a P1-bundle over P2. Set H1 := OW (1, 0), H2 := OW (0, 1). The classes of H1 and
H2 are a basis of H 2(W,Q) and they satisfy H 3

1 = H 3
2 = 0, H1K

2
W = H2K

2
W = 12.

It is easy to check that these numerical conditions characterize H1 and H2. Hence every
automorphism γ ofW either preserves the classes ofH1 andH2, or exchanges them. The
map σ : AutW → Z2 sends γ to 0 in the former case and to 1 in the latter. Clearly the
map σ is not trivial and its kernel contains Aut P2.

Now let g ∈ ker σ . Then g induces an automorphism g1 of P2
= |H1|

∗ and an
automorphism g2 of P2∗

= |H2|
∗ such that the automorphism g1 × g2 of P2

× P2∗

restricts to g on W . Since the flag variety W is preserved, it follows that g2 is equal to
tg−1

1 , hence g is in the subgroup Aut P2. ut

Proposition 3.8. The family of surfaces of type B1 depends on seven moduli.

Proof. By the argument in the proof of Proposition 3.4, it is enough to show that the
centralizer 0 of G in AutW is discrete.

Let 01 be the connected component of the identity in 0 and let γ ∈ 01. By Lemma 3.7
and by continuity, γ is induced by an element of Aut P2, which we again denote by γ .
Since γgγ−1

= g for every g ∈ G, γ permutes the fixed points of g and hence, again by
continuity, the fixed points of g on P2 are also fixed points of γ . Since the set of points in
P2 that are fixed by a nontrivial g ∈ G consists of twelve points in general position, γ is
the identity. ut

Remark 3.9. As we recalled in Remark 3.5, the expected dimension of the moduli space
of Campedelli surfaces is 6. To the best of our knowledge, the surfaces of type B1 are the
only known example where the actual dimension exceeds the expected one.

Remark 3.10. The first known example of a numerical Campedelli surface with torsion
Z2

3 is due to Xiao Gang [Xi1, Example 4.11]. A particular case of the construction above
has been kindly communicated to us by JongHae Keum, who attributes it to Xiao Gang
and Beauville. See also [CMP, Example 2 of §5].
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3.3. Surfaces of type B2

This is the second example with G ∼= Z2
3. It is also the only example in which W is

singular.
Let ε : 6 → P2 be the blowup at the three coordinate points. The G-action on P2

defined in (3.3) extends to a G-action on 6.
The action on P2 does not lift to a linear action onH 0(OP2(1)), but it induces a natural

linear action of G on H 0(OP2(3)) that preserves the subspace T of sections vanishing at
the coordinate points. Let χ1 ∈ G

∗ be the character such that χ1(g1) = ω, χ1(g2) = 1,
and let χ2 be the character such that χ2(g1) = 1, χ2(g2) = ω. The following is a basis of
the vector space T of eigenvectors for theG-action. We write the corresponding character
next to each element:

x2
0x1 + x

2
1x2 + x

2
2x0 (1, 0); x2

1x0 + x
2
2x1 + x

2
0x2 (2, 0);

x2
0x1 + ωx

2
1x2 + ω

2x2
2x0 (1, 2); x2

1x0 + ωx
2
2x1 + ω

2x2
0x2 (2, 2);

x2
0x1 + ω

2x2
1x2 + ωx

2
2x0 (1, 1); x2

1x0 + ω
2x2

2x1 + ωx
2
0x2 (2, 1);

x0x1x2 (0, 0).

(3.4)

We fix homogeneous coordinates (zij ) on P7, for (i, j) ∈ Z2
3\{(0, 0)}, and we letG act on

zij via the character χ i1χ
j

2 . Let P be the point whose only nonzero coordinate is z01 and
identify P6 with the G-invariant hyperplane z01 = 0. The rational map P2

→ P6
⊂ P7

defined by

z12 = x
2
0x1 + x

2
1x2 + x

2
2x0, z22 = x

2
1x0 + x

2
2x1 + x

2
0x2,

z11 = x
2
0x1 + ωx

2
1x2 + ω

2x2
2x0, z21 = x

2
1x0 + ωx

2
2x1 + ω

2x2
0x2,

z10 = x
2
0x1 + ω

2x2
1x2 + ωx

2
2x0, z20 = x

2
1x0 + ω

2x2
2x1 + ωx

2
0x2,

z02 = x0x1x2

(3.5)

induces a G-equivariant embedding 6 → P6
⊂ P7. Notice that the embedding is not

induced by a G-equivariant embedding T → H 0(OP7(1)). Indeed, by (3.4) the repre-
sentation of G on T differs from the one induced by the representation on H 0(OP7(1))
by multiplication by χ2

2 . This is due to the fact that we have chosen the linearization of
H 0(OP7(1)) so as to agree with the one induced by the identification with H 0(V ,KV ),
where V is any of the surfaces that we are constructing. Since by Proposition 2.4 the
space H 0(V ,KV ) has no trivial subrepresentation, there is no G-equivariant embedding
T ↪→ H 0(OP7(1)).

Let W be the cone over 6 with vertex P . Then W is a singular threefold of degree
6 and it is mapped to itself by the G-action. We now show that every nontrivial element
of G has only isolated fixed points on W .

Notice that every fixed point of g ∈ G onW \{P } lies on the line joining the vertex P
to a fixed point of g on 6.

Consider first an element g /∈ 〈g1〉. One checks that g has three isolated fixed points
Q1,Q2,Q3 on 6, none of which satisfies z02 = 0. By assumption, χ2(g) = ωa with
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a = 1 or a = 2. Hence g acts by multiplying the coordinate z01 by ωa and the coordinate
z02 by ω2a . Thus g acts nontrivially on the line PQi for i = 1, 2, 3, and P,Q1,Q2,Q3
are the only fixed points of g on W . Consider now g = g1. The fixed points of g1 on
6 are the six points that lie on two of the −1-curves contained in 6. If e0 is the strict
transform of the line x0 = 0 (say), then e0 is embedded in P6 by the following map:

z02 = 0, z12 = x1, z22 = x2, z10 = ω
2x1,

z20 = ω
2x2, z11 = ωx1, z21 = ωx2.

The two fixed points of g1 on e0 correspond to the points Q1 of coordinates x1 = 1,
x2 = 0 and Q2 of coordinates x1 = 0, x2 = 1. Hence the action of g1 on the lines PQi

is nontrivial (for i = 1, 2). Since the set of fixed points of g1 on 6 is the union of the
G-orbits of Q1 and Q2, the previous computation shows that the fixed points of g1 on W
are P and the points Q1, . . . ,Q6 ∈ 6.

Consider now the subspace T1 ⊂ H
0(OW (3)) on which the G-action is trivial. If we

set z := z01, then we can write

H 0(OW (3)) = 〈z3
〉 ⊕ z2H 0(O6(1))⊕ zH 0(O6(2))⊕H 0(O6(3)), (3.6)

and this decomposition is compatible with theG-action. We identifyH 0(O6(i)) with the
space of homogeneous polynomials of degree 3i in x0, x1, x2 that vanish of order at least
i at the coordinate points of P2. Then the following is a basis of T1:

z3, z(x4
0x1x2 + ω

2x4
1x2x0 + ωx

4
2x0x1), z(x3

0x
3
1 + ω

2x3
1x

3
2 + ωx

3
2x

3
0),

x6
0x

3
1 + x

6
1x

3
2 + x

6
2x

3
0 , x6

0x
3
2 + x

6
1x

3
0 + x

6
2x

3
1 , x5

0x
2
1x

2
2 + x

5
1x

2
2x

2
0 + x

5
2x

2
0x

2
1 ,

x4
0x

4
1x2 + x

4
1x

4
2x0 + x

4
2x

4
0x1, x3

0x
3
1x

3
2 .

The dimension of T1 is equal to 8 and the corresponding linear system |T1| is free,
since all the cubic powers of the homogeneous coordinates zij of P7 restrict on W to
elements of T1.

Let V ∈ |T1| be a surface with at most rational double points and not passing through
the points fixed by a nontrivial element of G. Set W0 := Proj(O6 ⊕ O6(1)) and let H
be the tautological bundle. The system |H | gives a morphism W0 → W that contracts
the divisor E “at infinity” to the vertex P of the cone and restricts to an isomorphism
W0 \ E → W \ {P }. The surface V does not contain P , hence it can be identified with
an element of |3H | on W0, which we again denote by V . Using adjunction on W0, one
sees that the canonical divisor KV is the restriction of H to V , hence K2

V = 3H 3
= 18.

The adjunction sequence gives: pg(V ) = 8, χ(V ) = 9, q(V ) = 0. Set S := V/G.
Then by Proposition 2.3, S is the canonical model of a numerical Campedelli surface
with πalg

1 = G.

Proposition 3.11. The family of surfaces of type B2 depends on six moduli.
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Proof. By the argument in the proof of Proposition 3.4, it is enough to show that the
centralizer 0 of G in AutW is discrete.

Let 01 be the connected component of the identity in 0 and let γ ∈ 01. The P6

containing 6 is mapped to itself by γ , and by continuity γ maps each of the six lines of
6 to itself. Hence the restriction of γ to 6 is induced by an element of Aut P2, which we
denote by γ0. Arguing as in the proof of Proposition 3.8 one shows that γ0 is the identity
on P2, hence γ restricts to the identity on P6

⊃ 6. Thus the connected component of
the identity in 0 consists of the automorphisms that multiply z01 by λ ∈ C∗ and do not
change the remaining homogeneous coordinates. Hence the surfaces of type B2 depend
on 7− 1 = 6 moduli. ut

3.4. A common construction

We describe a common construction of the surfaces of type B1 and B2, suggested to us
by Miles Reid.

Denote by Z ⊂ P8 the Segre embedding of P2
× P2∗ and let G act on Z ⊂ P8 as in

the case of surfaces of type B1. It is easy to check that the corresponding representation
on H 0(P8,OP8(1)) is the sum of the nine characters of G. We identify the group of
characters G∗ with Z2

3 as in §3.3 and we denote by zij homogeneous coordinates on P8

such that G acts on zij via the character (i, j). The hyperplane z00 = 0 cuts out on Z
the flag variety x0y0 + x1y1 + x2y2 = 0, and the hyperplane z01 = 0 cuts out on Z the
invariant hypersurface x0y0+ω

2x1y1+ω
2x2y2 = 0. Set 6 := Z∩{z00 = z01 = 0}. The

surface 6 is a smooth G-invariant Del Pezzo surface of degree 6 in P6 and the G-action
on 6 coincides with the action given in (3.3).

Consider now homogeneous coordinates zij , w on P9, identify P8 with the hyperplane
w = 0 and let K be the cone over Z with vertex P := [0, . . . , 0, 1]. Extend the G-action
to P9 by letting G act on w via the character (0, 1).

SetR1 := H 0(OP9(3))G. The cubes z3
ij ,w3 of the coordinates belong toR1, hence the

system |R1| is free. Let now V be the surface obtained by intersecting K with an element
of |R1|, the hyperplane z00 = 0 and a hyperplane of the form λz01+µw = 0. The general
V is smooth by Bertini’s theorem. Assume that V has at most canonical singularities. If
λ = 0, then V/G is a surface of type B2 and it is clear that every surface of type B2 can
be obtained in this way. If λ 6= 0, then V/G is a surface of type B1, and every surface of
type B1 can be obtained in this way, for instance taking µ = 0.

In particular, this construction proves the following:

Proposition 3.12. Let S be a surface of type B2. Then S is a limit of surfaces of type B1.

Remark 3.13. In all three cases the general hyperplane section of W is the smooth Del
Pezzo surface 6 of degree 6 in P6, hence W can be deformed to the cone over 6. By the
above construction, in case B1 it is possible to preserve the Z2

3-action in the deformation.
This is not possible in case A. Indeed, the limit cone would have a smooth Z9-invariant
hyperplane section, while P1

× P1
× P1 has no such section.
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4. Geometry and moduli

In this section we study some geometrical properties of numerical Campedelli surfaces
with πalg

1 of order 9 and of their moduli space.

4.1. Moduli

Notice first of all the following consequence of Theorem 3.1:

Proposition 4.1. The canonical divisorKS of a general numerical Campedelli surface S
with πalg

1 (S) of order 9 is ample.

Proof. The statement is immediate by Theorem 3.1 and by the description of the three
families of surfaces in §3. ut

The next result describes the moduli space of Campedelli surfaces with |πalg
1 | = 9:

Theorem 4.2. LetM be the moduli space of numerical Campedelli surfaces, letMA ⊂

M be the subset of surfaces with πalg
1 = Z9 and letMB ⊂M be the subset of surfaces

with πalg
1 = Z2

3. Then:

(i) MA andMB are connected components ofM;
(ii) MA is irreducible of dimension 6;

(iii) MB is irreducible of dimension 7.

Proof. Since πalg
1 is the profinite completion of π1, it is a topological invariant. ThusMA

and MB are open and closed in M. By Theorem 3.1(i), the points of MA correspond
to the surfaces of type A, hence MA is irreducible of dimension 6 by Proposition 3.4.
By Theorem 3.1(ii), the points of MB correspond to the surfaces of type B1 and B2.
By Proposition 3.12, the surfaces of type B2 lie in the closure of the set of surfaces of
type B1. In turn, the surfaces of type B1 form an irreducible subset of dimension 7 by
Proposition 3.8. ut

4.2. The topological fundamental group

Having an explicit construction of Campedelli surfaces with |πalg
1 | = 9 allows one to

determine also the topological fundamental group.

Proposition 4.3. Let S be a numerical Campedelli surface such that πalg
1 (S) has order 9

(Tors S has order 9). Then π1(S) = π
alg
1 (S).

Proof. The group Tors S is the largest abelian quotient of πalg
1 (S). Thus, by Proposi-

tion 2.1, the group Tors S has order 9 if and only if πalg
1 (S) has order 9.
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Assume that this is the case. Then it is enough to prove the statement for one surface
in each irreducible component of the moduli space of numerical Campedelli surfaces with
π

alg
1 of order 9. If S is a surface of type A or B1 withKS ample, then V is a smooth ample

divisor inside a smooth simply connected threefold. Hence V is simply connected by the
Lefschetz theorem on hyperplane sections and it is actually the universal cover of S. By
Theorem 4.2, this proves the statement. ut

4.3. The bicanonical system

We now study the bicanonical system.

Theorem 4.4. Let S be a numerical Campedelli surface such that πalg
1 (S) has order 9

and let 0 be the base locus of the bicanonical system |2KS |. Then:

(i) if S is of type A, then 0 consists of two points;
(ii) if S is of type B1, then 0 is empty;

(iii) if S is of type B2, then 0 consists of two points.

Remark 4.5. Recall that, excluding the case K2
= 1, pg = 0, the bicanonical map of a

minimal surface of general type is generically finite ([Xi2]), and it is a morphism if either
pg > 0 orK2 > 4 (cf. [Ci]). To our knowledge, surfaces of type A and of type B2 are the
only known examples of surfaces of general type with K2 > 1 whose bicanonical map is
not a morphism.

Proof of Theorem 4.4. We use the notation introduced in the previous sections.
Denote by X the canonical model of S, by p : V → X the quotient map and by

ε : S → X the minimal resolution. Since |2KS | = ε∗|2KX|, we study the base locus of
|2KX|. Assume that S is a surface of type A. In this case W is the Segre embedding of
P1
× P1

× P1 in P7 and a generator g ∈ Z9 acts on W as (3.1). The G-action on W
induces an action on H 0(OW (1)) which is determined only up to multiplication by an
element of G∗. Let ζ be a primitive 9-th root of 1 and denote by χ the character such
that χ(g) = ζ . If we require that the representation on H 0(OW (1)) does not contain the
trivial character, then the representation is determined and the following is a basis such
that G uniquely acts on zj as multiplication by χ j :

z4 := z+ ζy + ζ 2x, z7 := z+ ζ 4y + ζ 8x,

z1 := z+ ζ 7y + ζ 5x, z5 := xy + ζ 7yz+ ζ 8xz,

z8 := xy + ζ 4yz+ ζ 2xz, z2 := xy + ζyz+ ζ 5xz,

z3 := 1, z6 := xyz.

By Proposition 2.4, this choice of action on H 0(OW (1)) gives a G-isomorphism of
H 0(OW (1)) with H 0(KV ) = H

0(KY ).
The threefold W is projectively normal, hence V , being cut out on W by a cubic hy-

persurface, is also projectively normal. Thus p∗H 0(2KX) is generated by the restrictions
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to V of the four quadrics ziz9−i for i = 1, . . . , 4. It is not difficult to check that the zero
locus on W of these quadrics is the union of the following curves:

L1 := {x = y = 0}, L2 := {x = z = 0}, L3 := {y = z = 0},

L4 := {x = y = ∞}, L5 := {x = z = ∞}, L6 := {y = z = ∞}.
(4.1)

The surface V does not contain any of the curves Li , since the G-action on V is free,
while the points (0, 0, 0) = L1 ∩ L2 ∩ L3 and (∞,∞,∞) = L4 ∩ L5 ∩ L6 are fixed
points of G. Moreover, each of the Li is mapped to itself by g3. It follows that for every
i = 1, . . . , 6 the set V ∩ Li consists of three distinct points, which form an orbit for
the action of g3. In particular, for i = 1, . . . , 6 the points of V ∩ Li are smooth for V .
Hence p∗|2KX| has 18 base points and |2KX| has two base points. Since the base points
of |2KX| are smooth points of X, also |2KS | has two base points.

Assume now that S is a surface of type B1 or B2, so thatG = Z2
3. In both cases theG-

action on W and on P7 is induced by the G-action on P2 of (3.3). Let χ1 be the character
ofG such that χ1(g1) = ω, χ1(g2) = 1, and let χ2 be the character such that χ2(g1) = 1,
χ2(g2) = ω. Denote by (zij ), for (i, j) ∈ Z2

3 \ {0}, homogeneous coordinates on P7 such
thatG acts on zij as multiplication by χ i1χ

j

2 . Arguing as in the case of surfaces of type A,
we find that p∗|2KX| is generated by the restrictions to V of the following quadrics:

z10z20, z01z02, z11z22, z12z21. (4.2)

Assume that S is of type B1. Then up to multiplication by nonzero scalars we have the
following equalities on W :

z20 := x0y0 + ωx1y1 + ω
2x2y2; z10 := x0y0 + ω

2x1y1 + ωx2y2;

z02 := x0y1 + x1y2 + x2y0; z01 := x0y2 + x1y0 + x2y1;

z22 := x0y1 + ωx1y2 + ω
2x2y0; z21 := x0y2 + ωx1y0 + ω

2x2y1;

z12 := x0y1 + ω
2x1y2 + ωx2y0; z11 := x0y2 + ω

2x1y0 + ωx2y1.

An easy computation shows that the zero locus 6ij of zij on W is a smooth surface for
every (0, 0) 6= (i, j) ∈ Z2

3. Hence 6ij is a smooth Del Pezzo surface of degree 6 and,
in particular, it contains six lines, which we denote by ei for i ∈ Z6. The lines ei form
a “hexagon”, namely we can arrange the indices in such a way that ei ∩ ej is a point
if i − j = ±1 and it is empty otherwise. The points Ri := ei ∩ ei+1 are distinct for
i ∈ Z6. The groupG preserves the set {e1, . . . , e6}. Considering the intersection numbers
eiej , one sees that an element ofG either maps each ei to itself, or induces a “rotation” of
order 3 of the hexagon. Notice that the whole groupG cannot act trivially on {e1, . . . , e6},
since the points R1, . . . , R6 would then be fixed by all the group.

Hence, if we denote by εij : 6ij → P2 the birational morphism that blows down
e1, e3, e5, then the G-action on 6ij descends to a G-action on P2. Since G acts freely
on W , and hence on 6ij , outside a finite set, by Lemma 5.5 below it follows that the
action of G on 6ij is the one described in §3.3. In particular, the G-invariant hyperplane
sections of 6ij are those defined by the equations (3.5). In particular all these sections
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are irreducible except one, which is the union of the six lines of 6ij . (It is not difficult to
convince oneself that the reducible section is given by z2i 2j = 0).) So for every choice
of (i1, j1), . . . , (i4, j4) ∈ Z2

3 such that (ir , jr) + (is, js) 6= (0, 0) for 1 ≤ r, s ≤ 4, the
intersection of W with the subspace zi1j1 = · · · = zi4j4 = 0 is a G-invariant set, properly
contained in a hyperplane section of the smooth elliptic curve 6i1j1 ∩ 6i2j2 . Hence this
set has at most six points, each of which has nontrivial stabilizer. So the base locus 00 on
W of the quadrics (4.2) is a finite set (it is easy to check that 00 is nonempty) and every
point of 00 has nontrivial stabilizer. SinceG acts freely on V , it follows that V ∩00 = ∅.
So the system p∗|2KX| is free and, as a consequence, |2KX| and |2KS | are also free.

Assume now that S is of type B2. We use the notation of §3.3 and, as in the case of
surfaces of type B1, we study the zero set on W of the quadrics (4.2). Write 6 for the
intersection of W with z01 = 0, so 6 is the only G-invariant section of W not containing
the vertex P of W . Take (i1, j1), . . . , (i4, j4) ∈ Z2

3 such that (ir , jr) + (is, js) 6= (0, 0)
for 1 ≤ r, s ≤ 4. Up to permuting the indices, we may assume that (i1, j1) = (0, 1) or
(i1, j1) = (0, 2). If (i1, j1) = (0, 1) then we may argue as in the previous case and show
that the intersection of W with the subspace z01 = zi2j2 = zi3j3 = zi4j4 = 0 is a finite set
each of whose points has nontrivial stabilizer.

Now assume that (i1, j1) = (0, 2). Then the intersection of W with the subspace
z02 = zi2j2 = zi3j3 = zi4j4 = 0 is the join of P and of the intersection of 6 with
the subspace z02 = zi2j2 = zi3j3 = zi4j4 = 0. By the formulae (3.5), as the indices
(i2, j2), (i3, j3), (i4, j4) vary one obtains the six points of intersection of the six lines
of 6. Summing up, the zero set on W of the quadrics (4.2) is the union of finitely many
points with nontrivial stabilizer and of six rulings ofW . The same argument that we have
used for surfaces of type A shows that |2KX| has two base points, which are smooth
for X, and thus |2KS | also has two base points. ut

5. Proof of the classification

This section proves the classification theorem 3.1. We use freely the notation and the
assumptions of §2.

Recall that the universal cover Y of S satisfies K2
Y = 3pg(Y ) − 6. A detailed study

of surfaces satisfying this relation has been carried out by Konno ([Ko]). We recall here
some of his results. By Proposition 2.2(ii), the surface Y belongs to type I in Konno’s
classification. Denote by V ⊂ P7 the image of the canonical map ϕ : Y → P7 and by
W the intersection of all the quadrics of P7 containing V . The natural linear G-action on
H 0(Y,KY ) descends to a G-action on P7

= P(H 0(Y,KY )
∗) that preserves V and W .

Following Fujita, we define the 1-genus of a projective variety W of Pn as degW +
dimW − n− 1.

Proposition 5.1 ([Ko]). The variety W has dimension 3 and 1-genus 0 or 1. Further-
more:

(i) if W has 1-genus 0, then it is a rational normal scroll and the ruling of W induces a
fibration V → P1 whose general fibre is a smooth plane quartic;



Numerical Campedelli surfaces 471

(ii) if W has 1-genus 1, then W is normal and V is the intersection of W with a cubic
hypersurface. Moreover, in this case the canonical ring of Y is generated in degree 1,
hence the canonical map is a morphism and V is the canonical model of Y .

Proof. Cf. [Ko, Theorems 3.1, 4.2, 6.2]. The statement on the normality of W and on the
generation of the canonical ring of Y is contained in the proof of Theorem 3.1 of [Ko] (cf.
3.6, ibid.). ut

We will see that in our caseW has1-genus 1. In order to prove this we need the following:

Lemma 5.2. The surface V does not have a G-invariant free pencil |F | of curves of
genus g(F ) ≤ 4.

Proof. Assume that such a pencil |F | exists and denote by |F ′| the pencil induced by |F |
on S.

Let H be the subgroup ofG consisting of the elements that act trivially on |F | and let
h be the order of H . The general F ′ is isomorphic to F/H for some F , hence g(F ′) =
1+ (g(F )− 1)/h (recall that H acts freely). Since g(F ) ≤ 4, we have either h = 1 and
g(F ) = g(F ′), or h = 3, g(F ) = 4, g(F ′) = 2.

If h = 1, then G = Z9, since Aut |F | = Aut P1 does not have a subgroup isomorphic
to Z2

3. But then |F ′| is a pencil of genus≤ 4 with two fibres of multiplicity 9, contradicting
the adjunction formula.

If h = 3, then the pencil |F ′| has two triple fibres, corresponding to the two fixed
points of the action of G/H on P1

= |F |. This again contradicts the adjunction formula,
since g(F ′) = 2. ut

Proposition 5.3. The threefold W ⊂ P7 has 1-genus 1.

Proof. By Proposition 5.1 it is enough to exclude that W is a rational normal scroll. So
assume by contradiction that this is the case and denote by f : V → P1 the fibration
induced by the ruling of W . The general fibre F of f is smooth of genus 3 by Proposi-
tion 5.1(i), and by construction the G-action on V preserves the fibration f . This contra-
dicts Lemma 5.2. ut

Since W has 1-genus 1 by Proposition 5.3, it follows by Proposition 5.1(ii) that the
canonical image V of Y is the intersection of W with a cubic hypersurface. As a conse-
quence, we get the following:

Corollary 5.4. The G-action on P7 restricts to an action on W which is free outside a
finite subset of W .

Proof. As already remarked, G acts on V ⊂ W ⊂ P7 compatibly. By Propositions 5.1
and 5.3, the surface V is the canonical model of Y and thus G acts freely on V . Since by
Proposition 5.1(ii) the divisor V ⊂ W is very ample, it follows that the set of points ofW
with nontrivial stabilizer has dimension ≤ 0. ut

We also need the following two elementary results.
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Lemma 5.5. Assume thatG = Z2
3 acts on P2 so that the action is free outside a finite set.

Then we can choose generators g1, g2 ∈ G and homogeneous coordinates (x0, x1, x2) on
P2 so that the action is as follows:

g1 : (x0, x1, x2) 7→ (x0, ωx1, ω
2x2), g2 : (x0, x1, x2) 7→ (x1, x2, x0),

where ω 6= 1 is a third root of 1.

Proof. The fixed locus of a nontrivial element g1 ∈ G consists of three points. In suitable
homogeneous coordinates the action of g1 is given by

g1 : (x0, x1, x2) 7→ (x0, ωx1, ω
2x2).

Now consider g2 ∈ G \ 〈g1〉. The element g2 acts on the fixed points of g1. If this action
is trivial, then g2 acts by

g2 : (x0, x1, x2) 7→ (x0, ω
ax1, ω

bx2)

for some a, b ∈ Z3 \ {0}. Then either g1g2 or g1g
2
2 fixes a line pointwise, contradicting

the assumptions. Hence we conclude that g2 permutes the fixed points of g1 cyclically.
Up to rescaling the coordinates, and possibly replacing g2 by g2

2 , the action can be written
as stated. ut

Lemma 5.6. LetG be a group of order 9 that acts on P1
×P1
×P1 freely outside a finite

subset. If G permutes the three factors of P1
× P1

× P1 in a nontrivial way, then G = Z9
and there are affine coordinates x, y, z on the three copies of P1 such that a generator g
of G acts by

g : (x, y, z) 7→ (y, z, ωx),

where ω is a primitive third root of 1.

Proof. The G-action permutes the three factors of P1
× P1

× P1, hence induces a ho-
momorphism ψ : G → S3, which is nontrivial by assumption. Thus the image of ψ has
order 3.

Assume that G = Z2
3 and let g ∈ G be such that ψ(g) = (123). Then there are affine

coordinates x, y, z on the three copies of P1 such that g acts as follows:

g : (x, y, z) 7→ (y, z, x).

Hence g fixes pointwise the diagonal {(P, P, P ) : P ∈ P1
}, contradicting the assump-

tions.
Thus G = Z9. Let g ∈ G be an element such that ψ(g) = (123) (notice that g

generates G). Then in suitable coordinates the action of g can be written as claimed. ut



Numerical Campedelli surfaces 473

The G-action on H 0(Y,KY ) = H
0(P7,OP7(1)) = H 0(W,OW (1)) induces a lineariza-

tion of the line bundle OW (3) and therefore a decomposition

H 0(W,OW (3)) =
⊕
χ∈G∗

Tχ ,

where Tχ denotes the eigenspace corresponding to the character χ . In particular, T1 is the
subspace of G-invariant vectors. The following remark will be useful in determining the
subsystem of |OW (3)| which parametrizes the surfaces V .

Lemma 5.7. Let P ∈ W be a point which is fixed by some nontrivial element g ∈ G. If
the system |T1| is free, then P is a base point of |Tχ | for every χ such that χ(g) 6= 1.

Proof. Let χ ∈ G∗ be a character such that χ(g) 6= 1. Fix a section σ0 ∈ T1 such that
σ0(P ) 6= 0. For any σ ∈ |Tχ | consider the rational function fσ := σ/σ0. The function fσ
is defined at P and

fσ (P ) = fσ (g(P )) = χ(g
−1)fσ (P ).

It follows that fσ (P ) = 0 and thus also σ(P ) = 0. ut

Varieties of 1-genus 1 have been classified by Fujita (cf. [Fu1–Fu3]). We recall that by
Proposition 5.1(ii) the threefold W is normal. Here is the list of normal threefolds of
1-genus 1 in P7 (cf. [Fu3]):

(1) the cone over a (weak) Del Pezzo surface 6 ⊂ P6 of degree 6;
(2) the Segre embedding of P1

× P1
× P1 into P7;

(3) the image of the flag variety {x0y0 + x1y1 + x2y2 = 0} ⊂ P2
× P2∗ under the Segre

embedding of P2
× P2∗.

(4) four singular examples that are not cones. In the notation of [Fu3], these are the cases
(vi), (si31i), (si22i), (si211).

To prove Theorem 3.1 we examine cases (1)–(4) separately. We start by showing that case
(4) does not occur.

Case (4). If W is of type (vi), (si31i) or (si22i), then by [Fu3, Theorem 2.9] the singular
locus of W consists of a line r and, in case (vi), possibly also of an isolated double point.
Hence the line r is mapped to itself by the action of G on P7. Then Z := V ∩ r is the
intersection of r with a cubic hypersurface and G acts freely on Z. This is not possible,
since Z is either equal to r or it consists of at most three points.

If W is of type (si211), then by [Fu3] it is contained in the cone K over M :=
P(OP1(1) ⊕ OP1(1) ⊕ OP1(2)) embedded in P6 by its tautological system. We denote
by P the vertex of K . By [Fu3, Theorem 2.9], P is the only isolated double point of W ,
hence P is a fixed point ofG. Notice, in particular, that V does not contain P . Let P6

⊂ P7

be theG-invariant hyperplane not containing P and let q : P7
→ P6 be the projection with

centre P . The threefold q(W) is G-invariant and it is isomorphic to M . Hence the map
V → P1 obtained by composing the projection q with the ruling M → P1 gives a free
pencil of curves |F | which is acted on by G. A general F is the intersection in P3 of a
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cubic (given by the cubic equation of V ) and a quadric through P (corresponding to W )
and therefore it has genus 4. Hence we have a contradiction to Lemma 5.2.

Case (1). We show that this case corresponds to surfaces of type B2.
First of all we show that we have G = Z2

3 in this case. The vertex P of the cone W is
a fixed point of the G-action on P7. In particular, V does not contain P .

Since theG-action on P7 is induced by a linear representation ofG onH 0(OP7(1)) =
H 0(Y,KY ), there exists aG-invariant P6

⊂ P7 that does not contain P . Let6 := W ∩P6.
Then 6 is a (weak) Del Pezzo surface of degree 6 preserved by the G-action.

The projection from P7
→ P6 with centre P restricts to a G-invariant degree 3 mor-

phism p : V → 6. If a point Q ∈ 6 is fixed by every element of G, then G permutes the
points in the fibre p−1(Q), which consists of at most three points. Since G has order 9,
this contradicts the assumption that G acts freely on V . In particular, G cannot be cyclic,
since every automorphism of a rational surface has at least one fixed point. So G = Z2

3.
The same argument shows that the Del Pezzo surface 6 is smooth. Indeed, by [Na,

Theorem 8], 6 is the blowup of P2 along a curvilinear scheme Z of dimension 0 and
length 3. If Z is not reduced, then 6 is singular and it has precisely one singular point,
which is necessarily fixed by every element of G.

Arguing as in the proof of Theorem 4.4, one shows that there is a birational morphism
ε : 6 → P2 such that ε contracts three disjoint lines of 6 to the coordinate points of P2

and the G-action on 6 descends to a G-action on P2. Assume that this last action is not
free outside a codimension 2 subset of P2. Then there exists g ∈ G, g 6= 0, that fixes
a line r of P2 pointwise. Since G is abelian, we have g′(r) = r for every g′ ∈ G. In
particular, r does not contain any of the exceptional points of ε−1, since these are linearly
independent and they are permuted cyclically by G. Now let g′ ∈ G be such that g, g′

generate G and let A ∈ r be a point such that g′(A) = A. Then the point A is fixed by
all the elements of G and therefore the point ε−1(A) ∈ 6 is also fixed by every element
of G, contradicting the remarks above.

Thus we conclude that G acts freely on P2 outside a finite set and that for a suitable
choice of homogeneous coordinates of P2 the G-action can be written as in Lemma 5.5.

Hence we may assume that the G-action on P7 is the one described in §3.3. The
point P , being invariant for all the group G, is a coordinate point of P7. Let zij denote
the only coordinate that does not vanish at P , so that the invariant P6

⊂ P7 that does not
contain P is defined by zij = 0. The representation of G on H 0(OP6(1)) contains all the
nontrivial characters ofG except χ i1χ

j

2 (see §3.3 for the notation). In turn,H 0(OP6(1)) is
isomorphic to the subspace T ⊂ H 0(OP2(3)) of cubics vanishing at the coordinate points
of P2, and the G-action on T induced by this isomorphism differs from the action given
in (3.4) by multiplication by a character of G. Hence we have (i, j) = (0, 1) or (i, j) =
(0, 2). It follows that, possibly up to replacing g1 by g2

1 , the embedding 6 ⊂ P6
⊂ P7

is induced by the rational map (3.5). By Proposition 5.1(ii), V is an element of |OW (3)|
that isG-invariant, hence there is a χ ∈ G∗ such that V ∈ |Tχ |, where Tχ ⊂ H 0(OW (3))
is the eigenspace corresponding to χ . We have seen in §3.3 that the system |T1| is free.
Hence by Lemma 5.7 the vertex P of W is in the base locus of the system |Tχ | for every
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1 6= χ ∈ G∗. SinceG acts freely on V , it follows that V belongs to |T1|, and the minimal
desingularization of S := V/G is a surface of type B2.

Case (2). We show that this case corresponds to surfaces of type A. We use the notation
of §3 for the homogeneous and affine coordinates on W = P1

× P1
× P1.

For i = 1, 2, 3, the projection onto the i-th factor pi : W → P1 restricts on V to a
free pencil of genus 4. By Lemma 5.2, these pencils are not G-invariant, hence there is at
least one element of G that permutes them. Since G acts freely outside a finite subset, by
Lemma 5.6 we have G = Z9 and G acts as in Lemma 5.6.

By Proposition 5.1(ii), V is an element of |OW (3)| that is G-invariant, hence there is
a χ ∈ G∗ such that V ∈ |Tχ |, where Tχ ⊂ H 0(OW (3)) is the eigenspace corresponding
to χ . We have seen in §3.1 that the system |T1| is free. Let Q ∈ W be the point with
affine coordinates x = y = z = 0. The point Q is fixed by all the group G, hence, by
Lemma 5.7, Q is in the base locus of the system |Tχ | for every 1 6= χ ∈ G∗. Since G
acts freely on V , it follows that V belongs to |T1|, and the minimal desingularization of
S := V/G is a surface of type A.

Case (3). We show that this case corresponds to surfaces of type B1.
HereW is the flag variety {x0y0+x1y1+x2y2 = 0} ⊂ P2

×P2∗, embedded in P7 as a
hyperplane section of the Segre embedding P2

×P2∗ ↪→ P8 (cf. §3.2). By Lemma 3.7, the
action of G on W is induced by a G-action on P2. The fixed points on W of an element
g ∈ Aut P2 correspond to pairs (P, r) where P ∈ P2 is a fixed point of g, r ∈ P2∗ is a
fixed line and P ∈ r . Since G acts freely outside a finite subset of W , the elements of G
have finitely many fixed points on P2

× P2∗. Hence the G-action on P2 is free outside a
finite subset of P2. Assume that G = Z9 and let g ∈ G be a generator. Then there are
homogeneous coordinates such that g acts by

(x0, x1, x2) 7→ (x0, ζx1, ζ
kx2),

where ζ is a primitive 9-th root of 1. Then x0y0 and x1y1 restrict onW to independent sec-
tions ofOW (1, 1) that belong to the sameG-eigenspace. This contradicts Proposition 2.4.
Hence G = Z2

3 and the action of G on P2 can be written as in Lemma 5.6.
By Proposition 5.1(ii), V is an element of |OW (3, 3)| that is G-invariant, hence there

is a χ ∈ G∗ such that V ∈ |Tχ |, where Tχ ⊂ H 0(OW (3, 3)) is the eigenspace corre-
sponding to χ . We have seen in §3.2 that the system |T1| is free. We observe that for
every 0 6= g ∈ G there is a pointQ ∈ W such that gQ = Q. Thus by Lemma 5.7,Q is in
the base locus of the system |Tχ | if χ(g) 6= 1. Since G acts freely on V , it follows that V
belongs to |T1|, and the minimal desingularization of S := V/G is a surface of type B1.
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