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Abstract. We present a novel approach for bounding the resolvent of

H = −1+ i(A · ∇ + ∇ · A)+ V =: −1+ L (1)

for large energies. It is shown here that there exist a large integer m and a large number λ0 so that
relative to the usual weighted L2-norm,

‖(L(−1+ (λ+ i0))−1)m‖ < 1/2 (2)

for all λ > λ0. This requires suitable decay and smoothness conditions on A,V . The estimate (2)
is trivial when A = 0, but difficult for large A since the gradient term exactly cancels the natural
decay of the free resolvent. To obtain (2), we introduce a conical decomposition of the resolvent
and then sum over all possible combinations of cones. Chains of cones that all point in the same
direction lead to a Volterra-type gain of the form (m!)−ε with ε > 0 fixed. On the other hand, cones
that are not aligned contribute little due to the assumed decay of Â. We make no use of micro-local
analysis, but instead rely on classical phase space techniques. As a corollary of (2), we show that
the time evolution of the operator in R3 satisfies global Strichartz and smoothing estimates without
any smallness assumptions. We require that zero energy is neither an eigenvalue nor a resonance.

1. Introduction

Magnetic Schrödinger operators on L2(Rd) are of the form

H = −1+ i(A · ∇ + ∇ · A)+ V = −1+ L. (3)

They model nonrelativistic magnetic effects in quantum mechanics and have been much
studied in the physics literature. The seminal paper [2] discusses the case of constant mag-
netic fields (see also [6]). The scattering theory for decaying magnetic fields is discussed

M. Burak Erdoğan: Department of Mathematics, University of Illinois, Urbana, IL 61801, U.S.A.;
e-mail: berdogan@math.uiuc.edu
M. Goldberg: Department of Mathematics, Johns Hopkins University, Baltimore, MD 21218,
U.S.A.; e-mail: mikeg@math.jhu.edu
W. Schlag: Department of Mathematics, University of Chicago, 5734 South University Avenue,
Chicago, IL 60637, U.S.A.; e-mail: schlag@math.uchicago.edu

Mathematics Subject Classification (2000): 14J29



508 M. Burak Erdoğan et al.

in [19]. More recent results on scattering by magnetic potentials are [24] and [30]. The
review [7] contains a long list of references.

There has been much activity surrounding dispersive estimates for the case A = 0
under suitable decay (and also regularity when d ≥ 4) assumptions on V . In fact, in that
case the harder L1(Rd) → L∞(Rd) estimate is now known in all dimensions d ≥ 1
under the condition that zero energy is neither an eigenvalue nor a resonance (and there
are now also results in the case when the latter assumption does not hold). The seminal
paper for this class of estimates is [14] and we refer the reader to [25] for a survey of
more recent work.

On the other hand, much less is known when A 6≡ 0. In [27] and [9] Strichartz and
smoothing estimates were obtained for small A and V . In this paper we prove the follow-
ing theorem:

Theorem 1. Let A and V be real-valued such that for all x, ξ ∈ R3,

〈x〉|A(x)| + |DA(x)| + |V (x)| . 〈x〉−8−ε, (4)∑
|α|≤2

|DαÂ(ξ)| . 〈ξ〉−3−ε, (5)

for some ε > 0. Furthermore, assume that zero energy is neither an eigenvalue nor a
resonance of H . Then, with Pc being the projection onto the continuous spectrum,

‖eitHPcf ‖Lqt (L
p
x )

. ‖f ‖L2(R3) (6)

provided (p, q) are admissible, i.e., 2/q + 3/p = 3/2 and 2 ≤ p < 6. Moreover, the
inhomogeneous Strichartz estimates∥∥∥∥∫ t

−∞

ei(t−s)HPcF(s) ds

∥∥∥∥
L
q
t (L

p
x )

. ‖F‖
L
q̃′

t (L
p̃′

x )
(7)

hold, where (p, q) and (p̃, q̃) are admissible as above. Finally, the Kato smoothing esti-
mate ∫

∞

0
‖〈x〉−σ 〈∇〉1/2eitHPcf ‖

2
2 dt ≤ C‖f ‖

2
2 (8)

holds with σ > 4.

It is well-known that Strichartz estimates are basic to the scattering theory of nonlinear
equations. In this case, an immediate application would be to the nonlinear Schrödinger
equation with a magnetic potential which has neither eigenvalues nor a zero energy reso-
nance. See [13] for such an application when A = 0 but V is present.

The definition of zero energy being neither an eigenvalue nor a resonance is the usual
one: there does not exist f ∈

⋂
τ>1/2 L

2,−τ (R3), f 6≡ 0, such that Hf = 0. In a sequel
to this paper the authors will weaken the conditions on A and V—in fact, for the sake of
simplicity we have chosen to impose somewhat stronger conditions on A and V than the
methods of this paper actually require.
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In the free case, Strichartz inequalities are typically proven by interpolating between
the L2-mass conservation law and an L1

→ L∞ dispersive estimate. Dispersive bounds
are currently unknown for any A 6= 0, so a different approach is required here. We adopt
an argument introduced in [23], where the validity of Strichartz inequalities is instead
derived from Kato’s theory of smooth perturbations.

The approach in this work is perturbative around the free case despite the fact that
we make no smallness assumption. Fredholm theory provides some of the necessary an-
alytical tools, and in other cases one is required to show that the perturbation series has
an appropriately large radius of convergence. The main novel ingredient in this paper is
a limiting absorption estimate for large energies. It is possible, for example, to argue that
the perturbative effect of a scalar potential V is small at high energies because it can be
expressed in terms of an oscillatory integral. The same methods do not apply to the first-
order perturbation L because the presence of an additional gradient negates every benefit
arising from oscillation.

More precisely, recall that in [1] and [11] it is proved that forH as in (3) under suitable
decay conditions on A and V and with τ > 1/2,

sup
λ∈[δ,δ−1]

‖〈∇〉〈x〉−τ (H − (λ2
+ i0))−1

〈x〉−τ 〈∇〉‖2→2 ≤ C(δ) <∞ (9)

provided there are no imbedded eigenvalues in the continuous spectrum. However, this
is known due to recent work by Koch and Tataru [18]. It is well-known that this limiting
absorption principle is of fundamental importance for proving dispersive estimates, at
least for the case of large potentials. However, one needs to consider all real λ instead
of restricting to a compact interval in the positive halfline. To extend (9) toward zero
energies is similar to the case A = 0. This step requires the assumption on zero energy.

Note that (9) as stated cannot be extended to a semi-infinite interval since it would fail
even for the free resolvent. Indeed, with τ > 1/2,

‖〈∇〉
α
〈x〉−τ (H0 − (λ

2
+ i0))−1

〈x〉−τ 〈∇〉α‖2→2 ∼ λ
2α−1 (10)

for any α ∈ [0, 1] and all λ > 1. This shows that no more than one derivative in total
can be gained here while still preserving a uniform upper bound. Furthermore, in the
borderline case α = 1/2 there is no decay of the operator norm in the limit λ→∞.

We will adopt the shorthand notation

R0(z) := (H0 − z)
−1

for the resolvent of the Laplacian. The resolvent of a general operatorH will be indicated
by RH (z), or else RL(z) in the case whereH is specifically of the formH0+L. Formally,
the relationship between RL and R0 is captured in the identity

RL(z) = (I + R0(z)L)
−1R0(z).

In this paper we extend (10) to H = H0 + L for the class of first-order perturbations
described in Theorem 1. A unified statement of the mapping properties of the resolvent
of H over the entire spectrum λ > 0 is as follows.
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Theorem 2. Suppose H is a magnetic Schrödinger operator whose potentials satisfy the
conditions (4), (5). Then for τ > 4 and α ∈ [0, 1],

sup
λ>1

λ1−2α
‖〈∇〉

α
〈x〉−τ (H − (λ2

+ i0))−1
〈x〉−τ 〈∇〉α‖2→2 . 1. (11)

If one further assumes that zero is not an eigenvalue or resonance of H , then this bound
can be extended to

sup
λ≥0
〈λ〉1−2α

‖〈∇〉
α
〈x〉−τ (H − (λ2

+ i0))−1
〈x〉−τ 〈∇〉α‖2→2 . 1. (12)

As a consequence, the spectrum of H is purely absolutely continuous over the entire
interval [0,∞).

Remark 3. A result of type (11), in the case α = 0, is proved in [22] using the method
of Mourre commutators and micro-local analysis. In that work the potentials require only
very slight polynomial decay, but they are also assumed to be infinitely differentiable,
with the derivatives satisfying a symbol-like decay condition.

Clearly it would suffice to construct the operator inverse of I + R0(λ
2
+ i0)L in a

suitable weighted space L2,−σ , with uniform control over its norm. In the scalar (A = 0)
case, this becomes easy for large λ as the norm of R0(λ

2
+ i0)V decreases to zero.

The case of a nontrivial magnetic potential is qualitatively different, in that the norm
of R0(λ

2
+ i0)L does not decay as λ→∞. This follows directly from the estimate (10),

which is essentially constant when the free resolvent is paired with a full derivative. What
we are able to show, via more delicate analysis, is that the spectral radius of these opera-
tors diminishes to zero even though their norm does not. This allows us to work instead
with the inverse of I − (−1)m(R0(λ

2
+ i0)L)m, which exists as a convergent power series

for sufficiently large λ and m.
The estimate on (R0(λ

2
+ i0)L)m is loosely based on principles of stationary phase.

The region of criticality for the phase function is quite extensive, but it possesses a use-
ful geometric structure reminiscent of Volterra operators. The remaining region can be
handled by more conventional non-stationary phase methods, complicated slightly by the
fact that we do not wish to assume much regularity of the potential. Full details of this
argument are presented in Section 4.

2. The basic setup

The following result is proved in [23, Theorem 4.1]. It is based on Kato’s notion of
smoothing operators (see [15]). We recall that for a self-adjoint operator H , an opera-
tor 0 is called H -smooth in Kato’s sense if for any f ∈ D(H0),

‖0eitHf ‖L2
t L

2
x
≤ C0(H)‖f ‖L2

x
(13)

or equivalently, for any f ∈ L2
x ,

sup
ε>0
‖0RH (λ± iε)f ‖L2

λL
2
x
≤ C0(H)‖f ‖L2

x
. (14)
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We shall call C0(H) the smoothing bound of 0 relative to H . Let � ⊂ R and let P�
be a spectral projection of H associated with �. We say that 0 is H -smooth on � if
0P� isH -smooth. We denote the corresponding smoothing bound by C0(H,�). It is not
difficult to show (see e.g. [21]) that, equivalently, 0 is H -smooth on � if

sup
β>0
‖χ�(λ)0RH (λ± iβ)f ‖L2

λL
2
x
≤ C0(H,�)‖f ‖L2

x
. (15)

The first conclusion (6) of Theorem 1 is obtained by applying Proposition 4 below.
The related inhomogeneous estimate (7) then follows from (6) in a standard fashion via
the Christ–Kiselev lemma [3]. The remainder of the paper will therefore be devoted to
verifying the conditions needed in Proposition 4. Along the way we establish the smooth-
ing bound (8) as an additional consequence of these conditions.

Proposition 4. LetH0 = −1 andH = H0+L with L =
∑J
j=1 Y

∗

j Zj . Assume that each
Yj isH0-smooth with a smoothing bound CB(H0) and that for some� ⊂ R the operators
Zj are H -smooth on � with a smoothing bound CA(H,�). Assume also that the unitary
semigroup eitH0 satisfies the estimate

‖eitH0ψ0‖Lqt Lrx
≤ CH0‖ψ0‖L2

x
(16)

for some q ∈ (2,∞] and r ∈ [1,∞]. Then the semigroup eitH associated with H =
H0 + L, restricted to the spectral set �, also satisfies the estimate (16), i.e.,

‖eitHP�ψ0‖Lqt Lrx
≤ JCH0CB(H0)CA(H,�)‖ψ0‖L2

x
. (17)

We refer the reader to [23] for the proof. Note that this approach does not capture the
Keel–Tao endpoint (which would correspond to q = 2)—the reason being the Christ–
Kiselev lemma which is used in the proof of Proposition 4.

To apply this proposition we write, with a decreasing weight w(x) = 〈x〉−σ , for some
sufficiently large σ > 0,

L = 2iA · ∇ + i divA+ V

= 2iAw−1
· ∇〈∇〉

−1/2
〈∇〉

1/2w + 2iA · ∇(w−1)w + i divA+ V

=

2∑
j=1

Y ∗j Zj (18)

where
Y ∗1 := 2iAw−1

· ∇〈∇〉
−1/2, Z1 := 〈∇〉1/2w,

Y ∗2 := [2iA · ∇(w−1)w + i divA+ V ]w−1, Z2 := w.
(19)

Once the operators Z1 and Z2 are shown to beH -smooth on the interval� = [0,∞),
the Kato smoothing estimate (8) in Theorem 1 follows immediately.
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Throughout this paper, we shall treat σ > 0 as a parameter. In various places we shall
specify how large it needs to be chosen. Eventually, we shall require σ > 4, which will
lead to the condition (4). It is standard that Y1 and Y2 are H0-smooth provided

|A(x)| + |divA(x)| + |V (x)| . 〈x〉−1−σ−ε. (20)

We now start discussing the smoothing properties of Z1 and Z2 relative to H . It will
suffice to discuss Z1.

Let us first consider intermediate energies λ2, i.e., λ ∈ [λ−1
0 , λ0] = J0 with λ0 large.

Then it was shown in [11] (see also [1]) that the resolvent of H satisfies the bound

sup
λ∈J0

‖〈x〉−1/2−ε
〈∇〉RL(λ

2
+ i0)f ‖2 ≤ C(λ0)‖〈x〉

1/2+ε
〈∇〉
−1f ‖2

(in fact, a stronger bound was proved in [11]). More precisely, this bound follows pro-
vided there are no eigenvalues of H in the interval J0. The latter property (absence of
imbedded eigenvalues) is shown in [18] to hold for the entire family of potentials under
consideration. An elementary proof, following [8], is also possible if one assumes that
∇V (x) exists and possesses moderate pointwise decay. It is therefore safe to conclude
that

sup
λ∈J0

‖Z1RL(λ
2
+ i0)Z∗1‖2→2 ≤ C(λ0)‖〈∇〉

1/2w〈∇〉−1
〈x〉1/2+ε‖22→2 ≤ C(λ0) (21)

since ‖〈∇〉1/2w〈∇〉−1
〈x〉1/2+ε‖2→2 < ∞ by pseudo-differential calculus. Finally, by

Kato’s smoothing theory (see [21, Theorem XIII.30]), we conclude that Z1 is H -smooth
on � = J0.

Note that this argument does not carry over to λ→∞ (in other words, for magnetic
potentials, unlike the case of V alone, large energies are not easy). This is due to the fact
that the limiting absorption principles in [11] and [1] do not yield a gain of one derivative
uniformly in λ. We devote Section 4 to this issue.

Next, we turn to small energies.

3. Small energies

As usual, this is reduced to zero energy. For the latter, we need to impose an invertibility
condition which amounts to boundedness of the resolvent RL(0) between suitable spaces.
More precisely, by the resolvent identity,

RL(λ
2
+ i0) = (1+ R0(λ

2
+ i0)L)−1R0(λ

2
+ i0)

provided the inverse on the right-hand side exists. Therefore,

‖Z1RL(λ
2
+ i0)Z∗1‖2→2 = ‖Z1(1+ R0(λ

2
+ i0)L)−1Z−1

1 Z1R0(λ
2
+ i0)Z∗1‖2→2

≤ ‖Z1(1+ R0(λ
2
+ i0)L)−1Z−1

1 ‖2→2‖Z1R0(λ
2
+ i0)Z∗1‖2→2.
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By the smoothing properties of Z1 relative to H0,

sup
λ

‖Z1R0(λ
2
+ i0)Z∗1‖2→2 <∞

provided σ > 1. For λ > 1 this follows from Agmon [1] with σ > 1/2, whereas for small
λ it can be reduced to a Hilbert–Schmidt norm provided σ > 1 (see [12]).

Thus, we need to verify that

sup
|λ|<λ−1

0

‖Z1(1+ R0(λ
2
+ i0)L)−1Z−1

1 ‖2→2

= sup
|λ|<λ−1

0

‖〈∇〉
1/2w(1+ R0(λ

2
+ i0)L)−1w−1

〈∇〉
−1/2
‖2→2 <∞

for some choice of large λ0. First, we consider the case λ = 0. As usual, we let G :=
R0(0).

Lemma 5. Assume that L = 2i∇ · A − i divA + V satisfies |A(x)| . 〈x〉−σ−1−ε and
|divA(x)|+ |V (x)| . 〈x〉−2σ with σ > 1. Then Z1GLZ

−1
1 is a compact operator on L2.

Proof. First, we consider only the 2i∇ · A part of L. We claim that

‖〈∇〉G∇ · Aw−1f ‖2 . ‖f ‖2. (22)

To see this, observe that by Plancherel

‖DαG∇ · Aw−1f ‖2 . ‖Aw−1f ‖2 . ‖f ‖2

provided |α| = 1. On the other hand, we will show that

‖G∇ · Aw−1f ‖2 . ‖Aw−1f ‖L2,1+ε . ‖f ‖2. (23)

It suffices to prove that multiplication by ξ/|ξ |2 maps H 1+ε to L2. Let χ(ξ) be a smooth
cut-off around zero. Then (1− χ(ξ))ξ/|ξ |2 maps H 1+ε to itself, which is even stronger.
Moreover, by Hölder’s inequality and Sobolev imbedding,

‖χ(ξ)|ξ |−1g‖2 ≤ ‖χ(ξ)|ξ |
−1
‖L3−‖g‖L6+ . ‖g‖H 1+ε ,

which implies (23). In conclusion, we have proved (22).
Thus,

〈∇〉
1/2wG∇ · Aw−1

〈∇〉
−1/2
= 〈∇〉

1/2w〈∇〉−1
〈∇〉G∇ · Aw−1

〈∇〉
−1/2

is compact in L2, since 〈∇〉1/2w〈∇〉−1 is compact in L2.
Second, we discuss the Ṽ := −i divA+ V part of L. It will suffice to show that

‖〈∇〉
1/2wGṼw−1

〈x〉εf ‖2 . ‖f ‖2 (24)

since then

〈∇〉
1/2wGṼw−1

〈∇〉
−1/2
= 〈∇〉

1/2wGṼw−1
〈x〉ε〈x〉−ε〈∇〉−1/2
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is compact. To prove (24), we argue as before:

‖〈∇〉
1/2wGṼw−1

〈x〉εf ‖2 . ‖∇wGṼw−1
〈x〉εf ‖2 + ‖wGṼw

−1
〈x〉εf ‖2.

The second summand on the right-hand side is controlled by the Hilbert–Schmidt norm
provided σ > 1. The first summand is handled similarly to the proof of (23). ut

The following remark will be used to analyze the condition at energy zero.

Remark 6. Combining (22) with the usual boundedness properties ofG on weighted L2

spaces (i.e., G : L2,β1 → L2,−β2 provided β1 + β2 > 2 and β1, β2 > 1/2, see [12]
or [10]) yields

‖GLh‖L2,−τ+ε/2(R3) ≤ ‖h‖L2,−τ (R3) (25)

for any τ > (1+ ε)/2 provided |divA(x)|+ |V (x)| . 〈x〉−2−ε and |A(x)| . 〈x〉−τ−1−ε.

As an immediate consequence we arrive at the following.

Corollary 7. Assume that ker(I + Z1GLZ
−1
1 ) = {0} as an operator on L2(R3). Then

I + Z1GLZ
−1
1 is invertible on L2. Moreover,

‖Z1(I + R0(λ
2
+ i0)L)−1Z−1

1 ‖2→2 <∞ (26)

uniformly for small λ. An analogous statement holds with Z2 instead of Z1.

Proof. The first statement is Fredholm’s alternative. Note that

(I + Z1GLZ
−1
1 )−1

= Z1(I +GL)
−1Z−1

1

whereGL on the right-hand side is an operator on Z−1
1 (L2(R3)). By the same token, (26)

is the same as
‖(I + Z1R0(λ

2
+ i0)LZ−1

1 )−1
‖2→2 <∞

uniformly for small λ. To prove this, we write

I + Z1R0(λ
2
+ i0)LZ−1

1 = I + Z1GLZ
−1
1 + Z1BλLZ

−1
1

where Bλ = R0(λ
2
+ i0)−G. By a Neumann series argument, it suffices to prove that

sup
|λ|<λ−1

0

‖Z1BλLZ
−1
1 ‖2→2 → 0 (27)

as λ0 →∞. We have the following bounds on the kernel of Bλ:

|Bλ(x, y)| .
|λ|γ

|x − y|1−γ
, 0 ≤ γ ≤ 1,

|∇xBλ(x, y)∇y | .
λ

|x − y|2
+

λ2

|x − y|
,

|∇xBλ(x, y)| + |Bλ(x, y)∇y | .
λ

|x − y|
.

(28)
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To prove (27), we estimate

‖Z1BλLZ
−1
1 ‖2→2 . ‖∇wBλLw

−1
‖2→2 + ‖wBλLw

−1
‖2→2

. ‖w∇BλLw
−1
‖2→2 + ‖wBλLw

−1
‖2→2.

As before, we write L = 2i∇ · A + Ṽ . To conclude the argument, one now uses (28)
together with Schur’s lemma (for the λ/|x − y|2 term) as well as the Hilbert–Schmidt
norm (for the others). ut

We now relate the condition in Corollary 7 to the notion of resonance and/or eigenvalue
at zero.

Lemma 8. Suppose that zero is neither an eigenvalue nor a resonance of H . Then under
the conditions of Lemma 5 one has

ker(I + ZjGLZ−1
j ) = {0} on L2(R3)

for j = 1, 2. In particular, (26) holds for small λ.

Proof. Suppose f ∈ L2(R3) satisfies

f + Z1GLZ
−1
1 f = 0.

Set h := Z−1f . Then h = −GLh ∈ L2,−σ (R3). Applying Remark 6 we see that h ∈
L2,−(σ−ε/2)(R3). Repeating this process shows that h ∈

⋂
τ>1/2 L

2,−τ (R3). It follows
(see [12] and [10]) that Hh = 0 in the distributional sense. However, by our assumption
on zero energy it follows that h = 0 and therefore f = 0 as desired. The argument for Z2
is analogous. ut

4. Large energies

The goal of this section is to prove the bound

sup
λ>λ0

‖Z1RL(λ
2
+ i0)Z∗1‖2→2 <∞ (29)

with some large λ0 and similarly for Z2. Here Z1, Z2 are as in (19) with w(x) = 〈x〉−σ .
Note that in combination with the previous sections this will finish the proof of Theo-
rem 1. In order to establish (29) we introduce some notations: for any λ > 1 define

T̂λf (ξ) = 〈ξ/λ〉
−1f̂ (ξ) and Sλ := T −1

λ R0(λ
2
+ i0).

It is clear that for any τ one has

Tλ : L2,τ
→ L2,τ (30)

with a bound independent of λ. Indeed, by the Fourier transform this is equivalent to

〈ξ/λ〉−1 : H τ
→ H τ
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as a multiplication operator with norm independent of λ. The decay in large |ξ | suggests
that Tλ also improves local regularity. More precisely,

‖〈∇〉
αTλf ‖L2τ . 〈λ〉α‖f ‖L2,τ

for any α in [0, 1].
The Fourier multiplier associated to Sλ is less well behaved, but we still have the

following bound:

Lemma 9. With Sλ as before,

‖〈∇〉
αSλf ‖L2,−τ . λα−1

‖f ‖L2,τ

provided τ > 1/2 and α ∈ [0, 1].

Proof. By algebra of operators,

〈∇/λ〉2R0(λ
2
+ i0) = 2R0(λ

2
+ i0)− λ−2I. (31)

Therefore, if τ > 1/2 and λ > 1, then

‖〈∇/λ〉2R0(λ
2
+ i0)f ‖L2,−τ ≤ 2‖R0(λ

2
+ i0)f ‖L2,−τ + λ

−2
‖f ‖L2,−τ . λ−1

‖f ‖L2,τ

by Agmon’s limiting absorption principle [1]. Finally, we bound

‖〈∇〉
αSλf ‖L2,−τ ≤ ‖〈∇〉

αTλ‖L2,−τ→L2,−τ ‖〈∇/λ〉
2R0(λ

2
+ i0)f ‖L2,−τ ,

which finishes the proof. ut

Remark 10. The resolvent estimate that we used above,

‖R0(λ
2
+ i0)f ‖L2,−τ . λ−1

‖f ‖L2,τ ,

follows directly from the calculations in [1], but only appears as a separately stated theo-
rem in later works such as [12].

Next, we combine Tλ and Sλ with Z1 (in what follows, we will deal with Z1, the case
of Z2 being easier):

Lemma 11. With the previous notation,

‖Z1Tλf ‖2 . λ1/2
‖f ‖L2,−σ , ‖SλZ

∗

1f ‖L2,−σ . λ−1/2
‖f ‖2

for all λ > 1.
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Proof. First,
Z1Tλ = w〈∇〉

1/2Tλ + [〈∇〉1/2, w]Tλ. (32)

Now, by the same Fourier argument as above,

‖〈∇〉
1/2Tλf ‖L2,−σ . λ1/2

‖f ‖L2,−σ .

Hence, the first term on the right-hand side of (32) satisfies the desired bound. On the
other hand, the commutator term in (32) can be written as

‖[〈∇〉1/2, w]Tλ‖L2,−σ→L2 ≤ ‖[〈∇〉1/2, w]w−1
‖L2→L2‖wTλ‖L2,−σ→L2 . 1

uniformly in λ. Indeed, [〈∇〉1/2, w]w−1 is a pseudo-differential operator of order zero
and is therefore L2 bounded, whereas

‖wTλ‖L2,−σ→L2 . 1

by the preceding. Next, we claim that

‖Z1S
∗
λf ‖2 . λ−1/2

‖f ‖L2,σ , (33)

which will finish the proof by duality. To prove (33), we write

Z1S
∗
λ = Z1TλT

−2
λ R0(λ

2
− i0).

From (31),
‖T −2
λ R0(λ

2
− i0)f ‖L2,−σ . λ−1

‖f ‖L2,σ

provided σ > 1/2. Secondly, we have already shown that

Z1Tλ : L2,−σ
→ L2

with bound λ1/2. Thus, (33) follows and we are done. ut

Now we continue with the proof of (29). By the resolvent identity, we have

Z1RL(λ
2
+ i0)Z∗1 = Z1Tλ(I + SλLTλ)

−1SλZ
∗

1

provided I + SλLTλ is invertible as an operator on L2,−σ . This invertibility will follow
by means of a partial Neumann series via the following lemma. The proof of this lemma,
which is the crucial technical ingredient in this paper, will be given in the next section.

Lemma 12. Given A and V as in Theorem 1 as well as a positive constant c > 0, there
exist sufficiently large m = m(c) and λ0 = λ0(c) such that

sup
λ>λ0

‖(R0(λ
2
+ i0)L)m‖L2,−σ→L2,−σ ≤ c. (34)

Here σ > 4.

In view of Lemma 11, the estimate in (29) follows from the following result:
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Corollary 13. With the above notation and for σ > 4, we have

(I + SλLTλ)
−1 : L2,−σ

→ L2,−σ

with a uniform norm for all large λ.

Proof. We write the partial Neumann series, with m as in Lemma 12,

(I + SλLTλ)
−1
=

( m∑
k=0

(−1)k(SλLTλ)k
)
(I + (−1)m+1(SλLTλ)

m+1)−1.

By Lemma 12, the inverse on the right-hand side exists on L2,−σ with a uniform bound
for all λ > λ0. Indeed,

(SλLTλ)
m+1
= SλL(R0(λ

2
+ i0)L)mTλ

so that, with some constant C1 that only depends on A and V ,

‖(SλLTλ)
m+1
‖L2,−σ→L2,−σ

≤ ‖SλL‖L2,−σ→L2,−σ ‖(R0(λ
2
+ i0)L)m‖L2,−σ→L2,−σ ‖Tλ‖L2,−σ→L2,−σ

≤ C1c < 1/2

provided c was chosen sufficiently small. Furthermore,

SλLTλ = 2iSλA · ∇Tλ + Sλ(i divA+ V )Tλ.

By (30) and Lemma 9,

‖Sλ(i divA+ V )Tλf ‖L2,−σ . ‖f ‖L2,−σ .

Furthermore, again from (30) and Lemma 9,

‖SλA · ∇Tλ‖L2,−σ→L2,−σ . ‖SλA‖L2,−σ→L2,−σ ‖∇Tλ‖L2,−σ→L2,−σ . λ−1λ . 1,

which means the finite sum over k = 0, . . . , m can be controlled with a bound indepen-
dent of λ. ut

At this point the proof of Theorem 2 is essentially complete, thanks to the identity

‖〈∇〉
αRL(λ

2
+ i0)〈∇〉αf ‖L2,−σ = ‖〈∇〉

αTλ(I + SλLTλ)
−1Sλ〈∇〉

αf ‖L2,−σ

≤ ‖〈∇〉
αTλ‖L2,−σ→L2,−σ ‖(I + SλLTλ)

−1
‖L2,−σ→L2,−σ ‖〈∇〉

αSλf ‖L2,−σ

. 〈λ〉2α−1
‖(I + SλLTλ)

−1
‖L2,−σ→L2,−σ ‖f ‖L2,σ .

For large λ, the desired operator bound for (I + SλLTλ)−1 is given by Corollary 13.
For small λ, it follows from the Fredholm theory arguments in Section 3. One only needs
to repeat the steps taken in that section using the operator T −1

λ in place of Z1.
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5. The proof of Lemma 12

We start with the following observation: since L = 2i∇ · A− i divA+ V ,

(R0(λ
2
+ i0)L)m = (2i)m(R0(λ

2
+ i0)∇ · A)m + Em(λ2) (35)

where the error Em(λ2) satisfies

‖Em(λ
2)‖L2,−σ→L2,−σ ≤ C(m, V,A)λ

−1

provided

|A(x)| + |divA(x)| + |V (x)| . 〈x〉−1−ε.

This follows from Agmon’s limiting absorption principle [1].
Thus, we are reduced to L = ∇ ·A. To deal with this case, we shall perform a conical

decomposition of the free resolvent. Let {χS}S∈6 be a smooth partition of unity on the
sphere S2 which is adapted to a family of caps 6 of diameter δ (a small parameter to
be specified later). For the most part, we shall drop the subscript S so that χ will denote
any one of these cut-offs and χ̃ will typically denote a cut-off associated to χ but with a
dilated cap as support. We write

R0(λ
2
+ i0)(x) =

∑
S∈6

eiλ|x|

4π |x|
χS(x/|x|) =:

∑
S∈6

RS(λ
2
+ i0)(x). (36)

We begin by studying the multiplier associated with RS .

Proposition 14. Let χ be a cut-off supported in a δ-cap on S2 where δ > 0 is a small
parameter. Let Kλ be defined as

Kλ(ξ) := F
[
eiλ|x|

4π |x|
χ(x/|x|)

]
(ξ)

where F denotes the Fourier transform. Then

Kλ(ξ) :=
{
O(λ−2δ2) if |ξ | < λ/2,
O(|ξ |−2) if |ξ | > 10λ,

and for λ/2 ≤ |ξ | ≤ 10λ,

Kλ(ξ) = O(δ
−2λ−2)+ λ−1χ̃(ξ/|ξ |)fδ(ξ/λ)

[
dσλS2(ξ)+ i P.V.

1
λ− |ξ |

]
(37)

where χ̃ is a modified cut-off supported in twice the cap of χ and ‖fδ‖∞ . 1, ‖fδ‖Cα .
δ−2α for any α < 1.
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Proof. By scaling, it suffices to set λ = 1. Let

K(ξ) = Kε,δ(ξ) =

∫
e−ε|x|

ei|x|

4π |x|
χ(x/|x|)e−ix·ξ dx.

We assume that χ(x) is smooth and supported in a δ-neighborhood of (0, 0, 1). Further-
more, by symmetry we can assume that ξ2 = 0. We shall use the identity

K(ξ) =

∫
S2

∫
∞

0
e−εreirrχ(ω)e−irω·ξ dr dσ(ω)

=

∫
S2
(ε − i(1− ω · ξ))−2χ(ω) dσ(ω). (38)

Case 1: ξ3 ≤ 1/2 and |ξ | ≤ 10. Then from (38) we infer that K(ξ) = O(δ2).

Case 2: |ξ3| ≥ |ξ |/2 and |ξ | > 10. In this case |1−ω · ξ | & |ξ | so that |K(ξ)| . δ2/|ξ |2

from (38).

Cases 3 and 4 below deal with |ξ | > 10, |ξ3| < |ξ |/2. Note that then

{ω · ξ : ω ∈ 2S} = [a(ξ), b(ξ)]

where S := supp(χ) ⊂ S2 and b(ξ)− a(ξ) . δ. Moreover, 2S denotes the twice dilated
set S.

Case 3: |ξ3| ≤ |ξ |/2 and |ξ | > 10, with 1 /∈ [|ξ |a(ξ), |ξ |b(ξ)]. Then

|K(ξ)| .
∫ b(ξ)−δ

a(ξ)+δ

δ ds

(1− s|ξ |)2
.

1
|ξ |

∫ 1−(a(ξ)+δ)|ξ |

1−(b(ξ)−δ)|ξ |

δ

u2 du

.
δ

|ξ |
(|1− (b(ξ)− δ)|ξ | |−1

+ |1− (a(ξ)+ δ)|ξ | |−1) .
δ

|ξ |

1
δ|ξ |

. |ξ |−2

as claimed.

Case 4: |ξ3| ≤ |ξ |/2 and |ξ | > 10, with 1 ∈ [|ξ |a(ξ), |ξ |b(ξ)]. Here we write

K(ξ) =

∫
I

δψ(s)

(s|ξ | − 1− iε)2
ds

where I is an interval of size ∼ δ centered at |ξ |−1 and |ψ (`)(s)| . δ−`. Shifting the
center of ψ to 0 and abusing notation, we obtain

K(ξ) =

∫ cδ

−cδ

δψ(s)

(s|ξ | − iε)2
ds =

δ

|ξ |

∫ cδ

−cδ

ψ ′(s) ds

s|ξ | − iε

=
δ

|ξ |

∫ cδ

−cδ

ψ ′(s)− ψ ′(0)
s|ξ | − iε

+
δ

|ξ |

∫ cδ

−cδ

ψ ′(0) ds
s|ξ | − iε

= O(|ξ |−2)

using the bounds on ψ ′ and ψ ′′.



Strichartz estimates for large magnetic potentials 521

Case 5: ξ3 ≥ 1/2 and 1/2 ≤ |ξ | ≤ 10. In this case we write

K(ξ) = O(δ−2)+

∫
∞

δ−2
e−εreirra(rξ) dr

where
a(rξ) =

∫
S2
χ(ω)e−irω·ξ dσ(ω).

By stationary phase

a(rξ) =
e−ir|ξ |

r|ξ |

(
χ(ξ/|ξ |)+ χ̃(ξ/|ξ |)

δ−2

|ξ |r

)
+O

(
δ−4

|ξ |3r3

)
.

Therefore, with e := ξ/|ξ |,

K(ξ) = O(δ−2)+
χ(e)

|ξ |

e[−ε+i(1−|ξ |)]δ−2

ε + i(1− |ξ |)
+
χ̃(e)

|ξ |2δ2

∫
∞

δ−2

e[−ε+i(1−|ξ |)]r

r
dr

= O(δ−2)+
1

ε − i(1− |ξ |)

[
χ(e)

|ξ |
e[−ε+i(1−|ξ |)]δ−2

+
χ̃(e)

|ξ |2
e[−ε+i(1−|ξ |)]δ−2

−
χ̃(e)

|ξ |2δ2

∫
∞

δ−2

e[−ε+i(1−|ξ |)]r

r2 dr

]
=: O(δ−2)+

χ̃(e)

ε − i(1− |ξ |)
fε,δ(ξ).

Note that, as ε→ 0, fδ := limε→0 fε,δ satisfies

‖fδ‖∞ . 1, ‖fδ‖Cα . δ−2α

for any α < 1. Furthermore, in the sense of distributions,

lim
ε→0

χ̃(e)

ε − i(1− |ξ |)
= χ̃(e)

[
dσS2(ξ)+ i P.V.

1
1− |ξ |

]
.

Here χ̃ on the right-hand side is modified to absorb any needed constants. ut

We shall use this result to prove Proposition 16 below, which is a version of the limiting
absorption principle. First, we prove a lemma about the action of the singular part in (37)
on functions.

Lemma 15. Given a function ϕ in R3 and 0 < α < 1, define

[ϕ]α(ξ) := sup
|h|<1

|ϕ(ξ)− ϕ(ξ + h)|

|h|α
.

Then∣∣∣∣∫R3
ϕ(ξ)

[
σλS2(dξ)+ i P.V.

dξ

λ− |ξ |
χ[λ−1<|ξ |<λ+1]

]∣∣∣∣ . ‖ϕ‖L1(λS2) + Cα‖[ϕ]α‖L1(λS2)

provided the right-hand side is finite.
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Proof. It suffices to consider the principal value part. Thus,∣∣∣∣P.V. ∫
||ξ |−λ|<1

ϕ(ξ)

|ξ | − λ
dξ

∣∣∣∣ = ∣∣∣∣P.V. ∫ λ+1

λ−1

β2 ∫
S2 ϕ(βθ) dσ(θ)

β − λ
dβ

∣∣∣∣
.
∫ λ+1

λ−1

β2 ∫
S2 |ϕ(βθ)− ϕ(λθ)| dσ(θ)

|β − λ|
dβ

+

∣∣∣∣P.V. ∫ λ+1

λ−1

β2 ∫
S2 ϕ(λθ) dσ(θ)

β − λ
dβ

∣∣∣∣ (39)

The second term on the right-hand side in (39) is

. λ

∫
S2
|ϕ(λθ)| dσ(θ) . λ−1

‖ϕ‖L1(λS2)

whereas the first term is

.
∫ λ+1

λ−1
β2
|β − λ|α−1[ϕ]α(λθ) dσ(θ)dβ ≤ Cα‖[ϕ]α‖L1(λS2)

as claimed. ut

We now turn to the limiting absorption principle. Note the decay λ−1 on the right-hand
side which corresponds to a gain of a derivative on the left-hand side. Also, note that the
constant does not depend on δ at least if λ > δ−2.

Proposition 16. Let w = 〈x〉−σ with σ > 4. For λ > δ−2 define the kernels

Q̃λ(x, y) := w(x)
eiλ|x−y|

|x − y|
χ

(
x − y

|x − y|

)
w(y),

Qλ(x, y) := w(x)∇x
eiλ|x−y|

|x − y|
χ

(
x − y

|x − y|

)
w(y).

Then

‖Q̃λ‖2→2 ≤ C0λ
−1, ‖Qλ‖2→2 ≤ C0.

The constant C0 does not depend on δ.

Proof. It will suffice to treat Qλ. We apply Schur’s lemma. Thus, using the notation of
Proposition 14 (and assuming that w is real-valued), we obtain∫
Qλ(x, y)f (y)g(x) dx dy =

∫
ξKλ(ξ)ŵ ∗ f̂ (ξ)ŵ ∗ ĝ(ξ) dξ

=

∫ ∫
ξKλ(ξ)ŵ(ξ − ξ1)ŵ(ξ − ξ2) dξ f̂ (ξ1)ĝ(ξ2) dξ1 dξ2.
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The theorem follows provided we can show that

sup
ξ2

∫ ∣∣∣∣∫ ξKλ(ξ)ŵ(ξ1 − ξ)ŵ(ξ − ξ2) dξ

∣∣∣∣ dξ1 . 1. (40)

First, note the bounds

|ŵ(ξ)| . 〈ξ〉−3−ε, |∇ŵ(ξ)| . 〈ξ〉−3−ε. (41)

In fact, one has rapid decay here but it is not needed. Second, it follows from Proposi-
tion 14 that Kλ := K1 +K2 +K3 where

K1(ξ) = O(δ
−2λ−2)χ[|ξ |<10λ],

K2(ξ) = O(|ξ |
−2)χ[|ξ |>10λ],

K3(ξ) = λ
−1χ(e)fδ(ξ/λ)

[
dσλS2(ξ)+ i P.V.

1
λ− |ξ |

χ[λ−1<|ξ |<λ+1]

]
.

(42)

The cut-offs here are understood to be smooth. It is easy to see that K1 and K2 contribute
O(δ−2λ−1) and O(λ−1) to (40), respectively. To bound the contribution of K3, we use
Lemma 15. Thus, define

ϕ(ξ) := ξχ(ξ/|ξ |)fδ(ξ/λ)ŵ(ξ1 − ξ)ŵ(ξ − ξ2).

Then

‖ϕ‖L1(λS2) . λ

∫
λS2

χ(ξ/|ξ |)〈ξ1 − ξ〉
−3−ε
〈ξ − ξ2〉

−3−ε dσ(ξ) =: Jλ(ξ1, ξ2) (43)

as well as

‖[ϕ]α‖L1(λS2) . ((λδ)−1
+ (δ2λ)−α)Jλ(ξ1, ξ2) . Jλ(ξ1, ξ2) (44)

provided λ > δ−2. In view of Lemma 15 the contribution of K3 to (40) is bounded by

sup
ξ2

λ−1
∫
Jλ(ξ1, ξ2) dξ1 . 1,

and the proposition follows. ut

Next, we study the effect of composing two resolvents which have been restricted to
disjoint conical regions.

Proposition 17. Assume that σ > 4 and∑
|α|≤2

|DαÂ(ξ)| . 〈ξ〉−3−ε
∀ξ ∈ R3 (45)

where ε > 0. Let S1,S2 ⊂ S
2 with dist(S1,S2) > 5δ where dist is the distance on S2. Let

R1(λ
2) and R2(λ

2) be the free resolvents which have been restricted to conical regions
corresponding to S1,S2, respectively. Then

‖wR1(λ
2)∇ · AR2(λ

2)∇w‖2→2 . δ−2λ−1

provided λ > δ−2.
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Proof. We use Schur’s lemma as in the proof of Proposition 16. Thus, we write∫ ∫ ∫
g(x)w(x)∇zR1(λ

2)(x − z)A(z) · ∇yR2(λ
2)(z− y)w(y)f (y) dx dy dz

=

∫ ∫
ĝ(ξ)U(ξ, η)f̂ (η) dξ dη

where (with real-valued w)

U(ξ, η) :=
∫
ŵ(ξ − ξ1)ξ1R̂1(λ2)(ξ1)Â(ξ2 − ξ1)ξ2R̂2(λ2)(ξ2)ŵ(η − ξ2) dξ1 dξ2.

We claim that

sup
η

∫
R3
|U(ξ, η)| dξ . δ−2λ−1. (46)

By symmetry, this will imply the proposition. Next, we write as in (42), for the Fourier
transforms K(j)

λ = R̂j (λ
2) with j = 1, 2,

K
(j)
λ = K

(j)

1 +K
(j)

2 +K
(j)

3 .

The integral on the left-hand side of (46) is bounded by

3∑
i,j=1

∫ ∣∣∣∣∫ ŵ(ξ − ξ1)ξ1K
(1)
i (ξ1)Â(ξ2 − ξ1)ξ2K

(2)
j (ξ2)ŵ(η − ξ2) dξ1 dξ2

∣∣∣∣ dξ. (47)

Of the nine different combinations here all but i = j = 3 are easy. Indeed, if i = 1, 2
then for any j = 1, 2, 3,∫ ∣∣∣∣∫ ŵ(ξ − ξ1)ξ1K

(1)
i (ξ1)Â(ξ2 − ξ1)ξ2K

(2)
j (ξ2)ŵ(η − ξ2) dξ1 dξ2

∣∣∣∣ dξ
. δ−2λ−1

∫
|ŵ(η − ξ1)| dξ1

∫ ∣∣∣∣ ∫ Â(ξ2 − ξ1)ξ2K
(2)
j (ξ2)ŵ(η − ξ2) dξ2

∣∣∣∣ dξ dξ1

. δ−2λ−1

by the discussion following (40) (in particular, recall (41)). It remains to consider i =
j = 3. For this we shall use Lemma 15. Let

Gλ(ξ1, η) :=
∫
Â(ξ2 − ξ1)ξ2K

(2)
3 (ξ2)ŵ(η − ξ2) dξ2

= λ−1
∫
ϕ(ξ2)

[
σλS2(dξ2)+ i P.V.

dξ2

λ− |ξ2|
χ[λ−1<|ξ2|<λ+1]

]
with

ϕ(ξ2) := Â(ξ2 − ξ1)ξ2χ2(ξ2/|ξ2|)fδ(ξ2/λ)ŵ(η − ξ2).
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Here χ2 is a cut-off adapted to S2. By Lemma 15, and (43), (44),

|Gλ(ξ1, η)| .
∫
λS2

χ2(ξ2/|ξ2|)〈ξ2 − ξ1〉
−3−ε
〈η − ξ2〉

−3−ε dσ(ξ2).

Note that the same estimates hold if we replace Â with ∇Â. Therefore,

|∇ξ1Gλ(ξ1, η)| .
∫
λS2

χ2(ξ2/|ξ2|)〈ξ2 − ξ1〉
−3−ε
〈η − ξ2〉

−3−ε dσ(ξ2).

In view of these estimates we can apply Lemma 15 again to obtain∣∣∣∣∫ ŵ(ξ − ξ1)ξ1K
(1)
3 (ξ1)Gλ(ξ1, η) dξ1

∣∣∣∣
.
∫
λS2
〈ξ−ξ1〉

−3−εχ1(ξ1/|ξ1|)

∫
λS2

χ2(ξ2/|ξ2|)〈ξ2−ξ1〉
−3−ε
〈η−ξ2〉

−3−ε dσ(ξ2) dσ (ξ1).

Hence the contribution of i = j = 3 to (47) is bounded by∫ ∫
λS2

∫
λS2

(
〈ξ − ξ1〉

−3−εχ1(ξ1/|ξ1|)χ2(ξ2/|ξ2|)〈ξ2 − ξ1〉
−3−ε
〈η − ξ2〉

−3−ε
)

· dσ(ξ2) dσ (ξ1) dξ

.
∫
λS2

∫
λS2

χ1(ξ1/|ξ1|)χ2(ξ2/|ξ2|)〈ξ2 − ξ1〉
−3−ε
〈η − ξ2〉

−3−ε dσ(ξ2) dσ (ξ1)

.
1

λdist(S1,S2)
. λ−1δ−1.

This is again smaller than δ−2λ−1, as claimed. ut

We now write the power on the right-hand side of (35) as a sum of products (dropping
λ2
+ i0 from the resolvent):

(R0∇ · A)
m
=

∑
S1,...,Sm∈6

RS1∇ · A . . .∇ · ARSm∇ · A. (48)

There are two types of chains S1, . . . ,Sm in this sum:

• if dist(Si,Si+1) ≤ 5δ for all 1 ≤ i ≤ m− 1, then we call the chain directed;
• otherwise, we call it undirected.

For the undirected chains there is the following corollary of the previous proposition.

Corollary 18. If {Sj }mj=1 is undirected, then for σ > 4,

‖RS1∇ · A . . .∇ · ARSm∇ · A‖L2,−σ→L2,−σ ≤ C(m,A)δ
−2λ−1 (49)

provided λ > δ−2. In particular, if λ > δ−2,∥∥∥ ∑
S1,...,Sm∈6

undirected

RS1∇ · A . . .∇ · ARSm∇ · A
∥∥∥
L2,−σ→L2,−σ

≤ C(m,A)δ−2(m+1)λ−1. (50)
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Proof. This follows by applying Proposition 17 to one pair of resolvents where
dist(Si,Si+1) > 5δ; for the others, use Proposition 16. More precisely, with i as specified,
we write

ARSi∇ · ARSi+1∇ · A = Aw
−1wRSi∇ · ARSi+1∇ · ww

−1A (51)

where as usual w(x) = 〈x〉−σ . In view of |A(x)| . 〈x〉−2σ and by our assumptions on
Â, we apply Proposition 17 to the right-hand side of (51) to conclude that

‖wRSi∇ · ARSi+1∇ · w‖2→2 . δ−2λ−1. (52)

To combine this with Proposition 16, we insert factors of ww−1 as follows: with Ã :=
w−1Aw−1,

m∏
j=1

(RSj∇A) = w
−1(wRS1∇w)Ã(wRS2∇w)Ã · . . .

. . . · Ã(wRSi∇ · ARSi+1∇ · w)Ã(wRSi+2∇w) . . . (wRSm∇w)Ãw.

Observe that
sup
j

‖wRSj∇w‖2→2 ≤ C

uniformly in λ > δ−2 as well as ‖Ãf ‖2 . ‖f ‖2. Combining this with (52) yields (49).
To pass to (50) one sums over all possible choices of undirected chains of which there are
no more than (C/δ)2m. ut

Remark 19. The summation over all possible paths is quite inefficient, as it does not
take advantage of any orthogonality between different operators RS . However large the
constants may be, once A, m, and δ are fixed, the bound in (50) still approaches zero in
the limit λ→∞.

Finally, we turn to the directed chains. For these it will be important that δm �
1 to ensure that the composition of resolvents restricted to any directed chain remains
outgoing. Moreover, we will need to distinguish the near and far parts of the free resolvent
kernels which are defined as follows:

Q0
S(x, y) := w(x)[∇yRS(x − y)]χ(|x − y| < ρ)w(y),

Q1
S(x, y) := w(x)[∇yRS(x − y)]χ(|x − y| > ρ)w(y),

where 1 = χ(|x − y| < ρ) + χ(|x − y| > ρ) is a smooth partition of unity adapted to
the indicated sets. The parameter ρ here is a small number depending on m. For the near
part, we have the following refinement of Proposition 16.

Proposition 20. Under the conditions of Proposition 16 one has

‖Q0
S‖2→2 ≤ C2ρ, ‖Q1

S‖2→2 ≤ C2

provided λ > δ−2ρ−1. Here C2 does not depend on δ.
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Proof. Because of Proposition 16 it will suffice to prove the bound on Q0
S . In this proof,

we shall write
χρ(x − y) := χ(|x − y| < ρ).

Observe that χ̂ρ is rapidly decaying outside of a ball of size . ρ−1. Thus, as in the proof
of Proposition 16, and with K̃λ(ξ) := ξKλ(ξ),∫

Q0
S(x, y)f (y)g(x) dx dy =

∫
[K̃λ ∗ χ̂ρ](ξ)ŵ ∗ f̂ (ξ)ŵ ∗ ĝ(ξ) dξ

=

∫ ∫
[K̃λ ∗ χ̂ρ](ξ)ŵ(ξ − ξ1)ŵ(ξ − ξ2) dξ f̂ (ξ1)ĝ(ξ2) dξ1 dξ2

The theorem follows provided we can show that

sup
ξ2

∫ ∣∣∣∣ ∫ [K̃λ ∗ χ̂ρ](ξ)ŵ(ξ1 − ξ)ŵ(ξ − ξ2) dξ

∣∣∣∣ dξ1 . ρ. (53)

It follows from Proposition 14 that

K̃λ := K̃1 + K̃2 + K̃3

where (with smooth cut-offs)

[K̃1 ∗ χ̂ρ](ξ) = O(δ−2λ−1), (54)

[K̃2 ∗ χ̂ρ](ξ) = O(λ−1), (55)

K̃3 ∗ χ̂ρ = λ
−1χ̂ρ ∗

{
χSfδ(·/λ)

[
λdσλS2(η)+ i P.V.

η

λ− |η|
χ[λ−1<|η|<λ+1]

]}
. (56)

We also used there that λ � ρ−1. The contributions of (54) and (55) to (53) are treated
as in Proposition 16 and yield a bound of δ−2λ−1 < ρ as desired. For the contribution
of (56) we note that

|K̃3 ∗ χ̂ρ |(ξ) . ρ.

Hence, the contribution of (56) to (53) is

. ρ sup
ξ2

∫ ∫
|ŵ(ξ1 − ξ)ŵ(ξ − ξ2)| dξ dξ1 . ρ

as desired. ut

Next, we write∑
S1,...,Sm∈6

directed

RS1∇ · A . . .∇ · ARSm∇ · A

=

∑
S1,...,Sm∈6

directed

∑
ε1,...,εm=0,1

w−1Q
ε1
S1
Ã . . . ÃQ

εm
SmÃw. (57)



528 M. Burak Erdoğan et al.

Fix a directed chain and assume without loss of generality that it is directed along the
positive x1-axis. Since δm� 1, one has

Q1
Sj (x, y) = 0 unless x1 − y1 > ρ/2

for each 1 ≤ j ≤ m. Next, we decompose

Ã =
∑
n∈Z

Ãn, Ãn(x) := Ã(x)χ[nρ/2<x1<(n+1)ρ/2].

We start by estimating the contribution of products consisting entirely of far kernels.

Lemma 21. Suppose that |A(x)| ≤ CA〈x〉−2σ−1−ε with σ > 4. Then, with the previous
notation,

‖Q1
S1
Ã . . . ÃQ1

SmÃ‖2→2 ≤
Cm3
m!ρm

provided λ > δ−2
+ ρ−1. The constant C3 here depends only on A.

Proof. By our assumptions,

‖Ãnf ‖2 ≤ CA(1+ |n|ρ/2)−1−ε
‖f ‖2.

Moreover, since sup1≤j≤m ‖Q
1
Sj ‖2→2 ≤ C2,

‖Q1
S1
Ã . . . ÃQ1

SmÃ‖2→2 ≤
∑

n1>···>nm

‖Q1
S1
Ãn1 . . . Ãnm−1Q

1
SmÃnm‖2→2

≤ Cm2

∑
n1>···>nm

m∏
j=1

‖Ãnj ‖2→2

≤ CmAC
m
2

∑
n1>···>nm

m∏
j=1

(1+ |nj |ρ/2)−1−ε

≤
CmAC

m
2

m!

∑
n1,...,nm∈Z

m∏
j=1

(1+ |nj |ρ/2)−1−ε
=

Cm3
ρmm!

as claimed. ut

Next, we turn to the general case.

Lemma 22. Under the conditions of Lemma 21,∑
ε1,...,εm=0,1

‖Q
ε1
S1
Ã . . . ÃQ

εm
SmÃ‖2→2 ≤ C

m
5 m
−m/16

where C5 only depends on A.
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Proof. Let µ =
∑m
j=2 εj . Then∑

ε1,...,εm=0,1

‖Q
ε1
S1
Ã . . . ÃQ

εm
SmÃ‖2→2

≤

∑
ε1,...,εm=0,1

∑
n1

(ε2)
. . .

∑
nm−1

(εm)
∑
nm

Cm2 ρ
1−ε1ρm−1−µ

m∏
j=1

‖Ãnj ‖2→2. (58)

Here, for fixed ni+1, ∑
ni

(εi+1)
=

{∑
ni>ni+1

if εi+1 = 1,∑
ni+1+3≥ni≥ni+1

if εi+1 = 0.

Now

(58) ≤ 2
∑

ε2,...,εm=0,1

∑
n1

(ε2)
. . .

∑
nm−1

(εm)
∑
nm

(CAC2)
m

· ρm−1−µ
m∏
j=1

(1+ |nj |ρ/2)−1−ε

≤ (4CAC2)
m
m−1∑
`=1

(
m− 1
`

)
ρ`

(m− `− 1)!

(
C

ρ

)m−`−1

(59)

by counting and symmetry as in the proof of Lemma 21. Simplifying further, we conclude
that

(59) ≤ Cm4 ρ
−(m−1)

m−1∑
`=1

(
m− 1
`

)
ρ2`

(m− `− 1)!
. (60)

The contribution of the sum over ` ≥ (m− 1)/2 + m/4 to the right-hand side of (60) is
at most (2C4)

mρm/2. On the other hand, the sum over ` < (m− 1)/2+m/4 is bounded
by

(2C4)
m ρ−(m−1)

bm/4c!
.

Setting ρ := m−1/8 yields the lemma. ut

Using (57), Lemma 22 and the observation that there are at most δ−2Cm directed chains
we conclude that∥∥∥ ∑

S1,...,Sm∈6
directed

RS1∇ · A . . .∇ · ARSm∇ · A
∥∥∥
L2,−σ→L2,−σ

≤ δ−2Cm6 m
−m/16. (61)

Recall that in Lemma 12 we are given an operator L (quickly reduced to the case L =
∇ ·A) and a small parameter c > 0. Based on the value of C6(A) from (61) we choose m
and δ = (10m)−1 large enough so that the right side of (61) is less than c/2. The bound
for directed chains is independent of λ.
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For the undirected chains, we apply Corollary 18 directly. With the quantities m and
δ already fixed, it is easy to find λ0 so that the right side of (50) is less than c/2 whenever
λ > λ0. This finishes the proof of Lemma 12.

Acknowledgments. The authors were partially supported by the NSF, the first author by DMS-
0540084, the second by DMS-0600925, and the third by DMS-0617854. The third author wishes
to thank Carlos Kenig for his interest and encouragement.

References

[1] Agmon, S.: Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola
Norm. Sup. Pisa Cl. Sci. (4) 2, 151–218 (1975) Zbl 0315.47007 MR 0397194

[2] Avron, J. E., Herbst, I. W., Simon, B.: Schrödinger operators with magnetic fields. III. Atoms
in homogeneous magnetic field. Comm. Math. Phys. 79, 529–572 (1981) Zbl 0464.35086
MR 0623966

[3] Christ, M., Kiselev, A.: Maximal functions associated with filtrations. J. Funct. Anal. 179,
409–425 (2001) Zbl 0974.47025 MR 1809116

[4] Constantin, P., Saut, J.-C.: Local smoothing properties of dispersive equations. J. Amer. Math.
Soc. 1, 413–439 (1988) Zbl 0667.35061 MR 0928265

[5] Constantin, P., Saut, J.-C.: Local smoothing properties of Schrödinger equations. Indiana
Univ. Math. J. 38, 791–810 (1989) Zbl 0712.35022 MR 1017334

[6] Cycon, H. L., Froese, R. G., Kirsch, W., Simon, B.: Schrödinger Operators with Applica-
tion to Quantum Mechanics and Global Geometry. Springer, Berlin (1987) Zbl 0619.47005
MR 0883643

[7] Erdös, L.: Recent developments in quantum mechanics with magnetic fields. In: Spectral The-
ory and Mathematical Physics, Proc. Sympos. Pure Math. 76, Part 1, Amer. Math. Soc., Prov-
idence, 401–428 (2007) Zbl pre05214985 MR 2310212

[8] Froese, R., Herbst, I., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T.: On the absence of
positive eigenvalues for one-body Schrödinger operators. J. Anal. Math. 41, 272–284 (1982)
Zbl 0512.35062 MR 0687957

[9] Georgiev, V., Stefanov, A., Tarulli, M.: Smoothing-Strichartz estimates for the Schrödinger
equation with small magnetic potential. Discrete Contin. Dynam. Systems 17, 771–786 (2007)
Zbl 1125.35077

[10] Goldberg, M., Schlag, W.: Dispersive estimates for Schrödinger operators in dimensions one
and three. Comm. Math. Phys. 251, 157–178 (2004) Zbl 1086.81077 MR 2096737

[11] Ionescu, A., Schlag, W.: Agmon–Kato–Kuroda theorems for a large class of perturbations.,
Duke Math. J. 131, 397–440 (2006) Zbl 1092.35073 MR 2219246

[12] Jensen, A., Kato, T.: Spectral properties of Schrödinger operators and time-decay of the wave
functions. Duke Math. J. 46, 583–611 (1979) Zbl 0448.35080 MR 0544248
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