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Abstract. — In this paper the essential spectrum of the linear problem of water-waves on a

3d-channel with gently periodic bottom will be studied. We show that under a certain geometric con-
dition on the bottom profile the essential spectrum has spectral gaps. In classical analysis of wave-

guides it is known that the Bragg resonances at the edges of the Brillouin zones create band gaps in
the spectrum. Here we demonstrate that the band gaps can be opened also in the frequency range far

from the Bragg resonances. The position and the length of the gaps are found out by applying an
asymptotic analysis to the model problem in the periodicity cell.
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1. Introduction

During the last decades the propagation of waves through periodic structures has
attracted considerable attention. This is partly due to the invention of photonic
crystals, which exhibit extraordinary properties that are supposed to bring about
a new technological revolution in optics, information transmission, and other
areas. The main tasks have been in controlling the wave propagation either by
guiding the wave in some preferred direction, or to prevent its propagation at cer-
tain frequencies.

From a historical point of view the first object in the study of wave propaga-
tion was the water waves. As can be seen, for example, from Euler’s seminal work
[7] or Lord Rayleigh’s investigations [18]. Especially, the propagation of waves
through periodic media has been in the focus of the research. This is also the in-
tent of our paper. We study the surface waves on the channel over an undulating
bottom.

The analysis of wave interaction with periodic structures has been an impor-
tant and active field in hydrodynamics. The focus has been mainly on the scatter-
ing by the bottom topography or the propagation of trapping modes along the
periodic topography [17, 2, 13, 14, 28, 15, 19, 21, 29, 20, 30, 8]. Even though
the Bragg scattering/resonance is closely related to the question of band gaps in
the spectrum of a periodic waveguide, there are very few papers which directly



address this issue in hydrodynamics. We mention here only the articles by Chou
[6] and Linton [16] where the band gap structure is explicitly mentioned and in-
vestigated. In our previous paper [5], we considered a two-dimensional problem
and, using the asymptotic analysis, showed that periodic bottom always creates
a big family of spectral gaps in the spectrum. There we have demonstrated that
the Bragg resonances occur at the edges of the Brillouin zones resulting to the gap
opening. However, other experimental works (see, e.g., [32]) hint the existence of
non-Bragg resonances, which appear in the frequency range far from the edges of
the Brillouin zone.

In this paper, we study the surface water waves in a three-dimensional rectan-
gular duct with a corrugated bottom. Analogously to our previous work [5] (see
also [23]) the opening of the Bragg and non-Bragg gaps may occur at the inter-
sections of the folded dispersion curves of the unperturbed case, but unlike the
Bragg gaps, the non-Bragg gaps arise away from the edges of the Brillouin zone.
Moreover, we will present su‰cient conditions for the width and height of the
channel as well as the profile of the bottom undulation which lead to the band
gaps in the frequency spectrum. In this way our results will provide new insight
in the creation and control of band gaps in periodic waveguides.

From early on, it has been clear that the theoretical study of wave propaga-
tion is related to the spectral properties of self-adjoint elliptic operators in un-
bounded media. In other words, the spectral theory of elliptic operators became
the focus of studies. Naturally, the spectral theory has a bottomless source of
problems in the gargantuous jungle of phenomena related to the wave propaga-
tion. From a mathematical point of view the central question is the structure of
the spectrum. Is it continuous? Does it contain gaps, i.e., intervals of frequencies
on which the waves do not propagate through the media?

From the study of the spectral properties of the Neumann-Laplacian [23, 25,
1], or Dirichlet–Laplacian [4, 26, 25], it is known that the periodic perturbation
of the cylindrical waveguide creates gaps in the spectrum of these operators.
From these sources the questions of the present paper have emerged. The di¤er-
ence with previously mentioned articles is that the spectral parameter appears
now in the boundary condition, making the analysis quite di¤erent.

The main tool of our study is the asymptotic analysis which entitles us to de-
tect a gap in the spectrum when the periodic perturbation of the channel bottom
is small enough. To fill in the theoretical analysis, we also present some numerical
results in order to establish to which extent our asymptotic analysis is valid.

2. Formulation of the problem

2.1. The corrugated channel

We consider a three-dimensional channel

We ¼ ðx; y; zÞ : jxj < l

2
; y a R; z a ð�d þ ehðx; yÞ; 0Þ

� �
ð2:1Þ
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where d; l > 0 are fixed numbers, e > 0 is a small parameter and h is a smooth
function, 1-periodic with respect to y a R. Without loss of generality, we will
assume that h has zero mean value. With this in mind d is the average depth of
the duct and l is the width. The boundary qWe splits into the liquid surface So at
level z ¼ 0, the corrugated bottom Sd; e at level z ¼ �d þ ehðx; yÞ, and the lateral
boundary Sl .

Under the assumptions of incompressible, inviscid and irrotational fluid
motion, linear water waves in the waveguide can be described by a velocity po-
tential Feðx; y; z; tÞ [12]. For a harmonic mode with an angular frequency y, the
velocity potential may be sought in the form

Feðx; y; z; tÞ ¼ ueðx; y; zÞeiyt:

Assuming the linearized kinematic boundary condition at the free surface and the
no-flow condition at the bottom and vertical walls, we obtain the Steklov spectral
problem

�Due ¼ 0 in We;ð2:2Þ
qzu

e ¼ leue on S0;ð2:3Þ
qnu

e ¼ 0 on Sl ASd; e:ð2:4Þ

where qn denotes the exterior normal derivative and le ¼ y2=g the spectral
parameter, where g is the acceleration due to gravity.

The main question, we investigate in this paper, is to understand which values
of le a C belong to the spectrum of the above problem (2.2)–(2.4).

2.2. The problem in the periodicity cell

The analysis of the wave propagation in an infinite periodic structure can be
reduced to the analysis of the wave propagation in the bounded periodicity cell
with e > 0

oe ¼ fðx; y; zÞ : jxj < l=2; jyj < 1=2; z a ð�d þ ehðx; yÞ; 0Þg:

This will be done using the Floquet–Bloch theory based on the Gelfand trans-
form [9]

Uðx; y; z; hÞ ¼ ðGuÞðx; y; z; hÞ ¼ ð2pÞ�1=2
X
p AZ

e�ihpuðx; yþ p; zÞ:

Applying the Gelfand transform to our spectral problem (2.2)–(2.4), we
obtain for each h a ½0; 2pÞ a spectral problem in a periodicity cell
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�DU e ¼ 0 in oe;ð2:5Þ
qzU

e ¼ LeðhÞU e on s0;ð2:6Þ
qnU

e ¼ 0 on fz ¼ �d þ ehðx; yÞgA fx ¼el=2g;ð2:7Þ

U e
�
x;� 1

2
; z; h

�
¼ e�ihU e

�
x;
1

2
; z; h

�
;ð2:8Þ

qyU
e
�
x;� 1

2
; z; h

�
¼ e�ihqyU

e
�
x;
1

2
; z; h

�
;ð2:9Þ

where we have denoted the free water surface by

s0 ¼ fðx; y; zÞ : jxj < l=2; jyj < 1=2; z ¼ 0g:

By the spectral theory of elliptic partial di¤erential operators, for each fixed
h a ½0; 2pÞ, this problem has a monotone unbounded sequence of real non-negative
eigenvalues

0aLe
1ðhÞaLe

2ðhÞa � � � ! þl

From the literature (see, e.g., [9, 22, 11, 27, 31]), we know that le belongs to
the spectrum of our original problem in the unbounded channel We if and only if
le equals Le

j ðhÞ for some j a Nnf0g and h a ½0; 2pÞ. The functions h 7! Le
j ðhÞ are

continuous and 2p-periodic, hence the spectrum is a union of the closed segments
1e

j , j a Nnf0g, where

1e
j ¼ fl a R : l ¼ Le

j ðhÞ; h a ½0; 2pÞg:

We obtain a spectral gap in the spectrum if there exist an open non-empty inter-
val in the positive real semi-axis which does not intersect any of the closed seg-
ments above. However, when the segments overlap each other, no spectral gap
opens. One aim is to show the existence of some gaps in the spectrum under
appropriate su‰cient conditions.

2.3. The problem in the straight channel: e ¼ 0

The same problem with e ¼ 0 in the channel W0 with a flat bottom can be solved
by separation of variables. Then for every j a Z the pair ðlK

j ; u
K
j Þ defined by

lK
j ¼ K tanhðd � KÞ ¼: DðKÞ; jK jb jkjj;ð2:10Þ

uK
j ðx; y; zÞ ¼ cos

�
kj

�
xþ l

2

��
e
eiy

ffiffiffiffiffiffiffiffiffiffiffi
K 2�k2

j

p
ðezK þ e�ðzþ2dÞKÞ

is a solution of the spectral problem. Here and in the sequel we denote by kj ¼ jp
l
.

The dispersion relation (2.10) is a functional relationship between the temporal
frequency o and the wave number jK j. The longitudinal and transverse compo-

nents of the wave vector are
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 2 � k2

j

q
and kj , respectively.
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As in [24], interpreting the straight channel to consist also of periodicity cells
of unit length with flat bottom, we may write the problem, using the Gelfand
transform, in the bounded periodicity cell with e ¼ 0

o0 ¼ fðx; y; zÞ : jxj < l=2; jyj < 1=2; z a ð�d; 0Þg

as a family of spectral problems. Namely, for each h a ½0; 2pÞ we obtain a spec-
tral problem

�DU 0 ¼ 0 in o0;ð2:11Þ
qzU

0 ¼ L0ðhÞU 0 on s0;ð2:12Þ

qxU
0 ¼ 0 for x ¼e

l

2
;ð2:13Þ

qzU
0 ¼ 0 for z ¼ �d;ð2:14Þ

U 0
�
x;� 1

2
; z; h

�
¼ e�ihU 0

�
x;
1

2
; z; h

�
;ð2:15Þ

qyU
0
�
x;� 1

2
; z; h

�
¼ e�ihqyU

0
�
x;
1

2
; z; h

�
;ð2:16Þ

The parameter K is represented in the form K ¼e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ k2

j

q
, where z can be

decomposed uniquely as z ¼ 2pqþ h with q a Z and h a ½0; 2pÞ. Hence we may
rewrite the above solution pair as

L0
q; jðhÞ ¼ Dð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pqþ hÞ2 þ k2

j

q
Þ;ð2:17Þ

U 0
q; jðx; y; z; hÞ ¼ cos

�
kj

�
xþ l

2

��
eþiyð2pqþhÞgq; jðz; hÞ;ð2:18Þ

gq; jðz; hÞ ¼ ðez
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pqþhÞ2þk2

j

p
þ e

�ðzþ2dÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pqþhÞ2þk2

j

p
Þ:

The range of the dispersion curves h 7! L0
q; jðhÞ gives us the closed segments

10
kðhÞ which then will constitute the spectrum in the unperturbed case, which is

known to be the closed positive real axis Rþ. This can be seen from the graphs
of the dispersion curves, which form the truss-structure as in Fig. 1.

Figure 1. The dispersion curves for the straight channel: a) Channel width l ¼ 0:4, b)
Channel width l ¼

ffiffi
3

p

2 , c) Channel width l ¼
ffiffiffi
2

p
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We note here that our reduced representation of the dispersion relation
di¤ers from the conventional one, where the first Brillouin zone is the interval
½�p; p�. But for our purposes it is more convenient to choose as the first
Brillouin zone the interval ½0; 2p�, so that the Bragg point is in the middle of the
interval.

2.4. Statement of the main results

In this section we formulate the su‰cient conditions which ensure the existence of
the band gaps. For that we introduce the points he1 ¼ pe p

4l 2
, which are inter-

section points of the dispersion curves: L0
�1;0ðh�1Þ ¼ L0

0;1ðh�1Þ and L0
0;0ðh1Þ ¼

L0
�1;1ðh1Þ. The Fourier-coe‰cients of the profile function h are

HyðlÞ ¼
Z
s0

ei2pyhðx; yÞ dx dy

HxyðlÞ ¼
Z
s0

hðx; yÞ cos
�p
l

�
xþ l

2

��
ei2py dx dy;

HxðlÞ ¼
Z
s0

hðx; yÞ cos
�2p
l

�
xþ l

2

��
dx dy;

Theorem 2.1. 1. Let 0 < la 1
2 and assume that H yðlÞA 0. Then there exists

a > 0 and e0 > 0 such that for all e < e0
(a) maxh A ½0;2pÞ L

e
1ðhÞ < minh A ½0;2pÞ L

e
2ðhÞ.

(b) For all le a �DðpÞ � ea;DðpÞ þ ea½ the problem (2.2)–(2.4) has only the
trivial solution ue ¼ 0.

2. Let 1
2 < l < 1 and assume that HyðlÞA 0, H xyðlÞA 0. Then there exists a > 0

and e0 > 0 such that for all e < e0
(c) the following inequalities

max
h A ½0;2pÞ

Le
1ðhÞ < min

h A ½0;2pÞ
Le

2ðhÞ

and

max
h A ½0;2pÞ

Le
2ðhÞ < min

h A ½0;2pÞ
Le

3ðhÞ

hold.
(d) For every

le a �Dðh1Þ � ea;Dðh1Þ þ ea½A �DðpÞ � ea;DðpÞ þ ea½

the problem (2.2)–(2.4) has only the trivial solution.
3. Let l ¼ 1. Assume that H yðlÞA 0, H xyðlÞA 0 and HxðlÞb 0. Then the state-

ments (c)–(d) occur.
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3. Splitting of dispersion curves

3.1. Asymptotic analysis of eigenvalues

In the following sections we will describe the splitting phenomenon of dispersion
curves for small e > 0 leading to the band gap structure in the dispersion rela-
tions. The main tool is an asymptotic analysis of the eigenvalues L0

q; jðhÞ under

perturbations of the bottom. Especially, we are interested in the eigenvalues
L0

q; jðhÞ which have algebraic multiplicity higher than one. Those eigenvalues are
the intersection points of two or more dispersion curves. We will show that, when
the bottom of the channel is perturbed, exactly at those points the dispersion
curves di¤er from each other and a small gap opens between them, which in
some cases gives raise to a spectral gap for our spectral problem.

As in our previous paper [5], we follow the approach adopted by Nazarov
[24]. In order to see whether a gap is opened near the intersection point h0,
we introduce the deviation parameter d, replacing h by h0 þ ed. The devia-
tion parameter will be used to describe the behaviour of eigenvalues Le

kðhÞ in
a small neighbourhood of the intersection point: a suitable choice of d ¼ dðeÞ
will be done in the proof of Theorem 2.1 (see (4.56)). Outside this small neigh-
bourhood, where the eigenvalues L0

kðhÞ are simple, the classical perturbation
theory is then used to show that the perturbed eigenvalues Le

kðhÞ satisfy the
condition

jLe
kðhÞ �L0

kðhÞj < ce

for some constant c > 0 independent on e.
For the eigenvalues and functions Le

kðh0 þ edÞ and U eð�; hÞ, we use the asymp-
totic expansion around an intersection point h0 a ½0; 2pÞ as follows:

Le
kðh0 þ edÞ ¼ L0

q; jðh0Þ þ eL0
q; jðdÞ þ gLq; jLq; j;ð3:19Þ

U e
k ¼ U 0 þ eU 0

q; j þ gUq; jUq; j;ð3:20Þ

where L0
kðh0Þ ¼ L0

q; jðh0Þ is the double eigenvalue of the problem (2.11)–(2.16)

and it is given by (2.17) for suitable choices of q and j. The function

U 0 ¼ aþU
0
þ þ a�U

0
�

belongs to the two-dimensional eigenspace spanned by the corresponding eigen-
functions U 0

e. We choose them to be as in (2.18). For U 0
þ the integers q and j

di¤er from those of U 0
�, obviously. In order to simplify the notation we fix q, j

and omit them in the rest of the present section. The coe‰cients ae are to be
determined alongside the first order correction terms L0ðdÞ and U 0.

In order to find the correct problem for U 0, we insert the right-hand side of
(3.19) and (3.20) into (2.5), (2.6) and, setting the terms corresponding to identical
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powers of e equal, we obtain

DU 0 ¼ 0 in o0;

qzU
0 ¼ L0U 0 þL0U 0; on s0

In order to deal with the boundary condition (2.7), we have to expand qnUe at
qoens0. Since the bottom is represented by the equation �d þ ehðx; yÞ � z ¼ 0,
then, for any smooth function F ðx; y; zÞ the normal derivative at the bottom has
the following expansion

qnF ¼ ð1þ e2j‘hj2Þ�1=2ðeqxhqxF þ eqyhqyF � qzFÞjz¼�dþehðx;yÞ

¼ �qzF þ eð‘xyh � ‘xyF � q2z F � hðxÞÞjz¼�d þOðe2Þ:

Using the above formula for F ¼ U 0 þ eU 0 þ ~UU in equation (2.7), equating,
again, the terms corresponding to identical powers of e, and using (2.11), we get
the boundary condition

qzU
0 ¼ ‘xyh � ‘xyU

0 þ ðDxyU
0Þh; if z ¼ �d:

At the lateral walls of the periodicity cell the normal derivative qn ¼eqx and thus
we obtain a boundary condition

qxU
0
�
e

l

2
; y; z

�
¼ 0; jyj < 1

2
; �d < z < 0:

Finally, since e�iðh0þedÞ ¼ e�ih0ð1� iedþOðe2ÞÞ, inserting (3.20) into (2.8),
(2.9), we get

U 0
�
x;� 1

2
; z; h0

�
¼ e�ih0ð�idU 0 þU 0Þ

�
x;
1

2
; z; h0

�
;ð3:21Þ

qyU
0
�
x;� 1

2
; z; h0

�
¼ e�ih0ð�idqyU

0 þ qyU
0Þ
�
x;
1

2
; z; h0

�
;ð3:22Þ

Thus, finally, the problem for the first correction term U 0 can be written as a
mixed boundary value problem

DU 0 ¼ 0 in o0;ð3:23Þ
qzU

0 ¼ L0U 0 þL0U 0 on s0ð3:24Þ
qzU

0 ¼ ‘xyh � ‘xyU
0 þ ðDxyU

0Þh; z ¼ �d;ð3:25Þ

qxU
0 ¼ 0; x ¼e

l

2
ð3:26Þ

U 0
�
x;� 1

2
; z; h0

�
¼ e�ih0ð�idU 0 þU 0Þ

�
x;
1

2
; z; h0

�
;ð3:27Þ

qyU
0
�
x;� 1

2
; z; h0

�
¼ e�ih0ð�idqyU

0 þ qyU
0Þ
�
x;
1

2
; z; h0

�
:ð3:28Þ
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Note that the third equation above can be equivalently written as

qzU
0 ¼ divxyðh‘xyU

0Þ; if z ¼ �d:ð3:29Þ

Since L0 is a double eigenvalue of problem (2.11)–(2.16), according to the
Fredholm alternative, the formally self-adjoint elliptic boundary value problem
(3.23)–(3.28) has a solution U 0 if and only if two compatibility conditions are
satisfied. To derive these conditions, one may directly insert the eigenfunctions
U 0
e and the solution U 0 into the Green formula on o0, to obtainZ

qo0

qnU
0
eU

0 �
Z
qo0

qnU
0U 0

e ¼ 0:ð3:30Þ

In the following we split the boundary of the periodicity cell o0 into the top
surface s0, the bottom sd , and the lateral surfaces sx

e, s
y
e.

Choosing U 0
e to be any of the functions in (2.18) (withe related to the sign

of propagation of the wave eþiyð2pqþhÞ), and using equations (2.11)–(2.16) for U 0
e

and (3.23)–(3.26) for U 0, we get the following integrals on each face of the peri-
odicity cell o0.Z

s0

ðqnU 0
eU

0 � qnU
0U 0

eÞ ¼
Z
s0

ðqzU 0
eU

0 � qzU
0U 0

eÞ

¼ �L0
Z
s0

U 0U 0
e:Z

sd

ðqnU 0
eU

0 � qnU
0U 0

eÞ ¼ �
Z
sd

ðqzU 0
eU

0 � qzU
0U 0

eÞ

¼
Z
sd

divxyðh‘xyU
0ÞU 0

e

¼ �
Z
sd

ðh‘xyU
0 � ‘xyU

0
eÞ

where the boundary terms along the boundary of sd are zero under the assump-
tion that hðx; yÞ has compact support, i.e.,

supp h �� ð�l=2; l=2Þ � ð�1=2; 1=2Þ:ð3:31Þ

This is a technical rectriction that simplifies the calculations. Moreover, we haveZ
sx
e

ðqnU 0
eU

0 � qnU
0U 0

eÞ ¼ 0Z
s
y
þ

ðqnU 0
eU

0 � qnU
0U 0

eÞ þ
Z
s
y
�

ðqnU 0
eU

0 � qnU
0U 0

eÞ

¼ �id

Z
s
y
�

�
U 0
e

�1
2

�
qyU

0
�1
2

�
�U 0

�1
2

�
qyU

0
e

�1
2

��
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where we have used the shorthand notation U
�
1
2

�
¼ U

�
x; 12 ; z

�
. Summing up all

terms we get the following system of equations ðeÞ

�L0
Z
s0

U 0U 0
e�

Z
sd

ðh‘xyU
0 � ‘xyU

0
eÞð3:32Þ

� id

Z
s
y
�

�
U 0
e

�1
2

�
qyU

0
�1
2

�
�U 0

�1
2

�
qyU

0
e

�1
2

��
¼ 0:

In the following we will replace

U 0 ¼ aþU
0
þ þ a�U

0
�

for suitable choices of the pair U 0
e.

Estimates of the remainder terms gLq; jLq; j, gUq; jUq; j in (3.19), (3.20), as e, d are small
enough, may be proved in the similar manner as in [5]. The proof will be pre-
sented in Section 4.

3.2. A case of Bragg resonance

To start our analysis by the simplest case, we focus on the lowest dispersion
curves L0

0;0ðhÞ ¼ DðhÞ and L0
�1;0ðhÞ ¼ Dðh� 2pÞ, when the width of the channel

l satisfies 0 < la 1
2 (see Fig. 1(a)), i.e., L0

1;0ð0ÞaL0
0;1ð0Þ. The above curves

intersect only at h0 ¼ p, e.g, at the Bragg point.
Now by choosing

U 0
þ ¼ U 0

0;0; U 0
� ¼ U 0

�1;0

and inserting them and U 0 ¼ aþU
0
þ þ a�U

0
� into (3.32), we get the eigenvalue

problem

MðaÞ ¼ L0ðdÞa; a ¼ ðaþ; a�Þ>;
for the matrix

M ¼ Ad BHyðlÞ
BHyðlÞ �Ad

� 	
;

where

A ¼
�i

Z
s
y
�

ðU 0
þqyU

0
þ �U 0

þqyU
0
þÞZ

s0

jU 0
þj

2
¼ 2p

Z 0

�d

g20;0ðz; pÞ dz

g20;0ð0; pÞ
;

B ¼

Z
sd

hðx; yÞ‘x;yU
0
þ � ‘U 0

�Z
s0

jU 0
þj

2
¼ � 4p2e�2pd

lg20;0ð0; pÞ

HyðlÞ ¼
Z l

2

� l
2

Z 1
2

�1
2

ei2pyhðx; yÞ dx dy

ð3:33Þ
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and g0;0 is as in (2.18). In the computations of the matrix elements, we have
explicitly used the fact that the mean value of the profile function is zero. In other
words, the first correction term L0ðdÞ in the neighbourhood of h0 ¼ p is the eigen-
value of the above eigenvalue problem.

In this case, the asymptotic expansion (3.19) has the correction terms

L0
e ¼e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2jHyðlÞj2 þ A2d2

q
;ð3:34Þ

which are non-zero provided

HyðlÞ ¼
Z l

2

� l
2

Z 1
2

�1
2

ei2pyhðx; yÞ dx dyA 0:ð3:35Þ

Under the above condition, we can prove the existence of a gap in the spectrum
of our original problem (2.2)–(2.4), namely

max
h

Le
1ðhÞ < min

h
Le

2ðhÞð3:36Þ

for small enough e.
The lowest perturbed dispersion curve Le

1ðhÞ takes the shape as in Fig. 2 (a).
In particular, we note that, if we take hðx; yÞ is independent of x, then the prob-
lem reduces to two-dimensional surface wave propagation, and we recover the
results obtained in [5].

3.3. Band gaps at non-Bragg points

In this section, we consider cases where the dispersion curves intersect each other
also at the non-Bragg points ðhApÞ, i.e., far away from the edges of the first
Brillouin zone. In particular, we focus on the following dispersion curves (see
Fig. 1(b) and (c))

L0
0;0ðhÞ ¼ DðhÞ

L0
�1;0ðhÞ ¼ Dðh� 2pÞ

L0
0;1ðhÞ ¼ Dð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ p2l�2

p
Þ

L0
�1;1ðhÞ ¼ Dð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh� 2pÞ2 þ p2l�2

q
Þ:

Here we assume that 1
2 < l < 1. Then,

L0
0;0ðpÞ < L0

0;1ð0Þ < L0
�1;0ð0Þ;

and the curves L0
0;1 and L0

�1;0 intersect at the point h�1 ¼ p� p
4l 2

; L0
0;0 and L0

�1;1

intersect at h1 ¼ pþ p
4l 2

; L0
0;0 and L0

�1;0 intersect at h0 ¼ p (see Fig. 1(b)).
We expand Le

1ðh�1 þ edÞ and U e as in (3.19), (3.20) with h ¼ h�1. The eigen-
functions

U 0
þ ¼ U 0

0;1 and U 0
� ¼ U 0

�1;0;ð3:37Þ
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correspond to the eigenvalues L0
0;1ðh�1Þ ¼ L0

�1;0ðh�1Þ, where U
0; e
q; j are given by

(2.18). Inserting U 0
e and U 0 ¼ aþU

0
þ þ a�U

0
� into the compatibility condition

(3.32) we obtain an eigenvalue problem for the correction term L0:

C þDd B

B Ad

� 	
aþ
a�

� 	
¼ L02le�2h1d cosh2ðh1dÞ

aþ
a�

� 	
:ð3:38Þ

Introducing the shorthand notations

HxyðlÞ ¼
Z
o

hðx; yÞ cos
�p
l

�
xþ l

2

��
ei2py dx dy;

HxðlÞ ¼
Z
o

hðx; yÞ cos
�2p
l

�
xþ l

2

��
dx dy;

G ¼ kg0;1k2L2ð�d;0Þ;

the elements of the matrices in (3.38) are

A ¼ 2ðh�1 � 2pÞlG; B ¼ 4ðh�1 � 2pÞh�1e
�2h1dHxyðlÞ;

C ¼ 2
�p2

l2
� h21

�
e�2h1dHxðlÞ; D ¼ h�1lG:

Since the matrix on the left in (3.38) is Hermitian symmetric, the eigenvalues
me ¼ 2le�2h1d cosh2ðh1dÞL0

e are real, where

me ¼ C þ ðAþDÞde
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC þ ðAþDÞdÞ2 þ 4jBj2

q
:ð3:39Þ

For su‰ciently small d, the eigenvalue problem (3.38) has two non-zero eigen-
values mþ > 0 and m� < 0, provided the condition

HxyðlÞA 0ð3:40Þ

is satisfied. In this case, the perturbation splits the intersection of the graphs of
L0

0;1 and L0
�1;0 at h�1 into two non-intersecting curves. This gives the possibility

for a spectral gap. Same conditions arise at the point h1 ¼ pþ p
4l 2

, due to symme-
try of the dispersion curves with respect to h ¼ p.

At the point h ¼ p, corresponding to the intersection L0
0;0ðpÞ ¼ L0

�1;0ðpÞ, the
expansion of Le

1ðpþ edÞ performed in Section 3.2 remains valid also here, when
1=2 < l < 1. In particular, the correction terms L0

e are given by (3.34), and they
are non-zero, with opposite signs, under the condition (3.35).

As a conclusion, if both conditions (3.35) and (3.40) take place, then the
lowest dispersion curves of the problem (2.2)–(2.4) separate as follows

Le
1ðhÞ < Le

2ðhÞ for all h a ½0; 2p½;ð3:41Þ
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and a gap occurs at the higher level, namely

max
h

Le
2ðhÞ < min

h
Le

3ðhÞ:ð3:42Þ

The lowest perturbed dispersion curves Le
1ðhÞ, Le

2ðhÞ and Le
3ðhÞ are shown

in Fig. 2(b). Rigorous proofs of the above inequalities (3.41), (3.42), can be ob-
tained, following the approach presented in [5] and [4]. Our analysis shows for the
first time, by choosing the periodic bottom profile appropriately, that in addition
to the band gap created by the Bragg resonances at the ends of the first Brillouin
zone also non-Bragg gaps appear far away from the edges of the Brillouin zones.
Previously this phenomenon has been detected experimentally for surface gravity
waves in a channel by periodic walls [32].

3.4. The combined case

Let us assume for the moment that l ¼ 1 and investigate the perturbation of the
lowest dispersion curves MpðhÞ, p ¼ 0; 1; 2, which are defined as follows

M0ðhÞ ¼
L0

0;0ðhÞ; 0a h < p;

L0
�1;0ðhÞ; pa h < 2p;

(

M1ðhÞ ¼
L0

0;1ðhÞ; 0a h < h�1;

L0
�1;0ðhÞ; h�1 a h < p;

M1ð2p� hÞ; pa h < 2p;

8><>:
M2ðhÞ ¼

L0
�1;0ðhÞ; 0a h < h�1;

L0
1;0ðhÞ; h�1 a ha p;

M2ð2p� nÞ; pa h < 2p

8><>:
(see also Fig. 3, for the corresponding perturbed curves). In this case we have
L0

0;1ð0Þ ¼ L0
0;0ðpÞ. As it was shown in Section 3.3, at the points h0 ¼ p, he1 the

graphs of the dispersion curves split into two parts, under the conditions (3.35)
and (3.40), forming two non-intersecting dispersion curves Le

1ðhÞ and Le
2ðhÞ such

that

Le
1ðhÞ < Le

2ðhÞ Eh a ½0; 2pÞ:

Figure 2. The perturbed dispersion curves: a) l ¼
ffiffi
2

p

4 , b) l ¼
ffiffi
3

p

2 , c) l ¼
ffiffiffi
2

p
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The spectral gap appears, if the following stronger inequality takes place:

Le
1ðpÞ ¼ max

h A ½0;2pÞ
Le

1ðhÞ < min
h A ½0;2pÞ

Le
2ðhÞ ¼ Le

2ð0Þ:ð3:43Þ

Since, in this case, L0
0;1ð0Þ ¼ L0

0;0ðpÞ, in order to understand the situation, we
have to take into account also the perturbation of the simple eigenvalue L0

0;1ð0Þ.
This is performed as in (3.19) for the double eigenvalues, i.e., by setting

Le
2ð0þ edÞ ¼ L0

0;1ð0Þ þ eL0
0;1ðdÞ þ gL0;1L0;1ðedÞ:ð3:44Þ

The formula for the correction term is now

L0
0;1ðdÞ ¼ �kU 0

þk
�2
L2ðs0Þ

Z
sd

hj‘xyU
0
þj

2:

Inserting U 0
þ ¼ U 0

0;1 in this equation we get

L0
0;1 ¼ p2

Z
sd

cos
�
2p

�
xþ 1

2

��
hðx; yÞ dx dy:

Assuming that the Fourier coe‰cient

Hxð1Þ ¼
Z
sd

cos
�
2p

�
xþ 1

2

��
hðx; yÞ dx dyb 0;ð3:45Þ

the correction term L0
0;1ðdÞ is non-negative. If we take L0

0;0ðdÞ ¼ L0
� given in

(3.34) and insert into the expansion

Le
1ðpþ edÞ ¼ L0

0;0ðpÞ þ eL0
0;0ðdÞ þ gL0;0L0;0ðpþ edÞð3:46Þ

and assume that also condition (3.35) is satisfied, we can prove that (3.43) takes
place. In other words, the spectral gap opens between the dispersion curves Le

1ðhÞ
and Le

2ðhÞ. The two lowest dispersion curves are shown in Fig. 3(b).
For example, assuming that the profile function is odd in x-variable for every

y a
�
� 1

2 ;
1
2

�
the condition (3.45) is valid with Hx ¼ 0.

However, even if the condition (3.45) is violated, then the spectral gap may
still appear as in Fig. 3. In that example Hx < 0.

Note that, increasing the width l of the channel, the first eigenvalue of the
problem (2.5)–(2.9) with h ¼ 0 (or h ¼ 2p) decreases faster than the first eigen-
value for the same problem with h ¼ p. Then the second dispersion curve could
shadow the lowest dispersion curve and there would not be a band gap as in Fig.
3. However, as in this example, the band gap still exists between the second and
third dispersion curve.

3.5. Example

Here we present a simple example in the case when the channel width l ¼ 1,
depth d ¼ 0:5 and a periodic arrangement of boxes is mounted at the bottom of
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the straight channel. The height of the box is e ¼ 0:2 and the bottom is a square
S ¼



ðy; zÞ : jyja 1

4 ; jxja 1
4

�
. Hence the bottom of the periodicity cell is given

by

z ¼ �d þ ewSðx; yÞ;

where wS is the characteristic function of S:

wSðx; yÞ ¼
1; jxj < l

4 ; jyj < 1
4

0; otherwise

�
ð3:47Þ

In this case, the Fourier coe‰cients of the profile function are

HyðlÞ ¼
sin

�
p
2

�
p

¼ 1

p
> 0;

HxðlÞ ¼ 1

5p
cos

�p
4

�
A 0;

HxyðlÞ ¼ 8

15p2
cos

�p
4

�
sin

�3p
8

�
A 0:

Hence the assumptions of Theorem 2.1 is satisfied and the gaps are opened
both at the Bragg point h0 ¼ p and at the non-Bragg point h�1 ¼ 3p

4 , as seen at
Fig. 3. The estimated width W of the band gap at non-Bragg point is given by the
formula

W ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ 4B2

p
Q0:1;

Figure 3. The perturbed dispersion curves
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where C and B are the constants in (3.39). The computed results are in good
agreement with the results of the asymptotic analysis.

The dispersion curves shown in figures 2 and 3 for the perturbed channels are
computed with the open source software Freefemþþ.

Note that h in (3.47) is not smooth, actually discontinuous. However, profile
functions of this type have the same asymptotic formulae for the existence of gaps
(see [5], Fig. 5(a) and related remarks).

4. Proof of the main theorem

To prove the appearance of the band gaps we have to investigate the behaviour
of the perturbed eigenvalues Le

mðhÞ, h a ½0; 2pÞ, m ¼ 1; 2; 3, in the periodicity
cell oe. This will be divided in two steps. First, we will show that outside a neigh-
bourhood of the intersection points hp, p ¼ �1; 0; 1 the eigenvalues Le

mðhÞ do not
deviate too much from the eigenvalues L0

mðhÞ of the unperturbed problem. In the

next step, we estimate the remainder terms gLe
q; jðhÞLe
q; jðhÞ in the vicinity of the intersec-

tion points hp, p ¼ �1; 0; 1. Essentially the proof is given already in our previous
paper [5, Section 4], but we provide a condensed presentation of it for readers
convenience. Since the case 0 < la 1

2 is the same as in our previous paper [5],
we concentrate on the case 1

2 < l < 1.
For the proper functional analytic setting we introduce the space H 1

h ðoeÞ
which is the closed subspace of the Sobolev space H 1ðoeÞ satisfying the quasi-
periodicity conditions (2.8) and (2.9). Furthermore, we define in H 1

h ðoeÞ the sca-
lar product

3U e;V e4h ¼ ð‘U e;‘V eÞoe þ ðU e;V eÞs0 ;

and the operator T eðhÞ

3T eðhÞU e;V e4h ¼ ðU e;V eÞs0 EU
e; V e a H 1

h ðoeÞ:ð4:48Þ

Now the spectral problem (2.5)–(2.9) becomes equivalent with the eigenvalue
problem

T eðhÞU e ¼ teðhÞU e in H 1
h ðoeÞ

with the spectral parameter

teðhÞ ¼ ð1þLeðhÞÞ�1:ð4:49Þ

Obviously, the operator T eðhÞ is positive, self-adjoint and compact due to the
compact embedding of L2ðs0Þ into H 1ðoeÞ� (the dual space of H 1ðoeÞ).

In comparing the eigenvalues outside a neighbourhood of the intersection
point, we rely on the analytic perturbation theory of self-adjoint operators [10,
Ch.VII.6.2]. Since the perturbation is compact and small, we conclude that the
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eigenvalues of the model problems in oe and o0 have the relationship

jLe
mðhÞ �L0

mðhÞja cme for e a ð0; emÞ;ð4:50Þ

where the positive numbers cm and em depend on the eigenvalue number m but
are independent of e a ð0; emÞ and h a ½0; 2pÞ.

On the other hand, take for a while q ¼ 0, j ¼ 0 and 0a h < p, the function
h 7! DðhÞ ¼ L0

0;0ðhÞ is convex and increasing. Then we observe that

DðpÞ �L0
0;0ðhÞbC0ðp� hÞ

for some positive constant C0 > 0. Combining this with (4.50), the eigenvalues
Le

0;0ðhÞ ¼ Le
1ðhÞ satisfy the estimate

Le
1ðhÞaDðpÞ � C0e

3
4 < Dðh1Þ; when h < p� e

3
4:

By the same reasoning we then conclude that the eigenvalues Le
mðhÞ, m ¼ 1; 2

fulfil the following inequalities: if jh� he1jb e
3
4, jh� pjb e

3
4, then

Le
1ðhÞ < DðpÞ � C0e

3
4;

DðpÞ þ C0e
3
4 < Le

2ðhÞ < Dðh1Þ � C0e
3
4;

Le
3ðhÞ > Dðh1Þ þ C0e

3
4:

ð4:51Þ

To prove that the dispersion curves will split at the points hp, we will need the
following lemma on ‘‘almost eigenvalues’’ (see, e.g., [3, Ch. 6]).

Lemma 4.1. Let ue a H 1
h ðoeÞ and te a Rþ be such that

kue;H 1
h ðoeÞk ¼ 1 and kT eðhÞue � teue;H 1

h ðoeÞk1=2 ¼ ke a ð0; teÞ;ð4:52Þ

Then there exists an eigenvalue temðhÞ of the operator T eðhÞ subject to the
inequality

jtemðhÞ � teja ke:

In what follows, we replace the subscript q, j with pþ or p�, meaning that
L0

pþðhÞ, L0
p�ðhÞ are the curves intersecting at hp ðp ¼ �1; 0; 1Þ, with L0

pþðhÞ in-
creasing and L0

p�ðhÞ decreasing. This notation is adopted for all related quantities
in the asymptotic expansions.

To apply the above Lemma 4.1 we choose the approximating eigenpair ðte; ueÞ
as follows:

tepe ¼ ð1þL0
peðhpÞ þ eL0

peðdÞÞ
�1; ue

pe ¼ 3Ue
pe;U

e
pe4

�1=2
hpþedU

e
pe;ð4:53Þ

where

Ue
peðy; zÞ ¼ U0

peðy; z; hpÞ þ eU 0
peðx; y; z; dÞ þ e2 ~UUe

peðx; y; zÞ:ð4:54Þ
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In (4.54) the function U0
pe is the linear combination of the eigenfunctions

U 0
e:

U0
peðx; y; zÞ ¼ aeþðdÞU 0

þðx; y; z; hpÞ þ ae�ðdÞU 0
�ðx; y; z; hpÞ;

where the vector aeðdÞ ¼ ðaeþðdÞ; ae�ðdÞÞ is the normalized eigenvector of the
problem (3.38), i.e., kaeðdÞk ¼ 1. The second term U 0

peðx; y; z; dÞ in (4.54) is
the smooth extension of the solution of the problem (3.23)–(3.28) satisfying the
estimate

kU 0
pe;H

3ðoeÞka cpð1þ jdjÞ:

The last term ~UUe
pe in (4.54) we fix to compensate the discrepancies of the sum

U0
peþ eU 0

pe in the quasi-periodicity conditions (2.8) and (2.9) for h ¼ hp þ ed. As

in [5, Sect. 4(c)], we can find a function ~UUe
pe a H 3ðoeÞ which compensates the dis-

crepancies and satisfies the estimate

k ~UUe
pe;H

3ðoeÞka cpdð1þ dÞ:

Furthermore, since U 0
pe is the solution of (3.23)–(3.28), in the Steklov boundary

condition (2.6) we have

ge
0ðx; yÞ :¼ qzU

e
peðx; y; 0Þ � ðL0

peðhpÞ þ eL0
peðdÞÞUe

peðx; y; 0Þ
¼ e2ðqz ~UUe

peðx; y; 0Þ � ðL0
peðhpÞ þ eL0

peðdÞÞÞ ~UUe
peðx; y; 0Þ

� e2L0
peðdÞU 0

peðx; y; 0; dÞ

and in the Neumann condition (2.7) at the bottom

ge
dðx; yÞ :¼ qnU

e
peðx; y;�d þ ehðx; yÞÞ

¼ ðð1þ e2j‘x;yhðx; yÞj2Þ�1=2 � 1ÞqnUe
peðx; y;�d þ ehðx; yÞÞ

þ e2ð�qz ~UUe
peðx; y;�d þ ehðyÞÞ

þ e‘x;yhðx; yÞ � ‘x;y
~UUe
peðx; y;�d þ ehðx; yÞÞÞ

� ðqzU0
peðx; y;�d þ ehðyÞ; hpÞ � qzU

0
peðx; y;�d; hpÞ

þ ehðx; yÞq2zU0
peðx; y;�d; pÞÞ

þ e‘x;yhðx; yÞ � ð‘x;yU
0
peðx; y;�d þ ehðyÞ; hpÞ � ‘x;yU

0
peðy;�d; hpÞÞ

� eðqzU 0
peðx; y;�d þ ehðx; yÞ; dÞ � qzU

0
peðx; y;�d; dÞÞ

þ e2‘x;yhðx; yÞ � ‘x;yU
0
peðx; y;�d þ ehðx; yÞ; dÞ

These formulae imply the estimate

kge
0;L

2ðgÞk þ kge
d ;L

2ðgedÞka cpe
2ð1þ d2Þð1þ ejdjÞ:
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We finally mention that U0
pe satisfies the equation (2.5) in oe but U 0

pe does it only
in o0. Therefore, recalling the smooth extension of U 0

pe, we obtain

ekDU 0
pe;L

2ðoeÞk ¼ ekDU 0
pe;L

2ðoeno0Þk
a ce3=2kU 0

pe;H
3ðoeÞk

a cpe
3=2ð1þ jdjÞ:

Here we have taken into account that oeno0 is a thin set of width OðeÞ.
For the computation of ke ¼ ke

pe in (4.52) we use the definitions of tepe and ue
pe

in (4.53) to obtain

ke
pe ¼ 3Ue

pe;U
e
pe4

�1=2
pþed t

e
pe supjð1þL0

peðpÞ þ eL0
peðdÞðUe

pe; v
eÞgð4:55Þ

� ð‘Ue
pe;‘v

eÞoe � ðUe
pe; v

eÞs0 j

¼ 3Ue
pe;U

e
pe4

�1=2
pþed t

e
pe supjð�DUe

pe; v
eÞoe þ ðge

0; v
eÞs0 þ ðge

d ; v
eÞse

d
j:

Here the supremum is calculated over all functions ve a H 1
pþedðoeÞ such that

3ve; ve4pþed ¼ 1. Clearly,

kve;L2ðoeÞk þ kve;L2ðs0Þk þ kve;L2ðse
dÞka c:

In the sequel, we assume that

jdja cpe
5=4:ð4:56Þ

We then observe that

jtepeja cpð1þ ejdjÞaCp;

3Ue
pe;U

e
pe4b cpð1� eð1þ jdjÞ � e2dð1þ dÞÞb 1

2
cp > 0:

where cp, Cp stand for di¤erent positive constants which may depend on p but are
independent of e a ð0; epÞ. Collecting the above estimates we convert the relation
(4.55) into

ke
pea ðe3=2ð1þ jdjÞ þ e2ð1þ d2Þð1þ ejdjÞÞa cpe

5=4:

Hence by Lemma 4.1 there exist eigenvalues tepeðhp þ edÞ of the operator
T eðhp þ edÞ such that

jtepeðhp þ edÞ � ð1þL0
peðhpÞ þ eL0

peðdÞÞ
�1ja cpe

5=4;

or, in view of (4.49),

jLe
qeðhp þ edÞ �L0

peðhpÞ � eL0
peðdÞja cpe

5=4:ð4:57Þ
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Due to the formula (3.39) and the assumption (3.40) the eigenvalues
Le

pþðhp þ edÞ and Le
p�ðhp þ edÞ are di¤erent from each other. Moreover they

stay in a ce-neighbourhood of the point L0
peðhpÞ which, according to (4.50), con-

tains only the eigenvalues Le
2ðhp þ edÞ and Le

3ðhp þ edÞ if p ¼e1, Le
1ðhp þ edÞ

and Le
2ðhp þ edÞ if p ¼ 0. Thus, these eigenvalues are distinct and satisfy the rela-

tion (4.57). In view of (2.17), (3.39) and (3.40) this observation together with
inequalities (4.51) proves Theorem 2.1.
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