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Abstract. — We study the isoperimetric problem in Rh � Rk endowed with a mixed Euclidean–

Log-convex measure l ¼ ecðxÞ dx dy. We prove the existence of an isoperimetric set and we show
some of its qualitative properties.
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Introduction

The classical isoperimetric problem consists in finding the sets with minimal
boundary measure under a volume constraint or, equivalently, the sets with max-
imal volume and given boundary measure, that are called isoperimetric sets. We
limit ourselves to recalling that the usual approach to this problem consists in
showing existence of minimizers in the class of sets with finite perimeter and in
describing the solutions via suitable symmetrization techniques. Symmetrization
techniques are classical, but the setting of finite perimeter sets and the proof of
the optimality of the ball in Rn in this class came much later and were due to
E. De Giorgi, see [14]. We refer to [17, 19] and the references therein for a com-
plete information on the whole subject, in the classical case of Lebesgue measure
on Rn. More generally, the same problem can be set in general contexts, such
as di¤erentiable (sub)riemannian manifolds, currents, or Euclidean spaces with
densities, see e.g. [1, 3, 5, 15, 18, 20, 21]. In the latter case, suitable notions of
symmetrization have been devised and applied to the study of properties of other
analytical problems, see e.g. [4, 6, 7, 8, 10, 12, 16]. As a particular case, decom-
posing Rn as a cartesian product, Rn ¼ Rh � Rk, with h; kb 1, mixed densities
can be considered, i.e., measures l on Rn arising as product measures on the
factors, l ¼ mn n, with m, n measures on Rh, Rk, respectively. The isoperimetric
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problem in such a mixed framework has been studied e.g. in [18] with n ¼ Lk the
Lebesgue measure on Rk and m the standard Gaussian measure on Rh, relying
on a suitable notion of mixed rearrangement. In the present paper we consider
a mixed density, i.e., a measure l ¼ mnLk, where m is a Log-convex measure
on Rh. Interest in such framework comes also from the recent proof of the Log-
convex density conjecture by G. R. Chambers, see [9].

Let us come to a description of the content of the present paper. We consider
the Euclidean space Rn ¼ Rh � Rk, with h; kb 1, whose points are denoted by
z ¼ ðx; yÞ, endowed with the measure l ¼ ecðjxjÞ dx dy, where c : R ! R is a
Cl, convex, even function, and the isoperimetric problem

inf

Z
qE

ecðjxjÞ dHn�1ðx; yÞ :
Z
E

ecðjxjÞ dx dy ¼ m

� �
; m > 0:ð1Þ

As the density of l with respect to the Lebesgue measure is regular, the class
PlðRnÞ of sets with locally finite perimeter with respect to l is the same as the
classical nonweighted one, and we may cast the isoperimetric problem (1) in this
class as follows:

inf PlðEÞ : lðEÞ ¼
Z
E

ecðjxjÞ dx dy ¼ m

� �
; m > 0:ð2Þ

where

PlðEÞ :¼ sup

Z
E

divl F dl : F a C1
c ðRn;RnÞ; kFkl a 1

� �
ð3Þ

and

divl Fðx; yÞ ¼
Xn

j¼1

qjFjðx; yÞ þ c 0ðjxjÞ
Xh

j¼1

xj

jxjFjðx; yÞ:

In case of regular (say, Lipschitz continuous) boundaries we have the equality

PlðEÞ ¼
Z
qE

ecðjxjÞ dHn�1ðx; yÞ:

Our main results concern existence, geometric properties and uniqueness of the
isoperimetric sets. After introducing the suitable weighted Steiner symmetriza-
tion in our setting and discussing the main properties, we show that a symmetric
isoperimetric set exists (up to translations along the y directions). Indeed, every
isoperimetric set is Steiner symmetric with respect to both coordinate spaces.
Moreover, we can prove that the isoperimetric set is unique (up to translations
along the y directions) provided minfh; kg ¼ 1 and that if k ¼ 1 and the mass
m is small enough or if h ¼ 1, the isoperimetric set is strictly convex. In order to
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prove the existence of an isoperimetric set, the (classical) idea is to replace each
term of a minimizing sequence by its symmetrized and to show that the new
sequence converges to a set which fulfils the volume constraint. Performing this
program, in our case, relies on the standard Steiner symmetrization with respect
to the subspace fy ¼ 0g and on a weighted rearrangement with respect to the
subspace fx ¼ 0g, which depends on the density c. Symmetry properties of min-
imizers depend upon the stability of minimizers of the functional J in (1.5), which
allows us to express the weighted perimeter, with respect to weighted symmetriza-
tion, see Theorem 1.8. As a consequence of the first variation formula (2.4) and
the regularity of the density c we get the regularity of the whole boundary of
the isoperimetric sets, see Theorem 3.2. The aforementioned geometric properties
and the uniqueness of the isoperimetric profiles are proved through a careful
analysis of the Euler equation (2.4) as it can be formulated in view of the sym-
metry properties. This is done in Section 3.

1. Preliminaries

In the following we denote by BrðzÞ the n-dimensional ball with center at z
and radius r. When the center z is the origin we simply write Br instead of Brð0Þ.
If x a Rh the h-dimensional ball with center at x and radius r is denoted by
B

ðhÞ
r ðxÞ. As before, if x ¼ 0 we simply write B

ðhÞ
r . If 0a sa n we denote by Hs

the s-dimensional Hausdor¤ measure. For every set E � Rn and every x a Rh we
define

Ex :¼ fy a Rk : ðx; yÞ a Eg and vEðxÞ :¼ HkðExÞ;ð1:1Þ

where we recall that Hk coincides with the outer Lebesgue measure in Rk, and
we set

pðEÞþ :¼ fx a Rh : vEðxÞ > 0g:

We assume that the reader is well acquainted with the theory of BV functions
and sets of finite perimeter. Here we just set a few notation. Given a set of locally
finite perimeter E in Rn we denote by q�E its reduced boundary and by nE its
generalized outer normal.

If u is a function in BVðRmÞ, we say that u has approximate limit at z a Rm if
there exists ~uuðzÞ a R such that

lim
r!0

Z
BrðzÞ

juðwÞ � ~uuðzÞj dw ¼ 0:

By the Lebesgue di¤erentiation theorem, we know that u ¼ ~uu a.e. in Rm. We
denote by

Cu :¼ fz a Rm : ~uuðzÞ existsg
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the (Borel) set of points of approximate continuity of u. If z a Cu we say that u is
approximately di¤erentiable at z if there exists a vector ‘uðzÞ a Rm such that

lim
r!0

Z
BrðzÞ

juðwÞ � ~uuðzÞ � ‘uðzÞ � ðw� zÞj
r

dw ¼ 0:ð1:2Þ

The set of all points z a Rm where ‘uðzÞ exists is denoted by Du. Finally we
recall that the approximate gradient defined in (1.2) coincides Lm-a.e. with the
absolutely continuous part of the measure gradient Du. Therefore, the following
decomposition formula holds

Du ¼ ‘uLm þDsu:

For all the other properties of sets of finite perimeter and BV functions needed in
the following we refer to the book [2]. Here, we just recall the following result,
essentially due to Vol’pert, see [4, Th. 2.4], stating that Hh-a.e. slice of a set of
finite perimeter E in Rn is a set of finite perimeter in Rk and relating the reduced
boundary and the exterior normal of E to the ones of its slices. In the following, if
n is any vector in Rn we set nx :¼ ðn1; . . . ; nhÞ and ny :¼ ðnhþ1; . . . ; nnÞ.

Theorem 1.1. Let E be a set of finite perimeter in Rn. Then for Hh-a.e.
x a Rh,

(i) Ex is a set of finite perimeter in Rk;

(ii) Hk�1ðq�Exsðq�EÞxÞ ¼ 0;

(iii) for Hk�1-a.e. y such that y a q�ExB ðq�EÞx we have
(a) nEy ðx; yÞA 0,

(b) nExðyÞ ¼
nEy ðx; yÞ
jnEy ðx; yÞj

.

In particular, there exists a Borel set GE � pðEÞþ such that HhðpðEÞþnGEÞ ¼ 0
and (i)–(iii) are satisfied for every x a GE.

In view of the above theorem, if E is a set of finite perimeter we may define for
Hh-a.e. x a Rh

pEðxÞ :¼ Hk�1ðq�ExÞ:ð1:3Þ

It is readily checked that pE is a Borel function.

1.1. Steiner symmetrization

Let us now recall the definitions and properties of the Steiner symmetrization with
respect to the subspace fy ¼ 0g. For every E � Rn we denote by rðxÞ the radius
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of a k-dimensional ball in Rk with measure vEðxÞ, see (1.1). Then the Steiner sym-
metral of E with respect to the subspace fy ¼ 0g is defined as

ES ¼ fðx; yÞ a Rn : x a pðEÞþ; jyj < rðxÞg:

By construction vE ¼ vES and lðEÞ ¼ lðESÞ. If E ¼ ES we say that E is Steiner
symmetric with respect to the subspace fy ¼ 0g.

By replacing Ex with Ey ¼ fx a Rh : ðx; yÞ a Eg the Steiner symmetral ES of
E with respect to the subspace fx ¼ 0g is defined similarly.

Next result, see [4, Lemma 3.1 and Prop. 3.5] deals with the properties of the
function vE defined in (1.1).

Proposition 1.2. Let E � Rn be a set of finite measure and perimeter. Then
vE a BVðRhÞ and jDvE jðRhÞaPðEÞ. Moreover

vE a W 1;1ðRhÞ if and only if Hn�1ðfz a q�ES : nE
S

y ðzÞ ¼ 0gÞ ¼ 0:

Roughly speaking, the above proposition states that the function measuring
the vertical slices of E is W 1;1 if and only if the boundary of E has no vertical
parts.

It is well known that Steiner symmetrization decreases the perimeter. The
same happens also for the mixed perimeter Pl defined in (3). Indeed, this follows
from a more general inequality proved in [4, Prop. 3.4]. In the statement below
pE is the function defined in (1.3).

Proposition 1.3. Let E � Rn be a set of finite measure and perimeter and let
g : Rh ! ½0;l� be a Borel function. Then

Z
q�E

gðxÞ dHn�1
b

Z
Rh

gðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pEðxÞ2 þ j‘vEðxÞj2

q
dxþ

Z
Rh

gðxÞdjDsvE jð1:4Þ

with the equality holding when E ¼ ES. In particular, for any Borel set B � Rh

PlðE;B� RkÞb
Z
B

ecðjxjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pES ðxÞ2 þ j‘vEðxÞj2

q
dxþ

Z
B

ecðjxjÞdjDsvE j

¼ PlðES;B� RkÞ:

Observe that if E ¼ ES, then vEðxÞ ¼ okrðxÞk, where ok denotes the mea-
sure of the k-dimensional unit ball. Therefore in this case we have pEðxÞ ¼
ko

1=k
k vEðxÞðk�1Þ=k and PlðEÞ ¼ JðvEÞ, where the functional J is defined for any

function u a BVðRhÞ by setting

JðuÞ ¼
Z
fu>0g

ecðjxjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2o

2
k

kuðxÞ
2k�2
k þ j‘uðxÞj2

q
dxþ

Z
Rh

ecðjxjÞdjDsuj:ð1:5Þ
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The characterization of the equality cases in the inequality PðEÞbPðESÞ, where
Pð�Þ denotes the standard perimeter, was initiated in [10] and carried on in [4, 7],
see also [8] for the case of the Gaussian perimeter.

The following result is an immediate consequence of the analogous result for
the Euclidean perimeter established in [4, Th. 1.2].

Theorem 1.4. Let U � Rh be a connected open set and let E be a set of finite
perimeter in U � Rk such that PlðE;U � RkÞ ¼ PlðES;U � RkÞ. Assume that
the following two conditions hold:

(i) Hn�1ðfz a qES : nE
S

y ðzÞ ¼ 0gB ðU � RkÞÞ ¼ 0,

(ii) ~vvEðxÞ > 0 for Hh�1-a.e. x a U.

Then EB ðU � RkÞ is equivalent to a translate along Rk of ES B ðU � RkÞ.

Proof. Let B � U be any Borel set. Since PlðE;B� RkÞbPlðES;B� RkÞ,
from the assumption PlðE;U � RkÞ ¼ PlðES;U � RkÞ we have that
PlðE;B� RkÞ ¼ PlðES;B� RkÞ. By assumption (i) Proposition 1.2 gives that
vE a W

1;1
loc ðUÞ. Thus from Proposition 1.3 it follows that for every Borel set

B � U

Z
q�EBðB�RkÞ

ecðjxjÞ dHn�1 ¼
Z
B

ecðjxjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pESðxÞ2 þ j‘vEðxÞj2

q
dx:ð1:6Þ

We now set for any Borel set B � U

mðBÞ :¼ PðE;B� RkÞ; nðBÞ :¼ PðES;B� RkÞ:

Observe that by Propositions 1.2 and 1.3 we have

nðBÞ ¼
Z
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pES ðxÞ2 þ j‘vEðxÞj2

q
dx:

Therefore, equation (1.6) can be rewritten as

Z
B

ecðjxjÞ dm ¼
Z
B

ecðjxjÞ dn:

Since mb n (again by Proposition 1.3) and cb c > 0 from the above equality we
have m ¼ n, hence

PðE;U � RkÞ ¼ PðES;U � RkÞ:

From this inequality and the assumptions (i), (ii), the result follows by [4, Th.
1.2]. r
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1.2. Weighted symmetric rearrangements

In the sequel, given 0a sa h, we denote by ls the measure defined by setting for
any Borel set B � Rh

lsðBÞ ¼
Z
B

ecðjxjÞ dHsðxÞ:

With this definition in hand we may now proceed to defining the weighted
spherically symmetric decreasing rearrangement of a nonnegative function
u : Rh ! ½0;l� with the property that the level set fx a Rh : uðxÞ > tg has finite
lh measure for every t > 0. To this aim we introduce the function mu : ½0;lÞ !
½0;l�, defined for tb 0 as

muðtÞ ¼ lhðfx a Rh : uðxÞ > tgÞ;

which is called the distribution function of u. Then the weighted decreasing rear-
rangement ua of u is the function from ½0;lÞ to ½0;l� given by

uaðsÞ ¼ supftb 0 : muðtÞ > sg

for 0a s < lhðfu > 0gÞ, uaðsÞ ¼ 0 otherwise. Observe that the function ua is
decreasing and right-continuous, uað0Þ ¼ ess sup u, and

fsb 0 : uaðsÞ > tg ¼ ½0; muðtÞÞ for every 0a t < ess sup u:ð1:7Þ

The weighted symmetric rearrangement of u is the function from Rh into ½0;l�
defined as

u�ðxÞ ¼ uaðlhðBðhÞ
jxj ÞÞ for x a Rh:

See [6] for a similar definition. Note that (1.7) implies that muðtÞ ¼ mu�ðtÞ for every
t > 0 and thus for every a > 0

Z
Rh

uðxÞa dlh ¼
Z
Rh

u�ðxÞa dlh:ð1:8Þ

Most of the properties of the standard decreasing rearrangement are true also
for the weighted rearrangement, by just repeating verbatim the proofs of the
standard case. We present here some useful properties of the distribution function
mu and of the weighted symmetric rearrangement of a BV function u. The first
result, which can be proved exactly as in standard case, see [11, Lemmas 3.1
and 3.2], provides a formula for the derivative of mu. To this aim, given a function
u a BVðRhÞ we set

Dþ
u :¼ fx a Rh : ‘uðxÞA 0g; D0

u :¼ fx a Rh : ‘uðxÞ ¼ 0g;
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Proposition 1.5. Let u a BVðRhÞ be a nonnegative function such that
lhðfu > tgÞ < l for every t > 0. Then for t > 0

muðtÞ ¼ lhðfu > tgBD0
ugÞ þ

Z l

t

dt

Z
q�fu>tg

wDþ
u

j‘uj dlh�1

and for a.e. t > 0

m 0
uðtÞa�

Z
q�fu>tg

wDþ
u

j‘uj dlh�1:ð1:9Þ

Moreover,

m 0
uðtÞ ¼ � lh�1ðfu� ¼ tgÞ

j‘u�jjfu�¼tg
for a:e: t a u�ðDþ

u� Þ:ð1:10Þ

and

m 0
uðtÞ ¼ 0 for a:e: t a ð0;lÞnu�ðDþ

u� Þ:ð1:11Þ

In the aforementioned paper [11] several fine properties of the symmetric rear-
rangement of a BV functions are established. In the next result we recall a few
ones that are needed below, see Lemma 2.6 (v) and Part I of Theorem 1.2 of [11].

Proposition 1.6. Let u be a nonnegative function in BVðRhÞ. Then, for almost
every t a u�ðDþ

u� Þ

Hh�1ðq�fu� > tgsfu� ¼ tgÞ ¼ 0ð1:12Þ

Moreover, for almost every t a ð0;lÞnu�ðDþ
u�Þ

Hh�1ðq�fu� > tgBDþ
u� Þ ¼ 0 and Hh�1ðq�fu > tgBDþ

u Þ ¼ 0ð1:13Þ

Finally, we make use of a recent, deep result proved by Chambers in [9],
known as the Log-convex density conjecture.

Theorem 1.7. Let E be a set of finite perimeter in Rh with lhðEÞ ¼ lhðBðhÞ
r Þ.

Then

lh�1ðq�EÞb lh�1ðqBðhÞ
r Þ:ð1:14Þ

Assume also that

cðrÞ > cð0Þ for every rA 0:ð1:15Þ

Then, if the equality holds in (1.14), E is equivalent to B
ðhÞ
r .

Next result is a Pólya–Szegö principle for the functional J defined in (1.5) and
tells us that this functional decreases under weighted symmetric rearrangement.
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Its proof follows the argument used in the proof of [11, Th. 1.4] with some extra
complications due to the fact that the integrand in the definition of J depends
also on u.

Theorem 1.8. Let J be the functional defined in (1.5). Then

Jðu�Þa JðuÞð1:16Þ

for any nonnegative function u a BVðRhÞ. Moreover, if c satisfies (1.15) and
equality holds in (1.16), then u agrees a.e. with u�.

Proof. Step 1. We start by rewriting the functional J as follows:

JðuÞ ¼ ~JJðuÞ þ ko
1
k

k

Z
fu>0g

ecðjxjÞuðxÞ
k�1
k dx;

where we have set

~JJðuÞ :¼
Z
Du

ecðjxjÞð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2o

2
k

kuðxÞ
2k�2
k þ j‘uðxÞj2

q
� ko

1
k

kuðxÞ
k�1
k Þ dx

þ
Z
RhnDu

ecðjxjÞdjDsuj:

Since from (1.8)

Z
fu>0g

ecðjxjÞu�ðxÞ
k�1
k dx ¼

Z
fu>0g

ecðjxjÞuðxÞ
k�1
k dx < l;ð1:17Þ

in order to prove (1.16) it is enough to show that

~JJðu�Þa ~JJðuÞð1:18Þ

To this aim we define a function B : ð0;lÞ � ½0;l� ! ½0; 1� setting for t > 0,
0a sal

Bðt; sÞ :¼

0 if s ¼ 0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2o

2
k

kt
2k�2
k þ s2

q
� ko

1
k

kt
k�1
k

s
if 0 < s < l;

1 if s ¼ l:

8>>>><
>>>>:

It is easily checked that for every t > 0 the function Bðt; �Þ : ½0;l� ! ½0; 1� is
strictly increasing. Moreover the function Cðt; �Þ : ½0; 1� ! ½0;l�, defined by set-
ting for r a ½0; 1�

Cðt; rÞ :¼ 1

½Bðt; �Þ��1ðrÞ
;
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is strictly decreasing and strictly convex. To prove the latter claim let us calculate
for t > 0 and 0 < r < 1

qC

qr
ðt; rÞ ¼ � 1

ð½Bðt; �Þ��1ðrÞÞ2
� 1

qsBðt; ½Bðt; �Þ��1ðrÞÞ
:

Since ½Bðt; �Þ��1 is strictly increasing, the claim follows by observing that the
function

s 7! 1

s2qsBðt; sÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2k þ s2

q

gk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2k þ s2

q
� g2k

;

where we have set gk ¼ ko
1
k

kt
k�1
k , is strictly decreasing. Let us now set, for a func-

tion v a BVðRhÞ,

gvðxÞ :¼
j‘vðxÞj if x a Dþ

v ;

þl otherwise:

�

Then, using the coarea formula for BV functions, ~JJðuÞ can be rewritten as

~JJðuÞ ¼
Z
Du

ecðjxjÞBð~uuðxÞ; guðxÞÞdjDuj þ
Z
RhnDu

ecðjxjÞdjDsuj

¼
Z l

0

dt

Z
q�fu>tgBDu

ecðjxjÞBð~uuðxÞ; guðxÞÞ dHh�1

þ
Z l

0

dt

Z
q�fu>tgnDu

ecðjxjÞ dHh�1:

Thus, since for a.e. t a ð0;lÞ

Hh�1ððq�fu > tgsf~uu ¼ tgÞBCuÞ ¼ 0;

recalling the definition of gu and B we have

~JJðuÞ ¼
Z l

0

dt

Z
q�fu>tg

Bðt; guðxÞÞ dlh�1:ð1:19Þ

Step 2. From Jensen’s inequality we have that for a.e. t > 0

C
�
t;

Z
q�fu>tg

Bðt; guðxÞÞ dlh�1

�
a

Z
q�fu>tg

Cðt;Bðt; guðxÞÞÞ dlh�1;

hence, recalling that Cðt; �Þ is strictly decreasing, we have

Z
q�fu>tg

Bðt; guðxÞÞ dlh�1 bC�1
�
t;

Z
q�fu>tg

Cðt;Bðt; guðxÞÞÞ dlh�1

�
:ð1:20Þ
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Recalling the definition of gu and B and (1.9), we have that for a.e. t > 0

C�1
�
t;

Z
q�fu>tg

Cðt;Bðt; guðxÞÞÞ dlh�1

�

¼ C�1
�
t;

Z
q�fu>tg

1

guðxÞ
dlh�1

�

¼ C�1
�
t;

Z
q�fu>tg

wDþ
u

j‘uj dlh�1

�
¼ B

�
t;

lh�1ðq�fu > tgÞR
q�fu>tg

wDþ
u

j‘uj dlh�1

�

bB
�
t;
lh�1ðq�fu > tgÞ

�m 0
uðtÞ

�
bB

�
t;
lh�1ðq�fu� > tgÞ

�m 0
uðtÞ

�
;

where the last inequality follows from the isoperimetric inequality (1.14). Thus,
using the representation formula (1.10), (1.12) and the fact that j‘u�j is constant
Hh�1-a.e. on fu� ¼ tg, we conclude that for a.e. t a u�ðDþ

u�Þ

C�1
�
t;

Z
q�fu>tg

Cðt;Bðt; guðxÞÞÞ dlh�1

�
bBðt; j‘u�jjq�fu�>tgÞð1:21Þ

¼ Bðt; gu� Þjq�fu�>tg:

If instead t a ð0;lÞnu�ðDþ
u�Þ, from the second equality in (1.13) we have that

guðxÞ ¼ l for Hh�1-a.e. x a q�fu > tg, therefore Cðt;Bðt; guðxÞÞÞ ¼ 0 for Hh�1-
a.e. x a q�fu > tg. Thus, recalling that C�1ðt; 0Þ ¼ 1 and using the first equality
in (1.13), we have

C�1
�
t;

Z
q�fu>tg

Cðt;Bðt; guðxÞÞÞ dlh�1

�
¼ 1 ¼ Bðt; gu� Þjq�fu�>tg:ð1:22Þ

Thus, from (1.21) and (1.22), using (1.20) and the isoperimetric inequality (1.14)
again, we get that for a.e. t > 0

Z
q�fu>tg

Bðt; guðxÞÞ dlh�1 b

Z
q�fu�>tg

Bðt; gu�ðxÞÞ dlh�1:

From this inequality, recalling (1.19), inequality (1.18) immediately follows.
Finally, let us assume that condition (1.15) holds and that JðuÞ ¼ Jðu�Þ. By

(1.17) this equality implies that ~JJðuÞ ¼ ~JJðu�Þ. At this point, from the argument
we just used to deduce inequality (1.18), it is clear that for a.e. t > 0

lh�1ðq�fu > tgÞ ¼ lh�1ðq�fu� > tgÞ:

Thus, from Theorem 1.7 we get that for a.e. t > 0 the level set fu > tg is a ball
centered at the origin. At this point it is not too hard to show that u coincides
Hh a.e. with u�, see the proof of [11, Lemma 4.1] for the details. r
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2. Existence and the first variation formula

In this section we prove the existence of an isoperimetric set with respect to the
weighted volume lðEÞ and the weighted perimeter PlðEÞ.

Theorem 2.1. For every m > 0 the infimum in (2) is attained.

Proof. Fix m > 0 and let Ej be a minimizing sequence for the problem (2).
First, we perform a Steiner symmetrization of codimension k of the sets Ej and
denote by ES

j the corresponding Steiner symmetrizations. By Proposition 1.3,
we have that for every j

lðEjÞ ¼ lðES
j Þ ¼ m and PlðES

j ÞaPlðEjÞ:ð2:1Þ

Moreover, by Proposition 1.2, setting vj ¼ vEj
, the sequence vj is bounded in

BVðRhÞ and by (1.8) and (1.16) we have also that

Z
Rh

vj dlh ¼
Z
Rh

v�j dlh; Jðv�j Þa JðvjÞ;

where v�j ðxÞ is the weighted symmetric rearrangement of vj . From these relations,
recalling (2.1) and setting for every j

Fj ¼ fðx; yÞ a Rh � Rk : okjyjk < v�j ðxÞg;

we conclude that Fj is a minimizing sequence for the problem (2). Since the se-
quence v�j is bounded in BVðRhÞ we may assume without loss of generality that
the functions v�j converge in L1

locðRhÞ to a nonnegative function v a BVðRhÞ.
Therefore, by well known lower semicontinuity results, see for instance [13, Th.
1.1], we may conclude that

JðvÞa lim inf
j!l

Jðv�j Þ:

In turn, setting F :¼ fðx; yÞ a Rh � Rk : okjyjk < vðxÞg, the above inequality
can be rewritten as

PlðF Þa lim inf
j!l

PlðFjÞ:

Therefore to conclude that F is a minimizer of (2) we need only to show that F
satisfies the mass constraint lðFÞ ¼ m. Since the functions v�j converge to v in
L1

locðRhÞ this equality follows if we show that there is no loss of mass at infinity
along the minimizing sequence Fj, i.e., for every e > 0 there exist Re > 0 and a
positive integer je such that

Z
RhnBðhÞ

Re

ecðjxjÞv�j ðxÞ dxa e for every jb je:
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To prove this we argue by contradiction assuming that there exists e0 > 0 such
that for every R > 0

Z
RhnBðhÞ

R

ecðjxjÞv�j ðxÞ dxb e0 for infinitely many j:ð2:2Þ

Observe that given R, since v�j ðxÞ ¼ vaj ðlhðB
ðhÞ
jxj ÞÞ and vaj is decreasing, we have

for every j

m ¼
Z
Rh

ecðjxjÞv�j ðxÞ dxb ecð0ÞohR
hvaj ðlhðB

ðhÞ
R ÞÞ:

Thus, from this inequality, for every j for which (2.2) holds we get

PlðFjÞ ¼ Jðv�j Þb ko
1
k

k

Z
fv�

j
>0g

ecðjxjÞv�j ðxÞ
k�1
k dx

b ko
1
k

k

Z
fv�

j
>0gnBðhÞ

R

ecðjxjÞv�j ðxÞðv�j ðxÞÞ
�1

k dx

b
ko

1
k

ke0

vaj ðlhðB
ðhÞ
R ÞÞ

1
k

b ko
1
k

ke0

� ecð0ÞohR
h

m

�1
k
:

Since the perimeters PlðFjÞ are bounded, this inequality is clearly impossible if R
is su‰ciently large. This contradiction concludes the proof. r

Remark 2.2. Note that in the proof of Theorem 2.1 we have shown that for
every m > 0 there exists an isoperimetric set S which is Steiner symmetric with
respect to the subspace fy ¼ 0g and such that

S ¼ fðx; yÞ a Rh � Rk : okjyjk < v�SðxÞg:ð2:3Þ

Observe that S is also Steiner symmetric with respect to the subspace fx ¼ 0g.

If the boundary of the isoperimetric set E minimizing (2) is a manifold of class
C2, then a standard argument, see for instance [19, Sec. 17.5], shows that there
exists L a R such that

HqE þ ‘c � nEx ¼ L;ð2:4Þ

where HqE denotes the mean curvature of E, i.e., the sum of the principal cur-
vatures of qE. Note that, as c depends only upon x, the inner product is in the
horizontal space Rh.

On the other hand, the regularity of the isoperimetric sets for the mixed perim-
eter can be deduced from De Giorgi’s theory of minimal sets of finite perimeter.
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The precise result is given in the theorem below. Note that in the following, when
dealing with a set of finite perimeter E, we always tacitly assume that E is a Borel
set such that its topological boundary qE coincides with the support of the perim-
eter measure, i.e.,

qE ¼ fz a Rn : 0 < LnðEBBrðzÞÞ < onr
n for every r > 0g:ð2:5Þ

The fact that a set of finite perimeter has always a Borel representative satisfying
(2.5) is a well known fact, see for instance [19, Prop. 12.19]. In the following,
given any Borel set B � Rn we denote by dimHðBÞ its Haudor¤ dimension.

Theorem 2.3. Let E be a minimizer of the isoperimetric problem (2). Then its
reduced boundary q�E is a manifold of class Cl. Moreover dimHðqEnq�EÞa
n� 8.

Proof. Let G be a set of finite perimeter and fix R > 0 such that
Hn�1ðq�GBBRÞ > 0. Observe that there exist two constants s0 and C0 depend-
ing only on R and cðRÞ such that for every s a ð�s0; s0Þ we can find a set of
finite perimeter F such that GsF �� BR and

lðFÞ ¼ lðGÞ þ s; jPlðG;BRÞ � PlðF ;BRÞjaC0jsj:

Indeed, this fact can be proved arguing exactly as in the case of standard volume
and perimeter, with the obvious modifications, see for instance the proof of
[19, Lemma 17.21].

Then, arguing again as for the standard perimeter, see [19, Example 21.3], it
is not too di‰cult to show that if E is a minimizer of the constrained problem
(2) and BR is a ball as above, there exists a constant M depending only on R
and cðRÞ such that if BrðzÞ � BR and F is a set of finite perimeter such that
EsF �� BrðzÞ one has

PlðE;BrðzÞÞaPlðF ;BrðzÞÞ þMjlðEÞ � lðFÞj:ð2:6Þ

In turn, given a ball BrðzÞ � BR, taking F ¼ EnB%ðzÞ, with 0 < % < r and letting
% ! r, from (2.6) one easily gets that for any BrðzÞ � BR

PlðE;BrðzÞÞaC1r
n�1ð2:7Þ

for some constant C1 depending, as before, only on R and cðRÞ.
Let us now consider a set F of finite perimeter such that EsF �� BrðzÞ.

Denote by mðr; zÞ and Mðr; zÞ the minimum and the maximum, respectively, of
the function ecðjxjÞ on BrðzÞ. From (2.6) we have

mðr; zÞPðE;BrðzÞÞaMðr; zÞPðF ;BrðzÞÞ þ C2r
n;

for some positive constant C2 depending only on R and cðRÞ. Therefore, recall-
ing (2.7), we have
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PðE;BrðzÞÞaPðF ;BrðzÞÞ þ
Mðr; zÞ �mðr; zÞ

Mðr; zÞ PðE;BrðzÞÞ þ C2r
n

aPðF ;BrðzÞÞ þ CrPðE;BrðzÞÞ þ C2r
n
aPðF ;BrðzÞÞ þ grn;

where also g depends only on R, cðRÞ and c 0ðRÞ. In conclusion, we have proved
that E is a g-almost miminimizer for the perimeter in BR, that is, for any ball
BrðzÞ � BR and for any set of finite perimeter F with EsF �� BrðzÞ the in-
equality

PðE;BrðzÞÞaPðF ;BrðzÞÞ þ grn

holds. From this minimality property we may conclude, see [22, Th. 1.9] or also
[19, Th. 21.8 and 28.1], that q�E is a C1;a manifold for every 0 < a < 1=2 and
that dimHðqEnq�EÞa n� 8. Moreover q�E satisfies (2.4) in a distributional
sense, i.e.,

div nE þ ‘c � nEx ¼ L on q�E

for some Lagrange multiplier L a R. Thus, standard elliptic regularity results
imply that indeed q�E is a C2;a manifold. Then, another standard bootstrap
argument yields that q�E is of class Cl. r

If the minimizer is Steiner symmetric with respect to both subspaces fx ¼ 0g
and fy ¼ 0g the above regularity result can be improved as follows.

Corollary 2.4. Let E be a minimizer of the isoperimetric problem (2). Assume
that E is Steiner symmetric with respect to both subspaces fx ¼ 0g and fy ¼ 0g.
Then

ðqEnq�EÞB fðx; yÞ : xA 0 and yA 0g ¼ j:ð2:8Þ

Moreover, if h; ka 6, then qE is a Cl manifold.

Proof. We argue by contradiction assuming that there exists ðx0; y0Þ a qEnq�E
with both x0 and y0 not zero. Since E is Steiner symmetric with respect to the
subspace fy ¼ 0g all points ðx0; yÞ with jyj ¼ jy0j belong to the singular set
qEnq�E. In turn, since E is also Steiner symmetric with respect to fx ¼ 0g, the
set fðx; yÞ : jxj ¼ jx0j; jyj ¼ jy0jg is contained in qEnq�E. By Theorem 2.3 this
is impossible since the Hausdor¤ dimension of this set is ðh� 1Þ þ ðk � 1Þ ¼
n� 2. This contradiction proves (2.8).

Assume now that h; ka 6 and that the singular set is not empty. Then nb 8
and from (2.8) it follows that qEnq�E contains only points of the type ð0; y0Þ with
y0A 0 or ðx0; 0Þ with x0A0. So let us assume that ð0; y0Þ is a singular point for
some y0A 0. Then the set fð0; yÞ : jyj ¼ jy0jg is also contained in the singular
set. But this set has dimension k � 1 and since ha 6, k � 1 > n� 8, which is im-
possible by Theorem 2.3. The same argument shows that also the points of the
type ðx0; 0Þ cannot be singular. r
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3. Properties of the isoperimetric set

In this section we assume that the function c satisfies the assumption (1.15). With
this assumption in mind we investigate the properties and the uniqueness of the
isoperimetric sets, that are the sets minimizing (2). To this end we start with the
two-dimensional case, that is h ¼ k ¼ 1, where the arguments are similar, but
simpler than in the general case nb 3.

Theorem 3.1. Let h ¼ k ¼ 1 and m > 0. Up to a vertical translation, every
isoperimetric set E with lðEÞ ¼ m is a Cl, bounded, strictly convex set, Steiner
symmetric with respect to both coordinate axes. Moreover E is unique.

Proof. Given m > 0, let S be an isoperimetric set with lðSÞ ¼ m Steiner sym-
metric with respect to both coordinate axes as in (2.3). By Theorem 2.3 the
boundary of S is a Cl manifold. Since S is Steiner symmetric with respect to
both axes, it is a connected set and since its Euclidean perimeter is finite, S is
also bounded.

Therefore, there exist two even BV functions, f : ð�a; aÞ ! ð0;lÞ and
g : ð�b; bÞ ! ½0;lÞ, such that for every x a ð�a; aÞ and y a ð�b; bÞ

Sx ¼ ð� f ðxÞ; f ðxÞÞ; Sy ¼ ð�gðyÞ; gðyÞÞ:

Note that the functions f and g are both decreasing when restricted to the inter-
vals ð0; aÞ and ð0; bÞ, respectively. Moreover, from the first variation formula
(2.4) we deduce that these functions satisfy the equations

�f 00 � c 0ðxÞ f 0ðxÞð1þ f 0ðxÞ2Þ ¼ Lð1þ f 0ðxÞ2Þ3=2ð3:1Þ

and

�g 00 þ c 0ðgðyÞÞð1þ g 0ðyÞ2Þ ¼ Lð1þ g 0ðyÞ2Þ3=2;ð3:2Þ

respectively, on any interval where they are smooth. Observe also that if the nor-
mal at a point ðx0; y0Þ of the boundary of S is not horizontal, then f ðx0Þ ¼ y0
and f is Cl in a neighborhood of x0. Similarly, if the normal at ðx0; y0Þ is not
vertical, then gðy0Þ ¼ x0 and g is Cl in a neighborhood of y0.

Since S is smooth the exterior normal at the point ðgð0Þ; 0Þ is ð1; 0Þ. Therefore,
g is smooth in a neighborhood of 0 and since 0 is a maximum point for g we have
g 0ð0Þ ¼ 0, g 00ð0Þa 0. Thus, from (3.2) we have

c 0ðgð0ÞÞ �L ¼ g 00ð0Þa 0:

Hence, thanks to assumption (1.15) we have that Lbc 0ðgð0ÞÞ > 0.
Let us now assume that at a point ðx0; y0Þ a qS, with x0 a ð0; aÞ, the exterior

normal is vertical. Then f ðx0Þ ¼ y0, f is smooth in a neighborhood of x0 and
f 0ðx0Þ ¼ 0. Therefore, from (3.1) we obtain f 00ðx0Þ ¼ �L < 0. Thus x0 is a local
strict maximum and this is impossible since f is decreasing. This shows that,
except for the points ð0;ebÞ, the normal to the boundary of S is never vertical.
In turn, as observed before this yields that g a Clð�b; bÞ.
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Moreover g 0A0 in ð0; bÞ. In fact if there were y0 a ð0; bÞ such that g 0ðy0Þ ¼ 0,
then also g 00ðy0Þ ¼ 0, otherwise y0 would be a strict local minimum or maximum
and this is impossible since g is decreasing. Then from (3.2) we would get that

c 0ðgðy0ÞÞ ¼ L

and thus by the uniqueness of solutions to the equation (3.2) we would conclude
that g is constant, hence S is a rectangle. But this is impossible since qS is
smooth. So g 0 never vanishes in ð0; bÞ, hence f is Cl in ð�a; aÞ.

Finally, observe that using again (3.2) and recalling that L > 0, we get that for
every yA 0

g 00ðyÞ ¼ c 0ðgðyÞÞð1þ g 0ðyÞ2Þ �Lð1þ g 0ðyÞ2Þ3=2ð3:3Þ
< ðc 0ðgð0ÞÞ �LÞð1þ g 0ðyÞ2Þa 0:

Thus g is strictly concave, hence S is strictly convex.
Let us now show that S is the only isoperimetric set Steiner symmetric with

respect to the x axis satisfying (2.3). We argue by contradiction assuming that
there exist two solutions f2 and f1 of (3.1) defined in two intervals ð�a2; a2Þ,
ð�a1; a1Þ, respectively, and corresponding to two isoperimetric sets with the
same mass. From the regularity of the isoperimetric sets we have that f 0

2 ð0Þ ¼
f 0
1 ð0Þ ¼ 0 and thus from the uniqueness of solutions of (3.1) we deduce also that
f 0
2 ðxÞ ¼ f 0

1 ðxÞ for every x such that jxj < minfa1; a2g. Therefore, since f1ða1Þ ¼
f2ða2Þ ¼ 0 and

Z a1

0

ecðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 0

1 ðxÞ
2

q
dx ¼

Z a2

0

ecðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 0

2 ðxÞ
2

q
dx;

we conclude immediately that the two functions f1 and f2 coincide.
Let us conclude the proof by showing that S is the unique isoperimetric set up

to vertical translations. Indeed, if E is another isoperimetric set with the same
mass as S, arguing as in the proof of Theorem 2.1 we first consider the Steiner
symmetrization ES of E with respect to the x axis. Then,

ES ¼ fðx; yÞ : 2jyj < vEðxÞg;

where vE is defined as in (1.1). Replacing vE by its weighted symmetric rearrange-
ment v�E , we set

F :¼ fðx; yÞ : 2jyj < v�EðxÞg:ð3:4Þ

Since lðEÞ ¼ lðESÞ ¼ lðFÞ and, by Proposition 1.3 and (1.16),

PlðEÞbPlðESÞbPðFÞ;

we conclude that indeed all the previous inequalities are in fact equalities.
Moreover, since F is Steiner symmetric by construction, F coincides with S.
Note that from the equality PlðESÞ ¼ PlðF Þ we have by Theorem 1.8 that
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ES ¼ F ¼ S. Finally, PlðESÞ ¼ PlðEÞ and both assumptions (i) and (ii) of
Theorem 1.4 are satisfied, since nE

S

y ¼ 0 only at ðea; 0Þ and vEðxÞ ¼ 2f ðxÞ > 0
for each x a ð�a; aÞ. Thus, E is a vertical translation of ES, hence a vertical
translation of S. r

We now consider the general case nb 3. In this case our result reads as
follows.

Theorem 3.2. Let nb 3 and m > 0. Up to a translation in the y direction, every
isoperimetric set E with lðEÞ ¼ m is Cl, bounded and Steiner symmetric with
respect to both coordinate axes. If h ¼ 1 or k ¼ 1, E is also unique. Moreover, if
k ¼ 1 and m < m0, for some m0 > 0 depending only on n and c, or if h ¼ 1, E is
strictly convex.

Proof. Step 1. Given m > 0 let S be an isoperimetric set with lðSÞ ¼ m, Steiner
symmetric with respect to the subspace fy ¼ 0g and satisfying (2.3). By Corollary
2.4

M :¼ qSnððRh � f0gÞA ðf0g � RkÞÞ is a Cl manifold:ð3:5Þ

Let us now consider the function vS ¼ v�S. The support of vS is either a closed ball
of radius a or the whole Rh and from Proposition 1.2 we have vS a BVðRhÞ.
Moreover, since vS ¼ v�S the function vS depends only on jxj. Therefore, there ex-
ists a function r : ð0; aÞ ! ð0;lÞ, with a ¼ l if the support of vS is Rh, such that
vSðxÞ ¼ okrðjxjÞk for every x a Rh, 0 < jxj < a. Note that r a BVlocðð0; aÞÞ and
that r is decreasing, since vS ¼ v�S. Moreover, since the manifold M in (3.5) is
smooth the extended graph of r over the interval ð0; aÞ is a Cl curve. Let us
denote it by Gr.

If ðx0; y0Þ a qS, 0 < jx0j < a, and nSy ðx0; y0ÞA 0, then jy0j ¼ rðjx0jÞ and
r is Cl in a neighborhood of jx0j. Moreover, the coordinates of the points
ðx; yÞ a M verify the equation jyj2 � r2ðjxjÞ ¼ 0 in a neighborhood U of ðx0; y0Þ.
Therefore the exterior normal vector field to qSBU is given by

nSðx; yÞ ¼
�
� x

jxj rðjxjÞr
0ðjxjÞ; y

�
ðrðjxjÞ2r 0ðjxjÞ2 þ jyj2Þ1=2

:

Since the mean curvature HqS is equal to div nS, taking the divergence of the right
hand side of the above equality and using the fact than jyj2 ¼ r2ðjxjÞ on qSBU ,
the first variation equation (2.4) becomes

� r 00ð%Þ
ð1þ r 0ð%Þ2Þ3=2

� ðh� 1Þr 0ð%Þ
%ð1þ r 0ð%Þ2Þ1=2

ð3:6Þ

þ ðk � 1Þ
rð%Þð1þ r 0ð%Þ2Þ1=2

� c 0ð%Þr 0ð%Þ
ð1þ r 0ð%Þ2Þ1=2

¼ L;

where we have set % ¼ jxj.
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Let us now assume that at a point ð%0; s0Þ a Gr the normal to Gr is vertical.
Then rð%0Þ ¼ s0, r is smooth in a neighborhood of %0 and r 0ð%0Þ ¼ 0, r 00ð%0Þa 0.
However, it cannot be r 00ð%0Þ < 0 because in this case r would have a strict local
maximum and this is impossible because r is decreasing. Hence, r 00ð%0Þ ¼ 0 and
from (3.6) we have

k � 1

rð%0Þ
¼ L:ð3:7Þ

Therefore, if k > 1, from the local uniqueness of solutions of equation (3.6)
we conclude that r is constant in the interval ð0; aÞ. Similarly, if k ¼ 1, from
(3.7) we have that L ¼ 0 and thus, again from the local uniqueness of solu-
tions of the equations of (3.6), it follows that r is constant in the interval
ð0; aÞ and thus a must be finite. But if r is constant the points ðx; yÞ with
jxj ¼ a, jyj ¼ rðaÞ are singular points of qS and this is impossible since these
points form a set of Hausdor¤ dimension n� 2. This proves that the normal
vector to Gr is never vertical. Thus Gr coincides with the graph of a smooth
decreasing function g : ð0; bÞ ! ð0; aÞ, with b possibly equal to þl, such that
gðrð%ÞÞ ¼ % for each % a ð0; aÞ. Moreover, arguing as in the proof of (3.6) we get
that g satisfies the equation

� g 00ðsÞ
ð1þ g 0ðsÞ2Þ3=2

þ ðh� 1Þ
gðsÞð1þ g 0ðsÞ2Þ1=2

ð3:8Þ

� ðk � 1Þg 0ðsÞ
sð1þ g 0ðsÞ2Þ1=2

þ c 0ðgðsÞÞ
ð1þ g 0ðsÞ2Þ1=2

¼ L:

Observe that if s0 a ð0; bÞ then g 0ðs0Þ < 0. To prove this we argue as before
observing that if g 0ðs0Þ ¼ 0 then necessarily also g 00ðs0Þ ¼ 0 and thus from (3.8)
we obtain

ðh� 1Þ
gðs0Þ

þ c 0ðgðs0ÞÞ ¼ L:

Therefore, by the local uniqueness of solutions of equation (3.8) it follows that g
is constant in the interval ð0; bÞ and thus b must be finite. But if g is constant the
points ðx; yÞ with jxj ¼ gðbÞ, jyj ¼ b are singular points of qS and again this is
impossible since these points form a set of Hausdor¤ dimension n� 2. This shows
that g 0 < 0 in ð0; bÞ and thus the normal to Gr is never horizontal. In turn, this
implies that r is Cl in the interval ð0; aÞ.

Finally, let E be any isoperimetric set with the lðEÞ ¼ m. Arguing as in the
final part of the proof of Theorem 3.1 we first construct the Steiner symmetri-
zation ES of E with respect to fx ¼ 0g and then the set F defined as in (3.4).
Again, since PlðFÞ ¼ PlðESÞ ¼ PlðEÞ, from the first equality we get that ES ¼ F .
Then, we consider the function r such that vF ðxÞ ¼ okrðjxjÞk for every x a Rh.
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Since by the previous analysis r is Cl in ð0; aÞ we have

Hn�1ðfðx; yÞ a q�F : jxj < a; nFy ðx; yÞ ¼ 0gÞ ¼ 0:

Thus, by Theorem 1.4 we conclude that E is a vertical translation of F .

Step 2. Let us now prove that S is bounded. This follows if we show that both
intervals ð0; aÞ and ð0; bÞ are bounded.

To prove that a is finite, let us first consider the case k ¼ 1. In this case, if
a ¼ þl, then from Proposition 1.3 we get

PlðSÞ ¼ 2

Z
Rh

ecðjxjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r 0ðjxjÞ2

q
dx ¼ l;

which is impossible. So, let us assume that k > 1. If a ¼ þl, then rð%Þ ! 0 as
% ! þl, since otherwise, again by Proposition 1.3, we would get PlðSÞ ¼ l.
Now, from (3.6) we have

r 00ð%Þ
ð1þ r 0ð%Þ2Þ3=2

>
ðk � 1Þ

rð%Þð1þ r 0ð%Þ2Þ1=2
�L:ð3:9Þ

From this inequality it follows that there exists %0 > 0 such that

% > %0 and r 0ð%Þ > �1 ) r 00ð%Þ > 1:ð3:10Þ

In fact this implication follows from (3.9) by observing that if % > %0 and
0 > r 0ð%Þ > �1 then

r 00ð%Þ
ð1þ r 0ð%Þ2Þ3=2

>
ðk � 1Þffiffiffi
2

p
rð%0Þ

�L > 1

if we choose %0 su‰ciently large. Observe now that if there were %1 > %0 such that
r 0ð%1Þ > �1, then from (3.10) we would get that r 00ð%1Þ > 1 and thus, using again
(3.10) in a right neighborhood of %1, that r

0ð%2Þ ¼ 0 for some %2 a ð%1; %1 þ 1Þ.
And this is impossible. Therefore we must conclude that r 0ð%Þa�1 for every
% > %0 and this inequality immediately yields that a is finite.

Let us now show that also b is finite. If h ¼ 1 this is trivially true. In fact, if
b ¼ þl then the projection of M over Rn�1 would be Rn�1nf0g and thus would

have infinite Hn�1 measure. But then also M would have infinite Hn�1 measure,
hence PlðSÞ would be infinite, which is impossible.

Assume now that hb 2 and that b ¼ þl. Then gðsÞ ! 0 as s ! þl, other-
wise lðSÞ ¼ l. If also g 0ðsÞ ! 0 as s ! þl, passing to the limit in (3.8) we get
g 00ðsÞ ! þl, which is clearly impossible. On the other hand, if there exists e > 0
such that g 0ðsÞ < �e for s large, then we have that gðsÞ ! �l which is also
impossible. Therefore, since no one of the two previous instances may occur, we
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conclude that there exist a sequence si, with si ! þl such that each si is a local
maximum for g 0 and g 0ðsiÞ ! 0. Then, from equation (3.8) we get

ðh� 1Þ
gðsiÞÞð1þ g 0ðsiÞ2Þ1=2

� ðk � 1Þg 0ðsiÞ
sið1þ g 0ðsiÞ2Þ1=2

þ c 0ðgðsiÞÞ
ð1þ g 0ðsiÞ2Þ1=2

aL:

But this is impossible since the left hand side of this equation tends to þl as
i ! l. This final contradiction shows that also b < l.

Step 3. To prove that S is smooth by Corollary 2.4 it is enough to show that all
the points in qSB ðfx ¼ 0gA fy ¼ 0gÞ are regular points for qS.

We first show that qSB fy ¼ 0g has no singular point. If k ¼ 1 this follows
immediately by observing that if ðx0; 0Þ a qS is a singular point then all the
points in the sphere fjxj ¼ jx0jg are singular. By Theorem 2.3 this is impossible
since this sphere has dimension n� 2. So, let us assume that kb 2. Observe
that to show that all the points in qSB fy ¼ 0g are regular it is enough to prove
that

lim
s!0þ

g 0ðsÞ ¼ 0:ð3:11Þ

Indeed if this is true then g 0ð0Þ ¼ 0 and the normal vector field is continuous at all
the points of qSB fy ¼ 0g. In turn, the continuity of the normal, by the almost
minimality of S established in the proof of Theorem 2.3, implies that the normal
vector field is C1;a in a neighborhood of qSB fy ¼ 0g for some a > 0, see [19,
Th. 26.3]. Hence, arguing again as in the proof of Theorem 2.3, we conclude
that qS is Cl in a neighborhood of qSB fy ¼ 0g.

To show (3.11) we multiply both sides of (3.8) by sk�1, thus getting

d

ds

� �sk�1g 0ðsÞ
ð1þ g 0ðsÞ2Þ1=2

�
¼ Lsk�1 � ðh� 1Þsk�1

gðsÞð1þ g 0ðsÞ2Þ1=2
� sk�1c 0ðgðsÞÞ
ð1þ g 0ðsÞ2Þ1=2

:

Since kb 2, sk�1g 0ðsÞ=ð1þ g 0ðsÞ2Þ1=2 converges to zero as s ! 0þ, therefore,
integrating the previous equality from 0 to s, we get

0a
�g 0ðsÞ

ð1þ g 0ðsÞ2Þ1=2

¼ 1

sk�1

Z s

0

�
L� ðh� 1Þ

gðtÞð1þ g 0ðtÞ2Þ1=2
� c 0ðgðtÞÞ
ð1þ g 0ðtÞ2Þ1=2

�
tk�1 dta

Ls

k
;

thus showing (3.11).
To prove that qSB fx ¼ 0g has no singular points, arguing as before it is

enough to assume that hb 2 and to show that

lim
%!0þ

r 0ð%Þ ¼ 0:
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To this aim, we multiply equation (3.6) by %h�1 so to get

d

d%

� �%h�1r 0ð%Þ
ð1þ r 0ð%Þ2Þ1=2

�
¼ L%h�1 � ðk � 1Þ%h�1

rð%Þð1þ r 0ð%Þ2Þ1=2
þ %h�1c 0ðgð%ÞÞ
ð1þ g 0ð%Þ2Þ1=2

:

Now, the conclusion follows as in the previous case.

Step 4. Let us show that if h ¼ 1 or k ¼ 1 then S is unique. To this aim, let us first
assume that h ¼ 1. Assume that there exist two di¤erent solutions g2 and g1 of
(3.8) such that the corresponding profiles have both the same mass m, with
g2 > 0 in ð�b2; b2Þ and g1 > 0 in ð�b1; b1Þ for some b1 b b2.

Claim 1. There exist s0, d, with 0a s0 < s0 þ da b2, such that either

g 0
1ðs0Þ ¼ g 0

2ðs0Þ; g 0
2ðsÞ < g 0

1ðsÞ < 0; g2ðsÞ > g1ðsÞð3:12Þ
for every s a ðs0; s0 þ dÞ

or the same inequalities as in (3.12) hold with g1 exchanged with g2.

In order to prove the claim observe that maxfg1ðsÞ � g2ðsÞ : s a ½0; b2Þg > 0. In
fact, otherwise g1 a g2 and since the isoperimetric profiles corresponding to g1
and g2 have the same mass we easily conclude that g1 ¼ g2. Therefore, we may
assume that there exists s a ½0; b2� such that

g1ðsÞ � g2ðsÞa g1ðsÞ � g2ðsÞ for every s a ½0; b2�:

Now, two cases may occur.
First, let us assume that g1ðsÞ > g2ðsÞ for every s a ½s; b2Þ or that s ¼ b2. In

this case there must be some point in ð0; sÞ where g1 is strictly smaller than g2,
since otherwise the mass of the isoperimetric profile corresponding to g1 would
be strictly bigger than the one of the profile corresponding to g2. Thus, let us
denote by s 0 the greatest s a ð0; sÞ such that g1ðs 0Þ ¼ g2ðs 0Þ. By minimality, we
have that g 0

2ðs 0Þa g 0
1ðs 0Þ. In fact the stronger inequality g 0

2ðs 0Þ < g 0
1ðs 0Þ holds,

because if g 0
1ðs 0Þ ¼ g 0

2ðs 0Þ then by the local uniqueness of solutions of the
equation (3.8) we would conclude that g1 ¼ g2. Observe that in a left neighbor-
hood of s 0 we have that g1 < g2 and g 0

2 < g 0
1. Then, we denote by s0 the largest

point in ½0; s 0� such that g 0
1ðs0Þ ¼ g 0

2ðs0Þ. Note that since g 0
2ð0Þ ¼ g 0

1ð0Þ such a
point always exists. Finally, observe that by construction g 0

2ðsÞ < g 0
1ðsÞ and

g2ðsÞ > g1ðsÞ for every s a ðs0; s 0Þ, thus proving Claim 1 in this case.
Let us now prove the claim when there exists a point s a ½s; b2Þ such that

g1ðsÞ ¼ g2ðsÞ. Denoting by s 0 the first one of such points and arguing as before
we have that g 0

1ðs 0Þ < g 0
2ðs 0Þ. Then, denoting by s0 the largest point in ½s; s 0� such

that g 0
1ðs0Þ ¼ g 0

2ðs0Þ we conclude as above that g 0
1ðsÞ < g 0

2ðsÞ and g1ðsÞ > g2ðsÞ
for every s a ðs0; s 0Þ, thus proving (3.12) with g1 exchanged with g2.
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Let us show that Claim 1 yields the uniqueness of the isoperimetric profile
when h ¼ 1. To this aim, for any s in the interval ðs0; s0 þ dÞ where (3.12) holds,
from (3.8) we have, using the fact that c 0 is increasing,

g 00
1 ðsÞ � g 00

2 ðsÞ ¼
k � 1

s
ðg 0

2ðsÞð1þ g 0
2ðsÞ

2Þ � g 0
1ðsÞð1þ g 0

1ðsÞ
2ÞÞ

þ c 0ðg1ðsÞÞð1þ g 0
1ðsÞ

2Þ � c 0ðg2ðsÞÞð1þ g 0
2ðsÞ

2Þ
þLðð1þ g 0

2ðsÞ
2Þ3=2 � ð1þ g 0

1ðsÞ
2Þ3=2Þ

ac 0ðg2ðsÞÞð1þ g 0
1ðsÞ

2Þ � c 0ðg2ðsÞÞð1þ g 0
2ðsÞ

2Þ
þLðð1þ g 0

2ðsÞ
2Þ3=2 � ð1þ g 0

1ðsÞ
2Þ3=2Þ

aLðð1þ g 0
2ðsÞ

2Þ3=2 � ð1þ g 0
1ðsÞ

2Þ3=2Þ:

Setting M ¼ kg 0
2kLlðs0;s0þdÞ and integrating this inequality from s0 to s we then

get

g 0
1ðsÞ � g 0

2ðsÞa cLð1þM 2Þ
Z s

s0

ðg 0
1ðtÞ � g 0

2ðtÞÞ dt

for some positive absolute constant c independent of g1 and g2. In turn, this in-
equality implies that for every s a ðs0; s0 þ dÞ

max
½s0;s�

ðg 0
1 � g 0

2Þa cLð1þM 2Þðs� s0Þ max
½s0;s�

ðg 0
1 � g 0

2Þ:

But, this inequality is clearly impossible if we choose s such that
cLð1þM 2Þðs� s0Þ < 1. This contradiction concludes the proof of uniqueness
in this case.

We now assume k ¼ 1. In this case we are going to study equation (3.6).
Again, we argue by contradiction, supposing that there exist two solutions r2
and r1 of (3.6) whose corresponding isoperimetric sets have the same mass.
By the regularity of the boundary of the isoperimetric profile we have that
r 02ð0Þ ¼ r 01ð0Þ. However, we cannot conclude that r 02 coincides with r 01 since equa-
tion (3.6) degenerates at 0. In any case, passing to the limit as % ! 0þ we have
L ¼ �hr 002 ð0Þ ¼ �hr 001 ð0Þb 0. On the other hand if r 02ð%Þ ¼ r 01ð%Þ < 0 for some
% > 0, then by uniqueness it follows that r 02 coincides with r 01 and this immediately
implies that r1 and r2 also coincide since the corresponding profiles have the
same mass. Therefore, without loss of generality, we may assume that there exists
an interval ð0; %0Þ such that 0 > r 01ð%Þ > r 02ð%Þ for every % a ð0; %0�. Let us then
set M ¼ kr 02kLlð0; %0Þ. Then, from (3.6) we have for every % a ð0; %0�

r 001 ð%Þ � r 002 ð%Þ ¼
� h� 1

%
þ c 0ð%Þ

�
½r 02ð%Þð1þ r 02ð%Þ

2Þ � r 01ð%Þð1þ r 01ð%Þ
2Þ�

þL½ð1þ r 02ð%Þ
2Þ3=2 � ð1þ r 01ð%Þ

2Þ3=2�
< L½ð1þ r 02ð%Þ

2Þ3=2 � ð1þ r 01ð%Þ
2Þ3=2�:
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Integrating this equation we then get that for every % a ð0; %0�

0 < r 01ð%Þ � r 02ð%Þa cLð1þM 2Þ
Z %

0

ðr 01ðtÞ � r 02ðtÞÞ dt;

for some positive absolute constant c independent of r1 and r2. In turn, from this
inequality we get that for every % a ð0; %0�

max
½0; %�

ðr 01 � r 02Þa cLð1þM 2Þ% max
½0; %�

ðr 01 � r 02Þ:

But, this inequality is clearly impossible if we choose % such that
cLð1þM 2Þ% < 1. This contradiction concludes the proof of uniqueness also in
this case.

Step 5. Let us now show that S is strictly convex when h ¼ 1. To this aim we
prove the following

Claim 2.1. There exists no interval ðs0; s1Þ, with 0a s0 < s1 < b, such that
g 00ðsÞ < 0 for every s a ðs0; s1Þ and g 00ðs1Þ ¼ 0.

In order to prove this claim we argue by contradiction assuming that an interval
as above exists and setting dðsÞ ¼ g 0ðsÞ=ð1þ g 0ðsÞ2Þ1=2 for every s a ðs0; s1Þ.
Then, we rewrite (3.8) as

�d 0ðsÞ � ðk � 1ÞdðsÞ
s

þ c 0ðgðsÞÞ
ð1þ g 0ðsÞ2Þ1=2

¼ L:

Di¤erentiating this equation in the interval ðs0; s1Þ we get

�d 00ðsÞ � ðk � 1Þd 0ðsÞ
s

þ ðk � 1ÞdðsÞ
s2

þ c 00ðgðsÞÞdðsÞ � c 0ðgðsÞÞg 0ðsÞd 0ðsÞ ¼ 0:

Observe that in the interval ðs0; s1Þ we have d 0ðsÞ < 0, while d 0ðs1Þ ¼ 0. There-
fore d 00ðs1Þb 0. Recalling that k > 1 and that g 0ðs1Þ < 0, hence dðs1Þ < 0, from
the above equation we obtain

0a d 00ðs1Þ ¼ dðs1Þ
� k � 1

s2
1

þ c 00ðgðs1ÞÞ
�
< 0:

This contradiction proves Claim 2.1.
Let us now set A ¼ fs a ð0; bÞ : g 00ðsÞ < 0g. Observe that A is not empty since

otherwise g 00ðsÞb 0 for every s a ð0; bÞ. Then, since g 0ð0Þ ¼ 0 and g 0ðsÞA 0 for
s a ð0; bÞ, we would have g 0ðsÞ > 0 for every s a ð0; bÞ and this would imply that
g is strictly increasing, which is impossible.

Observe that the claim above implies that A has only one connected compo-
nent ðs0; bÞ for some 0a s0 < b. Moreover s0 ¼ 0, otherwise g 00ðsÞb 0 in ð0; s0Þ

658 n. fusco and d. pallara



and the same argument as above would imply that g is strictly increasing in
ð0; s0Þ. In conclusion, we have proved that g 00ðsÞ < 0 for every s a ð0; bÞ, hence
S is strictly convex.

Assume now that k ¼ 1. In this case we start first by observing that if m ! 0
then also a ! 0. To see this it is enough to check that if BrðmÞ is the ball such that
lðBrðmÞÞ ¼ m, then PlðBrðmÞÞ ! 0 as m ! 0 and to estimate

PlðBrðmÞÞbPlðSÞ ¼
Z
Ba

ecðjxjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ j‘vSj2

q
dxb 2ecð0Þon�1a

n�1:

Then, we have the following

Claim 2.2. There exists m0 > 0 such that if 0 < m < m0 there exists no interval
ð%0; %1Þ with 0a %0 < %1 < a such that r 00ð%Þ < 0 in ð%0; %1Þ and r 00ð%1Þ ¼ 0.

In order to prove the claim we argue by contradiction assuming that an interval
as above exists. Similarly to the previous case, we set dð%Þ ¼ r 0ð%Þ=ð1þ r 0ð%Þ2Þ1=2
and we rewrite (3.6) as

�d 0ð%Þ � ðh� 1Þdð%Þ
%

� c 0ð%Þdð%Þ ¼ L:

Di¤erentiating this equation in the interval ð%0; %1Þ we get that

�d 00ð%Þ � ðh� 1Þd 0ð%Þ
%

þ ðh� 1Þdð%Þ
%2

� c 00ð%Þdð%Þ � c 0ð%Þd 0ð%Þ ¼ 0:

Observe that in the interval ð%0; %1Þ we have dð%Þ < 0, d 0ð%Þ < 0, while d 0ð%1Þ ¼ 0.
Therefore d 00ð%1Þb 0. But from the above equation we obtain

0a d 00ð%1Þ ¼ dð%1Þ
� h� 1

%21
� c 00ð%1Þ

�
:ð3:13Þ

Note that

h� 1

%21
� c 00ð%1Þb

h� 1

a2
�max

½0;a�
c 00ð%Þ > 0

provided that 0 < a < a0 for a su‰ciently small a0 depending only on h and c,
hence m < m0 for some m0 depending only on h and c. Thus, we get a contradic-
tion since the right hand side of (3.13) is strictly negative and this contradiction
proves Claim 2.

From Claim 2, arguing as in the case h ¼ 1 we conclude that r 00ð%Þ < 0 for
each % a ð0; aÞ, thus proving that S is strictly convex. r
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[5] V. Bayle - A. Cañete - F. Morgan - C. Rosales, On the isoperimetric problem

in euclidean space with density, Calc. Var. Partial Di¤erential Equations, 31 (2008),
27–46.

[6] M. F. Betta - F. Brock - A. Mercaldo - M. R. Posteraro, Weighted isoperi-

metric inequalities in Rn and applications to rearrangements, Math. Nachr., 281 (2008),
466–498.

[7] F. Cagnetti - M. Colombo - G. De Philippis - F. Maggi, Rigidity of equality

cases in Steiner’s perimeter inequality, Anal. PDE, 7 (2014), 1535–1593.

[8] F. Cagnetti - M. Colombo - G. De Philippis - F. Maggi, Essential connectedness
and the rigidity problem for Gaussian symmetrization, J. Eur. Math. Soc., 19 (2017),
395–439.

[9] G. R. Chambers, Proof of the Log-convex density conjecture, J. Eur. Math. Soc., to
appear. Also available at https://arxiv.org/abs/1311.4012v3.
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