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Abstract. — We give optimal bounds for the homogenization of mixtures of two types of

ferromagnetic interactions. This is done by characterizing the possible G-limits of the corresponding
energies in a discrete-to-continuum setting. We show that for nearest-neighbour systems this

characterization can be provided by a description of the possible limit Wul¤ shapes in terms of the
percentage of one of the two types of interactions.
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1. Introduction

The homogenization of periodic ferromagnetic spin systems in a variational
framework has been addressed by Ca¤arelli and de la Llave [15] using the
notion of plane-like minimizers and by Braides and Piatnitsky [13] in a discrete-
to-continuum setting by G-convergence (see also [3, 7]). In this paper we consider
the problem of describing the overall properties of periodic mixtures of two types
of nearest-neighbour interactions; i.e., of characterizing the homogenization of
periodic Ising systems of the formX

ij

cijðui � ujÞ2ð1Þ

where ui a f�1;þ1g, i a Z2, the sum runs over all nearest neighbours in a square
lattice, and the ‘‘bonds’’ cij are periodic coe‰cients that may only take two posi-
tive values a and b with

a < b:ð2Þ

A representation theorem in [13] shows that the variational properties of spin
energies (1) are approximately described (for large number of interactions) by an
interfacial energy Z

q�fu¼1g
jðnÞ dH1ð3Þ



defined on the ‘‘magnetization’’ parameter u a BVlocðR2; f�1;þ1gÞ, which is a
continuum counterpart of the spin variable. We give a precise description of all
the homogenized surface tension j that may be obtained in this way in terms of
the proportion y (or volume fraction) of b-bonds as follows. We show that, with
fixed y, all possible such j are the (even positively homogeneous of degree one)
convex functions such that

aðjn1j þ jn2jÞa jðnÞa c1jn1j þ c2jn2j for all n a S1ð4Þ

for some c1 and c2, where the coe‰cients c1 and c2 satisfy

c1 a b; c2 a b; c1 þ c2 ¼ 2ðyb þ ð1� yÞaÞ:ð5Þ

Note that since the volume fraction y is rational, such bounds are understood as
extended to all y a ½0; 1� by approximation. These relations are a particular case
of bounds obtained in [11] when also not-nearest neighbour are taken into ac-
count. When only nearest-neighbour interaction are considered as in this paper,
a simplified proof using a homogenization formula on paths is possible, and a
nice description of bounds in terms of the Wul¤ shapes of the continuum energies
can be given.

1.1. A localization principle

We note that the characterization of bounds has an application far beyond
the description of periodic Ising systems. Indeed, a general localization principle
proved in [11] shows that the description of the j above allows the analysis of the
behaviour of arbitrary sequences (parameterized by n a N)X

ij

cnijðui � ujÞ2ð6Þ

without any periodicity assumption on cnij . More precisely, in a discrete-to-
continuum approach, we may define (up to subsequences) the local volume frac-
tion yðxÞ as the density of the weak�-limit of the measures

1

4n2

X
fði; jÞ AZ:cn

ij
¼bg

dðiþ jÞ=2nð7Þ

with respect to the Lebesgue measure. Note that the normalization factor is such
that the weak�-limit is the constant y times the Lebesgue measure (y the volume
fraction defined above) when cnij ¼ cij independent of n with cij periodic. Then
the localization principle states that all possible continuum counterparts of (6)
are energies of the form Z

q�fu¼1g
jðx; nÞ dH1ð8Þ
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defined on BVlocðR2; f�1;þ1gÞ, where jðx; �Þ satisfies the bounds described
above when y ¼ yðxÞ for almost every x.

1.2. Description of the optimal geometry of bounds

The discrete setting allows to give a (relatively) easy proof of the optimal bounds
in a way similar to the treatment of mixtures of linearly elastic discrete structures
[10]. The bounds obtained by sections and by averages in the elastic case have as
counterpart bounds by projection, where the homogenized surface tension is esti-
mated from below by considering the minimal value of the coe‰cient on each
section, and bounds by averaging, where coe‰cients on a section are substituted
with their average. The discrete setting allows to construct (almost-)optimal
periodic geometries, which optimize one type or the other of bounds in each
direction.

We briefly describe the ‘extreme’ geometries in Fig. 1 and Fig. 2, where
a-connections are represented as dotted lines, b-connections are represented as
solid lines, and the nodes with the value þ1 or �1 as white circles or black circles,

Figure 2. periodicity cell for a mixture giving an upper bound

Figure 1. periodicity cell for a mixture giving the lower bound
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respectively. In Fig. 1 there are pictured the periodicity cell of a mixture giving
as a result the lower bound aðjn1j þ jn2jÞ and an interface with minimal energy.
Fig. 2 represents the periodicity cell of a mixture giving a upper bound of the
form c1jn1j þ c2jn2j. Note that the interface pictured in that figure crosses exactly
a number of bonds proportional to the percentage yv of b-bonds in the horizontal
direction.

It must be noted that, contrary to the elastic case, the bounds (i.e., the sets of
possible j) are increasing with y, and in particular they always contain the mini-
mal surface tension aðjn1j þ jn2jÞ, which can be achieved with an arbitrarily small
amount of a-bonds.

1.3. Description of the optimal bounds in terms of Wul¤ shapes

We can picture the bounds in terms of their Wul¤ shapes; i.e., of the solutions Aj

centered in 0 to the problem

max jAj :
Z
qA

jðnÞ dH1ðxÞ ¼ 1

� �
:

If jðnÞ ¼ c1jn1j þ c2jn2j then such a Wul¤ shape is simply the rectangle centered
in 0 with one vertex in ð1=ð8c2Þ; 1=ð8c1ÞÞ. A general j satisfying (4) and (5) corre-
sponds to a convex symmetric set contained in the square of side length 1=ð4aÞ
(which is the Wul¤ shape corresponding to aðjn1j þ jn2jÞ) and containing one of
such rectangles for c1 and c2 satisfying (5). The envelope of the vertices of such
rectangles lies in the curve (see Fig. 3).

1

jx1j
þ 1

jx2j
¼ 16ðyb þ ð1� yÞaÞð9Þ

In terms of that envelope, we can describe the Wul¤ shapes of j as follows:

• if ya 1=2 then it is any symmetric convex set contained in the square of side
length 1=ð4aÞ and intersecting the four portions of the set of points satisfying
(9) contained in that square (see Fig. 4(a));

Figure 3. envelope of rectangular Wul¤ shapes
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• if yb 1=2 then it is any symmetric convex set contained in the square of
side length 1=ð4aÞ and intersecting the four portions of the set of points sat-
isfying (9) with jx1jb 1=ð8bÞ and jx2jb 1=ð8bÞ contained in that square (see
Fig. 4(b)). This second condition is automatically satisfied if ya 1=2.

1.4. Connection with continuum problems defined on Finsler metrics

The continuous counterpart of the problem of optimal bounds for (1) is the deter-
mination of optimal bounds for Finsler metrics obtained from the homogeniza-
tion of periodic Riemannian metrics (see [1, 9, 8]) of the formZ b

a

a
� uðtÞ

e

�
ju 0j2 dt;

and aðuÞ is a periodic function in R2 taking only the values a and b. This problem
has been studied in [16], where it is shown that homogenized metrics satisfy

aa jðnÞa ðyb þ ð1� yÞaÞ;

but the optimality of such bounds is not proved. The connection with energies (3)
is that a ‘dual’ equivalent formulation in dimension two is obtained by consider-
ing the homogenization of periodic perimeter functionals of the formZ

qA

a
� x

e

�
dH1ðxÞ

with the same type of a as above (see [4, 5]). The corresponding j in this case can
be interpreted as the homogenized surface tension of the homogenized perimeter
functional.

2. Setting of the problem

We consider a discrete system of nearest-neighbour interactions in dimension
two with coe‰cients cij ¼ cji b 0, i; j a Z2. The corresponding ferromagnetic

Figure 4. possible Wul¤ shapes with: (a) ya 1=2 and (b) yb 1=2
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spin energy is

FðuÞ ¼ 1

8

X
ði; jÞ AZ

cijðui � ujÞ2;ð10Þ

where u : Z2 ! f�1;þ1g, ui ¼ uðiÞ, and the sum runs over the set of nearest

neighbours or bonds in Z2, which is denoted by

Z ¼ fði; jÞ a Z2 � Z2 : ji � jj ¼ 1g:

Such energies correspond to inhomogeneous surface energies on the continuum
[2, 13].

Definition 1. Let fcijg be indices as above with inf ij cij > 0 and periodic; i.e.,
such that there exists T a N such that

cðiþe1TÞð jþe1TÞ ¼ cðiþe2TÞð jþe2TÞ ¼ cij :

Then, we define the homogenized energy density of fcijg as the convex positively
homogeneous function of degree one j : R2 ! ½0;þlÞ such that for all n a S1

we have

jðnÞ ¼ lim
R!þl

inf
1

R

XN
n¼1

cin jn : iN � i0 ¼ n?Rþ oðRÞ
( )

:ð11Þ

The infimum is taken over all paths of bonds; i.e., pairs ðin; jnÞ such that the unit
segment centred in

inþ jn
2 and orthogonal to in � jn has an endpoint in common

with the unit segment centred in
in�1þ jn�1

2 and orthogonal to in�1 � jn�1. This is a
good definition thanks to [13].

Remark 2. The definition above can be interpreted in terms of a passage
from a discrete to a continuous description as follows. We consider the scaled
energies

FeðuÞ ¼
1

8

X
ði; jÞ A eZ

eceijðui � ujÞ2;

where u : eZ2 ! f�1;þ1g, the factor 1=8 is a normalization factor, the sum runs
over nearest neighbours in eZ2, and

ceij ¼ ci
e;

j
e
:

Upon identifying u with its piecewise-constant interpolation, we can regard these
energies as defined on L1

locðR2Þ. Their G-limit in that space is infinite outside
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BVlocðR2; fe1gÞ, where it has the form

FjðuÞ ¼
Z
q�fu¼1g

jðnÞ dH1

with j as above.

Periodic mixtures of two types of bonds. We will consider the case when

cij a fa; bg with 0 < a < b;ð12Þ

If we have such coe‰cients, we define the volume fraction of b-bonds as

yðfcijgÞ ¼
1

4T 2
a ði; jÞ a Z :

i þ j

2
a ½0;TÞ2; cij ¼ b

� �
:ð13Þ

Definition 3. Let y a ½0; 1�. The set of homogenized energy densities of mix-
tures of a and b bonds, with volume fraction y (of b bonds) is defined as

Ha;bðyÞ ¼ fj : R2 ! ½0;þlÞ : there exist yk ! y; jk ! jð14Þ
and fckijg with yðfckijgÞ ¼ yk and jk

homogenized energy density of fckijgg:

The following theorem completely characterizes the set Ha;bðyÞ.

Theorem 4 (optimal bounds). The elements of the set Ha;bðyÞ are all even

convex positively homogeneous functions of degree one j : R2 ! ½0;þlÞ such
that

aðjx1j þ jx2jÞa jðx1; x2Þa c1jx1j þ c2jx2jð15Þ

for some aa c1; c2 a b such that

c1 þ c2 ¼ 2ðyb þ ð1� yÞaÞ:ð16Þ

Note that the lower bound for functions in Ha;bðyÞ is independent of b.
Note moreover that in the case y ¼ 1 we have all functions satisfying the trivial
bound

aðjx1j þ jx2jÞa jðx1; x2Þa bðjx1j þ jx2jÞ:ð17Þ

This is due to the fact that in that case by considering yk ! 1 we allow a vanish-
ing volume fraction of a bonds, which is nevertheless su‰cient to allow for all
possible j.
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3. Optimality of bounds

We first give two bounds valid for every set of periodic coe‰cients fcijg.

Proposition 5 (bounds by projection). Let j be the homogenized energy
density of fcijg; then we have

jðxÞb c
p
1 jx1j þ c

p
2 jx2j;ð18Þ

where

c
p
1 ¼ 1

T

XT�1

k¼0

minfcij : i2 ¼ j2 ¼ kgð19Þ

and

c
p
2 ¼ 1

T

XT�1

k¼0

minfcij : i1 ¼ j1 ¼ kg:ð20Þ

Proof. The lower bound (18) immediately follows from the definition of j,
by subdividing the contributions of cin�1in in (11) into those with ðinÞ2 ¼ ðin�1Þ2
(or equivalently such that in � in�1 ¼ee1) and those with ðinÞ1 ¼ ðin�1Þ1 (or
equivalently in � in�1 ¼ee2, and estimating

cin�1in bminfcij : i2 ¼ j2 ¼ ðinÞ2g

and

cin�1in bminfcij : i1 ¼ j1 ¼ ðinÞ1g;

respectively, in the two cases. r

Proposition 6 (bounds by averaging). Let j be the homogenized energy density
of fcijg; then we have

jðxÞa ca1 jx1j þ ca2 jx2j;ð21Þ

where ca1 is the average over horizontal bonds

ca1 ¼ 1

T 2

X
cij :

i þ j

2
a ½0;TÞ2; i2 ¼ j2

� �
ð22Þ

and ca2 is the average over vertical bonds

ca2 ¼ 1

T 2

X
cij :

i þ j

2
a ½0;TÞ2; i1 ¼ j1

� �
:ð23Þ
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Proof. The proof is obtained by construction of a suitable competitor fin; jng
for the characterization (11) of j. To that end let n1; n2 a f1; . . . ;Tg be such that

1

T

XT
k¼1

cðn1�1;kÞ; ðn1;kÞ a
1

T 2

X
cij :

i þ j

2
a ½0;TÞ2; i2 ¼ j2

� �

and

1

T

XT
k¼1

cðk;n2�1Þ; ðk;n2Þ a
1

T 2

X
cij :

i þ j

2
a ½0;TÞ2; i1 ¼ j1

� �
:

Up to a translation, we may suppose that n1 ¼ n2 ¼ 1. It is not restrictive to
suppose that n1 b 0 and n2 b 0. We define i0 ¼ ðbRn2c; 0Þ and iN ¼ ð0; bRn1cÞ.
It su‰ces then to take in Definition 3 the path of bonds fin; jng obtained by con-
catenating the two paths of bonds defined by

i1n ¼ ðbRn2c � n; 0Þ; j1n ¼ ðbRn2c � n; 1Þ; n ¼ 0; . . . ; bRn2c � 1

and

i2n ¼ ð0; nÞ; j2n ¼ ð1; nÞ; n ¼ 1; . . . ; bRn1c:

We then have

lim
R!þl

1

R

� XbRn2c
n¼1

cðn;0Þðn;1Þ þ
XbRn1c
n¼1

cð0;nÞð1;nÞ

�

¼ jn2j
1

T

XT
n¼1

cðn;0Þðn;1Þ þ jn1j
1

T

XT
n¼1

cð0;nÞð1;nÞ;

and the desired inequality. r

We now specialize the previous bound to mixtures of two types of bonds.
Given fcijg satisfying (12) we define the volume fraction of horizontal b-bonds as

yhðfcijgÞ ¼
1

2T 2
a ði; jÞ a Z :

i þ j

2
a ½0;TÞ2; cij ¼ b; i2 ¼ j2

� �
:ð24Þ

and the volume fraction of vertical b-bonds as

yvðfcijgÞ ¼
1

2T 2
a ði; jÞ a Z :

i þ j

2
a ½0;TÞ2; cij ¼ b; i1 ¼ j1

� �
:ð25Þ

Note that

yhðfcijgÞ þ yvðfcijgÞ
2

¼ yðfcijgÞ:ð26Þ
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Proposition 7. Let fcijg satisfy (12), let yh ¼ yhðfcijgÞ and yv ¼ yvðfcijgÞ, and
let j be the homogenized energy density of fcijg. Then

jðnÞa ðyhb þ ð1� yhÞaÞjn1j þ ðyvb þ ð1� yvÞaÞjn2jð27Þ

Proof. It su‰ces to rewrite ca1 and ca2 given by the previous proposition using
(24) and (25). r

The previous proposition, together with (26) and the trivial bound (17) gives
the bounds in the statement of Theorem 4. We now prove their optimality. First
we deal with a special case, from which the general result will be deduced by
approximation.

Proposition 8. Let

jðnÞ ¼ c1jn1j þ c2jn2j

with aa c1; c2 a b and

c1 þ c2 a 2ðbyþ ð1� yÞaÞð28Þ

for some y a ð0; 1Þ. Then j a Ha;bðyÞ.

Proof. The case y ¼ 1 is trivial. In the other cases, since the set of ðc1; c2Þ as
above coincides with the closure of its interior, by approximation it su‰ces to
consider the case when indeed

a < c1; c2 < b; c1 þ c2 < 2ðbyþ ð1� yÞaÞ:ð29Þ

In particular, we can find y1 a ð0; 1Þ and y2 a ð0; 1Þ such that y1 þ y2 ¼ 2y and

c1 < by1 þ ð1� y1Þa; c2 < by2 þ ð1� y2Þa:ð30Þ

We then write

c1 ¼ bt1 þ ð1� t1Þa; c2 ¼ bt2 þ ð1� t2Þa:ð31Þ

for some t1 < y1 and t2 < y2.
We construct fcijg with period T a N and with

yhðfcijgÞ ¼ y1; yvðfcijgÞ ¼ y2

by defining separately the horizontal and vertical bonds. Upon an approximation
argument we may suppose that Ni ¼ tiT a N, and that T 2yi a N for i ¼ 1; 2. We
only describe the construction for the horizontal bonds. We define

cð j;nÞ; ð jþ1;nÞ ¼
b if j ¼ 0; . . . ;T � 1 and n ¼ 0; . . . ;N1 � 1

a if j ¼ 0 and n ¼ N1; . . . ;T � 1

�
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and any choice of a and b for other indices i, j, only subject to the total constraint
that yhðfcijgÞ ¼ y1. With this choice of cij we have

minfcij : i2 ¼ j2 ¼ ng ¼ b if n ¼ 0; . . . ;N1 � 1

a if n ¼ N1; . . . ;T � 1

�

The analogous construction for vertical bonds gives

minfcij : i1 ¼ j1 ¼ ng ¼ b if n ¼ 0; . . . ;N2 � 1

a if n ¼ N2; . . . ;T � 1

�

Then, Proposition 5 gives that the homogenized energy density of fcijg satisfies

jðnÞb c1jn1j þ c2jn2j:

To give a lower bound we use the same construction of the proof of Prop-
osition 6, after noticing that the vertical and horizontal paths with i1n ¼ ð0; nÞ,
j1n ¼ ð1; nÞ or i2n ¼ ðn; 0Þ, j2n ¼ ðn; 1Þ are such that

1

T

XT
n¼1

ci1n ; j 1n ¼ c1;
1

T

XT
n¼1

ci2n ; j 2n ¼ c2:

In this way we obtain the estimate

jðnÞa c1jn1j þ c2jn2j:

and hence the desired equality. r

Proof of Theorem 4. Thanks to Remarks 2 and 9 it su‰ces to approximate
Fj in the sense of G-convergence with functionals Fe associated to ceij. Since all the
functionals involved are equicoercive we can make some simplyfing assumptions
on j.

Step 1: We may suppose that

aðjn1j þ jn2jÞ < jðnÞ < ðby1 þ ð1� y1ÞaÞjn1j þ ðby2 þ ð1� y2ÞaÞjn2jð32Þ
¼: c1jn1j þ c2jn2j

for some y1; y2 a ð0; 1Þ such that

y1 þ y2 ¼ 2y:

Moreover we can assume that j is crystalline, i.e. the set fja 1g is a convex
polyhedron whose vertices correspond to rational directions and contain the
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directions e1, e2, i.e. there exists fe1; e2g � fnkgN
k¼1 � S1, nj A nk, jAk such that

for all k a f1; . . . ;Ng there exists lk a R such that lknk a Z2, and we have

jðnÞ ¼
XN
k¼1

ckj3n; nk4j;ð33Þ

with ck b 0.

Step 2: For every j satisfying (32) and (33) there exists Fe that approximates Fj,
where Fe is of the form

FeðuÞ ¼
Z
q�fu¼1g

f
� x

e
; n
�
dH1ð34Þ

where

feðy; nÞ ¼
jðnkÞ if y a Ak; k ¼ 1; . . . ;N

c1jn1j þ c2jn2j otherwise,

�

with Ak :¼ Pnk þ Z2. In fact by [5] Fe G-converge to Fj as e ! 0 with respect to
the L1

locðR2Þ-topology.

Step 3: Note that for every k a f1; . . . ;Ng we can write

jðnkÞ ¼ ck1 jðnkÞ1j þ ck2 jðnkÞ2jð35Þ

for some a < cki < ci, i ¼ 1; 2. We can therefore consider equivalently

f ðy; nÞ ¼ ck1 jðnkÞ1j þ ck2 jðnkÞ2j if y a Pnk þ Zd ; k ¼ 1; . . . ;N

c1jn1j þ c2jn2j otherwise:

�

Every functional of the form (34) can be approximated by functionals of the
form

Fd; eðuÞ ¼
Z
q�fu¼1g

fd

� x

e
; nuðxÞ

�
dHdðxÞð36Þ

where for d > 0 fd : R
2 � R2 ! ½0;þlÞ is defined by

fdðy; nÞ ¼

ck1 jðnkÞ1j þ ck2 jðnkÞ2j
if y a Ak; d; y B Aj; d

for all jAk; k ¼ 1; . . . ;N

aðjn1j þ jn2jÞ
if y a Ak; dBAj; d

for some j; k a f1; . . . ;Ng; jAk

c1jn1j þ c2jn2j otherwise;

8>>>><
>>>>:

with Aj; d ¼ fy a R2 : distlðy;Pnj þ Z2Þa dg.
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Step 4: Every functional of the form (36) can be approximated by functionals of
the form

Fh; d; eðuÞ ¼
Z
q�fu¼1g

fh; d

� x

e
; nuðxÞ

�
dH1ðxÞð37Þ

where for h; d > 0 fh; d : R
2 � R2 ! ½0;þlÞ is defined by

fh; d;Nðy; nÞ ¼

ck1 jðnkÞ1j þ ck2 jðnkÞ2j
if y a Ak; d; y B Aj; d

for all jAk; k ¼ 1; . . . ;N

aðjn1j þ jn2jÞ
if y a Ak; dBAj; d for some
j; k a f1; . . . ;Ng; jAk

bðjn1j þ jn2jÞ
if y a Ak; dþhnAk; d; y B Aj; d

for all jAk; k ¼ 1; . . . ;N

c1jn1j þ c2jn2j otherwise;

8>>>>>>>><
>>>>>>>>:

Step 5: By localizing the construction in Proposition 8 we can find cnij ¼ c
n;h; d; e
i
n

j
nn-periodic such that

Fn;h; d; eðuÞ ¼
1

8

X
ði; jÞ A 1

n
Z

1

n
cnijðui � ujÞ2;

and Fn;h; d; e G-converges to Fh; d; e with respect to the L1
locðR2Þ as n ! l and

yðfcni; jgÞ ! y as h ! 0. Using a diagonal argument we can find ceij ¼ cei
e
j
e1

e
-periodic such that

FeðuÞ ¼
X

ði; jÞ A eZ
ecei; jðui � ujÞ2

G-converges to

FjðuÞ ¼
Z
q�fu¼1g

jðnÞ dH1

as well as yðfceijgÞ ! y as e ! 0. We can conclude using the following remark.

Remark 9. In order to prove that the homogenized energy densities je of c
e
ij

converge to j if ceij
1
e
-periodic and Fe G-converges to Fj, we extend our functionals

1-homogenously to BVlocðR2Þ by

EeðuÞ ¼
1

4

X
ði; jÞ A eZ

eceijjui � ujj

such that EeðuÞ ¼ FeðuÞ whenever u a BVlocðR2; f�1;þ1gÞ. Using [12], Theo-
rem 2.1, one can prove that the energy densities of the G-limits defined on
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E : BVlocðR2Þ ! ½0;þl� and F : BVlocðR2; f�1;þ1gÞ ! ½0;þl� agree. Further-
more by a convexity argument, we see that the homogenized energy den-
sities je of the energies defined on BVlocðR2Þ (and therefore the homogenized
energy densities of the ceij) converge to the limit energy density j. (See [11] for
details)

By the application of this remark the approximation procedure is completed.
r
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