
Rend. Lincei Mat. Appl. 23 (2012), 137–155
DOI 10.4171/RLM/622

Algebraic Geometry — Toward a geometric construction of fake projective planes,
by Jonghae Keum, presented on 11 November 2011 by Fabrizio Catanese.

Abstract. — We give a criterion for a projective surface to become a quotient of a fake projective

plane. We also give a detailed information on the elliptic fibration of a ð2; 3Þ-elliptic surface that is
the minimal resolution of a quotient of a fake projective plane.
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It is known that a compact complex manifold of dimension 2 with the same Betti
numbers as the complex projective plane P2 is projective (see e.g. [BHPV]). Such
a manifold is called a fake projective plane if it is not isomorphic to P2.

Let X be a fake projective plane. By definition b1ðX Þ ¼ 0, b2ðXÞ ¼ 1, hence
qðX Þ ¼ pgðX Þ ¼ 0, c2ðX Þ ¼ 3 and by Noether formula c1ðXÞ2 ¼ 9. In particu-
lar its canonical class KX or its anti-canonical class �KX is ample. The latter case
cannot occur sice X is not isomorphic to P2. So a fake projective plane is exactly

a smooth surface X of general type with pgðX Þ ¼ 0 and c1ðX Þ2 ¼ 3c2ðX Þ ¼ 9.
By [Au] and [Y], its universal cover is the unit 2-ball BHC2 and hence its funda-
mental group p1ðXÞ is infinite. More precisely, p1ðX Þ is exactly a discrete torsion-
free cocompact subgroup P of PUð2; 1Þ having minimal Betti numbers and
finite abelianization. By Mostow’s rigidity theorem [Mos], such a ball quotient
is strongly rigid, i.e., P determines a fake projective plane up to holomorphic or
anti-holomorphic isomorphism. By [KK], no fake projective plane can be anti-
holomorphic to itself. Thus the moduli space of fake projective planes consists
of a finite number of points, and the number is the double of the number of dis-
tinct fundamental groups P. By Hirzebruch’s proportionality principle [Hir], P
has covolume 1 in PUð2; 1Þ. Furthermore, Klingler [Kl] proved that the discrete
torsion-free cocompact subgroups of PUð2; 1Þ having minimal Betti numbers are
arithmetic (see also [Ye]).

With these informations, Prasad and Yeung [PY] carried out a classification
of fundamental groups of fake projective planes. They describe the algebraic
group GðkÞ containing a discrete torsion-free cocompact arithmetic subgroup P
having minimal Betti numbers and finite abelianization as follows. There is a pair
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ðk; lÞ of number fields, k is totally real, l a totally complex quadratic extension of
k. There is a central simple algebra D of degree 3 with center l and an involution i
of the second kind on D such that k ¼ l i. The algebraic group G is defined over k
as follows:

GðkÞG fz a D j iðzÞz ¼ 1g=ft a l j iðtÞt ¼ 1g:

There is one Archimedean place n0 of k so that Gðkn0ÞGPUð2; 1Þ and GðknÞ is
compact for all other Archimedean places n. The data ðk; l;D; n0Þ determines G
up to k-isomorphism. Using Prasad’s volume formula [P], they were able to elim-
inate most 4-tuples ðk; l;D; n0Þ, making a short list of possibilities where such P’s
might occur, which yields a short list of maximal arithmetic subgroups G which
might contain such a P. If such a P is contained, up to conjugacy, in a unique G,
then the group P or the fake projective plane B=P is said to belong to the class
corresponding to the conjugacy class of G. If P is contained in two non-conjugate
maximal arithmetic subgroups, then P or B=P is said to form a class of its own.
They exhibited 28 non-empty classes ([PY], Addendum). It turns out that the
index of such a P in a G is 1, 3, 9, or 21, and all such P’s contained in the same
G class have the same index.

Then Cartwright and Steger [CS] have carried out a computer-based but very
complicated group-theoretic computation, showing that there are exactly 28 non-
empty classes, where 25 of them correspond to conjugacy classes of maximal
arithmetic subgroups and each of the remaining 3 to a P contained in two non-
conjugate maximal arithmetic subgroups. This yields a complete list of funda-
mental groups of fake projective planes: the moduli space consists of exactly 100
points, corresponding to 50 pairs of complex conjugate fake projective planes.

It is easy to see that the automorphism group AutðX Þ of a fake projective
plane X can be given by

AutðX ÞGNðp1ðX ÞÞ=p1ðX Þ;

where Nðp1ðX ÞÞ is the normalizer of p1ðX Þ in PUð2; 1Þ, hence is contained in
a suitable G.

Theorem 0.1 [PY], [CS], [CS2]. For a fake projective plane X,

AutðX Þ ¼ f1g;C3;C
2
3 ; or 7 : 3;

where Cn denotes the cyclic group of order n, and 7 : 3 the unique non-abelian group
of order 21. More precisely, AutðX Þ ¼ f1g or C3, when the index of p1ðX Þ in a
maximal arithmetic subgroup is 3, AutðX Þ ¼ f1g, C3 or C2

3 , when the index is 9,
AutðX Þ ¼ f1g, C3 or 7 : 3, when the index is 21.

According to ([CS], [CS2]), 68 of the 100 fake projective planes admit a non-
trivial group of automorphisms.

Let ðX ;GÞ be a pair of a fake projective plane X and a non-trivial group G of
automorphisms. In [K08], all possible structures of the quotient surface X=G and
its minimal resolution were classified.
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Theorem 0.2 [K08].

(1) If G ¼ C3, then X=G is a Q-homology projective plane with 3 singular points of
type 1

3 ð1; 2Þ and its minimal resolution is a minimal surface of general type with
pg ¼ 0 and K 2 ¼ 3.

(2) If G ¼ C2
3 , then X=G is a Q-homology projective plane with 4 singular points

of type 1
3 ð1; 2Þ and its minimal resolution is a minimal surface of general type

with pg ¼ 0 and K 2 ¼ 1.
(3) If G ¼ C7, then X=G is a Q-homology projective plane with 3 singular points of

type 1
7 ð1; 5Þ and its minimal resolution is a ð2; 3Þ-, ð2; 4Þ-, or ð3; 3Þ-elliptic sur-

face.
(4) If G ¼ 7 : 3, then X=G is a Q-homology projective plane with 4 singular points,

3 of type 1
3 ð1; 2Þ and one of type 1

7 ð1; 5Þ, and its minimal resolution is a ð2; 3Þ-,
ð2; 4Þ-, or ð3; 3Þ-elliptic surface.

Here, a Q-homology projective plane is a normal projective surface with the
same Betti numbers as P2. A fake projective plane is a nonsingular Q-homology
projective plane, hence every quotient is again a Q-homology projective plane.
An ða; bÞ-elliptic surface is a relatively minimal elliptic surface over P1 with
c2 ¼ 12 having two multiple fibres of multiplicity a and b respectively. It has
Kodaira dimension 1 if and only if ab 2; bb 2; aþ bb 5. It is an Enriques sur-
face i¤ a ¼ b ¼ 2, and it is rational i¤ a ¼ 1 or b ¼ 1. An ða; bÞ-elliptic surface
has pg ¼ q ¼ 0, and by [D] its fundamental group is the cyclic group of order
the greatest common divisor of a and b. An ða; bÞ-elliptic surface is called a
Dolgachev surface if a and b are relatively prime integers with ab 2, bb 2.

Remark 0.3. (1) Since X=G has rational singularities only, X=G and its mini-
mal resolution have the same fundamental group. Let G be the maximal arithme-
tic subgroup of PUð2; 1Þ containing p1ðXÞ. There is a subgroup ~GGHG such that

p1ðX Þ is normal in ~GG and G ¼ ~GG=p1ðX Þ. Thus,

X=GGB= ~GG:

It is well known (cf. [Arm]) that

p1ðB= ~GGÞG ~GG=H;

where H is the minimal normal subgroup of ~GG containing all elements acting
non-freely on the 2-ball B. In our situation, it can be shown that H is generated
by torsion elements of ~GG, and Cartwright and Steger have computed, along with
their computation of the fundamental groups, the quotient group ~GG=H for each
pair ðX ;GÞ.

• [CS] If G ¼ C3, then

p1ðX=GÞG f1g;C2;C3;C4;C6;C7;C13;C14;C
2
2 ;C2 � C4;S3;D8 or Q8;
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where S3 is the symmetric group of order 6, and D8 and Q8 are the dihedral and
quaternion groups of order 8.

• [CS2] If G ¼ C2
3 or C7 or 7 : 3, then

p1ðX=GÞG f1g or C2:

This eliminates the possibility of ð3; 3Þ-elliptic surfaces in Theorem 0.2, as
ð3; 3Þ-elliptic surfaces have p1 ¼ C3.

(2) It is interesting to consider all arithmetic ball quotients which have a non-
Galois cover by a fake projective plane. Indeed, Cartwright and Steger have

considered all subgroups ~GGHPUð2; 1Þ such that p1ðX ÞH ~GGHG for some maxi-
mal arithmetic subgroup G and some fake projective plane X , where p1ðX Þ is
not necessarily normal in ~GG. It turns out [CS2] that, if p1ðX Þ is not normal in
~GG, then there is another fake projective plane X 0 such that p1ðX 0Þ is normal
in ~GG, hence B= ~GGGX 0=G 0 where G 0 ¼ ~GG=p1ðX 0Þ. Thus such a general subgroup
~GG does not produce a new surface.

It is a major step toward a geometric construction of a fake projective plane to
construct a Q-homology projective plane satisfying one of the descriptions (1)–(4)
from Theorem 0.2. Suppose that one has such a Q-homology projective plane.
Then, can one construct a fake projective plane by taking a suitable cover?
In other words, does the description (1)–(4) from Theorem 0.2 characterize the
quotients of fake projective planes? The answer is a‰rmative in all cases.

Theorem 0.4. Let Z be a Q-homology projective plane satisfying one of the de-
scriptions ð1Þ–ð4Þ from Theorem 0.2.

(1) If Z is a Q-homology projective plane with 3 singular points of type 1
3 ð1; 2Þ and

its minimal resolution is a minimal surface of general type with pg ¼ 0 and
K 2 ¼ 3, then there is a C3-cover X ! Z branched exactly at the three singular
points of Z such that X is a fake projective plane.

(2) If Z is a Q-homology projective plane with 4 singular points of type 1
3 ð1; 2Þ and

its minimal resolution is a minimal surface of general type with pg ¼ 0 and
K 2 ¼ 1, then there is a C3-cover Y ! Z branched exactly at three of the four
singular points of Z and a C3-cover X ! Y branched exactly at the three
singular points on Y, the pre-image of the remaining singularity on Z, such
that X is a fake projective plane. Furthermore, the composite map X ! Z is a
C2

3 -cover.
(3) If Z is a Q-homology projective plane with 3 singular points of type 1

7 ð1; 5Þ
and its minimal resolution is a ð2; 3Þ- or ð2; 4Þ-elliptic surface, then there is a
C7-cover X ! Z branched exactly at the three singular points of Z such that
X is a fake projective plane.

(4) If Z is a Q-homology projective plane with 4 singular points, 3 of type 1
3 ð1; 2Þ

and one of type 1
7 ð1; 5Þ, and its minimal resolution is a ð2; 3Þ- or ð2; 4Þ-elliptic

surface, then there is a C3-cover Y ! Z branched exactly at the three singular
points of type 1

3 ð1; 2Þ and a C7-cover X ! Y branched exactly at the three
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singular points, the pre-image of the singularity on Z of type 1
7 ð1; 5Þ, such that

X is a fake projective plane.

In the case ð4Þ, we give a detailed information on the types of singular fibres of
the elliptic fibration on the minimal resolution of Z.

Theorem 0.5. Let Z be a Q-homology projective plane with 4 singular points, 3
of type 1

3 ð1; 2Þ and one of type 1
7 ð1; 5Þ. Assume that its minimal resolution ~ZZ is a

ð2; 3Þ-elliptic surface. Then

(1) the triple cover Y of Z branched at the three singular points of type 1
3 ð1; 2Þ is a

Q-homology projective plane with 3 singular points of type 1
7 ð1; 5Þ;

(2) the minimal resolution ~YY of Y is a ð2; 3Þ-elliptic surface, where every fibre of
the elliptic fibration on ~ZZ does not split;

(3) the elliptic fibration on ~ZZ has 4 singular fibres of type I3, some of which may
have multiplicity 2 or 3;

(4) the elliptic fibration on ~YY has 4 singular fibres, one of type I9 and 3 of type I1,
and each fibre has the same multiplicity as the corresponding fibre on ~ZZ.

The case where ~ZZ is a ð2; 4Þ-elliptic surface was treated in [K11]. The last
two assertions of Theorem 0.5 were given without proof in ([K08], Corollary
4.12 and 1.4).

Notation

• KX : a canonical (Weil) divisor of a normal projective variety or a complex
manifold X

• biðX Þ :¼ dimHiðX ;QÞ the i-th Betti number of a topological space X

• eðX Þ: the topological Euler number of a complex variety X

• pgðXÞ :¼ dimH 2ðX ;OX Þ, qðX Þ :¼ dimH 1ðX ;OX Þ, where X is a compact
smooth surface

• VG :¼ fv a V j gðvÞ ¼ v for all g a Gg, where a group G acts on V

• a string of type ½n1; n2; . . . ; nl �: a string of smooth rational curves of self inter-
section �n1;�n2; . . . ;�nl

1. Preliminaries

First, we recall the topological and holomorphic Lefschetz fixed point formulas.

Topological Lefschetz Fixed Point Formula. Let M be a compact
complex manifold of dimension m admitting a holomorphic map s : M ! M.
Then the Euler number of the fixed locus M s is equal to the alternating sum of
the trace of s� acting on the cohomology space H jðM;QÞ, i.e.,

eðM sÞ ¼
X2m
j¼0

ð�1Þ j Tr s� jH jðM;QÞ:
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Holomorphic Lefschetz Fixed Point Formula ([AS3], p. 567). Let M
be a compact complex manifold of dimension 2 admitting an automorphism s. Let
p1; . . . ; pl be the isolated fixed points of s and R1; . . . ;Rk be the 1-dimensional
components of the fixed locus Ss. Then

X2

j¼0

ð�1Þ j Trs� jH jðM;OMÞ ¼
Xl

j¼1

1

detðI � dsÞ jTpj

þ
Xk
j¼1

1� gðRjÞ
1� xj

�
xjR

2
j

ð1� xjÞ2

( )
;

where Tpj is the tangent space at pj, gðRjÞ is the genus of Rj and xj is the eigenvalue
of the di¤erential ds acting on the normal bundle of Rj in M.

Assume further that s is of finite and prime order p. Then

1

p� 1

Xp�1

i¼1

X2

j¼0

ð�1Þ j Tr s i� jH jðM;OMÞ

¼
Xp�1

i¼1

airi þ
Xk
j¼1

1� gðRjÞ
2

þ
ðpþ 1ÞR2

j

12

( )
;

where ri is the number of isolated fixed points of s of type 1
p
ð1; iÞ, and

ai ¼
1

p� 1

Xp�1

j¼1

1

ð1� z jÞð1� z ijÞ

with z ¼ exp
�
2p

ffiffiffiffiffi
�1

p

p

�
, e.g., a1 ¼ 5�p

12 , a2 ¼ 11�p

24 , etc.

Proposition 1.1. Let G be a finite group acting on a smooth compact Kähler
surface M. Let M=G be the quotient surface and Y ! M=G a minimal resolution.
Then the following hold true:

(1) qðYÞ ¼ 1
2 b1ðM=GÞ ¼ dimH 0;1ðMÞG.

(2) If in addition there is a G-equivariant blowing-up M 0 of M such that M 0=G
is isomorphic to a blowing-up of Y, then

pgðYÞ ¼ dimH 0;2ðMÞG:

(3) The additional condition of ð2Þ is always satisfied when jGja 3.

Proof. (1) By the Hodge decomposition theorem, H 1ðM;CÞGH 0;1ðMÞa
H 1;0ðMÞ. Thus

b1ðM=GÞ ¼ dimH 1ðM;RÞG ¼ dimðH 0;1ðMÞaH 1;0ðMÞÞG ¼ 2 dimH 0;1ðMÞG:
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Since quotient singularities are rational, van Kampfen’s theorem applies to prove

p1ðY ÞG p1ðM=GÞ;

in particular, b1ðYÞ ¼ b1ðM=GÞ.
(2)

pgðY Þ ¼ pgðM 0=GÞ ¼ dimH 0ðM 0;W2
M 0 ÞG

¼ dimH 0ðM;W2
MÞG ¼ dimH 0;2ðMÞG:

(3) Assume jGj ¼ 3. For a singular point on M=G of type 1
3 ð1; 1Þ, its minimal

resolution can be obtained by first blowing up once the corresponding fixed point
on M and then taking the quotient by the extended action of G. For a singular
point of type 1

3 ð1; 2Þ, first blow up three times the corresponding fixed point on M
so that the action of G extends to the blowing-up, where the resulting 3 excep-
tional curves form a string of type ½1; 3; 1�, and then take the quotient by the
extended action of G, to get a string of type ½3; 1; 3�. This gives the blowing-up
of Y at the intersection point of the two exceptional curves lying over the singu-
larity. The case with jGj ¼ 2 is more simpler. r

For a compact complex manifold M of dimension 2 with K 2
M ¼ 3c2ðMÞ ¼ 9,

it is known that

pgðMÞ ¼ qðMÞa 2:

Indeed, such a surfaceM has wðOMÞ ¼ 1, pgðMÞ ¼ qðMÞ, and is either isomorphic
to P2 or of general type. (No compact complex smooth surface with K 2 > 8 can
be birationally isomorphic to a ruled surface or an elliptic surface.) By a result of
Miyaoka [Mi], a compact complex smooth surface of general type with K 2 ¼ 3c2
has ample canonical divisor, and hence by [Y] is a ball-quotient. Furthermore,
compact complex smooth surfaces with c2 < 4 (such as M) cannot be fibred
over a curve of genusb 2 with a general fibre of genusb 2. This can be seen
easily by the Euler number formula for fibred surfaces (see e.g. [BHPV], Pro-
position 11.4). Thus by Castelnuovo-de Franchis theorem pgðMÞb 2qðMÞ � 3,
which implies pgðMÞ ¼ qðMÞa 3. The case of pgðMÞ ¼ qðMÞ ¼ 3 was elimi-
nated by the classification result of Hacon and Pardini [HP] (see also [Pi] and
[CCM]).

Proposition 1.2. Let M be a complex manifold M of dimension 2 with K 2
M ¼

3c2ðMÞ ¼ 9. Then, the following hold true.

(1) If M admits an order 7 automorphism s with isolated fixed points only, then
biðM=3s4Þ ¼ biðMÞ for i ¼ 1; 2 and s fixes exactly 3 points, which yield on
the quotient M=3s4 either 3 singular points of type 1

7 ð1; 5Þ or 2 singular points
of type 1

7 ð1; 2Þ and 1 singular point of type 1
7 ð1; 6Þ.

(2) If M has pgðMÞ ¼ qðMÞ ¼ 1 and admits an order 3 automorphism s with iso-
lated fixed points only, then

143toward a geometric construction of fake projective planes



(a) b1ðM=3s4Þ ¼ 0, b2ðM=3s4Þ ¼ 3, and M=3s4 has 6 singular points of
type 1

3 ð1; 1Þ; or
(b) b1ðM=3s4Þ ¼ 0, b2ðM=3s4Þ ¼ 5, and M=3s4 has 3 singular points of

type 1
3 ð1; 1Þ and 6 singular points of type 1

3 ð1; 2Þ; or
(c) b1ðM=3s4Þ ¼ 2, b2ðM=3s4Þ ¼ 5, and M=3s4 has 3 singular points of

type 1
3 ð1; 2Þ.

Proof. Note that M cannot admit an automorphism of finite order acting
freely, because wðOMÞ ¼ 1 not divisible by any integerb 2.

(1) By the Hodge decomposition theorem,

Tr s� jH 1ðM;ZÞ ¼ Tr s� jH 1ðM;CÞ ¼ Tr s� j ðH 0;1ðMÞaH 1;0ðMÞÞ:

Note that this number is an integer. Let z ¼ exp
�
2p

ffiffiffiffiffi
�1

p

7

�
.

Assume that pgðMÞ ¼ qðMÞ ¼ 2. Let z i and z j be the eigenvalues of s� acting
on H 0;1ðMÞ. Then

Tr s� jH 1ðM;ZÞ ¼ z i þ z j þ z i þ z j ;

and this is an integer i¤ z i ¼ z j ¼ 1. This implies that Tr s� jH 0;1ðMÞ ¼ 2 and

b1ðM=3s4Þ ¼ dimH 1ðM;RÞ3s4 ¼ 1

j3s4j
X7

k¼1

Trsk� jH 1ðM;RÞ ¼ 4 ¼ b1ðMÞ:

By the Topological Lefschetz Fixed Point Formula,

eðM sÞ ¼ �6þ Tr s� jH 2ðM;ZÞ; so 6 < Trs� jH 2ðM;ZÞ:

Since b2ðMÞ ¼ 1þ 4qðMÞ ¼ 9 and s is of order 7, it follows that Trs� jH 2ðM;RÞ
a 9� 7, unless s� acts trivially on H 2ðM;RÞ. Thus

b2ðM=3s4Þ ¼ dimH 2ðM;RÞ3s4 ¼ b2ðMÞ and eðM sÞ ¼ 3:

In particular, s� acts trivially on H 0;2ðMÞ and Tr s� jH 0;2ðMÞ ¼ 2. By the
Holomorphic Lefschetz Fixed Point Formula,

1 ¼ � 1

6
r1 þ

1

6
ðr2 þ r4Þ þ

1

3
ðr3 þ r5Þ þ

2

3
r6;

where ri is the number of isolated fixed points of s of type 1
7 ð1; iÞ. SinceX

ri ¼ eðM sÞ ¼ 3;

we have two solutions:

r3 þ r5 ¼ 3; r1 ¼ r2 ¼ r4 ¼ r6 ¼ 0; r2 þ r4 ¼ 2; r6 ¼ 1; r1 ¼ r3 ¼ r5 ¼ 0:
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In the former case the quotient M=3s4 has 3 singular points of type 1
7 ð1; 5Þ, and

in the latter case 2 singular points of type 1
7 ð1; 2Þ and 1 singular point of type

1
7 ð1; 6Þ.

Assume that pgðMÞ ¼ qðMÞa 1. By the same argument, s� acts trivially on
H 1ðM;RÞaH 2ðM;RÞ, and eðM sÞ ¼ 3.

(2) First note that

b1ðM=3s4Þa b1ðMÞ ¼ 2 and b2ðM=3s4Þa b2ðMÞ ¼ 5:

Also note that dimH 1;1ðMÞ ¼ 1þ 2qðMÞ ¼ 3. Since s� fixes the class of a fibre
of the Albanese fibration M ! AlbðMÞ and the class of KM , we have

Tr s� jH 1;1ðMÞ ¼ 2þ zk where z ¼ exp
� 2p

ffiffiffiffiffiffiffi
�1

p

3

�
:

Let z i and z j be the eigenvalues of s� acting on H 0;1ðMÞ and H 0;2ðMÞ, respec-
tively.

Assume that z i A 1 and z j A 1. Then

Trs� jH 1ðM;ZÞ ¼ Tr s� j ðH 0;1ðMÞaH 1;0ðMÞÞ ¼ z i þ z i ¼ �1;

Trs� j ðH 0;2ðMÞaH 2;0ðMÞÞ ¼ z j þ z j ¼ �1:

The latter implies that Tr s� jH 1;1ðMÞ is an integer, hence zk ¼ 1 and
Trs� jH 1;1ðMÞ ¼ 3. Thus

b1ðM=3s4Þ ¼ 0 and b2ðM=3s4Þ ¼ 3:

Now by the Topological Lefschetz Fixed Point Formula,

eðM sÞ ¼ 6;

and by the Holomorphic Lefschetz Fixed Point Formula,

1 ¼ 1

6
r1 þ

1

3
r2;

where ri is the number of isolated fixed points of s of type 1
3 ð1; iÞ. Since r1 þ r2 ¼

eðM sÞ ¼ 6, we have a unique solution: r1 ¼ 6, r2 ¼ 0. This gives (a).
Assume z i A 1 and z j ¼ 1. Then

Trs� jH 1ðM;ZÞ ¼ Tr s� j ðH 0;1ðMÞaH 1;0ðMÞÞ ¼ z i þ z i ¼ �1;

Trs� j ðH 0;2ðMÞaH 2;0ðMÞÞ ¼ 1þ 1 ¼ 2:

The latter implies that Tr s� jH 1;1ðMÞ is an integer, hence Trs� jH 1;1ðMÞ ¼ 3.
Thus

b1ðM=3s4Þ ¼ 0 and b2ðM=3s4Þ ¼ 5:
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By the Topological Lefschetz Fixed Point Formula, eðM sÞ ¼ 9, and by the
Holomorphic Lefschetz Fixed Point Formula,

1

2
fð1� z i þ 1Þ þ ð1� z2i þ 1Þg ¼ 5

2
¼ 1

6
r1 þ

1

3
r2:

Since r1 þ r2 ¼ 9, we have a unique solution: r1 ¼ 3, r2 ¼ 6. This gives (b).
Assume that z i ¼ z j ¼ 1. Then

Tr s� j ðH 0;1ðMÞaH 1;0ðMÞÞ ¼ Tr s� j ðH 0;2ðMÞaH 2;0ðMÞÞ ¼ 2;

Tr s� jH 1;1ðMÞ ¼ 3 and eðM sÞ ¼ 3. By the Holomorphic Lefschetz Fixed Point
Formula,

1 ¼ 1

6
r1 þ

1

3
r2:

Since r1 þ r2 ¼ 3, we have a unique solution: r1 ¼ 0, r2 ¼ 3. This gives (c).
Assume that z i ¼ 1 and z j A 1. Then

Tr s� j ðH 0;1ðMÞaH 1;0ðMÞÞ ¼ 2;

Tr s� j ðH 0;2ðMÞaH 2;0ðMÞÞ ¼ z j þ z j ¼ �1;

Tr s� jH 1;1ðMÞ ¼ 3 and eðM sÞ ¼ 0. Thus s acts freely, a contradiction. r

Proposition 1.3. Let M be an abelian surface. Assume that it admits an order 3
automorphism s such that H 2;0ðMÞ3s4 ¼ 0. Then b2ðM=3s4Þ ¼ 4 or 2.

Proof. First note that pgðMÞ ¼ 1 and rankH 1;1ðMÞ ¼ 4. Let z ¼ exp
�
2p

ffiffiffiffiffi
�1

p

3

�
.

Let zk be the eigenvalue of s� acting on H 0;2ðMÞ. Since H 2;0ðMÞ3s4 ¼ 0, we
have zk A 1, hence

Tr s� j ðH 0;2ðMÞaH 2;0ðMÞÞ ¼ zk þ zk ¼ �1:

It implies that Tr s� jH 1;1ðMÞ is an integer, hence is equal to 4, 1 or �2. The last
possibility can be ruled out, as there is a s-invariant ample divisor yielding a

s�-invariant vector in H 1;1ðMÞ. Finally note that b2ðM=3s4Þ ¼ dimH 1;1ðMÞ3s4.
r

Remark 1.4. If in addition H 1;0ðMÞ3s4 ¼ 0, then either

(1) r2 ¼ 0, r1 �
P

R2
j ¼ 9, b2ðM=3s4Þ ¼ 4; or

(2) r2 ¼ 3, r1 �
P

R2
j ¼ 3, b2ðM=3s4Þ ¼ 2.

Here ri is the number of isolated fixed points of type 1
3 ð1; iÞ, and

S
Rj is the

1-dimensional fixed locus of s.
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Proposition 1.5. Let M be a surface of general type with pgðMÞ ¼ qðMÞ ¼ 2.
Assume that it admits an order 3 automorphism s with isolated fixed points
only such that pgðM=3s4 0Þ ¼ qðM=3s4 0Þ ¼ 0 where M=3s4 0 is a minimal reso-
lution of M=3s4. Let a : M=3s4 ! AlbðMÞ=3s4 be the map induced by the
Albanese map a : M ! AlbðMÞ. Then a cannot factor through a surjective map
M=3s4 ! N to a normal projective surface N with Picard number 1.

Proof. Suppose that a factors through a surjective map M=3s4 ! N to a
normal projective surface N with Picard number 1, i.e.,

a : M=3s4 ! N ! AlbðMÞ=3s4:

Let b : N ! AlbðMÞ=3s4 be the second map. Since a normal projective surface
with Picard number 1 cannot be fibred over any curve, the map b is surjective.
Since pgðM=3s4 0Þ ¼ qðM=3s4 0Þ ¼ 0 and the map M=3s4 0 ! AlbðMÞ=3s4 is a
surjection, we have

pgðAlbðMÞ=3s4 0Þ ¼ qðAlbðMÞ=3s4 0Þ ¼ 0;

where AlbðMÞ=3s4 0 is a minimal resolution of AlbðMÞ=3s4. Since AlbðMÞ=3s4 0

has pg ¼ q ¼ 0, we have

PicðAlbðMÞ=3s4 0ÞGH 2ðAlbðMÞ=3s4 0;ZÞ:

It follows that the Picard number of AlbðMÞ=3s4 is equal to b2ðAlbðMÞ=3s4Þ,
which is, by Proposition 1.1 and 1.3, equal to 4 or 2. This is a contradiction, as
a normal projective surface with Picard number 1 cannot be mapped surjectively
onto a surface with Picard numberb 2. r

Let S be a normal projective surface with quotient singularities and

f : S 0 ! S

be a minimal resolution of S. It is well-known (e.g., [Ka] or [S]) that quotient
singularities are log-terminal singularities. Thus one can write the adjunction
formula,

KS 0 C
num

f �KS �
X

p ASingðSÞ
Dp;

where Dp ¼
P

ðajAjÞ is an e¤ective Q-divisor with 0a aj < 1 supported on
f �1ðpÞ ¼

S
Aj for each singular point p. It implies that

K 2
S ¼ K 2

S 0 �
X
p

D2
p ¼ K 2

S 0 þ
X
p

DpKS 0 :
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The coe‰cients of the Q-divisor Dp can be obtained by solving the equations

DpAj ¼ �KS 0Aj ¼ 2þ A2
j

given by the adjunction formula for each exceptional curve Aj H f �1ðpÞ.
The computation of D2

p is given in [HK], Lemma 3.6 and 3.7.

2. The Proof of Theorem 0.4

2.1. The case: Z has 3 singular points of type 1
3 ð1; 2Þ

Let p1, p2, p3 be the three singular points of Z of type 1
3 ð1; 2Þ, and ~ZZ ! Z be the

minimal resolution.

Lemma 2.1. There is a C3-cover X ! Z branched exactly at the three singular
points of Z.

Proof. We use a lattice theoretic argument. Consider the cohomology lattice

H 2ð ~ZZ;ZÞfree :¼ H 2ð ~ZZ;ZÞ=ðtorsionÞ

which is unimodular of signature ð1; 6Þ under intersection pairing. Since Z is a

Q-homology projective plane, pgð ~ZZÞ ¼ qð ~ZZÞ ¼ 0 and hence Picð ~ZZÞ ¼ H 2ð ~ZZ;ZÞ.
Let Ri HH 2ð ~ZZ;ZÞfree be the sublattice spanned by the numerical classes of the
components Ai1, Ai2 of f �1ðpiÞ. Consider the sublattice R :¼ R1 aR2 aR3. Its
discriminant group R�=R is generated by three order 3 elements e1, e2, e3, where
ei is the generator of R

�
i =Ri of the form

ei ¼
Ai1 þ 2Ai2

3
:

Since R is of co-rank 1, we see that R=R is a non-zero subgroup of R�=R, where
R is the primitive closure of R. Thus there is an element D a RnR such that

D ¼ a1e1 þ a2e2 þ a3e3 modulo R:

Since e2i ¼ � 2
3 , none of the ai’s is equal to 0 modulo 3; otherwise D2 would not

be an integer. Note that �ei ¼ 2ei ¼ 2Ai1þAi2

3 modulo R. Thus we may assume that
a1 ¼ a2 ¼ a3 ¼ 1, hence

D ¼ A11 þ 2A12

3
þ A21 þ 2A22

3
þ A31 þ 2A32

3
þ R for some R a R:

It follows that there is a divisor class L a Picð ~ZZÞ such that

3L ¼ Bþ t
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for some torsion divisor t, where B ¼ A11 þ 2A12 þ A21 þ 2A22 þ A31 þ 2A32

an integral divisor supported on the six ð�2Þ-curves contracted to the points
p1, p2, p3 by the map ~ZZ ! Z.

If t ¼ 0, L gives a C3-cover of ~ZZ branched along B and un-ramified outside B,
hence yields a C3-cover X ! Z branched exactly at the three points p1, p2, p3.
Since the local fundamental group of the punctured germ of pi is cyclic of order
3, the covering of the punctured germ is either trivial or the standard one. Since
the C3-cover X ! Z is branched at each pi, the latter case should occur. Thus X
is a nonsingular surface.

If tA0, let m denote the order of t. Write m ¼ 3 tm 0 with m 0 not divisible
by 3. By considering 3ðm0LÞ ¼ m 0Bþm 0t, and by putting B 0 ¼ m 0B(modulo 3),
t 0 ¼ m 0t, we may assume that t has order 3 t. The torsion bundle t gives an
un-ramified cyclic cover of degree 3 t

p : V ! ~ZZ:

Let g be the corresponding automorphism of V . Pulling 3L ¼ Bþ t back to V ,
we have

3p�L ¼ p�B:

Obviously, g can be linearized on the line bundle p�L, hence gives an automor-
phism of order 3 t of the total space of p�L. Let V 0 ! V be the C3-cover given
by p�L. We regard V 0 as a subvariety of the total space of p�L. Since g leaves
invariant the set of local defining equations for V 0, g restricts to an automor-
phism of V 0 of order 3 t. Thus we have a C3-cover

V 0=3g4 ! ~ZZ:

This yields a C3-cover X ! Z branched exactly at the three points p1, p2, p3.
Similarly, X is a nonsingular surface. r

Since Z has only rational double points, the adjunction formula gives K 2
Z ¼

K 2
~ZZ
¼ 3. Hence K 2

X ¼ 3K 2
Z ¼ 9. The smooth part Z0 of Z has Euler number

eðZ0Þ ¼ eð ~ZZÞ � 9 ¼ 0, so eðX Þ ¼ 3eðZ0Þ þ 3 ¼ 3. This shows that X is a ball quo-
tient with pgðXÞ ¼ qðX Þ. It is known that such a surface has pgðX Þ ¼ qðX Þa 2.
(See the paragraph before Proposition 1.2.) In our situation X admits an
order 3 automorphism, and Proposition 1.2 eliminates the possibility of pgðX Þ ¼
qðX Þ ¼ 1.

It remains to exclude the possibility of pgðX Þ ¼ qðXÞ ¼ 2. Suppose that
pgðXÞ ¼ qðX Þ ¼ 2. Consider the Albanese map a : X ! AlbðX Þ. It induces a
map a : Z ¼ X=3s4 ! AlbðXÞ=3s4, where s is the order 3 automorphism of X
corresponding to the C3-cover X ! Z. Since Z has Picard number 1 and pgð ~ZZÞ ¼
qð ~ZZÞ ¼ 0, Proposition 1.5 gives a contradiction. Thus, pgðX Þ ¼ qðXÞ ¼ 0 and X
is a fake projective plane.
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2.2. The case: Z has 4 singular points of type 1
3 ð1; 2Þ

Let p1, p2, p3, p4 be the four singular points of Z, and f : ~ZZ ! Z the minimal
resolution.

Lemma 2.2. If there is a C3-cover Y ! Z branched exactly at three of the four

singular points of Z, then the minimal resolution ~YY of Y has K 2
~YY
¼ 3, eð ~YY Þ ¼ 9 and

pgð ~YY Þ ¼ qð ~YYÞ ¼ 0.

Proof. We may assume that the three points are p2, p3, p4. Note that Y has 3
singular points of type 1

3 ð1; 2Þ, the pre-image of p1. Let ~YY ! Y be the minimal

resolution. It is easy to see that K 2
~YY
¼ 3, eð ~YY Þ ¼ 9 and pgð ~YY Þ ¼ qð ~YY Þ.

Suppose that pgð ~YYÞ ¼ qð ~YY Þ ¼ 1. Consider the Albanese fibration ~YY !
Albð ~YYÞ. It induces a fibration Y ! Albð ~YYÞ. Let s be the order 3 automorphism
of Y corresponding to the C3-cover Y ! Z. It induces a fibration f : ~ZZ !
Albð ~YYÞ=3s4. Since qð ~ZZÞ ¼ 0, we have Albð ~YY Þ=3s4GP1. The eight ð�2Þ-curves
of ~ZZ are contained in a union of fibres of f. It follows that ~ZZ has Picard
numberb 8þ 2 ¼ 10, a contradiction.

Suppose that pgð ~YYÞ ¼ qð ~YY Þ ¼ 2. The Albanese map a : ~YY ! Albð ~YY Þ contracts
the six ð�2Þ-curves of ~YY , hence the induced map a : ~YY=3s4 ! Albð ~YY Þ=3s4 fac-
tors through a surjective map ~YY=3s4 ! Z, where s is the order 3 automorphism
of ~YY corresponding to the C3-cover Y ! Z. Since Z has Picard number 1 and ~ZZ,
being the minimal resolution of ~YY=3s4, has pgð ~ZZÞ ¼ qð ~ZZÞ ¼ 0, Proposition 1.5
gives a contradiction.

The possibility of pgð ~YYÞ ¼ qð ~YY Þb 3 can be ruled out by considering a
C3-cover X ! Y branched at the three singular points of Y . See the paragraph
below Lemma 2.3. r

Lemma 2.3. There is a C3-cover Y ! Z branched exactly at three of the four
singular points of Z, and a C3-cover X ! Y branched exactly at the three singular
points of Y. The composite map X ! Z is a C2

3 -cover.

Proof. The existence of two C3-covers can be proved by a lattice theoretic
argument. Note that Picð ~ZZÞ ¼ H 2ð ~ZZ;ZÞ. We know that H 2ð ~ZZ;ZÞfree is a uni-
modular lattice of signature ð1;8Þ under intersection pairing. LetRiHH 2ð ~ZZ;ZÞfree
be the sublattice spanned by the numerical classes of the components Ai1, Ai2

of f �1ðpiÞ. Consider the sublattice R :¼ R1 aR2 aR3 aR4. Its discriminant
group R�=R is 3-elementary of length 4, generated by four order 3 elements
e1, e2, e3, e4, where ei is the generator of R�

i =Ri of the form ei ¼ Ai1þ2Ai2

3 . Since
the orthogonal complement R? is of rank 1, we see that R=R is a subgroup of
order 9 of R�=R. As we have seen in the proof of Lemma 2.1, every non-zero
element of R=R must be of the formeei e ej e ek. Thus, up to a permutation
of ei’s and modulo R, R=R is generated by the two order 3 elements

e2 þ e3 þ e4 and e1 � e3 þ e4:
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As in the proof of Lemma 2.1, we infer that there are two divisor classes
L1;L2 a Picð ~ZZÞ such that

3L1 ¼ B1 þ t1; 3L2 ¼ B2 þ t2

for some torsion divisors ti, where Bi is an integral divisor supported on the six
ð�2Þ-curves contained in

S
jAi f

�1ðpjÞ and each coe‰cient in Bi is 1 or 2.
By the same argument as in Lemma 2.1, we can take a C3-cover Y ! Z

branched exactly at the three points p2, p3, p4. Then Y has 3 singular points of
type 1

3 ð1; 2Þ, the pre-image of p1. This can be done by using the line bundle L1 if
t1 ¼ 0. Otherwise, we first take an un-ramified cover p : V ! ~ZZ corresponding
to t1 and then lift the covering automorphism g to the C3-cover V

0 ! V given
by p�L1, then take the quotient V 0=3g4.

Let Y 0 be the minimal resolution of the fibred product Y �Z
~ZZ, and

c : Y 0 ! ~ZZ be the C3-cover corresponding to the C3-cover Y ! Z. Then
Y 0 ! Y is a resolution, hence it factors through a surjection f 0 : Y 0 ! ~YY . Now

3f 0
� ðc�L2Þ ¼ f 0

� ðc�B2Þ þ f 0
� ðc�t2Þ

and f 0
� ðc�B2Þ is an integral divisor supported on the exceptional locus of ~YY ! Y

with coe‰cients greater than 0 and less than 3. Now by the same argument as in
the proof of Lemma 2.1, there is a C3-cover X ! Y with X nonsingular.

It remains to show that the composite map X ! Z is a C2
3 -cover. Let s be

the order 3 automorphism of ~YY corresponding to the C3-cover Y ! Z. It pre-
serves each of the three divisors, f 0

� ðc�L2Þ, f 0
� ðc�B2Þ, f 0

� ðc�t2Þ, hence lifts to an
automorphism s 0 of X , which normalizes the order 3 automorphism m of X cor-
responding to the C3-cover X ! Y . The fixed locus X s 0

is not contained in the
fixed locus X m. Thus mAs 03, hence the group generated by s 0 and m is isomor-
phic to C2

3 . r

It is easy to see that K 2
X ¼ 9, eðX Þ ¼ 3 and pgðX Þ ¼ qðXÞ. Such a surface

has pgðXÞ ¼ qðX Þa 2. (See the paragraph before Proposition 1.2.) By Prop-
osition 1.1, pgð ~YYÞa pgðX Þ and qð ~YYÞa qðX Þ, which completes the proof of
Lemma 2.2.

By Lemma 2.2, pgð ~YY Þ ¼ qð ~YYÞ ¼ 0, so Y has Picard number 1 and con-
tains three singular points of type 1

3 ð1; 2Þ. Then by the previous subsection,
pgðXÞ ¼ qðX Þ ¼ 0, hence X is a fake projective plane.

2.3. The case: Z has 3 singular points of type 1
7 ð1; 5Þ

Let p1, p2, p3 be the three singular points of Z of type 1
7 ð1; 5Þ. Then there is

a C7-cover X ! Z branched at the three points. In the case of p1ðZÞ ¼ f1g,
this was proved in [K06], p922. In our general situation, we consider the lattice
Picð ~ZZÞ=(torsion), where ~ZZ ! Z is the minimal resolution. Then by the same lat-
tice theoretic argument as in [K06], there is a divisor class L a Picð ~ZZÞ ¼ H 2ð ~ZZ;ZÞ
such that 7L ¼ Bþ t for some torsion divisor t, where B is an integral divisor
supported on the exceptional curves of the map ~ZZ ! Z. Here every coe‰cient
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of B is not equal to 0 modulo 7. If ~ZZ is a ð2; 4Þ-elliptic surface and if tA 0, then
2t ¼ 0. By considering 7ð2LÞ ¼ 2B, and by putting L 0 ¼ 2L and B 0 ¼ 2B, we get
7L 0 ¼ B 0. This implies the existence of a C7-cover X ! Z branched exactly at the
three points p1, p2, p3. As in the proof of Lemma 2.1, it can be shown that X is
nonsingular.

Note that K 2
~ZZ
¼ 0. So by the adjunction formula, K 2

Z ¼ 9
7 . It is easy to see that

K 2
X ¼ 9, eðXÞ ¼ 3 and pgðX Þ ¼ qðXÞ. Such a surface has pgðX Þ ¼ qðXÞa 2.

(See the paragraph before Proposition 1.2.) Now by Proposition 1.2, pgðX Þ ¼
qðX Þ ¼ 0.

2.4. The case: Z has 3 singular points of type 1
3 ð1; 2Þ and one of type 1

7 ð1; 5Þ

Let ~ZZ ! Z be the minimal resolution, which is a ð2; 3Þ- or ð2; 4Þ-elliptic surface.
It contains 9 exceptional curves whose dual diagram is given as follows:

ð�2Þ � ð�2Þ ð�2Þ � ð�2Þ ð�2Þ � ð�2Þ ð�2Þ � ð�2Þ � ð�3Þ:

Here the last three smooth rational curves forming a string of type ½2; 2; 3� are
lying over the singular point of type 1

7 ð1; 5Þ. This can be seen by computing the

Hirzebruch-Jung continued fraction of 7
5 ,

7

5
¼ 2� 1

2� 1
3

:

In particular, ~ZZ contains a ð�3Þ-curve. By the canonical bundle formula (see
[BHPV], Theorem 12.1), the canonical class of a ð2; 3Þ- (resp. ð2; 4Þ)-elliptic sur-
face is numerically equivalent to 1

6F (resp. 1
4F ), where F is the class of a fibre.

Thus a ð�3Þ-curve is a 6-section (resp. 4-section) of a ð2; 3Þ- (resp. ð2; 4Þ)-elliptic
surface.

Let
f : ~ZZ ! P1

be the elliptic fibration. Note that every ð�2Þ-curve on an elliptic surface is
contained in a fiber. Thus the eight ð�2Þ-curves above are contained in a union
of fibres. Let Z 0 ! Z be the minimal resolution of the singular point of type
1
7 ð1; 5Þ. Then f : ~ZZ ! P1 induces an elliptic fibration

f 0 : Z 0 ! P1:

Lemma 2.4. (1) There is a C3-cover Y ! Z branched exactly at the three points
of type 1

3 ð1; 2Þ. The cover Y has 3 singular points of type 1
7 ð1; 5Þ.

(2) The minimal resolution ~YY of Y is a ð2; 3Þ- or ð2; 4Þ-elliptic surface. Every fibre
of ~ZZ does not split in ~YY, and every fibre of ~YY has the same multiplicity as the
corresponding fibre of ~ZZ.

Proof. We may assume that ~ZZ is a ð2; 3Þ-elliptic surface. The case of ð2; 4Þ-
elliptic surfaces was proved in [K11].
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(1) The existence of the triple cover can be proved in the same way as in [K06],
p920–921. Note that Y has 3 singular points of type 1

7 ð1; 5Þ, the pre-image of the
singular point of Z of type 1

7 ð1; 5Þ.
(2) Consider the C3-cover ~YY ! Z 0 branched at the three singular points

of Z 0. The elliptic fibration f 0 : Z 0 ! P1 induces an elliptic fibration c : ~YY ! P1.
Denote by E the ð�3Þ-curve in Z 0 lying over the singularity of type 1

7 ð1; 5Þ.
It does not pass through any of the 3 singular points of Z 0, hence it splits in ~YY to
give three ð�3Þ-curves E1, E2, E3.

Suppose that a general fibre of Z 0 splits into 3 fibres in ~YY . Since E is a
6-section, each Ei will be a 2-section of the elliptic fibration c : ~YY ! P1. Thus,
the map from Ei to the base curve P1 is of degree 2. It implies that ~YY has at
most 2 multiple fibres and the multiplicity of every multiple fibre is 2. Thus each
multiple fibre of Z 0 does not split in ~YY . (Otherwise, it will give 3 multiple fibres
of the same multiplicity, a contradiction.) The fibre with multiplicity 3 in Z 0 does
not split, hence it gives a non-multiple fibre in ~YY . But the fibre with multiplicity 2
in Z 0 must split into 3 fibres in ~YY . This is a contradiction, and we have proved
that every fibre of Z 0 does not split in ~YY . It implies that the multiplicity of a fibre
in ~YY is the same as that of the corresponding fibre in ~ZZ. Thus ~YY is an elliptic
surface over P1 having 2 multiple fibres with multiplicity 2 and 3, resp. Since
K 2

~ZZ
¼ 0 and Z 0 has only rational double points, the adjunction formula gives

K 2
Z 0 ¼ K 2

~ZZ
¼ 0. Hence K 2

~YY
¼ 3K 2

Z 0 ¼ 0. In particular, ~YY is minimal. The smooth
part Z0 of Z 0 has Euler number eðZ0Þ ¼ eð ~ZZÞ � 9 ¼ 3, so eð ~YY Þ ¼ 3eðZ0Þ þ 3 ¼
12. This shows that ~YY is a ð2; 3Þ-elliptic surface. r

Now by the previous subsection, there is a C7-cover X ! Y branched at the
three singular points such that X is a fake projective plane.

3. Proof of Theorem 0.5

The first two assertions of Theorem 0.5 were proved in Lemma 2.4.
(3) We know that the eight ð�2Þ-curves on ~ZZ are contained in a union of

fibres. This is possible only if the union of fibres is one of the following three
cases. Here, each fibre of type I3 may be a multiple fibre with multiplicity
2 or 3.

ðaÞ IV � þ I3; ðbÞ IV � þ IV ; ðcÞ I3 þ I3 þ I3 þ I3:

Recall that every fibre in ~ZZ does not split in ~YY , and the ð�3Þ-curve in ~ZZ is a
6-section. We will eliminate the first two cases. Let Z 0 ! Z be the minimal reso-
lution of the singular point of type 1

7 ð1; 5Þ.
Case (a): IV � þ I3. In this case, the surface ~ZZ has a singular fibre of type

I1, which may be multiple. Since the ð�3Þ-curve in ~ZZ is a 6-section, it intersects
with multiplicity 2 the central component of the IV �-fibre. Thus the six compo-
nents of the IV �-fibre except the central component are the six ð�2Þ-curves
contracted by the map ~ZZ ! Z 0, hence both the I3-fibre and the I1-fibre are dis-
joint from the branch points of the C3-cover ~YY ! Z 0. It is easy to see that these
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two fibres will give a I9-fibre and a I3-fibre in ~YY , so ~YY has Picard numberb 12, a
contradiction.

Case (b): IV � þ IV . Again, the ð�3Þ-curve intersects with multiplicity 2 the
central component of the IV �-fibre, hence the six components of the IV �-fibre
except the central component are the six ð�2Þ-curves contracted by the map
~ZZ ! Z 0. The IV -fibre on ~ZZ is disjoint from the branch points of the C3-cover
~YY ! Z 0. But there is no un-ramified connected triple cover of a IV -fibre, a con-
tradiction.

Thus ~ZZ has four I3-fibres.
(4) If the image in Z 0 of a I3-fibre contains a singular point of Z 0, then it will

give a I1-fibre in ~YY . If it does not, then it will give a I9-fibre in ~YY . Thus ~YY has one
I9-fibre and three I1-fibres.
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