

Abstract

Algebraic Geometry - Toward a geometric construction of fake projective planes, by Jonghae Keum, presented on 11 November 2011 by Fabrizio Catanese.

Abstract

We give a criterion for a projective surface to become a quotient of a fake projective plane. We also give a detailed information on the elliptic fibration of a $(2,3)$-elliptic surface that is the minimal resolution of a quotient of a fake projective plane.

Key words: Fake projective plane, \mathbb{Q}-homology projective plane, surface of general type, properly elliptic surface.

2000 Mathematics Subject Classification: 14J29, 14J27.

It is known that a compact complex manifold of dimension 2 with the same Betti numbers as the complex projective plane \mathbb{P}^{2} is projective (see e.g. [BHPV]). Such a manifold is called a fake projective plane if it is not isomorphic to \mathbb{P}^{2}.

Let X be a fake projective plane. By definition $b_{1}(X)=0, b_{2}(X)=1$, hence $q(X)=p_{g}(X)=0, c_{2}(X)=3$ and by Noether formula $c_{1}(X)^{2}=9$. In particular its canonical class K_{X} or its anti-canonical class $-K_{X}$ is ample. The latter case cannot occur sice X is not isomorphic to \mathbb{P}^{2}. So a fake projective plane is exactly a smooth surface X of general type with $p_{g}(X)=0$ and $c_{1}(X)^{2}=3 c_{2}(X)=9$. $\mathrm{By}[\mathrm{Au}]$ and $[\mathrm{Y}]$, its universal cover is the unit 2-ball $\mathbf{B} \subset \mathbb{C}^{2}$ and hence its fundamental group $\pi_{1}(X)$ is infinite. More precisely, $\pi_{1}(X)$ is exactly a discrete torsionfree cocompact subgroup Π of $P U(2,1)$ having minimal Betti numbers and finite abelianization. By Mostow's rigidity theorem [Mos], such a ball quotient is strongly rigid, i.e., Π determines a fake projective plane up to holomorphic or anti-holomorphic isomorphism. By [KK], no fake projective plane can be antiholomorphic to itself. Thus the moduli space of fake projective planes consists of a finite number of points, and the number is the double of the number of distinct fundamental groups Π. By Hirzebruch's proportionality principle [Hir], Π has covolume 1 in $P U(2,1)$. Furthermore, Klingler [Kl] proved that the discrete torsion-free cocompact subgroups of $P U(2,1)$ having minimal Betti numbers are arithmetic (see also [Ye]).

With these informations, Prasad and Yeung [PY] carried out a classification of fundamental groups of fake projective planes. They describe the algebraic group $\bar{G}(k)$ containing a discrete torsion-free cocompact arithmetic subgroup Π having minimal Betti numbers and finite abelianization as follows. There is a pair

[^0](k, l) of number fields, k is totally real, l a totally complex quadratic extension of k. There is a central simple algebra D of degree 3 with center l and an involution l of the second kind on D such that $k=l^{l}$. The algebraic group \bar{G} is defined over k as follows:
$$
\bar{G}(k) \cong\{z \in D \mid l(z) z=1\} /\{t \in l \mid l(t) t=1\}
$$

There is one Archimedean place v_{0} of k so that $\bar{G}\left(k_{v_{0}}\right) \cong P U(2,1)$ and $\bar{G}\left(k_{v}\right)$ is compact for all other Archimedean places v. The data $\left(k, l, D, v_{0}\right)$ determines \bar{G} up to k-isomorphism. Using Prasad's volume formula [P], they were able to eliminate most 4-tuples $\left(k, l, D, v_{0}\right)$, making a short list of possibilities where such Π 's might occur, which yields a short list of maximal arithmetic subgroups $\bar{\Gamma}$ which might contain such a Π. If such a Π is contained, up to conjugacy, in a unique $\bar{\Gamma}$, then the group Π or the fake projective plane \mathbf{B} / Π is said to belong to the class corresponding to the conjugacy class of $\bar{\Gamma}$. If Π is contained in two non-conjugate maximal arithmetic subgroups, then Π or \mathbf{B} / Π is said to form a class of its own. They exhibited 28 non-empty classes ([PY], Addendum). It turns out that the index of such a Π in a $\bar{\Gamma}$ is $1,3,9$, or 21 , and all such Π 's contained in the same $\bar{\Gamma}$ class have the same index.

Then Cartwright and Steger [CS] have carried out a computer-based but very complicated group-theoretic computation, showing that there are exactly 28 nonempty classes, where 25 of them correspond to conjugacy classes of maximal arithmetic subgroups and each of the remaining 3 to a Π contained in two nonconjugate maximal arithmetic subgroups. This yields a complete list of fundamental groups of fake projective planes: the moduli space consists of exactly 100 points, corresponding to 50 pairs of complex conjugate fake projective planes.

It is easy to see that the automorphism $\operatorname{group} \operatorname{Aut}(X)$ of a fake projective plane X can be given by

$$
\operatorname{Aut}(X) \cong N\left(\pi_{1}(X)\right) / \pi_{1}(X)
$$

where $N\left(\pi_{1}(X)\right)$ is the normalizer of $\pi_{1}(X)$ in $P U(2,1)$, hence is contained in a suitable $\bar{\Gamma}$.

Theorem 0.1 [PY], [CS], [CS2]. For a fake projective plane X,

$$
\operatorname{Aut}(X)=\{1\}, C_{3}, C_{3}^{2}, \text { or } 7: 3
$$

where C_{n} denotes the cyclic group of order n, and $7: 3$ the unique non-abelian group of order 21. More precisely, $\operatorname{Aut}(X)=\{1\}$ or C_{3}, when the index of $\pi_{1}(X)$ in a maximal arithmetic subgroup is $3, \operatorname{Aut}(X)=\{1\}, C_{3}$ or C_{3}^{2}, when the index is 9 , $\operatorname{Aut}(X)=\{1\}, C_{3}$ or $7: 3$, when the index is 21 .

According to ([CS], [CS2]), 68 of the 100 fake projective planes admit a nontrivial group of automorphisms.

Let (X, G) be a pair of a fake projective plane X and a non-trivial group G of automorphisms. In [K08], all possible structures of the quotient surface X / G and its minimal resolution were classified.

Theorem 0.2 [K08].
(1) If $G=C_{3}$, then X / G is a \mathbb{Q}-homology projective plane with 3 singular points of type $\frac{1}{3}(1,2)$ and its minimal resolution is a minimal surface of general type with $p_{g}=0$ and $K^{2}=3$.
(2) If $G=C_{3}^{2}$, then X / G is a \mathbb{Q}-homology projective plane with 4 singular points of type $\frac{1}{3}(1,2)$ and its minimal resolution is a minimal surface of general type with $p_{g}=0$ and $K^{2}=1$.
(3) If $G=C_{7}$, then X / G is a \mathbb{Q}-homology projective plane with 3 singular points of type $\frac{1}{7}(1,5)$ and its minimal resolution is a $(2,3)$-, $(2,4)$-, or $(3,3)$-elliptic surface.
(4) If $G=7: 3$, then X / G is a \mathbb{Q}-homology projective plane with 4 singular points, 3 of type $\frac{1}{3}(1,2)$ and one of type $\frac{1}{7}(1,5)$, and its minimal resolution is a $(2,3)$-, $(2,4)$-, or (3, 3)-elliptic surface.

Here, a \mathbb{Q}-homology projective plane is a normal projective surface with the same Betti numbers as \mathbb{P}^{2}. A fake projective plane is a nonsingular \mathbb{Q}-homology projective plane, hence every quotient is again a \mathbb{Q}-homology projective plane. An (a, b)-elliptic surface is a relatively minimal elliptic surface over \mathbb{P}^{1} with $c_{2}=12$ having two multiple fibres of multiplicity a and b respectively. It has Kodaira dimension 1 if and only if $a \geq 2, b \geq 2, a+b \geq 5$. It is an Enriques surface iff $a=b=2$, and it is rational iff $a=1$ or $b=1$. An (a, b)-elliptic surface has $p_{g}=q=0$, and by [D] its fundamental group is the cyclic group of order the greatest common divisor of a and b. An (a, b)-elliptic surface is called a Dolgachev surface if a and b are relatively prime integers with $a \geq 2, b \geq 2$.

Remark 0.3. (1) Since X / G has rational singularities only, X / G and its minimal resolution have the same fundamental group. Let $\bar{\Gamma}$ be the maximal arithmetic subgroup of $P U(2,1)$ containing $\pi_{1}(X)$. There is a subgroup $\tilde{G} \subset \bar{\Gamma}$ such that $\pi_{1}(X)$ is normal in \tilde{G} and $G=\tilde{G} / \pi_{1}(X)$. Thus,

$$
X / G \cong \mathbf{B} / \tilde{G}
$$

It is well known (cf. [Arm]) that

$$
\pi_{1}(\mathbf{B} / \tilde{G}) \cong \tilde{G} / H
$$

where H is the minimal normal subgroup of \tilde{G} containing all elements acting non-freely on the 2-ball \mathbf{B}. In our situation, it can be shown that H is generated by torsion elements of \tilde{G}, and Cartwright and Steger have computed, along with their computation of the fundamental groups, the quotient group \tilde{G} / H for each pair (X, G).

- $[\mathrm{CS}]$ If $G=C_{3}$, then

$$
\pi_{1}(X / G) \cong\{1\}, C_{2}, C_{3}, C_{4}, C_{6}, C_{7}, C_{13}, C_{14}, C_{2}^{2}, C_{2} \times C_{4}, S_{3}, D_{8} \text { or } Q_{8}
$$

where S_{3} is the symmetric group of order 6 , and D_{8} and Q_{8} are the dihedral and quaternion groups of order 8 .

- [CS2] If $G=C_{3}^{2}$ or C_{7} or $7: 3$, then

$$
\pi_{1}(X / G) \cong\{1\} \text { or } C_{2}
$$

This eliminates the possibility of $(3,3)$-elliptic surfaces in Theorem 0.2, as $(3,3)$-elliptic surfaces have $\pi_{1}=C_{3}$.
(2) It is interesting to consider all arithmetic ball quotients which have a nonGalois cover by a fake projective plane. Indeed, Cartwright and Steger have considered all subgroups $\tilde{G} \subset P U(2,1)$ such that $\pi_{1}(X) \subset \tilde{G} \subset \bar{\Gamma}$ for some maximal arithmetic subgroup $\bar{\Gamma}_{\tilde{G}}$ and some fake projective plane X, where $\pi_{1}(X)$ is not necessarily normal in \tilde{G}. It turns out [CS2] that, if $\pi_{1}(X)$ is not normal in \tilde{G}, then there is another fake projective plane X^{\prime} such that $\pi_{1}\left(X^{\prime}\right)$ is normal in \tilde{G}, hence $\mathbf{B} / \tilde{G} \cong X^{\prime} / G^{\prime}$ where $G^{\prime}=\tilde{G} / \pi_{1}\left(X^{\prime}\right)$. Thus such a general subgroup \tilde{G} does not produce a new surface.

It is a major step toward a geometric construction of a fake projective plane to construct a \mathbb{Q}-homology projective plane satisfying one of the descriptions (1)-(4) from Theorem 0.2. Suppose that one has such a \mathbb{Q}-homology projective plane. Then, can one construct a fake projective plane by taking a suitable cover? In other words, does the description (1)-(4) from Theorem 0.2 characterize the quotients of fake projective planes? The answer is affirmative in all cases.

ThEOREM 0.4. Let Z be a \mathbb{Q}-homology projective plane satisfying one of the descriptions (1)-(4) from Theorem 0.2.
(1) If Z is a \mathbb{Q}-homology projective plane with 3 singular points of type $\frac{1}{3}(1,2)$ and its minimal resolution is a minimal surface of general type with $p_{g}=0$ and $K^{2}=3$, then there is a C_{3}-cover $X \rightarrow Z$ branched exactly at the three singular points of Z such that X is a fake projective plane.
(2) If Z is a \mathbb{Q}-homology projective plane with 4 singular points of type $\frac{1}{3}(1,2)$ and its minimal resolution is a minimal surface of general type with $p_{g}=0$ and $K^{2}=1$, then there is a C_{3}-cover $Y \rightarrow Z$ branched exactly at three of the four singular points of Z and a C_{3}-cover $X \rightarrow Y$ branched exactly at the three singular points on Y, the pre-image of the remaining singularity on Z, such that X is a fake projective plane. Furthermore, the composite map $X \rightarrow Z$ is a C_{3}^{2}-cover.
(3) If Z is $a \mathbb{Q}$-homology projective plane with 3 singular points of type $\frac{1}{7}(1,5)$ and its minimal resolution is a $(2,3)$ - or (2,4)-elliptic surface, then there is a C_{7}-cover $X \rightarrow Z$ branched exactly at the three singular points of Z such that X is a fake projective plane.
(4) If Z is a \mathbb{Q}-homology projective plane with 4 singular points, 3 of type $\frac{1}{3}(1,2)$ and one of type $\frac{1}{7}(1,5)$, and its minimal resolution is a $(2,3)$ - or (2,4)-elliptic surface, then there is a C_{3}-cover $Y \rightarrow Z$ branched exactly at the three singular points of type $\frac{1}{3}(1,2)$ and a C_{7}-cover $X \rightarrow Y$ branched exactly at the three
singular points, the pre-image of the singularity on Z of type $\frac{1}{7}(1,5)$, such that X is a fake projective plane.

In the case (4), we give a detailed information on the types of singular fibres of the elliptic fibration on the minimal resolution of Z.

Theorem 0.5 . Let Z be a \mathbb{Q}-homology projective plane with 4 singular points, 3 of type $\frac{1}{3}(1,2)$ and one of type $\frac{1}{7}(1,5)$. Assume that its minimal resolution \tilde{Z} is a $(2,3)$-elliptic surface. Then
(1) the triple cover Y of Z branched at the three singular points of type $\frac{1}{3}(1,2)$ is a \mathbb{Q}-homology projective plane with 3 singular points of type $\frac{1}{7}(1,5)$;
(2) the minimal resolution $\underset{\tilde{\sim}}{\tilde{Z}}$ of Y is a $(2,3)$-elliptic surface, where every fibre of the elliptic fibration on \tilde{Z} does not split;
(3) the elliptic fibration on \tilde{Z} has 4 singular fibres of type I_{3}, some of which may have multiplicity 2 or 3 ;
(4) the elliptic fibration on \tilde{Y} has 4 singular fibres, one of type I_{9} and 3 of type I_{1}, and each fibre has the same multiplicity as the corresponding fibre on \tilde{Z}.

The case where \tilde{Z} is a $(2,4)$-elliptic surface was treated in $[\mathrm{K} 11]$. The last two assertions of Theorem 0.5 were given without proof in ([K08], Corollary 4.12 and 1.4).

Notation

- K_{X} : a canonical (Weil) divisor of a normal projective variety or a complex manifold X
- $b_{i}(X):=\operatorname{dim} H^{i}(X, \mathbb{Q})$ the i-th Betti number of a topological space X
- $e(X)$: the topological Euler number of a complex variety X
- $p_{g}(X):=\operatorname{dim} H^{2}\left(X, \mathcal{O}_{X}\right), q(X):=\operatorname{dim} H^{1}\left(X, \mathcal{O}_{X}\right)$, where X is a compact smooth surface
- $V^{G}:=\{v \in V \mid g(v)=v$ for all $g \in G\}$, where a group G acts on V
- a string of type $\left[n_{1}, n_{2}, \ldots, n_{l}\right]$: a string of smooth rational curves of self intersection $-n_{1},-n_{2}, \ldots,-n_{l}$

1. Preliminaries

First, we recall the topological and holomorphic Lefschetz fixed point formulas.
Topological Lefschetz Fixed Point Formula. Let M be a compact complex manifold of dimension m admitting a holomorphic map $\sigma: M \rightarrow M$. Then the Euler number of the fixed locus M^{σ} is equal to the alternating sum of the trace of σ^{*} acting on the cohomology space $H^{j}(M, \mathbb{Q})$, i.e.,

$$
e\left(M^{\sigma}\right)=\sum_{j=0}^{2 m}(-1)^{j} \operatorname{Tr} \sigma^{*} \mid H^{j}(M, \mathbb{Q})
$$

Holomorphic Lefschetz Fixed Point Formula ([AS3], p. 567). Let M be a compact complex manifold of dimension 2 admitting an automorphism σ. Let p_{1}, \ldots, p_{l} be the isolated fixed points of σ and R_{1}, \ldots, R_{k} be the 1-dimensional components of the fixed locus S^{σ}. Then

$$
\begin{aligned}
\sum_{j=0}^{2}(-1)^{j} \operatorname{Tr} \sigma^{*} \mid H^{j}\left(M, \mathcal{O}_{M}\right)= & \sum_{j=1}^{l} \frac{1}{\operatorname{det}(I-d \sigma) \mid T_{p_{j}}} \\
& +\sum_{j=1}^{k}\left\{\frac{1-g\left(R_{j}\right)}{1-\xi_{j}}-\frac{\xi_{j} R_{j}^{2}}{\left(1-\xi_{j}\right)^{2}}\right\}
\end{aligned}
$$

where $T_{p_{j}}$ is the tangent space at $p_{j}, g\left(R_{j}\right)$ is the genus of R_{j} and ξ_{j} is the eigenvalue of the differential d σ acting on the normal bundle of R_{j} in M.

Assume further that σ is of finite and prime order p. Then

$$
\begin{aligned}
& \left.\frac{1}{p-1} \sum_{i=1}^{p-1} \sum_{j=0}^{2}(-1)^{j} \operatorname{Tr} \sigma^{i *} \right\rvert\, H^{j}\left(M, \mathcal{O}_{M}\right) \\
& \quad=\sum_{i=1}^{p-1} a_{i} r_{i}+\sum_{j=1}^{k}\left\{\frac{1-g\left(R_{j}\right)}{2}+\frac{(p+1) R_{j}^{2}}{12}\right\}
\end{aligned}
$$

where r_{i} is the number of isolated fixed points of σ of type $\frac{1}{p}(1, i)$, and

$$
a_{i}=\frac{1}{p-1} \sum_{j=1}^{p-1} \frac{1}{\left(1-\zeta^{j}\right)\left(1-\zeta^{i j}\right)}
$$

with $\zeta=\exp \left(\frac{2 \pi \sqrt{-1}}{p}\right)$, e.g., $a_{1}=\frac{5-p}{12}, a_{2}=\frac{11-p}{24}$, etc.
Proposition 1.1. Let G be a finite group acting on a smooth compact Kähler surface M. Let M / G be the quotient surface and $Y \rightarrow M / G$ a minimal resolution. Then the following hold true:
(1) $q(Y)=\frac{1}{2} b_{1}(M / G)=\operatorname{dim} H^{0,1}(M)^{G}$.
(2) If in addition there is a G-equivariant blowing-up M^{\prime} of M such that M^{\prime} / G is isomorphic to a blowing-up of Y, then

$$
p_{g}(Y)=\operatorname{dim} H^{0,2}(M)^{G}
$$

(3) The additional condition of (2) is always satisfied when $|G| \leq 3$.

Proof. (1) By the Hodge decomposition theorem, $H^{1}(M, \mathbb{C}) \cong H^{0,1}(M) \oplus$ $H^{1,0}(M)$. Thus
$b_{1}(M / G)=\operatorname{dim} H^{1}(M, \mathbb{R})^{G}=\operatorname{dim}\left(H^{0,1}(M) \oplus H^{1,0}(M)\right)^{G}=2 \operatorname{dim} H^{0,1}(M)^{G}$.

Since quotient singularities are rational, van Kampfen's theorem applies to prove

$$
\pi_{1}(Y) \cong \pi_{1}(M / G)
$$

in particular, $b_{1}(Y)=b_{1}(M / G)$.

$$
\begin{align*}
p_{g}(Y) & =p_{g}\left(M^{\prime} / G\right)=\operatorname{dim} H^{0}\left(M^{\prime}, \Omega_{M^{\prime}}^{2}\right)^{G} \tag{2}\\
& =\operatorname{dim} H^{0}\left(M, \Omega_{M}^{2}\right)^{G}=\operatorname{dim} H^{0,2}(M)^{G}
\end{align*}
$$

(3) Assume $|G|=3$. For a singular point on M / G of type $\frac{1}{3}(1,1)$, its minimal resolution can be obtained by first blowing up once the corresponding fixed point on M and then taking the quotient by the extended action of G. For a singular point of type $\frac{1}{3}(1,2)$, first blow up three times the corresponding fixed point on M so that the action of G extends to the blowing-up, where the resulting 3 exceptional curves form a string of type $[1,3,1]$, and then take the quotient by the extended action of G, to get a string of type $[3,1,3]$. This gives the blowing-up of Y at the intersection point of the two exceptional curves lying over the singularity. The case with $|G|=2$ is more simpler.

For a compact complex manifold M of dimension 2 with $K_{M}^{2}=3 c_{2}(M)=9$, it is known that

$$
p_{g}(M)=q(M) \leq 2
$$

Indeed, such a surface M has $\chi\left(\mathcal{O}_{M}\right)=1, p_{g}(M)=q(M)$, and is either isomorphic to \mathbb{P}^{2} or of general type. (No compact complex smooth surface with $K^{2}>8$ can be birationally isomorphic to a ruled surface or an elliptic surface.) By a result of Miyaoka [Mi], a compact complex smooth surface of general type with $K^{2}=3 c_{2}$ has ample canonical divisor, and hence by $[\mathrm{Y}]$ is a ball-quotient. Furthermore, compact complex smooth surfaces with $c_{2}<4$ (such as M) cannot be fibred over a curve of genus ≥ 2 with a general fibre of genus ≥ 2. This can be seen easily by the Euler number formula for fibred surfaces (see e.g. [BHPV], Proposition 11.4). Thus by Castelnuovo-de Franchis theorem $p_{g}(M) \geq 2 q(M)-3$, which implies $p_{g}(M)=q(M) \leq 3$. The case of $p_{g}(M)=q(M)=3$ was eliminated by the classification result of Hacon and Pardini [HP] (see also [Pi] and [CCM]).

Proposition 1.2. Let M be a complex manifold M of dimension 2 with $K_{M}^{2}=$ $3 c_{2}(M)=9$. Then, the following hold true.
(1) If M admits an order 7 automorphism σ with isolated fixed points only, then $b_{i}(M /\langle\sigma\rangle)=b_{i}(M)$ for $i=1,2$ and σ fixes exactly 3 points, which yield on the quotient $M /\langle\sigma\rangle$ either 3 singular points of type $\frac{1}{7}(1,5)$ or 2 singular points of type $\frac{1}{7}(1,2)$ and 1 singular point of type $\frac{1}{7}(1,6)$.
(2) If M has $p_{g}(M)=q(M)=1$ and admits an order 3 automorphism σ with isolated fixed points only, then
(a) $b_{1}(M /\langle\sigma\rangle)=0, b_{2}(M /\langle\sigma\rangle)=3$, and $M /\langle\sigma\rangle$ has 6 singular points of type $\frac{1}{3}(1,1)$; or
(b) $b_{1}(M /\langle\sigma\rangle)=0, b_{2}(M /\langle\sigma\rangle)=5$, and $M /\langle\sigma\rangle$ has 3 singular points of type $\frac{1}{3}(1,1)$ and 6 singular points of type $\frac{1}{3}(1,2)$; or
(c) $b_{1}(M /\langle\sigma\rangle)=2, b_{2}(M /\langle\sigma\rangle)=5$, and $M /\langle\sigma\rangle$ has 3 singular points of type $\frac{1}{3}(1,2)$.

Proof. Note that M cannot admit an automorphism of finite order acting freely, because $\chi\left(\mathcal{O}_{M}\right)=1$ not divisible by any integer ≥ 2.
(1) By the Hodge decomposition theorem,

$$
\operatorname{Tr} \sigma^{*}\left|H^{1}(M, \mathbb{Z})=\operatorname{Tr} \sigma^{*}\right| H^{1}(M, \mathbb{C})=\operatorname{Tr} \sigma^{*} \mid\left(H^{0,1}(M) \oplus H^{1,0}(M)\right)
$$

Note that this number is an integer. Let $\zeta=\exp \left(\frac{2 \pi \sqrt{-1}}{7}\right)$.
Assume that $p_{g}(M)=q(M)=2$. Let ζ^{i} and ζ^{j} be the eigenvalues of σ^{*} acting on $H^{0,1}(M)$. Then

$$
\operatorname{Tr} \sigma^{*} \mid H^{1}(M, \mathbb{Z})=\zeta^{i}+\zeta^{j}+\bar{\zeta}^{i}+\bar{\zeta}^{j}
$$

and this is an integer iff $\zeta^{i}=\zeta^{j}=1$. This implies that $\operatorname{Tr} \sigma^{*} \mid H^{0,1}(M)=2$ and

$$
\left.b_{1}(M /\langle\sigma\rangle)=\operatorname{dim} H^{1}(M, \mathbb{R})^{\langle\sigma\rangle}=\frac{1}{\mid\langle\sigma\rangle} \sum_{k=1}^{7} \operatorname{Tr} \sigma^{k *} \right\rvert\, H^{1}(M, \mathbb{R})=4=b_{1}(M) .
$$

By the Topological Lefschetz Fixed Point Formula,

$$
e\left(M^{\sigma}\right)=-6+\operatorname{Tr} \sigma^{*} \mid H^{2}(M, \mathbb{Z}), \quad \text { so } 6<\operatorname{Tr} \sigma^{*} \mid H^{2}(M, \mathbb{Z})
$$

Since $b_{2}(M)=1+4 q(M)=9$ and σ is of order 7, it follows that $\operatorname{Tr} \sigma^{*} \mid H^{2}(M, \mathbb{R})$ $\leq 9-7$, unless σ^{*} acts trivially on $H^{2}(M, \mathbb{R})$. Thus

$$
b_{2}(M /\langle\sigma\rangle)=\operatorname{dim} H^{2}(M, \mathbb{R})^{\langle\sigma\rangle}=b_{2}(M) \quad \text { and } \quad e\left(M^{\sigma}\right)=3 .
$$

In particular, σ^{*} acts trivially on $H^{0,2}(M)$ and $\operatorname{Tr} \sigma^{*} \mid H^{0,2}(M)=2$. By the Holomorphic Lefschetz Fixed Point Formula,

$$
1=-\frac{1}{6} r_{1}+\frac{1}{6}\left(r_{2}+r_{4}\right)+\frac{1}{3}\left(r_{3}+r_{5}\right)+\frac{2}{3} r_{6}
$$

where r_{i} is the number of isolated fixed points of σ of type $\frac{1}{7}(1, i)$. Since

$$
\sum r_{i}=e\left(M^{\sigma}\right)=3
$$

we have two solutions:

$$
r_{3}+r_{5}=3, \quad r_{1}=r_{2}=r_{4}=r_{6}=0 ; \quad r_{2}+r_{4}=2, \quad r_{6}=1, \quad r_{1}=r_{3}=r_{5}=0
$$

In the former case the quotient $M /\langle\sigma\rangle$ has 3 singular points of type $\frac{1}{7}(1,5)$, and in the latter case 2 singular points of type $\frac{1}{7}(1,2)$ and 1 singular point of type $\frac{1}{7}(1,6)$.

Assume that $p_{g}(M)=q(M) \leq 1$. By the same argument, σ^{*} acts trivially on $H^{1}(M, \mathbb{R}) \oplus H^{2}(M, \mathbb{R})$, and $e\left(M^{\sigma}\right)=3$.
(2) First note that

$$
b_{1}(M /\langle\sigma\rangle) \leq b_{1}(M)=2 \quad \text { and } \quad b_{2}(M /\langle\sigma\rangle) \leq b_{2}(M)=5 .
$$

Also note that $\operatorname{dim} H^{1,1}(M)=1+2 q(M)=3$. Since σ^{*} fixes the class of a fibre of the Albanese fibration $M \rightarrow \operatorname{Alb}(M)$ and the class of K_{M}, we have

$$
\operatorname{Tr} \sigma^{*} \mid H^{1,1}(M)=2+\zeta^{k} \quad \text { where } \zeta=\exp \left(\frac{2 \pi \sqrt{-1}}{3}\right)
$$

Let ζ^{i} and ζ^{j} be the eigenvalues of σ^{*} acting on $H^{0,1}(M)$ and $H^{0,2}(M)$, respectively.

Assume that $\zeta^{i} \neq 1$ and $\zeta^{j} \neq 1$. Then

$$
\begin{gathered}
\operatorname{Tr} \sigma^{*}\left|H^{1}(M, \mathbb{Z})=\operatorname{Tr} \sigma^{*}\right|\left(H^{0,1}(M) \oplus H^{1,0}(M)\right)=\zeta^{i}+\bar{\zeta}^{i}=-1, \\
\operatorname{Tr} \sigma^{*} \mid\left(H^{0,2}(M) \oplus H^{2,0}(M)\right)=\zeta^{j}+\bar{\zeta}^{j}=-1 .
\end{gathered}
$$

The latter implies that $\operatorname{Tr} \sigma^{*} \mid H^{1,1}(M)$ is an integer, hence $\zeta^{k}=1$ and $\operatorname{Tr} \sigma^{*} \mid H^{1,1}(M)=3$. Thus

$$
b_{1}(M /\langle\sigma\rangle)=0 \quad \text { and } \quad b_{2}(M /\langle\sigma\rangle)=3 .
$$

Now by the Topological Lefschetz Fixed Point Formula,

$$
e\left(M^{\sigma}\right)=6,
$$

and by the Holomorphic Lefschetz Fixed Point Formula,

$$
1=\frac{1}{6} r_{1}+\frac{1}{3} r_{2},
$$

where r_{i} is the number of isolated fixed points of σ of type $\frac{1}{3}(1, i)$. Since $r_{1}+r_{2}=$ $e\left(M^{\sigma}\right)=6$, we have a unique solution: $r_{1}=6, r_{2}=0$. This gives (a).

Assume $\zeta^{i} \neq 1$ and $\zeta^{j}=1$. Then

$$
\begin{gathered}
\operatorname{Tr} \sigma^{*}\left|H^{1}(M, \mathbb{Z})=\operatorname{Tr} \sigma^{*}\right|\left(H^{0,1}(M) \oplus H^{1,0}(M)\right)=\zeta^{i}+\bar{\zeta}^{i}=-1, \\
\operatorname{Tr} \sigma^{*} \mid\left(H^{0,2}(M) \oplus H^{2,0}(M)\right)=1+1=2 .
\end{gathered}
$$

The latter implies that $\operatorname{Tr} \sigma^{*} \mid H^{1,1}(M)$ is an integer, hence $\operatorname{Tr} \sigma^{*} \mid H^{1,1}(M)=3$. Thus

$$
b_{1}(M /\langle\sigma\rangle)=0 \quad \text { and } \quad b_{2}(M /\langle\sigma\rangle)=5 .
$$

By the Topological Lefschetz Fixed Point Formula, $e\left(M^{\sigma}\right)=9$, and by the Holomorphic Lefschetz Fixed Point Formula,

$$
\frac{1}{2}\left\{\left(1-\zeta^{i}+1\right)+\left(1-\zeta^{2 i}+1\right)\right\}=\frac{5}{2}=\frac{1}{6} r_{1}+\frac{1}{3} r_{2}
$$

Since $r_{1}+r_{2}=9$, we have a unique solution: $r_{1}=3, r_{2}=6$. This gives (b).
Assume that $\zeta^{i}=\zeta^{j}=1$. Then

$$
\operatorname{Tr} \sigma^{*}\left|\left(H^{0,1}(M) \oplus H^{1,0}(M)\right)=\operatorname{Tr} \sigma^{*}\right|\left(H^{0,2}(M) \oplus H^{2,0}(M)\right)=2
$$

$\operatorname{Tr} \sigma^{*} \mid H^{1,1}(M)=3$ and $e\left(M^{\sigma}\right)=3$. By the Holomorphic Lefschetz Fixed Point Formula,

$$
1=\frac{1}{6} r_{1}+\frac{1}{3} r_{2}
$$

Since $r_{1}+r_{2}=3$, we have a unique solution: $r_{1}=0, r_{2}=3$. This gives (c).
Assume that $\zeta^{i}=1$ and $\zeta^{j} \neq 1$. Then

$$
\begin{aligned}
& \operatorname{Tr} \sigma^{*} \mid\left(H^{0,1}(M) \oplus H^{1,0}(M)\right)=2 \\
& \operatorname{Tr} \sigma^{*} \mid\left(H^{0,2}(M) \oplus H^{2,0}(M)\right)=\zeta^{j}+\bar{\zeta}^{j}=-1
\end{aligned}
$$

$\operatorname{Tr} \sigma^{*} \mid H^{1,1}(M)=3$ and $e\left(M^{\sigma}\right)=0$. Thus σ acts freely, a contradiction.
Proposition 1.3. Let M be an abelian surface. Assume that it admits an order 3 automorphism σ such that $H^{2,0}(M)^{\langle\sigma\rangle}=0$. Then $b_{2}(M /\langle\sigma\rangle)=4$ or 2 .

Proof. First note that $p_{g}(M)=1$ and $\operatorname{rank} H^{1,1}(M)=4$. Let $\zeta=\exp \left(\frac{2 \pi \sqrt{-1}}{3}\right)$.
Let ζ^{k} be the eigenvalue of σ^{*} acting on $H^{0,2}(M)$. Since $H^{2,0}(M)^{\langle\sigma\rangle}=0$, we have $\bar{\zeta}^{k} \neq 1$, hence

$$
\operatorname{Tr} \sigma^{*} \mid\left(H^{0,2}(M) \oplus H^{2,0}(M)\right)=\zeta^{k}+\bar{\zeta}^{k}=-1 .
$$

It implies that $\operatorname{Tr} \sigma^{*} \mid H^{1,1}(M)$ is an integer, hence is equal to 4,1 or -2 . The last possibility can be ruled out, as there is a σ-invariant ample divisor yielding a σ^{*}-invariant vector in $H^{1,1}(M)$. Finally note that $b_{2}(M /\langle\sigma\rangle)=\operatorname{dim} H^{1,1}(M)^{\langle\sigma\rangle}$.

REMARK 1.4. If in addition $H^{1,0}(M)^{\langle\sigma\rangle}=0$, then either
(1) $r_{2}=0, r_{1}-\sum R_{j}^{2}=9, b_{2}(M /\langle\sigma\rangle)=4$; or
(2) $r_{2}=3, r_{1}-\sum R_{j}^{2}=3, b_{2}(M /\langle\sigma\rangle)=2$.

Here r_{i} is the number of isolated fixed points of type $\frac{1}{3}(1, i)$, and $\bigcup R_{j}$ is the 1 -dimensional fixed locus of σ.

Proposition 1.5. Let M be a surface of general type with $p_{g}(M)=q(M)=2$. Assume that it admits an order 3 automorphism σ with isolated fixed points only such that $p_{g}\left(M /\langle\sigma\rangle^{\prime}\right)=q\left(M /\langle\sigma\rangle^{\prime}\right)=0$ where $M /\langle\sigma\rangle^{\prime}$ is a minimal resolution of $M /\langle\sigma\rangle$. Let $\bar{a}: M /\langle\sigma\rangle \rightarrow \operatorname{Alb}(M) /\langle\sigma\rangle$ be the map induced by the Albanese map $a: M \rightarrow \operatorname{Alb}(M)$. Then \bar{a} cannot factor through a surjective map $M /\langle\sigma\rangle \rightarrow N$ to a normal projective surface N with Picard number 1 .

Proof. Suppose that \bar{a} factors through a surjective map $M /\langle\sigma\rangle \rightarrow N$ to a normal projective surface N with Picard number 1, i.e.,

$$
\bar{a}: M /\langle\sigma\rangle \rightarrow N \rightarrow \operatorname{Alb}(M) /\langle\sigma\rangle .
$$

Let $b: N \rightarrow \operatorname{Alb}(M) /\langle\sigma\rangle$ be the second map. Since a normal projective surface with Picard number 1 cannot be fibred over any curve, the map b is surjective. Since $p_{g}\left(M /\langle\sigma\rangle^{\prime}\right)=q\left(M /\langle\sigma\rangle^{\prime}\right)=0$ and the map $M /\langle\sigma\rangle^{\prime} \rightarrow A l b(M) /\langle\sigma\rangle$ is a surjection, we have

$$
p_{g}\left(A l b(M) /\langle\sigma\rangle^{\prime}\right)=q\left(A l b(M) /\langle\sigma\rangle^{\prime}\right)=0,
$$

where $\operatorname{Alb}(M) /\langle\sigma\rangle^{\prime}$ is a minimal resolution of $\operatorname{Alb}(M) /\langle\sigma\rangle$. Since $\operatorname{Alb}(M) /\langle\sigma\rangle^{\prime}$ has $p_{g}=q=0$, we have

$$
\operatorname{Pic}\left(\operatorname{Alb}(M) /\langle\sigma\rangle^{\prime}\right) \cong H^{2}\left(\operatorname{Alb}(M) /\langle\sigma\rangle^{\prime}, \mathbb{Z}\right) .
$$

It follows that the Picard number of $\operatorname{Alb}(M) /\langle\sigma\rangle$ is equal to $b_{2}(\operatorname{Alb}(M) /\langle\sigma\rangle)$, which is, by Proposition 1.1 and 1.3, equal to 4 or 2 . This is a contradiction, as a normal projective surface with Picard number 1 cannot be mapped surjectively onto a surface with Picard number ≥ 2.

Let S be a normal projective surface with quotient singularities and

$$
f: S^{\prime} \rightarrow S
$$

be a minimal resolution of S. It is well-known (e.g., $[\mathrm{Ka}]$ or $[\mathrm{S}]$) that quotient singularities are log-terminal singularities. Thus one can write the adjunction formula,

$$
K_{S^{\prime}} \equiv{ }_{n u m} f^{*} K_{S}-\sum_{p \in \operatorname{Sing}(S)} \mathscr{D}_{p}
$$

where $\mathscr{D}_{p}=\sum\left(a_{j} A_{j}\right)$ is an effective \mathbb{Q}-divisor with $0 \leq a_{j}<1$ supported on $f^{-1}(p)=\bigcup A_{j}$ for each singular point p. It implies that

$$
K_{S}^{2}=K_{S^{\prime}}^{2}-\sum_{p} \mathscr{D}_{p}^{2}=K_{S^{\prime}}^{2}+\sum_{p} \mathscr{D}_{p} K_{S^{\prime}} .
$$

The coefficients of the \mathbb{Q}-divisor \mathscr{D}_{p} can be obtained by solving the equations

$$
\mathscr{D}_{p} A_{j}=-K_{S^{\prime}} A_{j}=2+A_{j}^{2}
$$

given by the adjunction formula for each exceptional curve $A_{j} \subset f^{-1}(p)$.
The computation of \mathscr{D}_{p}^{2} is given in [HK], Lemma 3.6 and 3.7.

2. The Proof of Theorem 0.4

2.1. The case: Z has 3 singular points of type $\frac{1}{3}(1,2)$

Let p_{1}, p_{2}, p_{3} be the three singular points of Z of type $\frac{1}{3}(1,2)$, and $\tilde{Z} \rightarrow Z$ be the minimal resolution.

Lemma 2.1. There is a C_{3}-cover $X \rightarrow Z$ branched exactly at the three singular points of Z.

Proof. We use a lattice theoretic argument. Consider the cohomology lattice

$$
H^{2}(\tilde{Z}, \mathbb{Z})_{\text {free }}:=H^{2}(\tilde{Z}, \mathbb{Z}) /(\text { torsion })
$$

which is unimodular of signature $(1,6)$ under intersection pairing. Since Z is a \mathbb{Q}-homology projective plane, $p_{g}(\tilde{Z})=q(\tilde{Z})=0$ and hence $\operatorname{Pic}(\tilde{Z})=H^{2}(\tilde{Z}, \mathbb{Z})$. Let $\mathscr{R}_{i} \subset H^{2}(\tilde{Z}, \mathbb{Z})_{\text {free }}$ be the sublattice spanned by the numerical classes of the components $A_{i 1}, A_{i 2}$ of $f^{-1}\left(p_{i}\right)$. Consider the sublattice $\mathscr{R}:=\mathscr{R}_{1} \oplus \mathscr{R}_{2} \oplus \mathscr{R}_{3}$. Its discriminant group $\mathscr{R}^{*} / \mathscr{R}$ is generated by three order 3 elements e_{1}, e_{2}, e_{3}, where e_{i} is the generator of $\mathscr{R}_{i}^{*} / \mathscr{R}_{i}$ of the form

$$
e_{i}=\frac{A_{i 1}+2 A_{i 2}}{3}
$$

Since \mathscr{R} is of co-rank 1 , we see that $\overline{\mathscr{R}} / \mathscr{R}$ is a non-zero subgroup of $\mathscr{R}^{*} / \mathscr{R}$, where $\overline{\mathscr{R}}$ is the primitive closure of \mathscr{R}. Thus there is an element $D \in \overline{\mathscr{R}} \backslash \mathscr{R}$ such that

$$
D=a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3} \text { modulo } \mathscr{R} .
$$

Since $e_{i}^{2}=-\frac{2}{3}$, none of the a_{i} 's is equal to 0 modulo 3 ; otherwise D^{2} would not be an integer. Note that $-e_{i}=2 e_{i}=\frac{2 A_{i 1}+A_{i 2}}{3}$ modulo \mathscr{R}. Thus we may assume that $a_{1}=a_{2}=a_{3}=1$, hence

$$
D=\frac{A_{11}+2 A_{12}}{3}+\frac{A_{21}+2 A_{22}}{3}+\frac{A_{31}+2 A_{32}}{3}+R \quad \text { for some } R \in \mathscr{R} .
$$

It follows that there is a divisor class $L \in \operatorname{Pic}(\tilde{Z})$ such that

$$
3 L=B+\tau
$$

for some torsion divisor τ, where $B=A_{11}+2 A_{12}+A_{21}+2 A_{22}+A_{31}+2 A_{32}$ an integral divisor supported on the six (-2)-curves contracted to the points p_{1}, p_{2}, p_{3} by the map $\tilde{Z} \rightarrow Z$.

If $\tau=0, L$ gives a C_{3}-cover of \tilde{Z} branched along B and un-ramified outside B, hence yields a C_{3}-cover $X \rightarrow Z$ branched exactly at the three points p_{1}, p_{2}, p_{3}. Since the local fundamental group of the punctured germ of p_{i} is cyclic of order 3, the covering of the punctured germ is either trivial or the standard one. Since the C_{3}-cover $X \rightarrow Z$ is branched at each p_{i}, the latter case should occur. Thus X is a nonsingular surface.

If $\tau \neq 0$, let m denote the order of τ. Write $m=3^{t} m^{\prime}$ with m^{\prime} not divisible by 3 . By considering $3\left(m^{\prime} L\right)=m^{\prime} B+m^{\prime} \tau$, and by putting $B^{\prime}=m^{\prime} B$ (modulo 3), $\tau^{\prime}=m^{\prime} \tau$, we may assume that τ has order 3^{t}. The torsion bundle τ gives an un-ramified cyclic cover of degree 3^{t}

$$
p: V \rightarrow \tilde{Z}
$$

Let g be the corresponding automorphism of V. Pulling $3 L=B+\tau$ back to V, we have

$$
3 p^{*} L=p^{*} B
$$

Obviously, g can be linearized on the line bundle $p^{*} L$, hence gives an automorphism of order 3^{t} of the total space of $p^{*} L$. Let $V^{\prime} \rightarrow V$ be the C_{3}-cover given by $p^{*} L$. We regard V^{\prime} as a subvariety of the total space of $p^{*} L$. Since g leaves invariant the set of local defining equations for V^{\prime}, g restricts to an automorphism of V^{\prime} of order 3^{t}. Thus we have a C_{3}-cover

$$
V^{\prime} /\langle g\rangle \rightarrow \tilde{Z}
$$

This yields a C_{3}-cover $X \rightarrow Z$ branched exactly at the three points p_{1}, p_{2}, p_{3}. Similarly, X is a nonsingular surface.

Since Z has only rational double points, the adjunction formula gives $K_{Z}^{2}=$ $K_{\tilde{Z}}^{2}=3$. Hence $K_{X}^{2}=3 K_{Z}^{2}=9$. The smooth part Z^{0} of Z has Euler number $e\left(Z^{0}\right)=e(\tilde{Z})-9=0$, so $e(X)=3 e\left(Z^{0}\right)+3=3$. This shows that X is a ball quotient with $p_{g}(X)=q(X)$. It is known that such a surface has $p_{g}(X)=q(X) \leq 2$. (See the paragraph before Proposition 1.2.) In our situation X admits an order 3 automorphism, and Proposition 1.2 eliminates the possibility of $p_{g}(X)=$ $q(X)=1$.

It remains to exclude the possibility of $p_{g}(X)=q(X)=2$. Suppose that $p_{g}(X)=q(X)=2$. Consider the Albanese map $a: X \rightarrow \operatorname{Alb}(X)$. It induces a map $\bar{a}: Z=X /\langle\sigma\rangle \rightarrow \operatorname{Alb}(X) /\langle\sigma\rangle$, where σ is the order 3 automorphism of X corresponding to the C_{3}-cover $X \rightarrow Z$. Since Z has Picard number 1 and $p_{g}(\tilde{Z})=$ $q(\tilde{\boldsymbol{Z}})=0$, Proposition 1.5 gives a contradiction. Thus, $p_{g}(X)=q(X)=0$ and X is a fake projective plane.

2.2. The case: Z has 4 singular points of type $\frac{1}{3}(1,2)$

Let $p_{1}, p_{2}, p_{3}, p_{4}$ be the four singular points of Z, and $f: \tilde{Z} \rightarrow Z$ the minimal resolution.

Lemma 2.2. If there is a C_{3}-cover $Y \rightarrow Z$ branched exactly at three of the four singular points of Z, then the minimal resolution \tilde{Y} of Y has $K_{\tilde{Y}}^{2}=3, e(\tilde{Y})=9$ and $p_{g}(\tilde{Y})=q(\tilde{Y})=0$.

Proof. We may assume that the three points are p_{2}, p_{3}, p_{4}. Note that Y has 3 singular points of type $\frac{1}{3}(1,2)$, the pre-image of p_{1}. Let $\tilde{Y} \rightarrow Y$ be the minimal resolution. It is easy to see that $K_{\tilde{Y}}^{2}=3, e(\tilde{Y})=9$ and $p_{g}(\tilde{Y})=q(\tilde{Y})$.

Suppose that $p_{g}(\tilde{Y})=q(\tilde{Y}) \stackrel{Y}{=}$. Consider the Albanese fibration $\tilde{Y} \rightarrow$ $\operatorname{Alb}(\tilde{Y})$. It induces a fibration $Y \rightarrow \operatorname{Alb}(\tilde{Y})$. Let σ be the order 3 automorphism of Y corresponding to the C_{3}-cover $Y \rightarrow Z$. It induces a fibration $\phi: \tilde{Z} \rightarrow$ $\operatorname{Alb}(\tilde{Y}) /\langle\sigma\rangle$. Since $q(\tilde{Z})=0$, we have $\operatorname{Alb}(\tilde{Y}) /\langle\sigma\rangle \cong \mathbb{P}^{1}$. The eight (-2)-curves of \tilde{Z} are contained in a union of fibres of ϕ. It follows that \tilde{Z} has Picard number $\geq 8+2=10$, a contradiction.

Suppose that $p_{g}(\tilde{Y}) \underset{\tilde{Y}}{=} q(\tilde{Y})=2$. The Albanese $\operatorname{map}_{\tilde{Y}} a: \tilde{Y} \rightarrow \operatorname{Alb}(\tilde{Y})$ contracts the six (-2)-curves of \tilde{Y}, hence the induced map $\bar{a}: \tilde{Y} /\langle\sigma\rangle \rightarrow \operatorname{Alb}(\tilde{Y}) /\langle\sigma\rangle$ factors through a surjective map $\tilde{Y} /\langle\sigma\rangle \rightarrow Z$, where σ is the order 3 automorphism of \tilde{Y} corresponding to the C_{3}-cover $Y \rightarrow Z$. Since Z has Picard number 1 and \tilde{Z}, being the minimal resolution of $\tilde{Y} /\langle\sigma\rangle$, has $p_{g}(\tilde{Z})=q(\tilde{Z})=0$, Proposition 1.5 gives a contradiction.

The possibility of $p_{g}(\tilde{Y})=q(\tilde{Y}) \geq 3$ can be ruled out by considering a C_{3}-cover $X \rightarrow Y$ branched at the three singular points of Y. See the paragraph below Lemma 2.3.

Lemma 2.3. There is a C_{3}-cover $Y \rightarrow Z$ branched exactly at three of the four singular points of Z, and a C_{3}-cover $X \rightarrow Y$ branched exactly at the three singular points of Y. The composite map $X \rightarrow Z$ is a C_{3}^{2}-cover.

Proof. The existence of two C_{3}-covers can be proved by a lattice theoretic argument. Note that $\operatorname{Pic}(\tilde{Z})=H^{2}(\tilde{Z}, \mathbb{Z})$. We know that $H^{2}(\tilde{Z}, \mathbb{Z})_{\text {free }}$ is a unimodular lattice of signature $(1,8)$ under intersection pairing. Let $\mathscr{R}_{i} \subset H^{2}(\tilde{Z}, \mathbb{Z})_{\text {free }}$ be the sublattice spanned by the numerical classes of the components $A_{i 1}, A_{i 2}$ of $f^{-1}\left(p_{i}\right)$. Consider the sublattice $\mathscr{R}:=\mathscr{R}_{1} \oplus \mathscr{R}_{2} \oplus \mathscr{R}_{3} \oplus \mathscr{R}_{4}$. Its discriminant group $\mathscr{R}^{*} / \mathscr{R}$ is 3 -elementary of length 4 , generated by four order 3 elements $e_{1}, e_{2}, e_{3}, e_{4}$, where e_{i} is the generator of $\mathscr{R}_{i}^{*} / \mathscr{R}_{i}$ of the form $e_{i}=\frac{A_{i 1}+2 A_{i 2}}{3}$. Since the orthogonal complement \mathscr{R}^{\perp} is of rank 1 , we see that $\overline{\mathscr{R}} / \mathscr{R}$ is a subgroup of order 9 of $\mathscr{R}^{*} / \mathscr{R}$. As we have seen in the proof of Lemma 2.1 , every non-zero element of $\overline{\mathscr{R}} / \mathscr{R}$ must be of the form $\pm e_{i} \pm e_{j} \pm e_{k}$. Thus, up to a permutation of e_{i} 's and modulo $\mathscr{R}, \overline{\mathscr{R}} / \mathscr{R}$ is generated by the two order 3 elements

$$
e_{2}+e_{3}+e_{4} \quad \text { and } \quad e_{1}-e_{3}+e_{4}
$$

As in the proof of Lemma 2.1, we infer that there are two divisor classes $L_{1}, L_{2} \in \operatorname{Pic}(\tilde{Z})$ such that

$$
3 L_{1}=B_{1}+\tau_{1}, \quad 3 L_{2}=B_{2}+\tau_{2}
$$

for some torsion divisors τ_{i}, where B_{i} is an integral divisor supported on the six (-2)-curves contained in $\bigcup_{j \neq i} f^{-1}\left(p_{j}\right)$ and each coefficient in B_{i} is 1 or 2 .

By the same argument as in Lemma 2.1, we can take a C_{3}-cover $Y \rightarrow Z$ branched exactly at the three points p_{2}, p_{3}, p_{4}. Then Y has 3 singular points of type $\frac{1}{3}(1,2)$, the pre-image of p_{1}. This can be done by using the line bundle L_{1} if $\tau_{1}=0$. Otherwise, we first take an un-ramified cover $p: V \rightarrow \tilde{Z}$ corresponding to τ_{1} and then lift the covering automorphism g to the C_{3}-cover $V^{\prime} \rightarrow V$ given by $p^{*} L_{1}$, then take the quotient $V^{\prime} /\langle g\rangle$.

Let Y^{\prime} be the minimal resolution of the fibred product $Y \times_{Z} \tilde{Z}$, and $\psi: Y^{\prime} \rightarrow \tilde{Z}$ be the C_{3}-cover corresponding to the C_{3}-cover $Y \rightarrow Z$. Then $Y^{\prime} \rightarrow Y$ is a resolution, hence it factors through a surjection $f^{\prime}: Y^{\prime} \rightarrow \tilde{Y}$. Now

$$
3 f_{*}^{\prime}\left(\psi^{*} L_{2}\right)=f_{*}^{\prime}\left(\psi^{*} B_{2}\right)+f_{*}^{\prime}\left(\psi^{*} \tau_{2}\right)
$$

and $f_{*}^{\prime}\left(\psi^{*} B_{2}\right)$ is an integral divisor supported on the exceptional locus of $\tilde{Y} \rightarrow Y$ with coefficients greater than 0 and less than 3 . Now by the same argument as in the proof of Lemma 2.1, there is a C_{3}-cover $X \rightarrow Y$ with X nonsingular.

It remains to show that the composite map $X \rightarrow Z$ is a C_{3}^{2}-cover. Let σ be the order 3 automorphism of \tilde{Y} corresponding to the C_{3}-cover $Y \rightarrow Z$. It preserves each of the three divisors, $f_{*}^{\prime}\left(\psi^{*} L_{2}\right), f_{*}^{\prime}\left(\psi^{*} B_{2}\right), f_{*}^{\prime}\left(\psi^{*} \tau_{2}\right)$, hence lifts to an automorphism σ^{\prime} of X, which normalizes the order 3 automorphism μ of X corresponding to the C_{3}-cover $X \rightarrow Y$. The fixed locus $X^{\sigma^{\prime}}$ is not contained in the fixed locus X^{μ}. Thus $\mu \neq \sigma^{\prime 3}$, hence the group generated by σ^{\prime} and μ is isomorphic to C_{3}^{2}.

It is easy to see that $K_{X}^{2}=9, e(X)=3$ and $p_{g}(X)=q(X)$. Such a surface has $p_{g}(X)=q(X) \leq 2$. (See the paragraph before Proposition 1.2.) By Proposition 1.1, $p_{g}(\tilde{Y}) \leq p_{g}(X)$ and $q(\tilde{Y}) \leq q(X)$, which completes the proof of Lemma 2.2.

By Lemma 2.2, $p_{g}(\tilde{Y})=q(\tilde{Y})=0$, so Y has Picard number 1 and contains three singular points of type $\frac{1}{3}(1,2)$. Then by the previous subsection, $p_{g}(X)=q(X)=0$, hence X is a fake projective plane.

2.3. The case: Z has 3 singular points of type $\frac{1}{7}(1,5)$

Let p_{1}, p_{2}, p_{3} be the three singular points of Z of type $\frac{1}{7}(1,5)$. Then there is a C_{7}-cover $X \rightarrow Z$ branched at the three points. In the case of $\pi_{1}(Z)=\{1\}$, this was proved in [K06], p922. In our general situation, we consider the lattice $\operatorname{Pic}(\tilde{Z}) /($ torsion $)$, where $\tilde{Z} \rightarrow Z$ is the minimal resolution. Then by the same lattice theoretic argument as in [K06], there is a divisor class $L \in \operatorname{Pic}(\tilde{Z})=H^{2}(\tilde{Z}, \mathbb{Z})$ such that $7 L=B+\tau$ for some torsion divisor τ, where B is an integral divisor supported on the exceptional curves of the map $\tilde{Z} \rightarrow Z$. Here every coefficient
of B is not equal to 0 modulo 7. If \tilde{Z} is a (2,4)-elliptic surface and if $\tau \neq 0$, then $2 \tau=0$. By considering $7(2 L)=2 B$, and by putting $L^{\prime}=2 L$ and $B^{\prime}=2 B$, we get $7 L^{\prime}=B^{\prime}$. This implies the existence of a C_{7}-cover $X \rightarrow Z$ branched exactly at the three points p_{1}, p_{2}, p_{3}. As in the proof of Lemma 2.1, it can be shown that X is nonsingular.

Note that $K_{\tilde{Z}}^{2}=0$. So by the adjunction formula, $K_{Z}^{2}=\frac{9}{7}$. It is easy to see that $K_{X}^{2}=9, e(X)=3$ and $p_{g}(X)=q(X)$. Such a surface has $p_{g}(X)=q(X) \leq 2$. (See the paragraph before Proposition 1.2.) Now by Proposition 1.2, $p_{g}(X)=$ $q(X)=0$.

2.4. The case: Z has 3 singular points of type $\frac{1}{3}(1,2)$ and one of type $\frac{1}{7}(1,5)$

Let $\tilde{Z} \rightarrow Z$ be the minimal resolution, which is a $(2,3)$ - or $(2,4)$-elliptic surface. It contains 9 exceptional curves whose dual diagram is given as follows:

$$
(-2)-(-2) \quad(-2)-(-2) \quad(-2)-(-2) \quad(-2)-(-2)-(-3)
$$

Here the last three smooth rational curves forming a string of type $[2,2,3]$ are lying over the singular point of type $\frac{1}{7}(1,5)$. This can be seen by computing the Hirzebruch-Jung continued fraction of $\frac{7}{5}$,

$$
\frac{7}{5}=2-\frac{1}{2-\frac{1}{3}}
$$

In particular, \tilde{Z} contains a (-3)-curve. By the canonical bundle formula (see [BHPV], Theorem 12.1), the canonical class of a $(2,3)$ - (resp. (2,4))-elliptic surface is numerically equivalent to $\frac{1}{6} F$ (resp. $\frac{1}{4} F$), where F is the class of a fibre. Thus a (-3)-curve is a 6 -section (resp. 4 -section) of a (2,3)- (resp. (2,4))-elliptic surface.

Let

$$
\phi: \tilde{Z} \rightarrow \mathbb{P}^{1}
$$

be the elliptic fibration. Note that every (-2)-curve on an elliptic surface is contained in a fiber. Thus the eight (-2)-curves above are contained in a union of fibres. Let $Z^{\prime} \rightarrow Z$ be the minimal resolution of the singular point of type $\frac{1}{7}(1,5)$. Then $\phi: \tilde{Z} \rightarrow \mathbb{P}^{1}$ induces an elliptic fibration

$$
\phi^{\prime}: Z^{\prime} \rightarrow \mathbb{P}^{1}
$$

Lemma 2.4. (1) There is a C_{3}-cover $Y \rightarrow Z$ branched exactly at the three points of type $\frac{1}{3}(1,2)$. The cover Y has 3 singular points of type $\frac{1}{7}(1,5)$.
(2) The minimal resolution \tilde{Y} of Y is a $(2,3)$ - or $(2,4)$-elliptic surface. Every fibre of \tilde{Z} does not split in \tilde{Y}, and every fibre of \tilde{Y} has the same multiplicity as the corresponding fibre of \tilde{Z}.
Proof. We may assume that \tilde{Z} is a $(2,3)$-elliptic surface. The case of $(2,4)$ elliptic surfaces was proved in [K11].
(1) The existence of the triple cover can be proved in the same way as in [K06], p920-921. Note that Y has 3 singular points of type $\frac{1}{7}(1,5)$, the pre-image of the singular point of Z of type $\frac{1}{7}(1,5)$.
(2) Consider the C_{3}-cover $\tilde{Y} \rightarrow Z^{\prime}$ branched at the three singular points of Z^{\prime}. The elliptic fibration $\phi^{\prime}: Z^{\prime} \rightarrow \mathbb{P}^{1}$ induces an elliptic fibration $\psi: \tilde{Y} \rightarrow \mathbb{P}^{1}$. Denote by E the (-3)-curve in Z^{\prime} lying over the singularity of type $\frac{1}{7}(1,5)$. It does not pass through any of the 3 singular points of Z^{\prime}, hence it splits in \tilde{Y} to give three (-3)-curves E_{1}, E_{2}, E_{3}.

Suppose that a general fibre of Z^{\prime} splits into 3 fibres in \tilde{Y}. Since E is a 6-section, each E_{i} will be a 2-section of the elliptic fibration $\psi: \tilde{Y} \rightarrow \mathbb{P}^{1}$. Thus, the map from E_{i} to the base curve \mathbb{P}^{1} is of degree 2 . It implies that \tilde{Y} has at most 2 multiple fibres and the multiplicity of every multiple fibre is 2 . Thus each multiple fibre of Z^{\prime} does not split in \tilde{Y}. (Otherwise, it will give 3 multiple fibres of the same multiplicity, a contradiction.) The fibre with multiplicity 3 in Z^{\prime} does not split, hence it gives a non-multiple fibre in \tilde{Y}. But the fibre with multiplicity 2 in Z^{\prime} must split into 3 fibres in \tilde{Y}. This is a contradiction, and we have proved that every fibre of Z^{\prime} does not split in \tilde{Y}. It implies that the multiplicity of a fibre in \tilde{Y} is the same as that of the corresponding fibre in \tilde{Z}. Thus \tilde{Y} is an elliptic surface over \mathbb{P}^{1} having 2 multiple fibres with multiplicity 2 and 3 , resp. Since $K_{\tilde{Z}}^{2}=0$ and Z^{\prime} has only rational double points, the adjunction formula gives $K_{Z^{\prime}}^{2}=K_{\tilde{Z}}^{2}=0$. Hence $K_{\tilde{Y}}^{2}=3 K_{Z^{\prime}}^{2}=0$. In particular, \tilde{Y} is minimal. The smooth part Z^{0} of Z^{\prime} has Euler number $e\left(Z^{0}\right)=e(\tilde{Z})-9=3$, so $e(\tilde{Y})=3 e\left(Z^{0}\right)+3=$ 12. This shows that \tilde{Y} is a $(2,3)$-elliptic surface.

Now by the previous subsection, there is a C_{7}-cover $X \rightarrow Y$ branched at the three singular points such that X is a fake projective plane.

3. Proof of Theorem 0.5

The first two assertions of Theorem 0.5 were proved in Lemma 2.4.
(3) We know that the eight (-2)-curves on \tilde{Z} are contained in a union of fibres. This is possible only if the union of fibres is one of the following three cases. Here, each fibre of type I_{3} may be a multiple fibre with multiplicity 2 or 3 .
(a) $I V^{*}+I_{3}$,
(b) $I V^{*}+I V$,
(c) $I_{3}+I_{3}+I_{3}+I_{3}$.

Recall that every fibre in \tilde{Z} does not split in \tilde{Y}, and the (-3)-curve in \tilde{Z} is a 6 -section. We will eliminate the first two cases. Let $Z^{\prime} \rightarrow Z$ be the minimal resolution of the singular point of type $\frac{1}{7}(1,5)$.

Case (a): $I V^{*}+I_{3}$. In this case, the surface \tilde{Z} has a singular fibre of type I_{1}, which may be multiple. Since the (-3)-curve in \tilde{Z} is a 6 -section, it intersects with multiplicity 2 the central component of the $I V^{*}$-fibre. Thus the six components of the $I V^{*}$-fibre except the central component are the six (-2)-curves contracted by the map $\tilde{Z} \rightarrow Z^{\prime}$, hence both the I_{3}-fibre and the I_{1}-fibre are disjoint from the branch points of the C_{3}-cover $\tilde{Y} \rightarrow Z^{\prime}$. It is easy to see that these
two fibres will give a I_{9}-fibre and a I_{3}-fibre in \tilde{Y}, so \tilde{Y} has Picard number ≥ 12, a contradiction.

Case (b): $I V^{*}+I V$. Again, the (-3)-curve intersects with multiplicity 2 the central component of the $I V^{*}$-fibre, hence the six components of the $I V^{*}$-fibre except the central component are the six (-2)-curves contracted by the map $\tilde{Z} \rightarrow Z^{\prime}$. The $I V$-fibre on \tilde{Z} is disjoint from the branch points of the C_{3}-cover $\tilde{Y} \rightarrow Z^{\prime}$. But there is no un-ramified connected triple cover of a $I V$-fibre, a contradiction.

Thus \tilde{Z} has four I_{3}-fibres.
(4) If the image in Z^{\prime} of a I_{3}-fibre contains a singular point of Z^{\prime}, then it will give a I_{1}-fibre in \tilde{Y}. If it does not, then it will give a I_{9}-fibre in \tilde{Y}. Thus \tilde{Y} has one I_{9}-fibre and three I_{1}-fibres.

References

[Arm] M. A. Armstrong, The fundamental group of the orbit space of a discontinuous group, Proc. Camb. Phil. Soc. 64 (1968), 299-301.
[AS3] M. F. Atiyah - I. M. Singer, The index of elliptic operators, III, Ann. of Math. 87 (1968), 546-604.
[Au] T. Aubin, Équations du type Monge-Ampère sur les variétés kähleriennes compactes, C. R. Acad. Sci. Paris Ser. A-B 283 (1976), no. 3, Aiii, A119-A121.
[BHPV] W. Barth - K. Hulek - Ch. Peters - A. Van de Ven, Compact Complex Surfaces, second ed. Springer 2004.
[CS] D. Cartwright - T. Steger, Enumeration of the 50 fake projective planes, C. R. Acad. Sci. Paris, Ser. I 348 (2010), 11-13.
[CS2] D. Cartwright - T. Steger, private communication.
[CCM] F. Catanese - C. Ciliberto - M. Mendes Lopes, On the classification of irregular surfaces of general type with nonbirational bicanonical map, Trans. Amer. Math. Soc. 350 (1998), no. 1, 275-308.
[D] I. Dolgachev, Algebraic surfaces with $q=p_{g}=0$, C.I.M.E. Algebraic surfaces, pp 97-215, Liguori Editori, Napoli 1981.
[HP] C. D. Hacon - R. Pardini, Surfaces with $p_{g}=q=3$, Trans. Amer. Math. Soc. 354 (2002), no. 7, 2631-2638.
[Hir] F. Hirzebruch, Automorphe Formen und der Satz von Riemann-Roch in: 1958 Symposium International de Topologia Algebraica, UNESCO, pp. 129-144.
[HK] D. Hwang - J. Keum, The maximum number of singular points on rational homology projective planes, J. Algebraic Geom. 20 (2011), 495-523.
[Ka] Y. Kawamata, Crepant Blowing-up of 3-dimensional Canonical Singularities and its Application to Degenerations of Surfaces, Ann. of Math. 127 (1988), 93-163.
[K06] J. Keum, A fake projective plane with an order 7 automorphism, Topology 45 (2006), 919-927.
[K08] J. Keum, Quotients of fake projective planes, Geom. Top. 12 (2008), 2497-2515.
[K11] J. Keum, A fake projective plane constructed from an elliptic surface with multiplicities $(2,4)$, Sci. China Math. 54 (2011), no. 8 (special issue ded. to F. Catanese), 1665-1678.
[KK] V. S. Kharlamov - V. M. Kulikov, On real structures on rigid surfaces, Izv. Rus. Akad. Nauk. Ser. Mat. 66, no. 1, (2002), 133-152; Izv. Math. 66, no. 1, (2002), 133-150.
[K1] B. Klingler, Sur la rigidité de certains groupes fondamentaux, l'arithméticité des réseaux hyperboliques complexes, et les "faux plans projectifs", Invent. Math. 153 (2003), 105-143.
[Mi] Y. Mıуaокa, Algebraic surfaces with positive indices, Classification of algebraic and analytic manifolds (Katata, 1982), Progr. Math., 39, Birkhäuser Boston, 1983, 281-301.
[Mos] G. D. Mostow, Strong rigidity of locally symmetric spaces, Annals Math. Studies 78, Princeton Univ. Press, Princeton, N.J.; Univ. Tokyo Press, Tokyo 1973.
[Pi] G. P. Pirola, Surfaces with $p_{g}=q=3$, Manuscripta Math. 108 (2002), no. 2, 163-170.
[P] G. Prasad, Volumes of S-arithmetic quotients of semi-simple groups, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 91-117.
[PY] G. Prasad - S.-K. Yeung, Fake projective planes, Invent. Math. 168 (2007), 321-370; Addendum, Invent. Math. 182 (2010), 213-227.
[S] E. Sakai, Classification of Normal Surfaces, Bowdoin 1985, Proceed. of Symp. in Pure Math. 46 (1987), 451-465.
$[\mathrm{Y}] \quad$ S.-T. Yau, Calabi's conjecture and some new results in algebraic geometry, Proc. Nat. Ac. Sc. USA 74 (1977), 1798-1799.
[Ye] S.-K. Yeung, Integrality and arithmeticity of cocompact lattices corresponding to certain complex two-ball quotients of Picard number one, Asian J. Math. 8 (2004), 107-130; Erratum, Asian J. Math. 13 (2009), 283-286.

Received 5 September 2011, and in revised form 20 September 2011.

School of Mathematics
Korea Institute for Advanced Study
Seoul 130-722
Korea
jhkeum@kias.re.kr

[^0]: This research was supported by the National Research Foundation (NRF) of Korea, funded by the Ministry of Education, Science and Technology (2007-C00002).

