
Rend. Lincei Mat. Appl. 19 (2008), 325–334

Mathematical physics. — On the notion of ergodicity for finite quantum systems, by
MIRKO DEGLI ESPOSTI, SANDRO GRAFFI and STEFANO ISOLA.

ABSTRACT. — We show that the orginal definition of ergodicity of Boltzmann can be directly
applied to finite quantum systems, such as those arising from the quantization of classical systems
on a compact phase space. It yields a notion of quantum ergodicity strictly stronger than the notion
due to von Neumann. As an example, we remark that the quantized hyperbolic symplectomorphisms
(a particular case is the quantized Arnold cat) are ergodic in this sense.
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1. INTRODUCTION

The first notion of quantum ergodicity goes back to the 1932 treatise of von Neumann
[vN]. Consider for the sake of simplicity a discrete dynamics defined by the iterations
U k , k ∈ Z, of a unitary operator U with discrete spectrum acting in a separable
Hilbert space H. Let e`, ` = 0, 1, . . . , be the orthonormal basis in H consisting
of the eigenvectors of U . Let A be a quantum observable, expressed by a bounded
self-adjoint operator in H. Then the discrete dynamics is ergodic in the sense of von
Neumann iff

(1.1) f := lim
m→∞

1
m

m−1∑
k=0

〈f,U kAU−kf 〉 =

∞∑
`=0

|a`|
2
〈e`, Ae`〉.

Here f =
∑
∞

`=0 a`e` is the initial state in H.
Unlike in classical ergodic theory, the existence of the time average f is trivial;

a straightforward computation yields

f =

∞∑
`=0

|a`|
2
〈e`, Ae`〉 +

∑
6̀=m

a`am〈e`, Aem〉.

The second term is the contribution coming from the eigenvectors corresponding to
degenerate eigenvalues; λ` = λm, ` 6= m.

On the other hand, assuming that the phases of the coefficients a` are randomly
distributed, the space average A∗f := 〈f,Af 〉 of the observable A has the value

A∗f =

∞∑
`=0

|a`|
2
〈e`, Ae`〉.



326 M. DEGLI ESPOSTI - S. GRAFFI - S. ISOLA

Therefore the ergodicity property (time average = space average) holds whenever
the spectrum of U is simple, or all matrix elements 〈e`, Aem〉 for eigenvectors
corresponding to the same degenerate eigenvalue vanish. This notion of ergodicity
is however considerably weaker than the classical one, because the time average still
depends on the weights |a`|2, i.e. on the initial condition f . It follows that the time
average is not a microcanonical average, because the weights are arbitrary within the
normalization condition

∑
∞

`=0 |a`|
2
= 1. Ergodicity in the usual sense is recovered

if, for instance, all matrix elements 〈e`, Ae`〉 are equal. This property cannot hold in
general; however, it has been explicitly verified, but only in the classical limit, in many
instances in which the quantum system is the quantization of a classical ergodic one
(see e.g. [CdV], [HMR], [DEGI], [Sc], [Ze]). The existence of the classical limit of
the matrix elements 〈e`, Ae`〉 for almost every sequence of eigenfunctions and its
coincidence with the classical ergodic average has therefore been proposed in the
mathematical literature as a definition of quantum ergodicity more satisfactory than
the one due to von Neumann (see e.g. [Sa]). Referring the reader to the introduction of
[DEGI] and [GM] for a discussion of this point, here we limit ourselves to remarking
that even this last definition of ergodicity is rather weak: for example, it holds even
when the quantum evolution is localized while the corresponding classical one is
delocalized as t →∞ (see [GL]).

The purpose of this paper is to point out that, at least for quantum systems with a
finite number of states, such as those arising from the quantization of classical systems
admitting a compact phase space, the original Boltzmann definition of ergodicity can
be transferred to quantum mechanics essentially word for word. It yields a notion of
quantum ergodicity strictly stronger and more satisfactory than the one due to von
Neumann as far as the dependence on the initial condition is concerned; moreover, it
reduces to the classical notion when the Schnirelman theorem holds. Moreover, the
quantized hyperbolic symplectic maps of the 2-torus represent examples which are
ergodic in the sense of this definition, which is to be described in the next section. In
Section 3 we discuss its application to finite quantum systems, and in Section 4 we
review some examples.

2. THE ORIGINAL NOTION OF BOLTZMANN ERGODICITY AND
QUANTUM SYSTEMS WITH A FINITE NUMBER OF STATES

Following Gallavotti ([Ga, §1.3]) we recall the original definition of ergodicity given
by Boltzmann.

Let Σ be a compact phase space, for example, a compact constant energy surface
of a Hamiltonian system. Let µ be a measure on Σ (Lebesgue measure in typical
examples), and T be a measure-preserving transformation of Σ onto itself (for
example, T is a unit time Hamiltonian evolution preserving the measure µ). We can
assume µ(Σ) = 1.

Then we say with Boltzmann that the dynamical system (Σ, T , µ) is ergodic if
for any N ∈ N there exists a partition V of Σ into N disjoint cells C1, . . . , CN of



ERGODICITY FOR FINITE QUANTUM SYSTEMS 327

measure h = 1/N such that the finite dynamics defined by the finite sequence T k ,
k = 0, . . . , N − 1, T 0

= I , represents a one-cycle permutation of the cells of V :

(2.1) T kC` = C`+k, T N ≡ T .

Here of course the cells have been numbered according to the order of visits. Typically
one should think of each cell as a square of area∆p∆q ∼ h. For a thorough discussion
of this purely classical limitation the reader is referred again to [Ga, §1.2].

Let now f : Σ → R be any smooth observable. Assume that f takes a constant
value on each cell, and for x ∈ C`, ` arbitrary, form the average of the time evolution:

(2.2) fN (x) =
1
N

N−1∑
k=0

f (T kx).

Then fN (x) is clearly independent of x, i.e. of the particular cell C`; moreover,

(2.3) fN (x) =

∫
Σ

f (x) dµ =: f ∗N .

Thus under the above assumptions the time and space averages coincide, and this is
the standard definition of ergodicity. For general observables f , the time average on
the r.h.s. of (2.2) is also a Riemann sum of the space average f ∗. Thus as N →∞, or
equivalently, as h→ 0, the standard definition of ergodicity is recovered:

(2.4) f (x) := lim
N→∞

1
N

N−1∑
k=0

f (T kx) =

∫
Σ

f (x) dµ, µ-a.e.,

or, replacing the discrete dynamics by the limiting continuous one St , t ∈ R,

(2.5) f (x) := lim
T→∞

1
T

∫
∞

0
f (Stx) =

∫
Σ

f (x) dµ, µ-a.e.

Note that the above notion is just an approximation of the standard one; moreover, it
explicitly depends on the cell decomposition. Of course, for an ergodic system in the
standard sense of (2.4) or (2.5) any non-ergodic cell decomposition becomes ergodic
as h→ 0; however, as long as h is kept different from zero, in general there might be
no decomposition satisfying (2.1). Consider for example the simplest chaotic systems,
namely the hyperbolic symplectomorphisms of the 2-torus T2. Here T is the map
defined by the 2× 2 matrix with integer elements

(2.6) T =

(
a b

c d

)
with |a + d| > 1 and ad − bc = 1. The Arnold cat map corresponds to a = 2,
b = c = d = 1. In this case the only cell decomposition for h > 0 which keeps its
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form under the evolution is the Markov partition (see e.g. [Si]), but even this is not
ergodic.

As explained in [Ga], the phase space decomposition into finite cells is introduced
just to apply a discrete probability argument, because continuous probability theory
was still to come at the time; there was however no doubt in Boltzmann’s mind that the
limit h→ 0 should always be taken. However, since (see [LL, §48]) to each quantum
state there corresponds in the classical limit a cell in phase space of area h, the idea
of a direct application of this notion in quantum mechanics arises spontaneously, on
account also of the fact that there exist many interesting examples of quantum systems
admitting a finite number of states.

We therefore consider a quantum system with a finite number of states; i.e., the
corresponding Hilbert space HN has dimension N , and is thus isomorphic to CN .
Systems of this type arise, for example, from the quantization of classical systems
admitting a compact phase space, which we can always take of unit measure. As
recalled above, the physical intuition behind this fact is that each quantum state
occupies a cell of area h in phase space. Hence if the total area is 1 there can be at
most N = 1/h states. In the case of the quantization of the torus this result has been
first obtained by Hannay–Berry [HB], and later put on the rigorous basis of the discrete
Weyl quantization in [DE].

We can always assume that there exists a one-to-one correspondence between the
N quantum states and an orthonormal basis inHN . Given a unitary operator U inHN ,
we further assume:

(i) The iterations U k , k = 0, 1, . . . , U0
= I , define a discrete dynamics of period N ,

i.e. UN = I .
(ii) The discrete dynamics generates a one-cycle permutation of the basis vectors, i.e.

there are α`,k ∈ R, `, k = 1, . . . , N , such that

(2.7) U kψ` = e
iα`,kψ`+k, ψk+N = ψk, α`,N = 0 (mod 2π).

Then we say that the discrete dynamics generated by U acts ergodically on the basis
ψk , k = 0, . . . , N − 1.

DEFINITION 1. A discrete evolution U of a finite quantum system will be called
ergodic if there is an orthonormal basis ψ0, . . . , ψN−1 on which U acts ergodically.

Let indeed A be any observable, i.e. any self-adjoint operator in HN . The
corresponding Heisenberg observable with respect to the discrete dynamics generated
byU isU kAU−k , k = 1, . . . , N . Define the time average of the Heisenberg observable
on any basis vector ψ`:

Al =
1
N

N−1∑
k=0

〈ψ`, U
kAU−kψ`〉.(2.8)
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Then we have

Al =
1
N

N−1∑
k=0

〈ψ`, U
kAU−kψ`〉 =

1
N

N−1∑
k=0

〈U−kψ`, AU
−kψ`〉

=
1
N

N−1∑
k=0

〈e−iα`,kψ`+k, Ae
−iα`,kψ`+k〉 =

1
N

N−1∑
k=0

〈ψk+`, Aψk+`〉.

It is now natural to define the space average of the observable A on the basis
ψ1, . . . , ψN to be the quantity

(2.9) A∗ =
1
N

N−1∑
k=0

〈ψk, Aψk〉.

Therefore the above formula can be rewritten as

(2.10) Al = A
∗.

In words: On the basis ψ1, . . . , ψN , the time average Al is equal to the space average
A∗ and is thus independent of `, i.e. of the initial condition, in complete analogy with
the classical notion. This notion of quantum ergodicity, being simply the transposition
in quantum mechanics of the original notion of Boltzmann, depends on the basis,
exactly as the classical notion depends on the cell decomposition.

Let us now examine the relation between the above notion of ergodicity and the
one due to von Neumann.

PROPOSITION 1. A discrete evolution U ergodic in the sense of Definition 1 is also
ergodic in the sense of von Neumann, i.e.

(2.11)
1
N

N−1∑
k=0

〈u,U kAU−ku〉 =

N−1∑
`=0

|c`|
2
〈e`, Ae`〉.

Here u ∈ HN is arbitrary, with expansion u =
∑N−1
`=0 c`e` with respect to

the orthonormal basis e1, . . . , eN corresponding to the eigenvalues λ0, . . . , λN−1
(counted with multiplicity) of U .

PROOF. First we remark that if U is ergodic then it admits a cyclic vector; actually,
each vector of the basisψ0, . . . , ψN−1 is cyclic. Therefore the spectrum ofU is simple.
Since, moreover, UN−1

= I , each eigenvalue λ`, ` = 0, . . . , N − 1, must be an N -th
root of unity:

λ` = e
i2π`/N .
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Hence we can compute the time average on the l.h.s. of (2.11):

1
N

N−1∑
k=0

〈u,U kAU−ku〉 =
1
N

N∑
k=0

N−1∑
`,m=0

c`cm〈e`, U
kAU−kem〉

=
1
N

N−1∑
k=0

N−1∑
`,m=0

c`cm〈e`, U
kAU−kem〉

=

N−1∑
`,m=0

c`cm〈e`, Aem〉
1
N

N∑
k=1

eik(λ`−λm)

=

N−1∑
`,m=0

c`cm〈e`, Aem〉δ`,m =

N−1∑
`=0

|c`|
2
〈e`, Ae`〉

on account of the fact that

1
N

N−1∑
k=0

eik(λ`−λm) = δ`,m

because by the simplicity of the spectrum λ` − λm = 2πi(`−m)/N . This proves the
proposition.

REMARKS. 1. The converse statement is not true. Even though the simplicity of the
spectrum entails that U admits a cyclic vector, denoted φ, the vectors U kφ, k =
0, . . . , N − 1, which span HN are not necessarily orthogonal. The orthogonality
of the basis on which the dynamics acts as a one-cycle permutation is clearly the
quantum analog of the pairwise disjointness of the cells in the decomposition V .

2. In a classical ergodic system the time average of an observable, being equal to the
space average, is independent of (µ almost any) initial datum. We have already
remarked that, by (2.10), the time average of a quantum system ergodic according
to Definition 1 does not depend on the initial state chosen within the orthonormal
basis ψ1, . . . , ψN ; this fact cannot be true for the von Neumann notion unless the
matrix elements 〈e`, Ae`〉 are all equal.

3. In the classical limit, the notion of quantum ergodicity (or the stronger one of
quantum unique ergodicity) based on the validity of the Schnirelman theorem is
clearly recovered.

3. AN EXAMPLE: THE QUANTIZED HYPERBOLIC SYMPLECTOMORPHISMS OF
THE TORUS

To describe the example, we recall the main results of [DEGI] (see also [Hu]).
Consider the symplectic hyperbolic maps of the torus T2 defined by the 2 × 2 matrix
(2.6). On the smooth observables f : T2

→ C defined by the double Fourier series

(3.1) f (φ) =
∑
n∈Z2

fne
i〈n,φ〉, n = (n1, n2), φ = (φ1, φ2),
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the map T acts as follows:

(3.2) f (T φ) =
∑
n∈Z2

fne
i〈T tn,φ〉

=

∑
n∈Z2

f(T t )−1ne
i〈n,φ〉,

where T t is the matrix transposed to T .
The basis observables U(n) := ei〈n,φ〉 and the action (3.2) can be canonically

quantized looking for the unitary Hilbert space representations of the discrete Weyl–
Heisenberg algebra:

(3.3) X̂(n)X̂(m) = eiπh̄ω(m,n)X̂(m+ n)

where ω(m, n) = m1n2 − m2n1 is the discrete symplectic 2-form. The result is the
following (see [DE]).

1. The discrete Weyl–Heisenberg algebra admits infinitely many inequivalent
representations of dimension N = 1/h, indexed by θ ∈ T2. Explicitly: the Hilbert
space can be identified with CN ; denoting by e`, ` = 1, . . . , N , the vectors of the
canonical basis, the action of X̂(n) in the representation labeled by θ is specified as
follows:

X̂(n; θ) = eπin1n2/N t
n2
2 t

n1
1 ,(3.4)

t1e` =e
2πi(θ1+`)/Ne`, tN1 = e

2πiθ1I,(3.5)

t2e` =e
2πiθ2/Ne`+1, tN2 = e

2πiθ2I.(3.6)

2. For all θ ∈ T2, X̂(T tn; θ) is still an irreducible representation of (3.3), and there
exists a unitary operator VT (θ) such that

(3.7) X̂(Atn, θ) = VT (θ)
−1X̂(n, ϕ(θ))VT (θ)

where

ϕT (θ) = T θ +
1
2

(
abN

cdN

)
.

VT (θ) is called the propagator quantizing the map T . In fact, by (3.1, 3.2, 3.4, 3.7)
and the linearity of the quantization procedure, the quantum operator corresponding to
the classical observable f in the representation θ is

f̂ (θ) :=
∑
n∈Z2

X̂(n; θ).

and the Heisenberg operator corresponding to f (T φ) is

VT (θ)
−1f̂ (θ)VT (θ) = VT (θ)

−1
∑
n∈Z2

fnX̂(n, ϕ(θ))VT (θ).

3. Consider for simplicity the case of N prime, and

a = 2g, b = 1, c = 4g2
− 1, d = 2g, g ∈ N,
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i.e.

(3.8) T =

(
2g 1

4g2
− 1 2g

)
Then we can choose θ = (0, 0). In this case the elements of the N × N matrix
representing VT (0, 0) := VT in the canonical basis have the expression

(3.9) VT (m, n) =
CN
√
N

exp
[

2πi
N
(gm2

−mn+ gn2)

]
.

Assume now that 4g2
− 1 is a quadratic residue of N , i.e, there is x ∈ ZN :=

Z (mod N) such that 4g2
− 1 = x2 (mod N). We remark that, since N is a prime, ZN

is a field, i.e. each x ∈ ZN has a unique inverse x−1
∈ Zn. Equivalently: the equation

xy = 1 (mod N) has a unique solution y := x−1. If T is considered as a linear map
from ZN into itself, this amounts to requiring that its eigenvalues, denoted λ and λ−1

(note that λ−1
= N − λ), belong to ZN and are given by

λ = (2g + 2p)−1 (mod N), p :=
1
2

√
4g2 − 1.

Set now

(3.10) Ψp,`(q) = exp
[

2πi
N
(pq2

+ `q)

]
, ` ∈ ZN .

One has
〈Ψp,`(q), Ψp,`′(q)〉 = δ`,`′,

i.e., the vectors Ψp,`, ` = 0, . . . , N − 1, represent an orthornormal basis in CN .
Let now N be such that V N−1

= I . In that case the orbit of λ in ZN , i.e. the set λs ,
s = 0, . . . , N −1 (mod N), coincides with ZN . Then the basic result for our purposes
is the following one:

PROPOSITION 2.

(3.11) VTΨp,` =

(
λ

N

)
exp

[
−

2πi
N
(λ`)2(g + p)

]
Ψp,λ`,

Here (
λ

N

)
:=
{

1 if λ = x2 (mod N),
−1 if λ 6= x2 (mod N),

is the Legendre symbol.

In fact, Proposition 2 immediately entails

V kTΨp,` = e
iαk,`Ψp,λk`, k = 0, . . . , N − 1,

αk,` :=
(
λ

N

)k
exp

[
−

2πi
N

k∑
s=0

(λs`)2(g + p)

]
,
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which is formula (2.7) with U := VT . We remark that, even though the numerical
evidence supports the conjecture that primes N enjoying the above property are
actually generic [PV], the actual existence of such primesN is far from being trivial; it
follows from the validity of the Artin conjecture, in turn equivalent to the generalized
Riemann hypothesis (see e.g. [Mu]).

4. DISCUSSION

We have seen that the original definition of ergodicity given by Boltzmann can be
applied in a natural way to finite quantum systems; the notion of quantum ergodicity
thus obtained is stronger than von Neumann’s. Furthermore, unlike the quantum
ergodicity notion based on the convergence of the matrix elements to the classical
ergodic average in the classical lmit, it holds for any value of the Planck constant.
We have also seen that finite quantum systems which come from the quantization
of the simplest classically chaotic ones are actually ergodic according to this notion.
Two natural questions arising in this context are: first, the possibility of verifying
the ergodicity in this sense for finite quantum systems such as the quantization of
classically chaotic but discontinuous maps, for example, the quantized baker’s map
[DBDEG]. The construction of [DEGI] leading to the ergodic action (2.7) does not
seem to apply in this case, so that different arguments are required. A second and
more important question is the generality of this notion, i.e. the possibility of applying
it to more realistic quantum systems, let alone the verification. The most significant
example from a physical point of view, namely the quantization of a classically ergodic
flow on a compact, constant energy surface, requires the preliminary understanding of
no smaller difficulty, namely, the quantization of the classical symplectic reduction
on a constant energy surface when the flow on it is ergodic. Since, as above, each
quantum state occupies a volume in phase space proportional to h̄, the resulting
quantum systems, if any, should have a finite number of states, and the above definition
should be applicable.
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